数字图像处理图像分割

合集下载

数字图像处理实验报告——图像分割实验

数字图像处理实验报告——图像分割实验

实验报告课程名称数字图像处理导论专业班级_______________姓名 _______________学号_______________电气与信息学院与谐勤奋求就是创新一.实验目得1.理解图像分割得基本概念;2.理解图像边缘提取得基本概念;3.掌握进行边缘提取得基本方法;4.掌握用阈值法进行图像分割得基本方法.二。

实验内容1.分别用Roberts,Sobel与拉普拉斯高斯算子对图像进行边缘检测。

比较三种算子处理得不同之处;2.设计一个检测图1中边缘得程序,要求结果类似图2,并附原理说明。

3.任选一种阈值法进行图像分割、图1 图2三.实验具体实现1.分别用Roberts,Sobel与拉普拉斯高斯算子对图像进行边缘检测。

比较三种算子处理得不同之处;I=imread(’mri、tif');imshow(I)BW1=edge(I,’roberts’);figure ,imshow(BW1),title(’用Roberts算子’)BW2=edge(I,’sobel’);figure,imshow(BW2),title(’用Sobel算子 ')BW3=edge(I,’log’);figure,imshow(BW3),title(’用拉普拉斯高斯算子’)比较提取边缘得效果可以瞧出,sober算子就是一种微分算子,对边缘得定位较精确,但就是会漏去一些边缘细节.而Laplacian—Gaussian算子就是一种二阶边缘检测方法,它通过寻找图象灰度值中二阶过零点来检测边缘并将边缘提取出来,边缘得细节比较丰富。

通过比较可以瞧出Laplacian-Gaussian算子比sober算子边缘更完整,效果更好。

2.设计一个检测图1中边缘得程序,要求结果类似图2,并附原理说明.i=imread('m83、tif’);subplot(1,2,1);imhist(i);title('原始图像直方图');thread=130/255;subplot(1,2,2);i3=im2bw(i,thread);imshow(i3);title('分割结果’);3.任选一种阈值法进行图像分割、i=imread('trees、tif’);subplot(1,2,1);imhist(i);title('原始图像直方图’);thread=100/255;subplot(1,2,2);i3=im2bw(i,thread);imshow(i3);title('分割结果’)1、分别用Roberts,Sobel与拉普拉斯高斯算子对图像进行边缘检测。

数字图像处理图像分割课件

数字图像处理图像分割课件

基于Mumford-Shah模 …
该方法可以获得更准确、更平 滑的分割结果,并且可以更好 地处理噪声和细节。此外,它 还可以更好地处理形状约束和 边界条件。
基于Mumford-Shah模 …
该方法需要更多的计算资源和 时间来处理每个时间点的水平 集,并且可能难以处理大规模 的形状变化和复杂的形状约束 。
响。
图像分割还可以帮助缩小处理和 分析的规模,提高处理效率,并 为后续的图像分析提供可靠的预
处理结果。
图像分割的分类
01
02
03
04
按照处理方式
图像分割可以分为阈值法、区 域生长法、边缘检测法、图切
割法等。
按照应用领域
图像分割可以分为医学图像分 割、遥感图像分割、人脸识别
等。
按照分割对象
图像分割可以分为二维图像分 割和三维图像分割。
该方法具有能够处理复杂的图像内容和噪声等优点,但也可能需要更多的计算资源和时间。
07
实例展示与结果分析
基于阈值的图像分割实例
总结词
简单、快速、有效的图像分割方法
详细描述
基于阈值的图像分割是一种基本的图像分割方法,通过设置不同的阈值将图像分 割成不同的区域。其优点是简单、快速、有效,适用于简单背景和对比明显的图 像。但是,对于复杂背景和低对比度图像,分割效果较差。
些方法可以自动适应不同图像的特点,且能够根据图像内容的变化自适
应调整阈值。
03
自适应阈值
根据图像的局部特征自适应地设置阈值,例如基于区域生长的方法、基
于边缘检测的方法等。这些方法能够更好地适应图像的局部特征,提高
分割的精度和鲁棒性。
阈值法的优缺点
优点
阈值法简单易行,适用于简单背景和 对比度较高的图像;对于实时性要求 较高的应用场景,阈值法具有较快的 处理速度。

数字图像处理-第六章图像分割与分析

数字图像处理-第六章图像分割与分析

设平面上有若干点,过每点的直线族分别对应于极坐标上的 一条正弦曲线。若这些正弦曲线有共同的交点(ρ′,θ′),如图 (e),则这些点共线,且对应的直线方程为 ρ′=xcosθ′+ysinθ′
这就是Hough变换检测直线的原理。
y
A 60
B
F E
C
G 60
D 120
x
x-y空间的边缘点
D
120
C
w1 w 2 w3
可以指定模板为:
w
4
w5
w
6
w 7 w 8 w 9
9
模板响应记为: R | w i z i | i1
输出响应R>T时对应孤立点。
888 8 128 8 888
图像
-1 -1 -1 -1 8 -1 -1 -1 -1
模板
R = (-1 * 8 * 8 + 128 * 8) / 9 = (120 * 8) / 9 = 960 / 9 = 106
3、阈值分割法(相似性分割)
根据图像像素灰度值的相似性
通过选择阈值,找到灰度值相似的区域 区域的外轮廓就是对象的边
阈值分割法(thresholding)的基本思想: 确定一个合适的阈值T(阈值选定的好坏是此方法成败 的关键)。 将大于等于阈值的像素作为物体或背景,生成一个二值 图像。
f(x0,y0) T
2h
r2 2 4
exp
r2 2 2
是一个轴对称函数:
2h

σ
0
由图可见,这个函数 在r=±σ处有过零点,在 r │r│<σ时为正,在│r│>σ 时为负。
由于图像的形状,马尔算子有时被称为墨西哥草帽函数。 用▽2h对图像做卷积,等价于先对图像做高斯平滑,然后再用▽2对 图像做卷积。 因为▽2h的平滑性质能减少噪声的影响,所以当边缘模糊或噪声较 大时,利用▽2h检测过零点能提供较可靠的边缘位置。

第8章 图象分割(08) 数字图像处理课件

第8章 图象分割(08) 数字图像处理课件

第8章 图像分割
Log算子边缘检测
第8章 图像分割
8.2.3 算法的特点 • Roberts算子采用对角线方向相邻像素之差近似 检测边缘,定位精度高,在水平和垂直方向效果较 好,但对噪声敏感。 • Sobel算子利用像素的上、下、左、右邻域的灰 度加权算法进行边缘检测。该方法提供较为精确的 边缘方向信息,而且对噪声具有平滑作用,能产生 较好的检测效果。但是增加了计算量,而且也会检 测伪边缘。
所以分割算法可据此分为2大类: 利用区域间灰度不连续性的基于边界的算法; 利用区域内灰度相似性的基于区域的算法。
第8章 图像分割
图像分割方法的分类: 现今,对一些经典方法和新出现的方法进行总
结,可将图像分割方法分为四类: 边缘检测方法 阈值分割方法 区域提取方法 结合特定理论工具的分割方法。
第8章 图像分割
(1)基于边缘的分割方法: 图像最基本的特征是边缘,它是图像局部特性不
连续(或突变)的结果。例如,灰度值的突变、颜色的 突变、纹理的突变等。
边缘检测方法是利用图像一阶导数的极值或二 阶导数的过零点信息来提供判断边缘点的基本依据, 经典的边缘检测方法是构造对图像灰度阶跃变化敏感 的差分算子来进行图像分割,如Robert算子、Sobel算 子、Prewitt算子、Laplacian算子等。
另外,还没有制定出选择适用分割算法的标准。
第8章 图像分割
8.2 边 缘 检 测 的 分 割 方 法
8.2.1 原理及算法
目的:检测出局部特性的不连续性,再将它们连成 边界,这些边界把图像分成不同的区域。
图像边缘对图像识别和计算机分析十分有用,边缘 能勾画出目标物体,使观察者一目了然;边缘蕴含了 丰富的内在信息(如方向、阶跃性质、形状等),是 图像识别中重要的图像特征之一。

数字图像处理中的变分模型与分割技术

数字图像处理中的变分模型与分割技术

数字图像处理中的变分模型与分割技术数字图像处理是一种广泛应用于计算机视觉、图像处理、图像分析等领域的技术。

其中的变分模型与分割技术是数字图像处理的重要组成部分,广泛应用于各种图像处理领域,如医学影像处理、物体识别、目标检测等。

变分模型是指对一个系统的能量函数进行最小化或最大化的过程,其中的能量函数是由图像像素的灰度值、空间距离和各种边缘等特征组成的。

常见的变分模型有全变分模型和TV(Total Variation)模型。

全变分模型是一种常见的图像处理方法,它可以将一个图像分解成多个层次,形成一个自适应的图像分割系统。

它可以有效地对图像进行边缘检测和分割。

TV模型则是一种基于局部均匀性假设的变分模型,它可以有效地管理图像分割中的噪声,并通过对图像的总变化量进行最小化来实现对图像分割的优化。

在分割技术中,边缘检测是关键环节之一。

边缘检测是指通过检测出图像中明显的边缘,进而将图像分割成若干区域的处理方法。

边缘检测技术包括Prewitt算子、Sobel算子、Canny算子等方法。

其中,Canny算法是一种基于高斯滤波、梯度计算、非极大值抑制和双阈值化等多项技术的综合算法,它可以有效地检测图像中的边缘,并将图像分割成多个区域。

除了边缘检测之外,聚类分析也是数字图像处理中广泛使用的分割技术之一。

聚类分析是指将具有相同特征的图像像素归为一类的过程。

它可以有效地将图像分割成多个相似的区域,常见的聚类算法有k-means算法、谱聚类算法等。

此外,分水岭算法也是一种常见的数字图像分割算法。

它是基于图像水平线的思想设计而成的一种聚类算法,可以将图像分割成多个区域,并在每个区域周围形成边缘。

分水岭算法广泛应用于医学影像处理中的肺部分割、乳腺分割等领域。

总之,数字图像处理中的变分模型与分割技术是数字图像处理的重要组成部分,可以有效地对图像进行边缘检测、目标分割、肿瘤检测等领域。

未来,随着计算机视觉和人工智能技术的不断发展,数字图像处理技术将在更多领域得到应用。

数字图像处理第7章

数字图像处理第7章

1 0 1
1
Wh 2
2
2
1
0 0
2
1
1
Wv
1 2
2
0 1
2 1
0 0
2
1
▓图7.2.5给出了上述五种梯度算子的边缘点检测实例。
Digital Image Processing
7.2 边缘点检测
(a)原图像
(b)梯度算子检测
(c) Roberts检测
(d) Prewitt检测
(e) Sobel检测
感。形成的方向梯度模板集就称为方向匹配检测模板,或方向梯
度响应数组。用其中的每一个方向的模板分别与图像卷积,其最
大模值就是边缘点的强度,最大模值对应的模板方向就是边缘点
的方向,这种检测边缘点并确定其方向的方法就称为方向梯度法
或方向匹配模板法。边缘梯度的定义式为:
N 1
G(m,
n)
MAX i0
{
Gi
(m,
Digital Image Processing
7.2 边缘点检测
(2) Sobel算子法(加权平均差分法) ▓Sobel算子就是对当前行或列对应的值加权后,再进行平
均和差分,也称为加权平均差分。水平和垂直梯度模板分别为:
1 0 1
Wh
1 4
2
0
2
1 0 1
1 2 1
Wv
1 4
0
0
0
1 2 1
(f)各向同性Sobel检测
图7.2-5 五种梯度算子的边缘点检测实例
Digital Image Processing
7.2 边缘点检测
◘方向梯度法(方向匹配模板法)
▓若事先并不知道哪个方向有边缘,但需要检测边缘,并确定 边缘的方向时。我们可设计一系列对应不同方向边缘的方向梯度

数字图像处理---图像分割

数字图像处理---图像分割

数字图像处理---图像分割图像分割概述图像分析概念:对图像中感兴趣的⽬标进⾏检测和测量,以获得它们的客观信息,从⽽建⽴对图像的描述步骤:1. 图像分割2. 特征识别3. 对象分类4. 建⽴联系概述图像分割概念:将图像划分为互不重叠的区域并提取感兴趣⽬标的技术基本策略:基于灰度值的两个基本特性:不连续性和相似性通过检测不连续性先找边,后确定区域通过检测相似性,在⼀定阈值下找到灰度值相似区域,区域外轮廓即为对象边界⽅法基于边缘的分割⽅法:先提取区域边界,再确定边界限定区域区域分割:确定每个像素归属区域,从⽽形成区域图区域⽣长:将属性接近的连通像素聚集成区域分裂-合并分割:即存在图像划分,也存在图像合并边缘检测算⼦---边缘分割法边缘定义:图像中像素灰度有阶跃变化或屋顶变化的像素的集合分类:阶跃状屋顶状特点:属于⾼频信号区域往往为闭合连线边缘检测流程滤波⇒增强⇒检测⇒定位边缘检测算⼦基本思想:计算局部微分算⼦⼀阶微分:⽤梯度算⼦进⾏运算特点:对于阶跃状变化会出现极⼤值(两侧都是正值,中间最⼤)对于屋顶状变化会过零点(两侧符号相反)不变部分为0⽤途:检测图像中边的存在注意事项:由于结果图中存在负值,因此需要处理后使⽤处理⽅法:取绝对值加最⼩值阈值法⼆阶微分:通过拉普拉斯算⼦计算特点:对于阶跃状变化会过零点(两侧符号相反)对于屋顶状变化会出现负极⼤值(两侧都是正值,中间最⼩)不变部分为0⽤途:检测图像中边的存在常⽤边缘检测算⼦Roberts 算⼦Prewitt 算⼦Sobel 算⼦Kirsch 算⼦Laplacian 算⼦Marr 算⼦交叉⽅向⼀阶锐化问题:锐化处理结果对具有矩形特征的物体的边缘提取较为有效,但是对于不规则形状的边缘提取,则存在信息上的缺损解决思想:利⽤⽆⽅向的锐化算法交叉微分算⼦交叉Roberts 算⼦公式:f ′x =|f (x +1,y +1)−f (x ,y )|f ′y =|f (x +1,y )−f (x ,y +1)|模板:f ′x =−1001,f ′y =01−1特点:算法简单,对噪声敏感,效果较梯度算⼦较好交叉Prewitt 算⼦模板:d ′x =011−101−1−10,d ′y =−1−10−101011特点:与Sobel 相⽐有⼀定抗⼲扰性,图像效果较⼲净交叉Sobel 算⼦模板:d ′x =012−101−2−10,d ′y =−2−10−101012特点:锐化的边缘信息较强kirsch 算⼦(⽅向算⼦)模板:特点在计算边缘强度的同时可以得到边缘⽅向各⽅向间的夹⾓为45°分析取其中最⼤的值作为边缘强度,与之对应的⽅向作为边缘⽅向若取最⼤值绝对值,则仅需要前四个模板即可Nevitia 算⼦[][][][][][]特点:各⽅向间的夹⾓为30°Laplacian算⼦同图像增强中的Laplacian算⼦优点:各向同性、线性和位移不变对细线和孤⽴点检测效果较好缺点对噪声敏感,有双倍加强作⽤不能检测出边缘⽅向常产⽣双像素边缘使⽤之前需要对图像进⾏平滑Marr算⼦在Laplacian算⼦基础上发展⽽来平滑函数采⽤⾼斯正态分布函数h(x,y)=e−x2+y2 2σ2σ为⽅差⽤h(x,y)对图像f(x,y)平滑克表⽰为g(x,y)=h(x,y)∗f(x,y) *代表卷积令r表⽰从原点出发的径向距离,即r2=x2+y2利⽤⾼斯-拉普拉斯滤波器(LOG滤波器)▽2h=(r2−2σ2σ4)e−r22σ2即可利⽤⼆阶导数算⼦过零点的性质,确定图像中阶跃边缘的位置在该算⼦中σ越⼩边缘位置精度越⾼,边缘细节变化越多;σ越⼤平滑作⽤越⼤,但是细节损失越⼤,边缘点定位精度越低过程1. 通过⼆维⾼斯函数对图像进⾏卷积降噪2. ⽤⼆阶导数差分算⼦计算图像强度的⼆阶导数3. 利⽤⼆阶导数算⼦过零点的性质,确定图像中阶跃边缘的位置优点:能快速得到⼀个闭合的轮廓缺点:对噪声敏感Canny边缘检测算⼦最优边缘检测算⼦应有的指标低误判率⾼定位精度抑制虚假边缘过程:1. 计算图像梯度2. 梯度⾮极⼤值抑制3. 双阈值提取边缘点计算图像梯度⾼斯函数的⼀阶导数模板:−11−11,−1−111⾮极⼤值抑制 NMS思想:梯度幅值图像M(x,y),仅保留梯度⽅向上的极⼤值点过程初始化N(x,y)=M(x,y)对每⼀点在梯度⽅向和反梯度⽅向各找n 个点,若M(x,y)⾮最⼤值,则置零,否则保持不变对NMS 结果⼆值化(双阈值提取边缘点)使⽤两个阈值T 1,T 2:T 2>>T 1由T 1得到E 1(x ,y ),低阈值边缘图:更⼤的误检率由T 2得到E 2(x ,y ),⾼阈值边缘图:更可靠边缘连接初始化E (x ,y )=E 2(x ,y )对E (x ,y )中的每个点在E 1(x ,y )中寻找延长部分进⾏连接输出E (x ,y )Canny 边缘检测算⼦步骤1. ⾼斯滤波器平滑2. ⼀阶偏导计算梯度幅值与⽅向3. 对梯度幅值进⾏⾮极⼤值抑制4. 双阈值算法检测连接边缘Canny 边缘检测算⼦优点参数较⼩计算效率⾼得到边缘连续完整双阈值选择T Low =T HIGH ∗0.4曲⾯拟合法出发点:基于差分检测图像边缘的算⼦往往对噪声敏感四点拟合灰度表⾯法⽤⼀平⾯p (x ,y )=ax +by +c 来拟合四邻域像素灰度值定义均⽅差为ε=∑[p (x ,y )−f (x ,y )]2模板a =12−1−111,b =12−11−11特点:先平均后求差分,对噪声由抑制作⽤边缘跟踪出发点:噪声边检测需要归整边缘像素概念:将检测的边缘点连接成线过程:边缘提取连接成线⽅法光栅扫描跟踪法全向跟踪法光栅扫描跟踪法概念:采⽤电视光栅⾏扫描顺序,结合门限检测,对遇到的像素进⾏分析并确定其是否是边缘的跟踪⽅法具体步骤:[][][][]确定检测阈值d(较⾼)超过d的点作为对象点确定跟踪阈值t(较低)确定跟踪邻域扫描下⼀⾏,跟踪邻域内灰度差⼩于t的,接受为对象点若没有对象点,则该曲线跟踪结束重新从下⼀⾏开始利⽤d寻找对象点并进⾏跟踪扫描结束后跟踪结束特征可以不是灰度级跟踪准则根据具体问题灵活运⽤最好再进⾏⼀次其他⽅向的跟踪全向跟踪Hough变化检测法问题:如何连接边界点集基本思想利⽤xoy直⾓坐标系直线y=ax+b,待求极坐标系内点(ρ,θ),已知求点到线的变化ρ=xcosθ+ysinθ原理:过每个点的直线系分别对应极坐标系上的⼀条正弦曲线,如正弦曲线存在共同交点(ρ′,θ′),则必定在平⾯上共线实现:使⽤交点累积器或直⽅图,寻找相交线段最多的参数空间的点,再寻找对应的直线线段特点:对ρ、θ量化过粗会导致直线参数不精确,过细会导致计算量增加获得直线抗噪能⼒强可以⽤来检测直线阈值分割法基本思想:通过阈值T⽣成⼆值图,在四邻域中有背景的像素就是边界像素特点:适⽤于物体与背景有强对⽐的情况下,且物体或背景的灰度较单⼀可以先求背景再求物体可以得到封闭且连通区域的边界通过交互获得阈值通过直⽅图得到阈值基本思想:边界上的点灰度值出现次数较少⽅法:选取直⽅图⾕底的最⼩灰度值作为阈值缺点:会受到噪声⼲扰改进:取两个峰值之间的某个固定位置降噪简单图像的阈值分割判断分析法最佳熵⾃动阈值法复杂图像的阈值分割步骤⾃动平滑直⽅图确定区域类数⾃动搜索多个阈值特征空间聚类k均值聚类步骤任意选取K个初始聚类中⼼值使⽤最⼩距离判别,将新读⼊的像素分⾄K类重新计算中⼼值,等于⼀类元素的平均值重新聚类直⾄新旧差异不⼤区域增长通过像素集合的区域增长实现:根据应⽤选取种⼦选择描述符种⼦根据描述符扩张直⾄没有新的节点加⼊集合简单区域扩张法以未划分点与起点灰度差⼩于阈值T作为描述符优缺点:1. 不好确定阈值2. ⽆法分割缓慢变化边界质⼼区域增长法以未划分点与区域平均灰度值差⼩于阈值T作为描述符分裂合并法实现:1. 对于灰度级不同的区域划分为四个⼦区域2. 若相邻⼦区域所有像素灰度级相同,则合并3. 反复进⾏直⾄不再进⾏新的分裂合并操作Processing math: 100%。

遥感数字图像处理教程_图像分割

遥感数字图像处理教程_图像分割

遥感数字图像处理教程_图像分割
图像分割是指将一幅图像分成若干个具有一定语义的区域的过程。


遥感图像处理中,图像分割是一项重要的任务,可以用来提取地表覆盖类型、检测目标等。

图像分割方法有很多种,常见的包括基于阈值、基于边缘、基于区域
和基于特征的方法。

基于阈值的图像分割是最简单的方法之一,通过设定一个阈值,将图
像中灰度值高于或低于该阈值的像素分为不同的区域。

这种方法适用于目
标与背景之间的灰度差异明显的情况。

基于边缘的图像分割是通过检测图像中的边缘来进行分割的。

常见的
边缘检测算法有Sobel算子、Canny算子等。

通过检测边缘,可以将图像
中不同区域的边界分开。

基于区域的图像分割是将图像划分为具有一定连通性和一致性的区域。

该方法首先通过像素之间的相似性来合并区域,然后再根据区域的属性进
行进一步的合并和细分。

基于特征的图像分割是利用图像中的一些特征来进行分割,如颜色、
纹理、形状等。

通过提取图像中的特征并使用合适的分类算法,可以将图
像分割为具有不同特征的区域。

图像分割在遥感图像处理中有着广泛的应用,例如提取森林、湖泊等
地表覆盖类型,检测城市建筑、道路等目标,以及监测农作物、污染等环
境指标。

数字图像处理中的图像分割技术及其应用

数字图像处理中的图像分割技术及其应用

数字图像处理中的图像分割技术及其应用摘要:在现代技术支持下,数字图像处理技术被应用到各行业领域,其中以图像分割技术为代表性技术,可通过数字处理底层技术,能够准确识别不同模式。

此次研究主要是探讨分析数字图像处理中的图像分割技术及其应用,希望能够对相关人员起到参考性价值。

关键词:数字图像处理;图像分割技术;技术应用数据图像处理中包含大量新兴技术,其中最具有代表性的就是图像分割技术。

图像分割的方法比较多,该种分割主要是应用不同区域之间的像素灰度呈现出不连续特点对区域间边缘进行检测,这样就能够进行图像分割。

按照边缘检测的不同方式可以将其分为并行边缘检测和串行边缘检测方式等。

在边缘检测中,包含并行边缘检测法和串行边缘检测法。

其中前者可以判断像素点是否为边缘点,与此同时能够在每个像素点上进行检测,这样可以在较大程度上提升检测效率。

并行检测方法主要Kirsh算子边缘检测,Wills算子以及Roberts梯度算子。

,在图像当中图像边缘呈现出不连续灰度,因此提升了检测难度,然而该种检测方式在图像检测当中意义重大,因此需要工程人员加大对该种检测方式的研究与分析。

后者主要是对边缘起始点进行检测,之后按照相似性原则对寻找张前一点相似的边缘点,该种确定方式被称为跟踪法。

按照不同的跟踪方法能够将该种检测方式分为全向跟踪,光栅跟踪以及轮廓跟踪等。

本文主要是阐述图像分割技术方法与分类应用,全面发挥出图像处理的价值和作用。

1、图像分割数与分类1.1图像分割技术概述图像背景主要为图像感兴趣部分所对应的区域,为了对图像背景进行准确识别,将从图像中分离目标,这就属于图像分割技术的相关研究。

图像分割技术能够将数字图像划分为不重叠区域,且不同区域之间不存在交叉现象。

当前,图像分割技术的实践应用广泛。

1.2图像分割技术分类针对图像分割技术来说,缺乏统一的标准限定,也没有详细划分分割成功标准。

当前所常用的分割方法及描述方法如下:第一,灰度阈值法。

数字图像处理PPT——第七章 图像分割

数字图像处理PPT——第七章 图像分割

p-参数法
针对已知目标物在画面中所占比例的情况。 基本设计思想 选择一个值Th,使前景目标物所占的比例 为p,背景所占比例为1-p。 基本方法 先试探性地给出一个阈值,统计目标物的 像素点数在整幅图中所占的比例是否满足 要求,是则阈值合适;否则,阈值则偏大 或者偏小,再进行调整,直到满足要求。
p-参数法算法步骤
⎧ σ b2 ⎫ η | Th* = max ⎨ 2 ⎬ ⎩σ in ⎭
局部阈值方法
提出的原因 阈值方法对于较为简单的图像(目标 与背景差别大,容易区分的图像)简 单有效,对于较为复杂的图像,分割 效果不稳定。 方法 把图像分成子块,在每个子块上再采 样前述阈值分割方法
灰度-局部灰度均值散布图法
σ 12 =
f ( x , y )∈C 1

( f ( x, y ) − μ1 )2
2 σ2 =
f ( x , y )∈C 22 )2
1 μ1 = N C1
f ( x , y )∈C 1

f ( x, y )
1 μ2 = NC 2
f ( x , y )∈C 2

f ( x, y )
参数空间的一条直线对应xy空间的一 个点
Hough变换提取直线原理
Xy空间一条直线上的n个点,对应kb 空间经过一个公共点的n条直线 Kb空间一条直线上的n点对应于xy空 间中过一公共点的n条直线
Hough变换提取直线算法
假设原图像为二值图像,扫描图中的每一 个像素点: 背景点,不作任何处理 目标点,确定直线: b = − xk + y 参数空间上的对应直线上所有的值累加1 循环扫描所有点 参数空间上累计值为最大的点(k*,b*)为所求 直线参数 按照该参数与原图像同等大小的空白图像 上绘制直线

数字图像处理常用方法

数字图像处理常用方法

数字图像处理常用方法
是基于图像的性质进行计算,利用数字图像处理方法来处理和分析数字图像信息。

数字图像处理包括图像采集、图像建模、图像增强、图像分割、图像特征提取、图像修复、图像变换等。

具体数字图像处理方法有:
1、图像采集:利用摄像机采集图像,可以采用光学成像、数字成像或其他技术技术来实现;
2、图像建模:利用数学模型将图像信息表达出来,有些模型可以用来确定图像的特征,而有些模型则能够捕捉图像的复杂细节;
3、图像增强:对采集的图像数据进行处理,包括图像的锐化、滤波、清晰度增强、局部像素增强等;
4、图像分割:根据指定的阈值将图像分成不同的区域,分割图像后可以获得更多的精确细节和信息;
5、图像特征提取:将图像信息中的有价值部分提取出来,提取的过程有多种算法,提取的结果均可以用来进行分类识别等;
6、图像修复:通过卷积神经网络,利用图像的实际内容和特征,自动修复受损图像;
7、图像变换:针对图像的数据结构,可以利用变换矩阵将图像像素坐标和分量进行变换,以获得新的图像。

遥感数字图像处理教程11图像分割PPT课件

遥感数字图像处理教程11图像分割PPT课件

优点
能够准确提取目标的边缘信息 。
缺点
对噪声和细节较为敏感,容易 产生伪边缘。ቤተ መጻሕፍቲ ባይዱ
基于特定理论的分割
基于特定理论或算法的分割
根据特定的理论或算法,如分形理论、小波 变换、遗传算法等,对图像进行分割。
优点
能够针对特定问题提出有效的解决方案。
适用场景
适用于特定领域的图像分割问题。
缺点
实现难度较大,运算量较大。
对复杂场景的应对能力有限
在复杂背景、光照不均、目标遮挡等情况下,现有算法的分割效果不 佳。
未来研究的方向与展望
提升算法泛化能力
研究能够适应不同场景和数据 集的图像分割算法,提高算法 的鲁棒性和泛化能力。
优化算法计算效率
通过算法优化、并行计算等技 术手段,降低计算复杂度,提 高处理速度,满足实时性要求 。
03
遥感数字图像处理中的图像分割
遥感数字图像的特点
数据量大
遥感数字图像通常覆盖大面积区域,产生大量的 数据。
多种波段
多光谱和超光谱遥感图像包含多个波段,提供更 丰富的地物信息。
动态变化
遥感数字图像可以反映地物的动态变化,如城市 扩张、植被生长等。
地理信息丰富
遥感数字图像包含丰富的地理信息,如经纬度、 高程等。
在遥感图像处理中,图像分割 技术尤为重要,因为遥感图像 通常具有较大的尺寸、复杂的 背景和多种类型的目标,需要 采用高效的图像分割方法来提 取有用的信息。
图像分割的应用领域
医学影像分析
在医学领域中,图像分割技术被广泛应用于医学影 像的预处理阶段,如X光片、CT和MRI等影像的分割 ,以便于医生对病变部位的定位和诊断。
算法泛化能力不足

数字图像处理与应用(MATLAB版)第6章 图像的分割

数字图像处理与应用(MATLAB版)第6章 图像的分割

是边缘;
➢ 使用双阈值算法检测和连接边缘。即使用直方图计
算两个阈值,凡是大于高阈值的一定是边缘;凡是
小于低阈值的一定不是边缘。如果检测结果大于低
阈值但又小于高阈值,那就要看这个像素的邻接像
素中有没有超过高阈值的边缘像素,如果有,则该
像素就是边缘,否则就不是边缘。
0 -1 0 -1 4 -1 0 -1 0
B A
6.1 图像分割的定义和分类
图像分割:是指根据灰度、彩色、纹理等特征把图像 划分成若干个互不相交的区域,使得这些特征在同一区 域内,表现出一致性或相似性,而在不同区域间表现出 明显的不同。
图像分割的作用
图像分割是图像识别和图像理解的前提,图像分 割质量的好坏直接影响后续图像处理的效果。
图像
具体步骤:
➢ 首先用2D高斯滤波模板进行卷积以平滑图像;
➢ 利 用 微 分 算 子 ( 如 Roberts 算 子 、 Prewitt 算 子 和
Sobel算子等),计算梯度的幅值和方向;
➢ 对梯度幅值进行非极大值抑制。即遍历图像,若某
个像素的灰度值与其梯度方向上前后两个像素的灰

度值相比不是最大,那么这个像素值置为0,即不
第六章 图像的分割
内 容 1、图像分割的定义和分类; 提 2、基于边缘的图像分割方法;
要 3、基于区域的分割;
4、基于运动的图像分割 ; 5、图像分割技术的发展。

本 要
通过对图像分割技术的学习,掌
求 握基于边缘、区域、运动的图像

分割技术。

难 点
图像分割的定义、分类 基于边缘的图像分割方法
基于区域、运动的图像分割方法
G(i, j) Px Py
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

ygf8200实习小编一级|消息| 我的百科| 我的知道| 我的空间| 百度首页| 退出图像分割简介数字图像处理技术是一个跨学科的领域。

随着计算机科学技术的不断发展,图像处理和分析逐渐形成了自己的科学体系,新的处理方法层出不穷,尽管其发展历史不长,但却引起各方面人士的广泛关注。

首先,视觉是人类最重要的感知手段,图像又是视觉的基础,因此,数字图像成为心理学、生理学、计算机科学等诸多领域内的学者们研究视觉感知的有效工具。

其次,图像处理在军事、遥感、气象等大型应用中有不断增长的需求。

基于图论的图像分割技术是近年来国际上图像分割领域的一个新的研究热点。

该方法将图像映射为带权无向图,把像素视作节点。

利用最小剪切准则得到图像的最佳分割该方法本质上将图像分割问题转化为最优化问题。

是一种点对聚类方法。

对数据聚类也具有很好的应用前景。

但由于其涉及的理论知识较多,应用也还处在初级阶段。

因此国内这方面的研究报道并不多见,本文将对图论方法用于图像分割的基本理论进行简要介绍,并对当前图论方法用于图像分割的最新研究进展进行综述,并着重介绍基于等周图割的图像分割的方法。

图像目标分割与提取技术综述图像分割是一种重要的图像技术,在理论研究和实际应用中都得到了人们的广泛重视。

图像分割的方法和种类有很多,有些分割运算可直接应用于任何图像,而另一些只能适用于特殊类别的图像。

有些算法需要先对图像进行粗分割,因为他们需要从图像中提取出来的信息。

例如,可以对图像的灰度级设置门限的方法分割。

值得提出的是,没有唯一的标准的分割方法。

许多不同种类的图像或景物都可作为待分割的图像数据,不同类型的图像,已经有相对应的分割方法对其分割,同时,某些分割方法也只是适合于某些特殊类型的图像分割。

分割结果的好坏需要根据具体的场合及要求衡量。

图像分割是从图像处理到图像分析的关键步骤,可以说,图像分割结果的好坏直接影响对图像的理解。

具体定义为后续工作有效进行而将图像划分为若干个有意义的区域的技术称为图像分割(I mage Segmentation)而目前广为人们所接受的是通过集合所进行的定义:令集合R代表整个图像区域,对R的图像分割可以看做是将R分成N个满足以下条件的非空子集R1,R2,R3,…,RN;(1)在分割结果中,每个区域的像素有着相同的特性(2)在分割结果中,不同子区域具有不同的特性,并且它们没有公共特性(3)分割的所有子区域的并集就是原来的图像(4)各个子集是连通的区域后记目前,有许多的图像分割方法,从分割操作策略上讲,可以分为基于区域生成的分割方法,基于边界检测的分割方法和区域生成与边界检测的混合方法.图像分割主要包括4种技术:并行边界分割技术、串行边界分割技术、并行区域分割技术和串行区域分割技术。

图像分割是从图像处理到图像分析的关键技术。

图像分割的种类和方法很多,有些分割算法可直接用于任何图像,而另一些算法只能适用于分割特殊类别的图像。

有些算法需要先对图像进行粗分割,因为它们需要从图像中提取出来的信息。

没有唯一的标准的方法。

分割结果的好坏需要根据具体的场合要求衡量。

早期的图像分割方法可以分为两大类。

一类是边界方法,这种方法假设图像分割结果的某个子区域在原来图像中一定会有边缘存在;一类是区域方法,这种方法假设图像分割结果的某个子区域一定会有相同的性质,而不同区域的像素则没有共同的性质。

这两种方法都有优点和缺点,有的学者考虑把两者结合起来进行研究。

现在,随着计算机处理能力的提高,很多方法不断涌现,如基于彩色分量分割、纹理图像分割。

所使用的数学工具和分析手段也是不断的扩展,从时域信号到频域信号处理,小波变换等等。

图像分割主要包括4种技术:并行边界分割技术、串行边界分割技术、并行区域分割技术和串行区域分割技术。

下面是分别对每一项做简单的介绍。

1、并行边界分割不同图像灰度不同,边界处一般会有明显的边缘,利用此特征可以分割图像。

需要说明的是:边缘和物体间的边界并不等同,边缘指的是图像中像素的值有突变的地方,而物体间的边界指的是现实场景中的存在于物体之间的边界。

有可能有边缘的地方并非边界,也有可能边界的地方并无边缘,因为现实世界中的物体是三维的,而图像只具有二维信息,从三维到二维的投影成像不可避免的会丢失一部分信息;另外,成像过程中的光照和噪声也是不可避免的重要因素。

正是因为这些原因,基于边缘的图像分割仍然是当前图像研究中的世界级难题,目前研究者正在试图在边缘提取中加入高层的语义信息。

在实际的图像分割中,往往只用到一阶和二阶导数,虽然,原理上,可以用更高阶的导数,但是,因为噪声的影响,三阶以上的导数信息往往失去了应用价值。

二阶导数还可以说明灰度突变的类型。

在有些情况下,如灰度变化均匀的图像,只利用一阶导数可能找不到边界,此时二阶导数就能提供很有用的信息。

二阶导数对噪声也比较敏感,解决的方法是先对图像进行平滑滤波,消除部分噪声,再进行边缘检测。

不过,利用二阶导数信息的算法是基于过零检测的,因此得到的边缘点数比较少,有利于后继的处理和识别工作。

Roberts算子:边缘定位准,但是对噪声敏感。

适用于边缘明显且噪声较少的图像分割。

Prewitt算子:对噪声有抑制作用,抑制噪声的原理是通过像素平均,但是像素平均相当于对图像的低通滤波,所以Prewitt算子对边缘的定位不如Roberts算子。

Sobel算子:Sobel算子和Prewitt算子都是加权平均,但是Sobel算子认为,邻域的像素对当前像素产生的影响不是等价的,所以距离不同的像素具有不同的权值,对算子结果产生的影响也不同。

一般来说,距离越远,产生的影响越小。

Isotropic Sobel算子:加权平均算子,权值反比于邻点与中心点的距离,当沿不同方向检测边缘时梯度幅度一致,就是通常所说的各向同性。

上面的算子时利用一阶导数的信息。

Laplacian算子:这时二阶微分算子。

其具有各向同性,即与坐标轴方向无关,坐标轴旋转后梯度结果不变。

但是,其对噪声比较敏感,所以,图像一般先经过平滑处理,因为平滑处理也是用模板进行的,所以,通常的分割算法都是把Laplacian算子和平滑算子结合起来生成一个新的模板。

2、串行边界分割并行边缘检测的方法,对图像的每一点上所做的处理不依赖于其它的点处理结果。

串行边界分割在处理图像时不但利用了本身像素的信息,而且利用前面处理过像素的结果。

对某个像素的处理,以及是否把它分类成为边界点,和先前对其它点的处理得到的信息有关。

串行边界分割技术通常是通过顺序的搜索边缘点来工作的,一般有三个步骤:1.起始边缘点的确定。

2.搜索准则,将根据这个准则确定下一个边缘点。

3.终止条件,设定搜索过程结束的条件。

边界跟踪是一种串行边界分割的方法。

边界跟踪是由梯度图中一个边缘点出发,搜索并连接边缘点进而逐步检测所有边界的方法。

在并行边界分割法中,边缘像素不一定能够组合成闭合的曲线,因为边界上有可能会遇到缺口。

缺口可能太大而不能用一条直线或曲线连接,也有可能不是一条边界上的缺口。

边界跟踪的方法者可以在一定程度上解决这些问题,对某些图像,这种方法的分割结果更好。

具体算法是,先对原图像进行梯度运算,然后进行边界跟踪算法。

1.起始点:对梯度图搜索,找到梯度最大点,做为边界跟踪的开始点。

2.生长规则:在这个点的8邻域像素中,梯度最大的点被当做边界,同时,这个点还会做为下一个搜索的起始点。

3.终止条件:按照2的准则一直搜索,直到梯度绝对值小于一个阈值时,搜索停止。

有时为了保证边界的光滑性,每次只是在一定的范围的像素中选择,这样得到的边界点不但能保证连通性,还能保证光滑性。

3、并行区域分割并行区域分割主要有两种方法:阈值分割和聚类。

直接的阈值分割一般不能适用于复杂景物的正确分割,如自然场景,因为复杂景物的图像,有的区域很难判断究竟是前景还是背景。

不过,阈值分割在处理前景和背景有很强的对比的图像时特别有用,此时需要的计算复杂度小。

当物体的灰度级比较集中时,简单的设置灰度级阈值提取物体是一个有效的办法。

阈值方法分为全局阈值和局部阈值两种,如果分割过程中对图像上每个像素所使用的阈值都相等,则为全局阈值方法;如果每个像素所使用的阈值可能不同,则为局部阈值方法。

最佳全局阈值的确定的常用方法一般有下面几种:试验法,直方图法,最小误差法(这种方法是假设背景和前景的灰度分布都是正态分布的)。

当光照不均匀、有突发噪声,或者背景灰度变化比较大时,整幅图像分割将没有合适的单一门限,因为单一的阈值不能兼顾图像各个像素的实际情况。

这时,可对图像按照坐标分块,对每一块分别选一阈值进行分割,这种与坐标相关的阈值称为动态阈值方法,也称为自适应阈值方法。

这类方法的时间和空间复杂度比较大,但是抗噪声能力比较强,对采用全局阈值不容易分割的图像有较好的效果。

自适应阈值选取的比较简单的方法时对每一个像素确定以它为中心的一个邻域窗口,计算窗口内像素的最大和最小值,然后取它们的均值做为阈值。

对图像分块后的每一个子块可以采用直方图分析,如果某个子块内有目标和背景,则直方图呈双峰。

如果块内只有目标或背景,则直方图没有双峰,可根据邻域各块分割得到的参数插值进行分割。

实际的自适应阈值分割完全可以根据图像的实际性质,对每个像素设定阈值,但这个过程要考虑到实际的要求和计算的复杂度问题。

4.串行区域分割串行区域分割一般可分为两种方法:一种是区域生长,二是分裂合并。

区域生长是指从某个像素出发,按照一定的准则,逐步加入邻近像素,当满足一定的条件时,区域生长终止。

区域生长的好坏决定于1.初始点(种子点)的选取2.生长准则3.终止条件。

区域生长是从某个或者某些像素点出发,最后得到整个区域,进而实现目标的提取。

分裂合并差不多是区域生长的逆过程:从整个图像出发,不断分裂得到各个子区域,然后再把前景区域合并,实现目标的提取。

分裂合并的假设是对于一幅图像,前景区域由一些相互连通的像素组成,因此,如果把一幅图像分裂到像素级,那么就可以判定该像素是否为前景像素,当所有像素点或者子区域完成判断后,把前景区域或像素合并就可得到前景目标。

相关文档
最新文档