高光谱图像分类
高光谱遥感图像分类方法综述
高光谱遥感图像分类方法综述张蓓(长安大学理学院陕西·西安710064)摘要高光谱遥感技术已经成为遥感技术的前沿领域,受到国内外的广泛关注。
而地物目标分类是高光谱数据处理的一个基本内容。
文中列举了一些高光谱遥感图像的分类方法,并对每种方法作简要介绍。
关键词高光谱遥感图像处理分类中图分类号:TP751文献标识码:A1高光谱遥感的简介高光谱遥感技术是上世纪80年代发展起来的一种新兴的遥感技术,高光谱遥感利用很多窄的电磁波段(通常波段的宽度小于10nm)从感兴趣的物体中获取图像数据,一般它是在电磁波谱的可见光,近红外,中红外和热红外波段范围内,设置了几十甚至几百个连续波段,其光谱分辨率可高达纳米(nm)数量级。
由于许多地表物质的吸收特性仅表现在20~40nm的光谱分辨率范围内,高光谱遥感图像可以识别在宽波段遥感中不可探测的物质。
现在,遥感应用领域也更加拓宽,涉及全球环境,土地利用,资源调查,自然灾害,以及星际探测等方面。
遥感图像分类一直是遥感研究领域的重要内容,如何解决多类别的图像的分类识别并满足一定的精度,是遥感图像研究中的一个关键问题,具有十分重要的意义。
2高光谱遥感图像的分类方法依据是否使用类别的先验知识,可分为监督分类和非监督分类。
2.1非监督分类非监督分类是指人们事先对分类过程不施加任何的先验知识,而仅凭遥感影像地物的光谱特征的分布规律,随其自然地进行盲目的分类;其分类的结果,只是对不同类别达到了区分,但并不确定类别的属性;其类属是通过事后对各类的光谱响应曲线进行分析,以及与实地调查数据相比较后确定的。
非监督分类主要的方法有K-均值聚类,ISODATA分类等。
K均值分类方法属于动态聚类法,其假定被用来表示样本空间的聚类中心的个数是预先知道的,这种假定本身在某种程度上限制了这一类方法的利用,它使聚类域中所有样本到聚类中心的距离平方和最小,这是在误差平方和准则的基础上得到的。
K均值分类方法简便易行。
高光谱图像分类方法研究
在高光谱图像分类中,通常采用卷积神经网络(CNN)来处理图像的空间信息 ,采用循环神经网络(RNN)来处理图像的光谱信息。通过将 CNN 和 RNN 进行结合,可以实现高光谱图像的自动分类。
基于深度学习的高光谱图像分类方法
总结词
深度学习是一种机器学习方法,通过构建多层神经网络来学习数据的内在规律和 特征。在高光谱图像分类中,基于深度学习的方法可以更有效地处理复杂的空间 信息和光谱信息。
02
高光谱图像集成了空间、光谱和 时间三个维度的信息,为地物识 别、环境监测、农业、军事等领 域提供了强有力的数据支持。
高光谱图像的特性
高光谱图像具有很高的数据维度 ,通常包含数百甚至数千个波段
。
每个像素包含完整的光谱曲线, 使得高光谱图像能够更精细地表 达地物的空间特征和光谱特征。
高光谱图像的空间分辨率和光谱 分辨率高,能够提供丰富的地物
则化项来实现最优分类。
THANKS
感谢观看
总结词
RF是一种无监督学习算法,通过构 建随机森林进行分类,可以处理多维 度的数据,对高维数据有很好的适应 性。
详细描述
RF通过构建多个决策树,并将它们的 预测结果进行投票来得到最终的分类 结果。在训练过程中,RF通过优化森 林的精度和多样性来实现最优分类。
基于NN的高光谱图像分类实例分析
总结词
NN是一种神经网络模型,通过模拟人脑神 经元的连接方式进行分类,可以处理复杂的 非线性问题。
总结词
SVM是一种监督学习算法,在分类问题 中表现出色,对高维数据有很好的适应 性,可以处理多类别的分类问题。
VS
详细描述
SVM通过找到一个最优的超平面,将不 同类别的样本分隔开,从而实现对高光谱 图像的分类。在训练过程中,SVM通过 最小化分类错误和最大化间隔来实现最优 分类。
高光谱遥感图像分类准确度分析与评估算法改进
高光谱遥感图像分类准确度分析与评估算法改进摘要:随着遥感技术的发展和高光谱遥感图像数据的广泛应用,图像分类准确度成为评估遥感图像处理算法优劣的重要指标之一。
本文通过分析目前常用的高光谱遥感图像分类算法,发现存在一些问题,例如对于光谱特征提取不准确、样本分布不均衡、特征选择不合理等。
因此,本文提出了几种改进的算法,包括基于深度学习的特征提取和分类、模型融合方法等,以提高高光谱遥感图像分类的准确度。
1. 引言高光谱遥感图像是利用能够接收地物反射或辐射的多个波段信息进行图像获取和解译的一种遥感数据。
由于其具有更多的波段信息和更高的光谱分辨率,高光谱图像能够提供更多的地物属性信息,因此在农业、环境监测、城市规划等领域具有广泛的应用前景。
而高光谱遥感图像的分类准确度,则直接关系到地物分类的精度和应用效果。
2. 目前高光谱遥感图像分类算法存在的问题2.1 光谱特征提取不准确对高光谱遥感图像进行分类,首先需要提取有意义的光谱特征。
目前常用的方法有基于PCA(主成份分析)、SAM(光谱角度匹配)等。
然而,这些方法在提取光谱特征时,容易由于数据噪声、信噪比低等原因导致提取结果不准确,从而影响图像分类的准确度。
2.2 样本分布不均衡高光谱遥感图像分类中,不同类别的样本数量通常是不均衡的。
样本分布不均衡会导致训练的模型对多数类别的分类准确度较高,而对少数类别的分类准确度较低。
这样会影响整体分类的准确度。
2.3 特征选择不合理在高光谱图像分类中,特征选择对分类的准确度起着重要的作用。
目前常用的特征选择方法有相关系数法、信息增益法等。
然而,这些方法在选择特征时,往往无法准确地评估特征与类别之间的关联程度,导致选取的特征不一定是最具代表性和区分性的。
3. 高光谱遥感图像分类准确度分析与评估算法改进3.1 基于深度学习的特征提取和分类深度学习在计算机视觉领域取得了巨大成功,对于高光谱遥感图像分类也有着广泛的应用。
通过使用已经在自然图像领域得到验证的深度神经网络,可以实现对高光谱图像的特征提取和分类。
高光谱图像分类方法综述
DOI:10.13878/j.cnki.jnuist.2020.01.011张建伟1㊀陈允杰1高光谱图像分类方法综述作者简介:张建伟(1965—),男,教授,博士生导师.苏州大学数学系本科毕业,获武汉大学硕士学位,南京理工大学博士学位.1986年以来在南京信息工程大学工作34年,历任数学系教师㊁教研室主任㊁系副主任㊁系主任㊁滨江学院院长㊁科技处社科处处长㊁研究生院常务副院长,现任数学与统计学院院长.长期从事教学工作,完整讲授过20多门本科生㊁研究生课程,指导硕士博士生30多人,曾获校优秀教学质量奖㊁江苏省教学成果特等奖.主要从事计算数学㊁计算机应用方向的研究工作,主持国家自然科学基金项目3项㊁横向科研项目20余项,发表核心以上学术论文80多篇.E⁃mail:zhangjw@nuist.edu.cn收稿日期2019⁃07⁃01基金项目国家自然科学基金(61672293,61672291)1南京信息工程大学数学与统计学院,南京,210044摘要在过去数十年中,高光谱图像的研究与应用已经完成了从无到有㊁从差到优的跨越式发展.在对其研究的众多方面中,高光谱图像分类已经成为了一个最热的研究主题.研究表明空间光谱联合的分类方法可以取得比仅依赖光谱信息的逐像素分类方法更好的分类效果.本文将对众多的空间光谱联合分类方法进行归类和分析.首先介绍高光谱图像中相邻像素间的两类空间依赖性关系,因而可将现有的空谱联合分类方法分为依赖固定邻域和自适应邻域两类;此外,还可以依据是否同时利用两类依赖关系将现有方法进一步分为单依赖和双依赖两类.另外,还可以依据空谱信息融合的不同阶段将现有的分类方法划分为预处理方法㊁一体化方法及后处理方法三类.最后展示几种具有代表性的空间光谱联合分类方法在真实高光谱数据集上的分类结果.关键词高光谱图像;自适应邻域;预处理分类;后处理分类;空谱联合分类中图分类号P227文献标志码A0 引言㊀㊀高光谱图像(HyperspectralImage,HSI)是由搭载高光谱成像仪的航空航天飞行器捕捉到的三维立体图像,图像中的每个像素均含有上百个不同波段的反射信息,这使其适合于许多实际应用如军事目标检测㊁矿物勘探和农业生产等[1⁃4].高光谱图像分类已越来越成为其中的一个研究热点.高光谱图像分类的目标是依据样本特征为图像中的每个像元赋予类别标签[5⁃6].不同地物具有不同的光谱曲线,因此有许多利用光谱信息的方法被提出来用于高光谱图像分类,代表性方法有支持向量机(SupportVectorMachine,SVM)[7]㊁稀疏表示分类(SparseRepresen⁃tationClassification,SRC)[8]等.此类逐像素的分类方法有计算简单㊁便于拓展等特点,然而此类方法仅利用到了光谱维度的信息,并未考虑样本的空间关联性,即地物分布的空间连续性,这会导致两个主要问题:1)在较小的样本下难以对如此高维的数据学习出一个高精度的分类器,这即是著名的休斯现象[9⁃10];2)高维的光谱特征往往会导致分类模型中需估计参量的增加,这会造成过拟合以至于模型的泛化性能难以提升.另外,同一类地物受光照强弱㊁阴影等因素的影响,其㊀㊀㊀㊀光谱特征也不尽相同,因而不包含空间信息的逐像素分类方法难以取得令人满意的分类结果.如文献[11]所指出,HSI不应当仅仅被看作一系列像素的集合,而应当被看作有纹理结构的图像.它指的是样本间的空间关联性,可以看作是对光谱信息的一个补充,这也为增强和改进逐像素分类器的分类性能提供了方向.在过去的十年中,学者们提出了许多融合空间光谱信息的空谱联合分类方法[12⁃17],实验结果显示在融合空间信息后,分类精度及分类结果的鲁棒性均有很大提高,因此空谱联合分类方法已越来越成为高光谱图像分类的主流方法.本文将对空间光谱联合分类的方法进行着重介绍和总结,并为HSI分类研究的方向提出一些指引.主要安排如下:1)首先探讨HSI中相邻像素的空间依赖关系.空间依赖关系可以被简单分为像素特征间的空间依赖关系和像素类别间的空间依赖关系,并以此为基础进行模型的分类划分.2)通过不同的邻域划分方法和不同的加权邻域方法将现有方法分为基于固定邻域的方法和基于自适应邻域的方法两类.3)基于空谱融合阶段的不同将现有方法分为基于预处理的分类方法㊁一体化分类方法和基于后处理的分类方法三类.这三类方法可以很广泛地涵盖到现有的大多数方法,在这一部分本文还将对前述各类算法进行总结归纳,以期找出其中的联系.4)最后对现有的几大类分类方法分别进行归纳,探讨一些其中具有代表性的方法的原理,对其进行总结,最后通过实验来对其进行比较.1㊀基于空间依赖关系的HSI分类1 1㊀邻域间的空间依赖关系在自然影像中,常用的一个假设为地物分布是连续的,换句话说其地物分布应当服从某种特殊的结构.这种空间依赖关系可将模型分为以下两类:1)相邻像素的特征相关性:相邻像素在光谱特征上有较大概率是相似的.2)相邻像素的类别相关性:这些相似像素的类别标签应当是相同的.现有的空谱联合分类方法通常会利用上述假设中的一种或两种以融合空谱信息.为提取相邻像素信息,通常需要定义邻域,邻域即指的是为目标像素贡献空间特征所用的像素组成的区域.而依据这个区域的选择策略的不同,本文将HSI分类方法分为基于固定邻域的方法和基于自适应邻域的方法两类.1 2㊀固定和自适应邻域的方法1)基于固定邻域的方法.在此类方法中,对每一像素而言,与它相邻接的像素构成的邻域是固定的,一般取其方形邻域.现有的许多方法[18⁃28]都采用这种模式.一些预提取特征方法采用的邻域如小波和Gabor特征,经典的基于方形窗口的组合核方法[29⁃32].文献[33⁃34]采用了基于方形窗口的联合稀疏表示方法,文献[35]提出了一种基于多元逻辑回归的一般化的组合核方法,文献[36]提出了基于方形窗口的迭代式的图核方法.另一类具有代表性的固定邻域方法是基于一系列形态学滤波的形态学分析方法[37⁃38],它将通过一系列方形的滤波模板得到的形态学特征看作空间特征,进而进行HSI分类.除此之外,也有许多方法利用相邻像素的类别相关性来提取空间信息,代表性方法有基于马尔可夫随机场的方法,如文献[39⁃45]等.2)基于自适应邻域的方法.在这类方法中,所用到的空间邻域或空间邻域内不同像素的权重是依据图像纹理自适应选取的,这类策略下的大多数方法都会定义一个限定因子来调整邻域内样本的重要性或重新划分自适应邻域.前者的代表性方法有文献[46⁃49].文献[50⁃52]采取边缘检测算子调整邻域内样本的权重来进行保边性的分类.与文献[50]类似,卷积神经网络[53⁃54]也可以被用来为邻域中的每个像素自动化地学习出一个较好权重.文献[55⁃57]通过将空间局部像素上的差分转化为拉普拉斯矩阵进而对其优化来达到邻域自适应的效果.后者的代表性方法有基于超像素或目标分割的方法[58⁃66],它认为分割得到区域是整个图像的一个同质区域,因而将其看作一个整体进行HSI分类.文献[67⁃68]利用一系列的区域融合与分割算子来自适应地调整像素间的空间相关性.文献[69⁃70]通过衡量目标像素与其方形邻域内像素的相似性,设置相应的阈值来筛选出同质区域,进而通过联合表示分类等方法进行HSI分类.此外,还有一些方法利用相邻样本间类别相关性来获取自适应邻域,如文献[71⁃74]首先采用区域分割来得到目标邻域,再利用投票策略来确定区域标签.文献[75⁃76]利用地物分布的马尔可夫性以及09张建伟,等.高光谱图像分类方法综述.ZHANGJianwei,etal.Overviewofhyperspectralimageclassificationmethods.像素标签变化情况构建同质区域.通常情况下,一种方法仅会利用一类依赖关系来进行HSI分类,因为这样做简单易行且便于实现,现有的大多数方法均属于这一类别.当然也有一些方法会同时用到特征依赖和类别依赖两种关系.如文献[77⁃79]利用马尔可夫随机场和条件随机场来刻画像素间的联系.文献[80]通过已知样本来推测图像的纹理信息,进而借助此信息来优化类别平滑的正则项.文献[81⁃82]将传统的点对类别关系改进为基于邻域像素的点对类别关系.2㊀空谱信息不同融合阶段的HSI分类方法在介绍完空间依赖关系后,就需要考虑在什么阶段来融合空谱信息.本文将现有的方法分为基于预处理的分类方法㊁一体化分类方法和基于后处理的分类方法三类.每类方法的光谱融合阶段不同,如图1所示,这三个阶段贯穿着整个的分类过程.图1㊀3种不同空谱信息融合阶段的分类Fig 1㊀Classificationofthreedifferentspatialspectruminformationfusionstages2 1㊀基于预处理的分类方法基于预处理的分类是通过提取空间特征的方法来刻画空间信息的.在得到空间特征后再与光谱特征进行融合,最后采用不同的分类器进行分类.其分类过程通常包含两个阶段:1)空谱特征提取阶段;2)基于提取到的特征通过不同的分类器如SVM等进行分类的阶段.其中前一阶段是决定分类方法性能表现的关键[83].代表性的方法如基于形态学轮廓的空间特征提取方法,它采用一系列不同尺度的开闭运算的算子来提取图像的纹理信息[13⁃15].文献[19]采用空间平移不变的小波变换提取空谱信息,然后采用线性规划的SRC进行序列化.文献[20⁃22]还利用基于小波的软收缩去噪策略来提取小波特征.文献[23⁃28]利用高维的高斯包络谐波来提取Gabor特征.文献[18,84]利用修正的共生矩阵来得到空间特征.文献[85⁃86]采用经验模式分解和奇异谱分析来提取空间特征.还有一些空谱联合分类方法在核空间进行HSI分类,它通常是以组合核的形式来进行空谱信息的融合,这其中就包含基于固定邻域的方法[16]和基于自适应邻域的方法[59,87].2 2㊀一体化的分类方法此类方法同时用到空间和光谱信息来形成一个一体化的分类器,也就是说,它的空间特征提取和分类不会显式地分开.如文献[37]利用邻域内的纹理信息来改变传统逐像素的SVM方法的分类目标和约束条件.文献[33,35]通过训练样本来创造一个简单可用的字典,然后通过它来表示目标像素及其邻域内像素来添加平滑性约束,进而有效地利用了邻域内的空谱信息.文献[66⁃67]采用序列二进制分叉树在利用区域合并和修剪来对高光谱图像进行区域分割的同时达到分类目的.文献[52⁃53]利用基于CNN的策略,其中特征提取层和分类层使用同一个网络来进行特征提取与分类,而这两层网络的训练是一体化进行的.2 3㊀基于后处理的分类方法在此类方法中,通常会采用一个仅利用光谱信息的逐像素分类器来对HSI进行预分类,然后在依据像素间的空间依赖关系来对预分类结果进行正则化处理,主流的后处理方法有基于加权投票的方法㊁基于马尔可夫随机场的方法㊁基于图正则化的方法和随机漫步方法等.文献[39]首先采用多逻辑回归来做分类器对HSI进行预分类,然后利用一个刻画先验概率的马尔可夫正则化项进行后处理,通过对原先得到的后验概率进行正则化约束即得到新的分类结果图.文献[57]19学报(自然科学版),2020,12(1):89⁃100JournalofNanjingUniversityofInformationScienceandTechnology(NaturalScienceEdition),2020,12(1):89⁃100通过引入全变差正则项自适应地调整空间邻域中像素的权重来进行后处理.基于图正则化的方法如文献[42⁃43].基于投票的方法[72],采用SVM得到样本类别标签,然后再在局部邻域对标签进行投票来确定最终的样本标签.文献[48]基于随机漫步法来进行后分类,亦取得了较好的分类效果.文献[50]利用SVM来得到样本属于某个类别的概率,然后采用双边滤波的方法来进行HSI分类.文献[58]利用核协同表示来得到点对先验概率,然后采用基于自适应权重图的回归正则化来得到后验概率.3㊀对上述空间光谱分类方法的总结分析在基于预处理的分类方法中,原本的包含光谱特征的观测空间被转化为空间光谱特征联合构成的特征空间.若假设特征空间的维度并未发生变化,从概率的角度来说,越多的特征被利用就代表着空间刻画越准确.它从而影响两方面的内容,首先越多的特征被利用就意味着有希望学到更好的模型从而提升分类精度,其次特征之间的交叉信息更有利于减少错误决策.在一体化的分类方法中,模型建立和类别划分被统一成了一个整体,它的优化目标及其约束条件的求解是一个统一的过程,这种特点使得其分类过程较为简便,但可调节参数较少使得其进一步优化较为困难.在基于后处理的分类方法中,首先采用一个逐像素分类器进行HSI分类,然后再加入空间信息作为正则化约束来对此分类结果进行进一步优化.在贝叶斯理论中,这种正则化可以被看作是对空间依赖关系的某种先验信息进行建模,这样更有利于取得更好的分类结果.4㊀现有典型的分类策略总结4 1㊀基于结构滤波的方法基于结构滤波的HSI分类方法是高光谱图像处理领域最早被深入研究的方法之一.通常情况下,这种方法采取结构滤波来得到空间纹理特征,即给定一幅高光谱图像,可以通过空间结构滤波的形式来直接获取它的空间特征.一类最简单同时也是使用最广泛的提取空间信息的方法是利用方形邻域内的样本均值或者方差来代表目标像素处的空间特征[16].这种策略最早是在组合核或多核学习领域被提出并得到广泛使用的.这里的空间特征是被预提取的,然后再被用来构建空间光谱核.然而方形邻域的均值滤波显然并非是一个最佳的滤波模板,如文献[50]提出了基于双边滤波的方法来去除噪声同时保持细节.现在的一个趋势即是使用自适应的结构滤波来提取空间特征,如文献[88]提出的自适应多维度维纳滤波,文献[57]提出的基于自适应邻域的策略,文献[62]提出的基于超像素的区域分割策略等.4 2㊀基于形态学轮廓分析方法基于形态学滤波的形态学轮廓分析方法可以看作是一种特殊的结构滤波方法,它的滤波算子是一系列的形态学开闭操作,通常首先采取主成分分析[89]等方法进行降维,然后再在前几个主成分上采用一系列不同的滤波模板进行形态学开和闭操作,最后比较大小模板下的滤波结果来得到基于形态学分析的空间特征.文献[38]表明与均值滤波特征相比,形态学特征能更好地反映图像的纹理结构特征.4 3㊀基于稀疏表示的分类方法稀疏表示模型[33,90]的主要思想是假设现有的训练样本可以构成一个完备训练字典并且任意一个测试样本均可以被字典中的元素线性表出,然而将如此高维特征的样本完全表出是不合理的,那么稀疏表示方法注意到一个训练样本往往只属于某一类地物,即它只需当被训练样本中的同一类样本线性表示,即可得到一个稀疏性的约束.即使用尽量少的训练样本来表示某一测试样本,同时使得表示误差尽可能小.在求解目标函数后,稀疏表示方法取表示误差的最小的训练样本类别来作为此测试样本的类别.4 4㊀基于分割的HSI分类方法一些HSI分类方法利用图像分割作为一个后处理的步骤,即在空间光谱分类之后,如文献[9]通过提取和分类同质目标来进行HSI分类,文献[72]在SVM分类结果的基础上采用形态学的分水算法[91]来得到一个更加平滑的分类结果.不同的区域分割算法可以得到不同的HSI分类方法.与基于光谱特征的分类策略相比,这些策略可以极大地提高分类方法的分类精度.4 5㊀基于深度学习的HSI分类方法众所周知,神经网络和深度学习的算法通过模拟人脑的结构在图像分类㊁自然语言处理等领域取得了非凡的成果.与传统的浅层分类模型相比,深度29张建伟,等.高光谱图像分类方法综述.ZHANGJianwei,etal.Overviewofhyperspectralimageclassificationmethods.学习模型可以看作是一个包含多层结构的分类模型[92].基于深度学习的HSI分类方法可以被大致分为三个主要阶段[93]:1)数据输入阶段;2)深度神经网络构建阶段;3)分类阶段.卷积神经网络(Convo⁃lutionalNeuralNetwork,CNN)[94]是现今机器学习领域的一个热点方向,并且其在高光谱图像处理领域取得了非凡的成就.在传统的分类方法中,特征提取往往需要依赖由某种先验知识而设定的参数,而基于CNN的深度学习方法的模型参数可以通过自动化的训练过程来得到,这就意味着其具备自动提取数据特征的能力.文献[95]采取一个非监督的方法来构造基于堆叠自编码网络(StackedAutoencoder,SAE)的深度学习框架来提取HSI数据的高阶特征.文献[96]采用随机主成分分析(R⁃PCA)来一体化地提取空间和光谱特征.文献[97]采用一系列层叠的受限布尔兹曼机(RestrictedBoltzmannMachine,RBM)来构建深度置信网络,进而进行HSI分类.文献[98]提出基于差异化区域的CNN(DiverseRegionbasedCNN,DRCNN)方法,它在进行样本增强的同时融入了空间信息,从而达到了有效的保边效果.可以看出,这些网络均是由一系列的卷积和池化层组成,在经过每一个卷积层后,都有一个更深度的空间特征被提取,最后被用于HSI分类.5㊀实验结果与分析本节将设计实验来对仅采用光谱信息的分类方法和空谱联合的分类方法进行比较,从而说明空间信息的重要性.为了估计和比较不同分类空谱联合分类算法的优劣,本文分别在如下两个知名的数据集上进行实验:1)印第帕因(IndianPines):该数据由机载可见光/红外成像光谱仪(AirborneVisibleInfraredImagingSpectrometer,AVIRIS)在美国西北印第安获取的IndianPines测试集.整个图像是一幅包含16种地物的145ˑ145像素的图像,覆盖光谱波长从0 2到2 4μm的220个光谱波段.去除掉20个水汽吸收波段后,剩余的光谱波段为200个.为了验证本文方法在小样本上的分类性能,每类随机采取3%的样本作为训练样本,其余97%作为测试样本进行实验(详见表1)2)帕维亚大学(UniversityofPavia):该数据是由反射光学系统成像光谱仪(ReflectiveOpticsSystemImagingSpectrometer,ROSIS)在意大利市区获取的UnivirsityofPavia数据集.整个图像是一幅包含9种地物的610ˑ340像素的图像,覆盖光谱波长从0 43到0 86μm的115个光谱波段,在去除12个噪声波段后,剩余的光谱波段为103个.本文每类随机选取20个样本作为训练集,其余作为测试集.表1㊀不同数据集的训练与测试样本个数39学报(自然科学版),2020,12(1):89⁃100JournalofNanjingUniversityofInformationScienceandTechnology(NaturalScienceEdition),2020,12(1):89⁃100㊀㊀本文中采取以下几类具有代表性算法进行对比:1)仅利用光谱信息的SVM算法[7].2)组合核支持向量机分类方法(SVMbasedCompositeKernel,SVMCK)[16]:该方法采用方形窗口内的光谱均值或方差作为空间光谱特征,在提取空间信息的同时平滑了噪声.3)基于形态学滤波的形态学分析方法(ExtendedMorphologicalAttributeProfile,EMAP)[13]:该方法采用形态学分析的提取形态学轮廓来进行空间信息刻画,取得了较好的分类效果.4)基于超像素的空间特征提取方法(Superpixel⁃basedCompositeKernel,SPCK)[59]:该方法能够根据图像的纹理特征自适应地选择同质区域,作为一种基于自适应邻域方法的代表,它有效地保存了地物的边缘纹理.5)基于多逻辑回归的空间自适应全变差方法(SparseMultinomialLogisticRegression⁃SpatiallyadaptiveTotalVariation,SMLR⁃SpTV)[39]:该方法在贝叶斯框架下,利用满足TV一阶邻域系统的MRF正则项进行空间信息刻画,并将该先验约束于稀疏逻辑回归分类器求得的概率空间上,分类效果较好.6)联合稀疏表示方法(JointSRC,JSRC)[62]:此方法对目标像素的邻域内像素进行联合表示,有效地提取了空间信息.7)基于差异化区域的卷积神经网络(DiverseRegion⁃basedCNN,DRCNN)方法[98]:该方法采用以目标像素邻域内的不同的图像块作为CNN的输入,对输入数据进行了有效的增强,从而取得较好的分类效果.性能衡量指标使用总体准确率(OverallAccuracy,OA)㊁平均准确率(AverageAccuracy,AA)和Kappa系数.实验结果均为10次随机实验结果的平均值.若无特别说明,本文方法的默认分类器均采用SVM,以便进行比较.表2和表3分别是不同分类方法在印第帕因数据集和帕维亚大学数据集上的分类精度.从表中可以看出仅仅包含光谱特征的SVM方法分类精度较低,而空谱联合的分类方法均可以取得较好的分类结果.与基于方形邻域的SVMCK相比,基于超像素的组合核分类方法在两个数据集均能取得较高的分类精度.基于形态学滤波的EMAP方法可以取得比基于窗口均值或方差的SVMCK方法更好的分类效果,这也从侧面说明形态学分析提取的空间信息具表2㊀不同分类算法在IndianPines数据集上的分类准确率Table2㊀ClassificationaccuracyachievedusingdifferentclassificationalgorithmsonanIndianPinesdataset%ClassSVMSVMCKEMAPSMLR⁃SpTVSPCKJSRCDRCNN162.7849.4244.5156.5382.8831.9285.96276.2679.1484.4489.9890.5275.5088.38368.1987.6883.3083.5891.9472.3092.85455.6683.5265.9079.4279.2063.8983.31585.3796.6485.3285.0889.2786.6883.63692.6780.8094.7397.8097.4198.8192.54771.2530.0058.600.8077.602.0073.60895.3689.0797.2899.9798.6499.9898.35970.56071.05097.891.0570.001066.6783.2680.0683.4781.3984.7889.061177.6377.8086.6996.9291.2995.5097.231267.4585.1475.1786.0681.5186.5991.861398.3499.9094.1299.5199.4699.7698.581494.3791.5294.7798.4696.5199.5097.911545.5587.5167.2874.1377.1450.8293.391685.1193.7293.2657.0698.9193.2690.32OA/%78.0483.4285.5590.6590.4686.8493.07AA/%75.6375.9679.7874.3089.4871.4089.19κ0.74970.81230.83530.89310.89120.84510.921049张建伟,等.高光谱图像分类方法综述.ZHANGJianwei,etal.Overviewofhyperspectralimageclassificationmethods.表3㊀不同分类算法在UniversityofPavia数据集上的分类准确率Table3㊀ClassificationaccuracyachievedusingdifferentclassificationalgorithmsonUniversityofPaviadataset%ClassSVMSVMCKEMAPSMLR⁃SpTVSPCKJSRCDRCNN171.2997.1485.7984.7886.8382.1380.37275.7593.4886.8488.7385.9888.0387.63372.9776.6084.0283.5190.1295.4296.19491.8075.9492.3387.8596.1295.8776.99599.3395.2399.1399.7497.9899.6597.13671.3553.6982.8393.3078.4987.1794.44787.6073.5393.0399.7794.5493.7898.97867.2988.4773.8490.5485.8187.0095.10999.3199.1399.4331.4798.3798.8499.00OA/%76.4581.8386.1987.9387.0588.6288.50AA/%81.8883.6988.5984.4190.4891.9991.76κ0.69850.78590.82080.84350.83250.85230.8519图2㊀不同分类算法在IndianPines数据集上的分类结果Fig.2㊀ClassificationresultsbydifferentclassificationalgorithmsonanIndianPinesdataset有更强的判别特征.基于贝叶斯框架的全变差正则化方法亦取得了较高的分类精度,此方法利用满足TV一阶邻域系统的MRF正则项来刻画空间信息,可以有效提取纹理信息,在边缘处分类效果较好,是比较有代表性的基于后处理的一类MRF方法.SPCK方法采用超像素作为自适应邻域,是一类典型的基于自适应邻域的预处理分类方法,它通过超像素来对目标像素处的空间信息的提取过程进行约束,取得了较高的分类精度.JSRC是一类典型的基于方形邻域的一体式分类方法,它通过协同表示目标像素与其方形邻域内的像素来对目标像素的分类过程施加空间约束,可以看出此方法亦取得了较高的分类精度.DRCNN作为一种典型的基于CNN的深度学习方法,通过输入差异化的图像块来融入空间信息,它在两个数据集上的分类精度亦证明了此方法的有效性.图2和图3分别是不同分类方法在印第帕因数据集和帕维亚大学数据集上的分类结果,可以看出,在不包含空间特征的情况下,SVM方法的结果图中出现了非常多的噪点,HSI中地物连续分布的特点无法保持.在加入空间信息后,这个情况改善了许多.采用方形窗口来提取空间信息的SVMCK方法也达到了这一效果,但在类边缘处因为方形窗口容易包含两类信息,因此类边缘部分分叉较多.同时,JSRC亦通过方形窗口来约束空间信息,也存在此问题,SMLR⁃SpATV方法通过TV正则项以求达到较平滑的分类结果,因此也存在难以保持类边缘的问题.基于自适应邻域的SPCK方法和基于形态学滤波的59学报(自然科学版),2020,12(1):89⁃100JournalofNanjingUniversityofInformationScienceandTechnology(NaturalScienceEdition),2020,12(1):89⁃100。
高光谱图像分类
高光谱图像分类作者:黄何,康镇来源:《科技传播》 2019年第1期摘要近些年来,高光谱遥感技术迅速发展,同时也应用在了非常多的领域中。
而高光谱图像分类是其一个重要的方向。
但是高光谱图像成像机理复杂、波段繁多、数据量大等特点也向我们传统的图像分类方法提出了挑战。
文章综合介绍分析了几种监督分类方法和非监督分类方法。
监督分类方法主要介绍了平行多面体分类方法、最大似然分类方法、人工神经元分类方法;非监督分类方法主要介绍了K-mean s分类方法、ISDATA分类方法、谱聚类分类方法。
同时还综述了支持向量机分类方法、最小二乘支持向量机分类方法、决策树分类方法等新型分类方法。
关键词监督分类;非监督分类;最大似然分类;ISODATA分类;支持向量机分类中图分类号G2文献标识码A文章编号1674-67 08【2 01 9)226-0105-04高光谱遥感技术起源于20世纪80年代初,它是在多光谱遥感技术的基础上发展起来的。
经过数十年的发展,现在的高光谱遥感技术已经达到了一定的水平,在很多领域也得到了应用。
比如它在农业中的应用,其主要表现在快速、精准地获取各种环境信息,以及农作物生长情况。
在大气与环境应用上,在太阳光谱中,大气中的分子,如氧气、臭氧、二氧化碳、水蒸气等成分的反应十分强烈。
而因为大气成份生变而引起的光谱差异通过传统宽波遥感方法难以准确识别,而这种差异可通过窄波段的高光谱识别出来。
在城市环境与下垫面与环境特征的研究和应用,因为人们生活中的各种活动,使得城市环境与下垫面更为复杂。
而高光谱遥感技术的进步,能让人们依据光谱特征,更深入地去研究城市地物,而各种高光谱遥感器的出现,使得对城市的光谱的研究更加系统而全面,也为城市环境遥感分析及制图打下了基础。
在地质矿物勘探中的应用,区域地质制图和矿物勘查是高光谱技术主要的应用领域之一,也使得高光谱遥感技术的作用得到了有效的发挥,由于高光谱遥感比起宽波段遥感有诸多不同之处,因此在电磁谱上,每种岩石和矿物所显示出诊断性光谱特征各不相同,根据这一原理能清楚地识别出其中的矿物元素。
基于半监督学习的高光谱遥感图像分类算法研究
基于半监督学习的高光谱遥感图像分类算法研究高光谱遥感图像分类是遥感图像处理领域中一个重要的应用领域。
高光谱遥感图像是指采集到的图像具有连续的光谱信息,每个像素不是一个数值,而是一个包含多个波段信息的数组,这使得高光谱遥感图像能够提供比多光谱遥感图像更丰富的信息和更精细的分类结果。
目前,高光谱遥感图像分类算法研究主要集中于典型分类器和深度学习分类器两种方法。
传统典型分类器如最小距离分类器和支持向量机分类器等,需要区分像素之间的差异,以便能够将图像中的像素分类至不同的类别,属于有监督学习分类方法;深度学习分类器利用复杂的神经网络学习高光谱遥感图像中的特征,并能够提高分类效果,也属于有监督学习分类方法。
但这些方法需要大量标注样本,而这在实践中是极其困难的。
近年来,随着深度学习的出现,半监督学习的研究引起了广泛关注。
半监督学习是一种有监督学习和无监督学习的结合体,在保证分类精度的同时减少标注样本的数量,从而降低了成本。
基于半监督学习的高光谱遥感图像分类算法的主要目标是合理利用已分类的标注样本和未标注样本之间的关系来提高分类效果。
由于高光谱图像的数据量极大,很多未标注样本经常被忽略。
半监督学习通过在不影响分类准确性的前提下尽可能利用这些未标注样本,使得更多的数据成为了有用的信息,从而提高了分类准确性。
半监督学习方法主要分为两种:基于图算法和基于生成型模型。
基于图算法的半监督学习分类方法如图半监督学习(Graph-based Semi-Supervised Learning, GSSL)、拉普拉斯正则化半监督学习(Laplacian Regularized Semi-Supervised Learning, LRA)等。
基于生成型模型的半监督学习分类方法如生成式模型和鉴别式模型等。
GSSL是一种基于图的高光谱遥感图像分类算法,通过建立数据样本的相似性图,计算样本之间的相似关系。
在此基础上,利用半监督学习算法来整合标注数据和未标注数据,实现分类器的训练。
一种新的高光谱图像分类方法
ห้องสมุดไป่ตู้
该实 验主要是利用m a t l a b 编程 实现 对上述数 据立方体 的
特 征提取 以及 分类 。 为了验证算 法 的可行性 , 此处利用 已知的 矿物 光谱 建立了数据立方体示。 进行 了基 于先验知识的光谱影
1 . 2基于傅立叶变换幅度谱的分类算法设计
上文 中已证实对于不同的矿物 , 对其波谱 曲线作 傅里叶变
换后的幅度谱最值具有可分性 , 可在此基础上 进行高光谱影像 的分类 。 首先依次提取 出分类 目标 影像 中每 个像元 点的特征值
A b s t r a c t: B a s e d o n t h e f e a t u r e p i x e l s p e c t r u m c u r v e e x t r a c t i o n a n d U s e t h e e x t r a c t e d f e a t u r e S f o r
遥 感 图像分类 是利用计 算机 对 图像 中各类 地物 的光谱信 合, 其 中, ①: 含砷 黄铁矿、 ②: 斜辉石、 ③: 斧石、 ④: 蓝铜 矿、
息和空 间信息进行分析和特征选择 , 并通 过一定 的手段将特征 ⑤: 重 晶石、 ⑥: 古铜辉石、 ⑦: 基 铁矾、 ⑧: 斜 绿泥石;
Ne w M e t hod f o r H ype r ‘ _ 。 s pe c t r a l Re m o t e S e ns i ng I ma g e Cl a s s i f i c a t i o n
Y A N G Y u e t a o W A M G M a o z h i G U O Z e
高光谱分类数据集
高光谱分类数据集
高光谱分类数据集是一种用于高光谱图像分类的数据库,通常包含各种地物类型的图像数据和对应的标签。
这些数据集通常用于训练和测试机器学习模型,以实现高光谱图像的自动分类和识别。
高光谱图像是一种包含多个连续波段的图像,每个波段对应不同的光谱信息。
通过对这些光谱信息进行分析和处理,可以识别出不同的地物类型,如植被、水体、建筑物等。
高光谱分类数据集通常由多个图像组成,每个图像包含多个波段和像素。
每个像素都有一个对应的标签,表示该像素所属的地物类型。
这些标签通常由专家进行标注或通过其他方法获取。
高光谱分类数据集通常用于研究和实践高光谱图像处理技术,例如图像分类、目标检测、变化检测等。
通过训练分类器,可以实现对高光谱图像的自动分类和识别,为遥感监测、环境监测、城市规划等领域提供有力支持。
以上是关于高光谱分类数据集的一些基本介绍,希望能够帮助您了解这个概念。
如需获取更多关于高光谱分类数据集的信息,建议您咨询专业人士或查阅相关论文资料。
高光谱图像分类
《机器学习》课程项目报告高光谱图像分类——基于CNN和ELM学院信息工程学院专业电子与通信工程学号35学生姓名曹发贤同组学生陈惠明、陈涛硕士导师 _______ 杨志景_______2016年11月一、项目意义与价值高光谱遥感技术起源于20世纪80年代初,是在多光谱遥感技术基础之上发展起来的[11 o高光谱遥感能够通过成像光谱仪在可见光、近红外、短波红外、中红外等电磁波谱范围获取近似连续的光谱曲线,将表征地物儿何位置关系的空间信息与表征地物属性特征的光谱信息有机地融合在了一起,使得提取地物的细节信息成为可能。
随着新型成像光谱仪的光谱分辨率的提高,人们对相关地物的光谱属性特征的了解也不断深入,许多隐藏在狭窄光谱范围内的地物特性逐渐被人们所发现,这些因素大大加速了遥感技术的发展,使高光谱遥感成为21 世纪遥感技术领域重要的研究方向之一。
在将高光谱数据应用于各领域之前,必须进行必要的数据处理。
常用的数据处理技术方法包括:数据降维、目标检测、变化检测等。
其中,分类是遥感数据处理中比较重要的环节,分类结果不但直接提取了影像数据有效信息,可以直接运用于实际需求中,同时也是实现各种应用的前提,为后续应用提供有用的数据信息和技术支持,如为目标检测提供先验信息、为解混合提供端元信息等。
相对于多光谱遥感而言,由于高光谱遥感的波谱覆盖范围较宽,因此我们可以根据需要选择特定的波段来突显地物特征,从而能够精确地处理地物的光谱信[2]。
目前,许多国家开展大量的科研项目对高光谱遥感进行研究,研制出许多不同类型的成像光谱仪。
高光谱遥感正逐步从地面遥感发展到航空遥感和航天遥感,并在地图绘制、资源勘探、农作物监测、精细农业、海洋环境监测等领域发挥重要的作用。
高光谱遥感技术虽然是遥感领域的新技术,但是高光谱图像的分类一直制约着高光谱遥感的应用[3, 4],因此对其进行研究显得尤为重要。
高光谱遥感图像较高的光谱分辨率给传统的图像分类识别算法提出严峻的挑战。
基于深度学习的高光谱图像小样本分类算法研究
基于深度学习的高光谱图像小样本分类算法研究基于深度学习的高光谱图像小样本分类算法研究摘要:随着高光谱技术的发展,高光谱图像在土壤科学、农业、环境监测等领域中得到了广泛的应用。
然而,由于高光谱图像数据维度高、样本量少,传统的分类算法在小样本分类问题上存在一定的困难。
基于深度学习的高光谱图像小样本分类算法能够有效提取高光谱图像中的特征信息,克服传统方法的不足,具有良好的分类性能。
本文基于深度学习提出了一种针对高光谱图像小样本分类的算法,通过实验结果验证了其有效性和鲁棒性。
关键词:高光谱图像、小样本分类、深度学习1. 引言高光谱图像是一种在多个连续波长上采集的图像数据,其具有丰富的光谱信息,能够更准确地反映物体的特征。
由于高光谱图像数据维度高、特征复杂,传统的分类算法在小样本分类问题上存在一定的挑战。
随着深度学习的兴起,越来越多的研究关注如何利用深度学习技术来解决高光谱图像小样本分类问题。
2. 相关工作在高光谱图像分类领域,传统的分类算法包括支持向量机(SVM)、随机森林(Random Forest)等。
但是,这些方法在小样本分类问题上往往表现不佳,且需要人工提取特征。
因此,利用深度学习算法进行高光谱图像分类,成为解决小样本分类问题的有效途径。
3. 基于深度学习的高光谱图像小样本分类算法本文提出了一种基于深度学习的高光谱图像小样本分类算法。
算法主要包含以下步骤:3.1 数据预处理首先,对高光谱图像数据进行预处理,包括数据去噪、归一化等操作。
去噪能够降低数据中的噪声干扰,提高分类的准确性。
归一化能够使数据服从某种分布,利于模型训练。
3.2 特征提取采用卷积神经网络(CNN)进行高光谱图像的特征提取。
CNN能够自动学习图像中的局部特征,并通过多层卷积提取更高级别的特征。
通过多层卷积和池化层的组合,较好地减少了高光谱图像的维度,并提取了具有更强判别性的特征。
3.3 分类器设计设计一个分类器,将提取到的特征输入分类器进行分类。
高光谱图像分类
《机器学习》课程项目报告高光谱图像分类——基于CNN和ELM学院信息工程学院专业电子与通信工程学号 2111603035学生姓名曹发贤同组学生陈惠明、陈涛硕士导师杨志景2016 年11 月一、项目意义与价值高光谱遥感技术起源于20 世纪80年代初,是在多光谱遥感技术基础之上发展起来的[1]。
高光谱遥感能够通过成像光谱仪在可见光、近红外、短波红外、中红外等电磁波谱范围获取近似连续的光谱曲线,将表征地物几何位置关系的空间信息与表征地物属性特征的光谱信息有机地融合在了一起,使得提取地物的细节信息成为可能。
随着新型成像光谱仪的光谱分辨率的提高,人们对相关地物的光谱属性特征的了解也不断深入,许多隐藏在狭窄光谱范围内的地物特性逐渐被人们所发现,这些因素大大加速了遥感技术的发展,使高光谱遥感成为21 世纪遥感技术领域重要的研究方向之一。
在将高光谱数据应用于各领域之前,必须进行必要的数据处理。
常用的数据处理技术方法包括:数据降维、目标检测、变化检测等。
其中,分类是遥感数据处理中比较重要的环节,分类结果不但直接提取了影像数据有效信息,可以直接运用于实际需求中,同时也是实现各种应用的前提,为后续应用提供有用的数据信息和技术支持,如为目标检测提供先验信息、为解混合提供端元信息等。
相对于多光谱遥感而言,由于高光谱遥感的波谱覆盖范围较宽,因此我们可以根据需要选择特定的波段来突显地物特征,从而能够精确地处理地物的光谱信[2]。
目前,许多国家开展大量的科研项目对高光谱遥感进行研究,研制出许多不同类型的成像光谱仪。
高光谱遥感正逐步从地面遥感发展到航空遥感和航天遥感,并在地图绘制、资源勘探、农作物监测、精细农业、海洋环境监测等领域发挥重要的作用。
高光谱遥感技术虽然是遥感领域的新技术,但是高光谱图像的分类一直制约着高光谱遥感的应用[3,4],因此对其进行研究显得尤为重要。
高光谱遥感图像较高的光谱分辨率给传统的图像分类识别算法提出严峻的挑战。
基于DS证据理论的高光谱图像融合分类
第28卷㊀第4期2023年8月㊀哈尔滨理工大学学报JOURNAL OF HARBIN UNIVERSITY OF SCIENCE AND TECHNOLOGY㊀Vol.28No.4Aug.2023㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀基于DS 证据理论的高光谱图像融合分类李㊀昊1,㊀于㊀虹1,㊀饶㊀桐1,㊀周㊀帅1,㊀沈㊀锋2(1.云南电网有限公司电力科学研究院,昆明650217;2.哈尔滨工业大学仪器科学与工程学院,哈尔滨150006)摘㊀要:高光谱图像包含丰富的地物信息,被广泛应用于许多场合㊂由于各分类模型具有不同的分类性能,如何有效利用各分类模型性能的差异性是实现融合分类的重要环节,为此提出了一种基于DS 证据理论的多模型融合分类的高光谱图像分类方法㊂由于现有的分类模型从HSI 数据的空间域和光谱域提取不同的特征,因此产生的预测结果不同㊂本融合方法采用多层感知机网络和随机森林网络进行融合分类实验,该网络借助各分类网络的提取特征的差异性,提高了分类结果的准确性㊂实验结果表明,当不同网络的分类精度存在一定差异时,DS 融合模型能提高分类精度,同时优于线性平均加权融合模型㊂关键词:高光谱图像分类;融合模型;机器学习DOI :10.15938/j.jhust.2023.04.005中图分类号:TP751文献标志码:A文章编号:1007-2683(2023)04-0033-09Hyperspectral Images Fusion Classification Based on the DS Evidence TheoryLI Hao 1,㊀YU Hong 1,㊀RAO Tong 1,㊀ZHOU Shuai 1,㊀SHEN Feng 2(1.Electric Power Research Institute,Yunnan Power Grid Co.,Ltd.,Kunming 650217,China;2.School of Instrumentation Science and Engineering,Harbin Institute of Technology,Harbin 150006,China)Abstract :Hyperspectral images contain rich information of ground objects and the technology is widely used in many occasions.Since each classification model has different classification performance,effectively utilizing the difference in the performance of each classification model is an essential step to achieve fusion classification.Therefore,a hyperspectral image classification method based on DS evidence theory is proposed.Different prediction results are generated since the existing classification models extract different features from the spatial and spectral domains of HSI data.In this fusion method,a multi-layer perceptron network and random forest network are used for fusion classification experiments.The network improves the accuracy of classification results by taking advantage of the difference in extracted features of each classification network.The experimental results show that the DS fusion model can improve the classification accuracy and is superior to the linear average weithted fusion model when there are some differences in theclassification accuracy of different networks.Keywords :hyperspectral image classification;fusion model;machine learning㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀收稿日期:2022-03-21基金项目:国家自然科学基金(61673128).作者简介:李㊀昊(1986 ),男,硕士,高级工程师;于㊀虹(1978 ),女,博士,高级工程师.通信作者:沈㊀锋(1981 ),男,教授,博士研究生导师,E-mail:759281806@.0㊀引㊀言高光谱图像相比于RGB 图像和红外图像,具有丰富的光谱信息与空间信息,使得地物目标分类能力大幅度提升,也因此被广泛的应用在用于农业㊁军事㊁土地覆盖测绘㊁异常检测和目标识别[1-9]等领域㊂但光谱维与空间维的信息的大幅度增加,对地物分类算法提出了新的要求,比如,冗余的光谱信息,导致分类过程中出现Hughes 现象,如何有效提取光谱维信息是高光谱图像分类过程中的关键环节;地物分类算法在处理高维度的空间信息中需要大量的时间进行特征提取,如何快速完成目标特征的提取是当前分类算法的研究热点㊂为了进一步减少分类过程中光谱信息冗余的影响,目前的高光谱分类模型[10-12]主要集中在以下两个方面:增加特征提取层数和波段选择㊂增加特征提取层数的主要目的是提取深光谱信息之间的相关性㊂全连接层通过对每个光谱特征与目标类别进行非线性变换,最终实现地物目标的分类㊂Zhong[13]设计了一种以三维立方体为输入数据进行高光谱图像分类的端到端光谱空间残差网络㊂该网络包括光谱特征学习部分和空间特征学习部分㊂这两个部分由大量卷积层组成,并通过非线性计算来提取光谱特征的相关性㊂与增加特征提取层数不同,波段选择可以去除多余的光谱信息波段㊂Roy[14]提出了一个用于HSI分类的HybridSN网络,通过PCA减少光谱波段的数量,同时保持相同的空间维数㊂他提出了一种新的基于多尺度协方差映射(MCMs)的手工特征提取方法,用于基于CNN的HSI分类㊂该网络还采用了波段选择方法来避免Hughes现象㊂为了进一步避免高维度空间信息引起的特征提取时间长问题,目前的高光谱分类模型[15]主要集中在以下两个方面:减少特征提取层和网络残差结构的操作㊂相关研究证明减少特征提取层的数量可以加快了模型训练过程的收敛速度,从而避免了模型训练过程中的发散现象㊂Gao等[16]提出了一种基于深度可分卷积层的多尺度残差网络用于HSI分类㊂网络残差结构通过跳跃连接构建新特征数据层,提高训练模型的精度与收敛速度㊂Paoletti 等[17]提出了一种专门针对HSI数据设计的新的深度CNN架构,改进了卷积滤波器揭示的网络的光谱空间特征㊂叶珍等[18]提出了一种结合PCA与移动窗小波变换的高光谱决策融合分类算法,通过相关系数矩阵㊁主成分分析方法以及移动小波变换算法进行空间特征提取,并且利用线性意见池对分类结果进行融合,实现了融合分类结果的融合㊂崔颖等[19]引入集成学习分类的加权组合思想,提出了一种基于组合测量的方法,实现单一模型多策略的融合,获得更高的分类稳定性㊂为了提高分类网络的准确性以及分类效率,在多层感知机(MLP)和随机森林(RF)分类模型的基础上,我们提出了一种基于DS证据理论的高光谱图像融合分类方法㊂该融合算法利用各分类模型提取特征与分类的差异性,根据融合分类规则,完成多模型分类的融合,最终以较小的参数和模型训练时间为代价,得到了更有代表性的分类结果㊂1㊀基于DS证据理论的高光谱融合分类本文基于多模型融合的高光谱图像分类方法框架如图1所示,首先使用已完成训练的多层感知机分类模型和随机森林分类模型对测试样本进行分类,获得不同分类器下的各测试样本的类别置信度㊂其次借助各分类模型的差异性,即各分类模型输出的类别置信度差异性,通过证据理论构建基于多模型融合的类别置信,从而提升测试样本的分类准确性㊂图1㊀基于DS证据理论的高光谱图像融合分类示意图Fig.1㊀Schematic diagram of hyperspectral image fusion classification based on DS evidence theory1.1㊀多层感知机模型多层感知机(MLP)[20]是早期的神经网络,由输入层㊁输出层和隐藏层组成,其中每层由多个神经元和相关参数构成㊂MLP在训练过程中有正向传播和反向传播两部分组成㊂在正向传播过程中,首先输入层接收输入的信号,将该层的神经元与隐藏层的神经元进行连接㊂其次通过输出层的神经元,完成高光谱的分类㊂隐藏层的神经元输出Y l j可以表示为Y l j=f(ðM i=1Y l-1j W l j+B l j)(1)其中:Y l-1j为上一层的输出;W l j为隐藏层中的权重;B l j为隐藏层中的权重值;f为非线性激活函数㊂在误差反向传播阶段,将输出层的预测值与期望输出值,通过损失函数构建训练误差值E,并通过最速下降法与学习速率,更新隐藏层中的训练参数W l j,训练误差值E表示为E=E(Y l1,Y l2, ,Y l n)(2)其中:E(㊃)为损失函数㊂表1描述了MLP分类模型在不同数据集下的结构参数㊂该分类模型由输入层㊁隐藏层和输出层组成,其中输入层和输出层的神经元数量分别是数据集中的光谱维度和类别数量;在隐藏层中,借助ReLU函数进行非线性降维和归一化;在输出层中借助Softmax函数对各类别的置信度进行归一化计算㊂43哈㊀尔㊀滨㊀理㊀工㊀大㊀学㊀学㊀报㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第28卷㊀表1㊀多层感知机分类模型在不同数据集下的结构参数Tab.1㊀Structure parameters of multi-layer perceptron classification model under different data sets高光谱数据集层数类型神经元数量激活函数Input200IP Hidden144ReLUOutput16SoftmaxInput103 UP Hidden5ReLUOutput9SoftmaxInput176 KSC Hidden127ReLUOutput13SoftmaxInput204 SV Hidden146ReLUOutput16Softmax 1.2㊀RF模型随机森林模型(RF)[20]由多个分类决策树模型组成,其具有快速收敛和不易过拟合等优点,适合解决高光谱遥感分类问题㊂将一个样本容量为N的样本,有放回的抽取N 次,形成N个样本㊂将构建好的N个样本训练成一个决策树,作为决策树根节点的样本㊂根据获得的训练样本N和样本属性M,随机选取m个属性,依靠信息增益策略选择其中的一个属性作为分裂属性,实现节点的分裂㊂1.3㊀基于DS的光谱融合模型DS证据理论是处理不确定信息的理论,它可以融合不确定信息㊂DS证据理论是传统贝叶斯理论的重要延伸,既可以处理单个假设,也可以处理复合假设,在图像处理㊁风险评估㊁故障诊断等方面具有广泛的应用前景㊂对于非空集U,称为识别框架,该框架由一系列互斥穷举的元素A组成㊂问题域中的任何命题都应属于幂集2U㊂定义BPAF:mʒ2Uң[0,1]in2U m(Φ)=0ðA⊆U m(A)=1}(3)其中m(A)表示证据对子集的信任度量㊂其意义如下:①如果A⊂U,则表示对的一定信任程度A;②如果A=U,则表示该数不知道如何分配;③如果A⊆U 和m(A)>0,则称A为m的焦点元素㊂DS证据理论采用正交证据源和组合证据源㊂多个证据源m1,m2, ,m n在定义融合函数mʒ2Uң[0,1]下的联合后的基本概率分布为:m(ϕ)=0m(A)=ðA1=A1ɤjɤnm j(A i)1-K(∀A⊂U)üþýïïï(4)式中:K=ðɘA j=φ1ɤjɤnm j(A i),为证据冲突程度㊂向量m j()分别为不同分类模型A i输出的类别置信度㊂图2㊀不同数据集的标签Fig.2㊀Labels for different data sets2㊀实验结果2.1㊀数据集描述本节我们介绍4个HSI数据集,指定了模型配置过程,并使用分类度量评估了所提出的方法㊂采用IN㊁KSC㊁SV和UP数据集来评估多模型融合框53第4期李㊀昊等:基于DS证据理论的高光谱图像融合分类架在训练数据不平衡㊁训练样本数量少㊁空间分辨率高的情况下的分类性能㊂在这3种情况下,用随机选择的训练数据进行了10次实验,并报告了主要分类指标的均值和标准差㊂IN数据集由机载可见/红外成像光谱仪(AVIRIS)于1992年从西北印第安纳州收集,包括16个植被类别,具有145ˑ145像素,分辨率为20m㊂一旦去掉了被吸水效应破坏的20个波段,剩下的200个波段用于分析,范围为400~2500nm㊂KSC数据集由美国佛罗里达州的AVIRIS于1996年收集,包含13个山地和湿地类,像素为512ˑ614,分辨率为18m㊂一旦低信噪比的波段被去除,剩下的176个波段用于评估,范围从400到2500nm㊂UP数据集由意大利北部的反射光学系统成像光谱仪于2001年获得,包含9种城市土地覆盖类型,分辨率为610ˑ340像素,像素分辨率为1.3m㊂一旦噪声波段被丢弃,剩余103个波段被用于评估,范围为430到860nm㊂SV数据集由AVIRIS传感器在加利福尼亚州Salinas山谷上空采集的㊂分辨率为512ˑ217,像素分辨率为3.7m,有16个土地覆盖等级㊂分类前,去除了20条带(即第108~112条㊁第154~167条和第224条)㊂2.2㊀实验设置在描述了DS证据理论之后,我们配置了通过训练数据集更新MLP和RF参数的训练过程㊂采用总体精度㊁平均精度和kappa系数定量评价分类性能㊂每个实验选择训练样本并运行10次㊂所有的实验都是在一台配备Intel Core i7-9900K CPU和64GB RAM的台式机上使用TensorFlow进行的㊂2.3㊀实验结果将DS证据理论与MLP和RF特征学习模型的融合分类结果进行比较㊂为了验证DS证据融合理论的泛化性㊁有效性和鲁棒性,在平衡和不平衡训练数据集下,建立了基于MLP和RF模型的频谱学习融合模型㊂为了进行公平的比较,我们为MLP㊁RF 和光谱学习融合模型设置了相同数量的训练数据㊂实验主要包括3个部分㊂第一,针对IP㊁SV㊁UP和KSC数据集,分别使用16㊁80㊁80㊁80个训练样本,分析了光谱融合模型的鲁棒性和有效性;第二,在平衡训练数据个数不同的情况下,对光谱融合模型进行泛化分析㊂第三,在不平衡训练样本个数不同的情况下,对光谱融合模型进行了泛化分析㊂表2和表3给出了OAs㊁AAs㊁kappa系数,以及HSI分类中所有类别的分类精度㊂在使用IP㊁SV㊁UP 和KSC划分训练集的过程中,不同数据集分别选取了每类16㊁80㊁80㊁80个训练样本㊂在IP㊁SV和KSC3个数据集上,光谱学习融合模型比MLP和RF具有更高的分类精度㊂在UP数据集上,当MLP和RF差异较大时,融合模型的分类效果较MLP和RF差㊂在IP 数据集上,与MLP和RF数据相比,融合模型的OA 值分别提高了1.63%和4.38%㊂这些结果验证了光谱融合模型在不同数据集上的鲁棒性和有效性㊂通过对比不同的融合决策模型,特别是在UP数据集中,线性平均加权融合模型的OA值为82.66%,而DS融合模型的OA值为82.79%,同时DS融合模型的稳定性远高于线性平均加权融合模型㊂在可视化结果图3,图4,图5和图6中,可以明显看到光谱融合模型的分类结果与标签数据更相似,错误颜色的分类结果明显少于其他分类方法㊂图3㊀IP数据集的分类结果Fig.3㊀Classification results of IP data set63哈㊀尔㊀滨㊀理㊀工㊀大㊀学㊀学㊀报㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第28卷㊀图4㊀KSC数据集的分类结果Fig.4㊀Classification results of KSC dataset在实验的第二部分中,分析了不同数量等级的平衡训练样本,对光谱融合模型的影响,在SV㊁UP 和KSC数据集中,每类选择50㊁60㊁70㊁80和90个训练样本,而IP数据集每类选择10㊁12㊁14㊁16㊁18个训练样本㊂在表4中,光谱融合模型的OA㊁AA 和kappa系数的增加与训练样本的数量密切相关㊂该光谱融合模型克服了4个数据集之间的差异,实现了比MLP和RF模型更高的分类精度㊂同时随着均衡训练样本数量的增加,融合分类的结果也更加准确㊂在实验的第三部分中,为了验证光谱融合模型的泛化性能,选取不同比例的不平衡训练样本,其中3%,5%,7%,9%,和11%的标记样本选择作为IP 数据集的训练样本,1%,3%,5%,7%,和9%的标记样本选择作为UP,KSC和SV数据集的训练样本㊂在表5中,分类性能与训练样本的数量有关㊂训练样本的均衡性不会影响训练样本数量与分类精度之间的关系㊂光谱融合模型比MLP和RF模型具有更高的分类精度㊂图5㊀SV数据集的分类结果Fig.5㊀Classification results of SV dataset图6㊀UP数据集的分类结果Fig.6㊀Classification results of the UP dataset73第4期李㊀昊等:基于DS证据理论的高光谱图像融合分类83哈㊀尔㊀滨㊀理㊀工㊀大㊀学㊀学㊀报㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第28卷㊀表2㊀IP和SV数据集的分类结果,IP数据集中每个类有16个训练样本,SV数据集中每类有80个训练样本Tab.2㊀Classification results of IP and SV data sets.There are16training samples for each classin IP data set and80training samples for each class in SV data setIP SVMLP RF DS Average MLP RF DS Average 184.61ʃ7.7882.64ʃ9.8984.63ʃ7.6484.63ʃ7.6498.61ʃ0.9699.03ʃ0.4898.94ʃ0.7498.93ʃ0.75 243.82ʃ6.7633.55ʃ6.4543.54ʃ6.2343.6ʃ6.3899.68ʃ0.2498.92ʃ1.599.77ʃ0.1499.76ʃ0.14 345.61ʃ5.5247.08ʃ3.3347.89ʃ4.9347.4ʃ5.0398.39ʃ298.01ʃ0.8598.93ʃ1.0798.93ʃ1.16 465.9ʃ7.0159.46ʃ4.6768.58ʃ5.7368.83ʃ5.9699.55ʃ0.2199.38ʃ0.2699.52ʃ0.1999.53ʃ0.2 577.45ʃ4.8579.13ʃ3.8780.47ʃ3.2679.69ʃ3.8197.66ʃ0.7996.36ʃ1.0597.58ʃ0.7897.6ʃ0.79 689.4ʃ2.5771.86ʃ4.789.3ʃ2.4289.55ʃ2.2899.65ʃ0.1399.29ʃ0.3399.74ʃ0.199.67ʃ0.12 794.01ʃ5.3490.72ʃ4.4992.39ʃ4.4994.01ʃ5.3499.61ʃ0.1399.2ʃ0.5299.6ʃ0.1299.61ʃ0.11 883.96ʃ5.3484.78ʃ5.7186.99ʃ4.7186.73ʃ5.0366.87ʃ7.8465.41ʃ3.7868.7ʃ6.2268.65ʃ6.13 9100ʃ097.16ʃ7.5100ʃ0100ʃ099.11ʃ1.0998.19ʃ1.0699.07ʃ0.9499.16ʃ0.95 1063.6ʃ3.7856.12ʃ8.1665.22ʃ4.2664.99ʃ4.0392.11ʃ1.1787.56ʃ2.6992ʃ1.0692.07ʃ1.02 1145.29ʃ8.2948.93ʃ6.948.7ʃ8.0748.12ʃ8.0996.01ʃ1.5392.1ʃ1.8696.05ʃ1.596.02ʃ1.4 1249.01ʃ8.3540.8ʃ8.1849.72ʃ8.9749.22ʃ8.899.08ʃ0.4798.08ʃ1.0199.43ʃ0.2999.33ʃ0.36 1397.72ʃ1.1494.68ʃ2.1997.34ʃ1.8297.55ʃ1.5997.6ʃ1.0597.04ʃ0.8297.57ʃ0.8597.6ʃ0.89 1474.04ʃ8.2781.64ʃ6.477.95ʃ7.0578.11ʃ7.2395.14ʃ1.3494.06ʃ0.9794.93ʃ1.1994.89ʃ1.21 1554.51ʃ4.9435.17ʃ2.9452.4ʃ5.3452.27ʃ5.974.63ʃ6.7167.18ʃ3.0874.16ʃ5.674.23ʃ5.63 1691.66ʃ5.2997.65ʃ1.7293.73ʃ5.3693.21ʃ5.4698.15ʃ0.4296.05ʃ1.4598.08ʃ0.5798.08ʃ0.51 OA59.85ʃ2.0357.13ʃ1.2461.73ʃ1.861.5ʃ1.8988.48ʃ0.986.3ʃ0.6688.79ʃ0.7788.8ʃ0.76 AA72.82ʃ0.9469.12ʃ1.4673.92ʃ0.8773.88ʃ0.8694.54ʃ0.3692.88ʃ0.2594.66ʃ0.3194.66ʃ0.3 K55.02ʃ2.0751.98ʃ1.3257.07ʃ1.8456.82ʃ1.9387.2ʃ0.9884.78ʃ0.7287.54ʃ0.8487.54ʃ0.83 Train time/s0.74ʃ0.150.27ʃ0.01 1.68ʃ0.050.73ʃ0.01 Test time/s0.08ʃ0.010.15ʃ0.01 0.29ʃ0.010.89ʃ0.05表3㊀KSC和UP数据集的分类结果,每个数据集中每个类有80个训练样本Tab.3㊀Classification results of KSC and UP datasets,with80training samples per class in each datasetKSC UPMLP RF DS Average MLP RF DS Average 189.98ʃ2.3289.4ʃ2.2690.72ʃ2.1290.61ʃ2.0976.61ʃ2.7975.85ʃ2.8977.49ʃ2.0676.88ʃ2.15 288.18ʃ2.5786.38ʃ3.4288.72ʃ2.9788.66ʃ2.9383.78ʃ3.5970.37ʃ3.581.06ʃ3.9581.04ʃ3.97 394.74ʃ2.5491.28ʃ2.2294.53ʃ1.994.81ʃ2.0181.26ʃ3.4171.43ʃ4.0479.96ʃ3.280.14ʃ3.18 474.01ʃ8.1869.55ʃ5.3376.82ʃ4.8576.92ʃ5.1989.24ʃ4.2293.25ʃ2.8391.57ʃ3.2391.61ʃ3.2 574.34ʃ7.3371.38ʃ3.7275.72ʃ5.6974.98ʃ5.7599.3ʃ0.3899.29ʃ0.1799.45ʃ0.2299.51ʃ0.22续表3KSC UPMLP RF DS Average MLP RF DS Average 680.73ʃ4.8864.69ʃ3.0878.01ʃ4.1378.86ʃ4.6484.69ʃ3.6276.67ʃ3.2684.24ʃ3.1484.12ʃ3.24 791.89ʃ4.3890.33ʃ3.6793.15ʃ3.1293.15ʃ3.1291.64ʃ1.2388.53ʃ2.5291.27ʃ1.4691.6ʃ1.42 892.81ʃ2.5987.47ʃ2.993.45ʃ2.3193.31ʃ2.2178.75ʃ2.2176.99ʃ2.980.17ʃ2.479.82ʃ2.49 995.92ʃ1.6291.82ʃ3.3896.08ʃ1.496.1ʃ1.4499.3ʃ0.33100ʃ099.63ʃ0.1899.63ʃ0.18 1097.08ʃ1.8891.65ʃ1.6997.52ʃ1.2997.3ʃ1.49 1198.02ʃ0.6697.22ʃ1.1898.29ʃ0.798.26ʃ0.73 1293.28ʃ1.4388.19ʃ3.1994.56ʃ1.294.53ʃ1.22 13100ʃ099ʃ0.5299.96ʃ0.08100ʃ0 OA93.31ʃ0.4790.08ʃ0.5893.73ʃ0.3693.72ʃ0.3583.68ʃ1.5176.29ʃ1.1982.79ʃ1.5482.66ʃ1.54 AA90.17ʃ0.5886.08ʃ0.8690.63ʃ0.5890.63ʃ0.5887.22ʃ0.6683.65ʃ0.5587.24ʃ0.5787.19ʃ0.59 K92.46ʃ0.5388.81ʃ0.6692.92ʃ0.4192.91ʃ0.3978.81ʃ1.8269.91ʃ1.377.77ʃ1.8477.61ʃ1.84 Train time/s1.34ʃ0.01 1.76ʃ0.03 1.02ʃ0.01 1.61ʃ0.02 Test time/s0.05ʃ00.06ʃ0 0.23ʃ00.56ʃ0表4㊀由MLP㊁RF和DS用不同数量的样本获得OA(%)Tab.4㊀OA(%)was obtained by MLP,RF and DS with different numbers of samplesIP KSC SV UPMLP54.4ʃ1.9791.21ʃ0.6287.01ʃ1.7679.67ʃ0.991RF52.17ʃ2.4387.77ʃ0.7785.51ʃ0.9372.64ʃ1.36DS56.41ʃ2.1791.79ʃ0.787.47ʃ1.4178.77ʃ1.22MLP56.63ʃ1.7992.05ʃ0.8387.96ʃ0.8681.55ʃ2.352RF53.56ʃ2.1589.06ʃ0.9585.84ʃ0.3573.84ʃ1.9DS58.46ʃ1.4692.4ʃ0.7588.27ʃ0.6280.64ʃ2.54MLP58.46ʃ2.2292.71ʃ0.788.82ʃ0.5882.1ʃ1.453RF55.19ʃ2.1489.4ʃ186.17ʃ0.7575.66ʃ1.7DS60.25ʃ1.8492.99ʃ0.5789.02ʃ0.4881.62ʃ1.29MLP59.85ʃ2.0393.31ʃ0.4788.48ʃ0.983.68ʃ1.514RF57.13ʃ1.2490.08ʃ0.5886.3ʃ0.6676.29ʃ1.19DS61.73ʃ1.893.73ʃ0.3688.79ʃ0.7782.79ʃ1.54MLP61.91ʃ1.9893.65ʃ0.4188.66ʃ1.1184.43ʃ0.975RF56.52ʃ2.0290.67ʃ0.4286.45ʃ0.9176.76ʃ1.45DS62.98ʃ1.6893.96ʃ0.3288.87ʃ0.8883.84ʃ0.7993第4期李㊀昊等:基于DS证据理论的高光谱图像融合分类表5㊀不同训练数据百分比下,MLP㊁RF㊁DS获得OA(%)Tab.5㊀OA(%)obtained by MLP,RF and DS under different training data percentagesIP KSC SV UP MLP68.19ʃ1.2969.7ʃ2.0988.73ʃ0.7485.2ʃ1.25 1RF65.17ʃ0.8175.98ʃ1.5486.08ʃ0.5581.58ʃ0.86 DS69.23ʃ1.0676.16ʃ1.288.79ʃ0.6685.23ʃ1.18MLP73.00ʃ0.8984.68ʃ1.3590.66ʃ0.6591.06ʃ0.33 2RF68.17ʃ1.179.31ʃ1.5188.7ʃ0.3185.95ʃ0.29 DS74.39ʃ0.7484.47ʃ1.4891.06ʃ0.4891.11ʃ0.35MLP76.93ʃ0.786.79ʃ1.0291.4ʃ1.3792.59ʃ0.34 3RF71.27ʃ0.8582.9ʃ1.1791.89ʃ0.4187.91ʃ0.3 DS78.17ʃ0.7287.04ʃ1.4789.02ʃ0.4892.81ʃ0.35MLP78.69ʃ0.888.83ʃ0.6892.9ʃ0.2693.43ʃ0.26 4RF72.37ʃ0.6484.37ʃ0.989.83ʃ0.2289.27ʃ0.24 DS79.78ʃ0.7188.8ʃ0.4293.11ʃ0.1893.63ʃ0.23MLP80.49ʃ0.8289.68ʃ0.6193.27ʃ0.3693.75ʃ0.39 5RF73.3ʃ0.4485.66ʃ0.9990.01ʃ0.1989.86ʃ0.29 DS81.61ʃ0.6889.83ʃ0.6293.47ʃ0.2594.07ʃ0.243㊀结㊀论通过平衡数据集与非平衡数据集,验证了基于DS证据理论的光谱融合模型的泛化㊁有效性和鲁棒性㊂值得注意的是,与MLP和RF模型相比,DS融合模型提高各类目标的分类精度㊂同时该融合模型的分类精度提升不受数据集的均衡性的影响㊂尽管融合模型的提升性能是有限的,但是该融合模型可以在不增加训练与时间成本的前提下,提高分类的准确性与可靠性㊂参考文献:[1]㊀LANDGREBE D.Hyperspectral Image Data Analysis[J].IEEE Signal Processing Magazine,2002,19(1):17.[2]㊀BIOUCAS-DIAS J.M.,PLAZA A.,CAMPS-VALLSG.,et al.Hyperspectral Remote Sensing Data Analysisand Future Challenges[J].IEEE Geoscience and Re-mote Sensing Magazine.2013,1(2):6.[3]㊀汪泉,宋文龙,张怡卓,等.基于改进VGG16网络的机载高光谱针叶树种分类研究[J].森林工程,2021,37(3):79.WANG Quan,SONG Wenlong,ZHANG Yizhuo,et al.Based on Improved VGG16Conifer Airborne Hyperspec-tral Classification of Network Study[J].Forest engineer-ing,2021,37(3):79.[4]㊀ZHANG X.,SUN Y.,SHANG K.,et al.Crop Classifi-cation Based on Feature Band Set Construction and Ob-ject-Oriented Approach Using Hyperspectral Images[J].IEEE Journal of Selected Topics in Applied Earth Obser-vations and Remote Sensing,2016,9(9):4117. [5]㊀乔璐,陈立新,董诚明.基于高光谱遥感技术对土壤氮磷钾的估算[J].森林工程,2018,34(6):25.QIAO Lu,CHEN Lixin,DONG Chengming.Based onEstimates of Hyperspectral Remote Sensing Technology onSoil NPK[J].Forest Engineering,2018(6):25.[6]㊀UZKENT B.,RANGNEKAR A.,HOFFMAN M.J.,etal.Aerial Vehicle Tracking by Adaptive Fusion of Hyper-spectral Likelihood Maps[C]//2017IEEE Conferenceon Computer Vision and Pattern Recognition Workshops(CVPRW),2017:233.[7]㊀杨曦光,范文义,于颖.森林叶绿素含量的高光谱遥感估算模型的建立[J].森林工程,2010,26(2):8.04哈㊀尔㊀滨㊀理㊀工㊀大㊀学㊀学㊀报㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第28卷㊀YANG Xiguang,FAN Wenyi,YU Ying.Forest of Chlo-rophyll of Hyperspectral Remote Sensing Estimation Mod-el[J].Forest Engineering,2010,26(2):8. [8]㊀CARTER G.A.,LUKAS K.L.,BLOSSOM G.A..Re-mote Sensing and Mapping of Tamarisk Along the Colo-rado River,USA:A Comparative Use of Sum-mer-ac-quired Hyperion,Thematic Mapper and Quickbird Data[J].Remote Sens,2009,9(1):318.[9]㊀FAUVEL M.,TARABALKA Y.,BENEDIKTSSON J.A..Advances in Spectral-spatial Classification of Hyper-spectral Images[J].Proceeding of the IEEE,2013,101(3):652.[10]刘玉珍,朱珍珍,马飞.基于特征融合方法的高光谱图像分类综述[J].激光与光电子学进展,2021,58(4):44.LIU Yuzhen,ZHU Zhenzhen,MA Fei.HyperspectralImage Classification Based on Feature Fusion[J].Ad-vances in Laser and Optoelectronics,2019,58(4):44.[11]叶珍,白璘,何明一.高光谱图像空谱特征提取综述[J].中国图象图形学报,2021,26(8):1737.YE Zhen,BAI Lin,HE Mingyi.Review of Space Spec-trum Feature Extraction in Hyperspectral Images[J].Journal of Image and Graphics,2019,26(8):1737.[12]李秉璇,周冰,贺宣,等.针对高光谱图像的目标分类方法现状与展望[J].激光与红外,2020,50(3):259.LI Bingxuan,ZHOU Bing,HE Xuan,et al.Current Sit-uation and Prospect of Target Classification Methods forHyperspectral Images[J].Laser&Infrared,2020,50(3):259.[13]㊀ZHONG Z.,LI J.,LUO Z.,et al.Spectral-SpatialResidual Network for Hyperspectral Image Classifica-tion:A3-D Deep Learning Framework[J].IEEETransactions on Geoscience and Remote Sensing,2018,56(2):847.[14]㊀ROY S.K.,KRISHNA G.,DUBEY S.R.,et al.HybridSN:Exploring3-D-2-D CNN Feature Hierarchyfor Hyper-spectral Image Classification[J].IEEE Geo-science and Remote Sensing Letters,2020,17(2):277.[15]万亚玲,钟锡武,刘慧,等.卷积神经网络在高光谱图像分类中的应用综述[J].计算机工程与应用,2021,57(4):1.WAN Yaling,ZHONG Xiwu,LIU Hui,et al.Applica-tion of Convolutional Neural Networks in HyperspectralImage Classification[J].Computer Engineering and Ap-plications,2021,57(4):1.[16]㊀GAO H.,YANG Y.,LI C.,et al.Multiscale ResidualNetworkWith Mixed Depth wise Convolution for Hyper-spectral Image Classification[J].IEEE Transactions onGeoscience and Remote Sensing,2021,1(13):3396.[17]PAOLETTI M.,HAUT J.M.,PLAZA J.,et al.A NewDeep Convolutional Neural Network for Fast HyperspectralImage Classification[J].ISPRS Journal of Photogramme-try and Remote Sensing,2018,145:120. [18]叶珍,何明一.PCA与移动窗小波变换的高光谱决策融合分类[J].中国图象图形学报,2015,20(1):132.YE Zhen,HE Mingyi.Hyperspectral Decision FusionClassification by PCA and Moving Window WaveletTransform[J].Journal of Image and Graphics,2015,20(1):132.[19]崔颖,徐凯,陆忠军,等.主动学习策略融合算法在高光谱图像分类中的应用[J].通信学报,2018,39(4):91.CUI Ying,XU Kai,LU Zhongjun,et al.Application ofActive Learning Strategy Fusion Algorithm in Hyperspec-tral Image Classification[J].Journal of Communications,2018,39(4):91.[20]谭术魁,邹尚君,曾忠平,等.基于RF-MLP集成模型的耕地生态安全预警系统设计与应用[J].长江流域资源与环境,2022,31(2):436.TAN Shukui,ZOU Shangjun,ZENG Zhongping,et al.Design and Application of Cultivated Land Ecological Se-curity Early Warning System Based on RF-MLP Inte-grated Model[J].Resources and Environment in theYangtze Basin,2002,31(2):436.(编辑:温泽宇)14第4期李㊀昊等:基于DS证据理论的高光谱图像融合分类。
高光谱图像分类
高光谱图像分类
高光谱图像分类是指,通过分析高光谱图像中的特征从而将其分为不同的类别,具体步骤如下:
1.数据预处理:首先要对高光谱图像进行预处理,将原始图像中的杂质滤除,并且调整图像分辨率,使其能够适应分类任务。
2.特征提取:接下来要基于高光谱图像的每一个波段进行特征提取,提取出能够代表该图像的特征,例如灰度值、颜色特征等。
3.分类器训练:最后,使用已经提取出来的特征,采用机器学习方法进行分类器的训练,从而实现对高光谱图像的分类。
aaai 高光谱分类
3
多模态融合
高光谱图像可以与其他类型的图像(如 光学图像、红外图像等)结合使用,以 提高分类精度。未来,可以探索多模态 融合的方法,将不同类型的数据进行融 合,实现更准确的分类。
感谢您的观看
THANKS
鲁棒性评估
鲁棒性指标
通过计算鲁棒性指标,如均方误 差(MSE)、基尼系数(Gini)等,评 估模型在不同数据集或不同条件
下的性能。
不确定性估计
对模型输出的不确定性进行估计, 以反映模型在面对复杂或不确定数 据时的鲁棒性。
鲁棒性测试
通过对比模型在不同数据集或不同 条件下的性能表现,进行鲁棒性测 试以评估模型的稳定性和可靠性。
未来展望
1
新型特征提取方法
目前,高光谱图像的特征提取方法主要 基于手工设计的滤波器和变换方法。未 来,可以通过深度学习等方法自动学习 特征表示,提高分类精度。
2
大规模数据处理技术
高光谱图像的数据量通常很大,处理这 些数据需要高效的算法和计算资源。未 来,可以通过分布式计算、云计算等技 术提高数据处理效率。
卷积神经网络(CNN)
通过构建卷积层、池化层和全连接层等,对 高光谱图像进行特征提取和分类。
自编码器(AE)
通过构建编码器和解码器,对高光谱图像进 行特征提取和分类。
循环神经网络(RNN)
通过构建循环层,对高光谱图像进行特征提 取和分类。
变分自编码器(VAE)
通过构建编码器、解码器和变分推理网络, 对高光谱图像进行特征提取和分类。
基于集成学习的高光谱分类
Bagging
通过构建多个子模型,并对每个子模 型的预测结果进行投票或加权平均, 得到最终的预测结果。
Boosting
高光谱图像分类
《机器学习》课程项目报告高光谱图像分类——基于CNN和ELM学院信息工程学院专业电子与通信工程学号 2111603035学生姓名曹发贤同组学生陈惠明、陈涛硕士导师杨志景2016 年11 月一、项目意义与价值高光谱遥感技术起源于20 世纪80年代初,是在多光谱遥感技术基础之上发展起来的[1]。
高光谱遥感能够通过成像光谱仪在可见光、近红外、短波红外、中红外等电磁波谱范围获取近似连续的光谱曲线,将表征地物几何位置关系的空间信息与表征地物属性特征的光谱信息有机地融合在了一起,使得提取地物的细节信息成为可能。
随着新型成像光谱仪的光谱分辨率的提高,人们对相关地物的光谱属性特征的了解也不断深入,许多隐藏在狭窄光谱范围内的地物特性逐渐被人们所发现,这些因素大大加速了遥感技术的发展,使高光谱遥感成为21 世纪遥感技术领域重要的研究方向之一。
在将高光谱数据应用于各领域之前,必须进行必要的数据处理。
常用的数据处理技术方法包括:数据降维、目标检测、变化检测等。
其中,分类是遥感数据处理中比较重要的环节,分类结果不但直接提取了影像数据有效信息,可以直接运用于实际需求中,同时也是实现各种应用的前提,为后续应用提供有用的数据信息和技术支持,如为目标检测提供先验信息、为解混合提供端元信息等。
相对于多光谱遥感而言,由于高光谱遥感的波谱覆盖范围较宽,因此我们可以根据需要选择特定的波段来突显地物特征,从而能够精确地处理地物的光谱信[2]。
目前,许多国家开展大量的科研项目对高光谱遥感进行研究,研制出许多不同类型的成像光谱仪。
高光谱遥感正逐步从地面遥感发展到航空遥感和航天遥感,并在地图绘制、资源勘探、农作物监测、精细农业、海洋环境监测等领域发挥重要的作用。
高光谱遥感技术虽然是遥感领域的新技术,但是高光谱图像的分类一直制约着高光谱遥感的应用[3,4],因此对其进行研究显得尤为重要。
高光谱遥感图像较高的光谱分辨率给传统的图像分类识别算法提出严峻的挑战。
高光谱图像处理中的特征提取与分类算法研究
高光谱图像处理中的特征提取与分类算法研究随着高光谱图像获取技术的不断进步,高光谱图像在农业、环境监测、地质探测等领域得到广泛应用。
然而,高光谱图像数据的数量庞大且复杂,给其处理与分析带来了挑战。
为了充分利用高光谱图像的信息,提高数据的品质和分类准确率,研究者们积极探索各种特征提取与分类算法。
一、特征提取特征提取是高光谱图像处理中的关键一步。
通过特征提取,可以将高维的光谱数据转化为低维特征,从而减少数据的冗余性、突出数据的潜在信息。
常见的高光谱图像特征提取方法包括主成分分析(PCA)、线性判别分析(LDA)、小波变换、光谱指数等。
1. 主成分分析(PCA)主成分分析是一种常用的降维方法,通过线性变换将原始高维数据转化为低维的主成分。
主成分分析的基本思想是找到能够最大程度区分样本的线性投影方向。
通过PCA分析,可以提取出图像中的主要光谱信息,并且可以去除大部分无关的冗余信息。
2. 线性判别分析(LDA)线性判别分析是一种经典的分类方法,它不仅保留了投影后样本类间距离的信息,而且还使得同一类样本的投影点尽可能接近。
LDA通过计算类内散布矩阵和类间散布矩阵的特征向量,实现对高维数据进行降维。
3. 小波变换小波变换可以将高光谱图像转换为时间-频率域表示,从而提取出图像的局部特征。
小波变换能够捕捉到光谱数据的局部细节信息,对于高光谱图像的纹理分类和分割具有明显优势。
4. 光谱指数光谱指数是通过对高光谱数据进行数学处理,得到特定波长范围的信息。
常见的光谱指数包括归一化差异植被指数(NDVI)、水体指数(WI)、土壤调查等。
光谱指数可以直观地反映出高光谱图像中植被、土壤、水体等目标的分布情况。
二、分类算法分类算法是高光谱图像处理中的另一个重要环节,它将提取出的特征与已知类别的样本进行训练,然后将训练得到的模型应用于未知样本的分类。
1. 支持向量机(SVM)支持向量机是一种常用的分类方法,通过在特征空间中构造出一个最佳超平面,实现样本的分类。
第72章高光谱遥感图像分类ppt课件
初始类别参数的选定
初始类别参数是指:基准类别集群中心(数学期 望)以及集群分布的协方差矩阵。因为无论采用 何种判别函数,都要预先确定其初始类别的参量。 以下为几种常用的方法:
29
1、像素光谱特征的比较法
首先,在遥感图像中定义一个抽样集,它可以是整幅 图像的所有像素,但通常是按一定间隔抽样的像素;
15
欧几里德距离就是两点之间的直线距离。这是我们用的最多因 而也是最为熟悉的一种距离。与我们习惯用的距离一致。欧氏 距离的表达式为:
2. 欧几里德距离
n
2
di x k
x kj M ij
j1
欧氏距离中各特征参数也是等权的。 以上两种距离都称为明可夫斯基(Minkowski)距离(以下 简称明氏距离),使用明氏距离应该注意以下问题:
式中:Pwi 为先验概率,也就是在被分类的图像中类别wi出现的 概率。PX wi 为似然概率,它表示在 wi这一类中出现像元X的
概率。只要有一个已知的训练区域,用这些已知类别的像元做
统计就可以求出平均值及方差、协方差等特征参数,从而可以
求出总体的先验概率。在不知道的情况下,也可以认为所有的Pwi
为相同。Pwi X 为后验概率。PX 表示不管什么类别出现的概率:
31
初始类别参数的选定
19
3、最大似然监督分类
最大似然法是经典的分类方法,已在宽波段遥感图像分类
中普遍采用。它主要根据相似的光谱性质和属于某类的概率最
大的假设来指定每个像元的类别。MLC法最大优点是能快速指定
被分类像元到若干类之中的一类中去 。
从概率统计分析,要想判别某位置的向量属于哪一个类别,
判别函数要从条件概率 Pwi X i 1 , 2 , 3 , 来, m决定,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《机器学习》课程项目报告高光谱图像分类——基于CNN与ELM 学院信息工程学院专业电子与通信工程学号 2111603035学生姓名曹发贤同组学生陈惠明、陈涛硕士导师杨志景2016 年11 月一、项目意义与价值高光谱遥感技术起源于20 世纪80年代初,就是在多光谱遥感技术基础之上发展起来的[1]。
高光谱遥感能够通过成像光谱仪在可见光、近红外、短波红外、中红外等电磁波谱范围获取近似连续的光谱曲线,将表征地物几何位置关系的空间信息与表征地物属性特征的光谱信息有机地融合在了一起,使得提取地物的细节信息成为可能。
随着新型成像光谱仪的光谱分辨率的提高,人们对相关地物的光谱属性特征的了解也不断深入,许多隐藏在狭窄光谱范围内的地物特性逐渐被人们所发现,这些因素大大加速了遥感技术的发展,使高光谱遥感成为21 世纪遥感技术领域重要的研究方向之一。
在将高光谱数据应用于各领域之前,必须进行必要的数据处理。
常用的数据处理技术方法包括:数据降维、目标检测、变化检测等。
其中,分类就是遥感数据处理中比较重要的环节,分类结果不但直接提取了影像数据有效信息,可以直接运用于实际需求中,同时也就是实现各种应用的前提,为后续应用提供有用的数据信息与技术支持,如为目标检测提供先验信息、为解混合提供端元信息等。
相对于多光谱遥感而言,由于高光谱遥感的波谱覆盖范围较宽,因此我们可以根据需要选择特定的波段来突显地物特征,从而能够精确地处理地物的光谱信[2]。
目前,许多国家开展大量的科研项目对高光谱遥感进行研究,研制出许多不同类型的成像光谱仪。
高光谱遥感正逐步从地面遥感发展到航空遥感与航天遥感,并在地图绘制、资源勘探、农作物监测、精细农业、海洋环境监测等领域发挥重要的作用。
高光谱遥感技术虽然就是遥感领域的新技术,但就是高光谱图像的分类一直制约着高光谱遥感的应用[3,4],因此对其进行研究显得尤为重要。
高光谱遥感图像较高的光谱分辨率给传统的图像分类识别算法提出严峻的挑战。
波段维数的增加不仅加重了数据的存储与传输的负担,同时也加剧了数据处理过程的复杂性,并且由于波段与波段间存在着大量的冗余信息,从而使得传统图像分类算法并不适用于高光谱遥感图像的分类。
传统的分类方法往往需要很多数目的已知类别的训练样本,从而导致计算量大,时间复杂度高。
另外,如果训练样本的数目较少,采用传统分类算法进行分类时分类精度往往就是很低的,因此提高分类精度并减少运算量成为高光谱领域的热点问题。
高光谱遥感图像的波段数目多,并且波段与波段间存在着很大的相关性,因此在进行遥感图像的处理(例如分类)之前通常需要进行降维预处理,这样做不仅可以降低数据空间的维数,减少冗余信息,而且还有利于人工图像解译与后续分类处理与地物识别,从而为解决高光谱遥感分类的难点提供了方便[5]。
二、高光谱图像分类的发展与现状高光谱图像分类作为高光谱图像的基础研究,一直就是高光谱图像重要的信息获取手段,它的主要目标就是根据待测地物的空间几何信息与光谱信息将图像中的每个像素划分为不同的类别。
高光谱图像分类按照就是否有已知类别的训练样本的参与,高光谱图像的分类方式分为监督分类与非监督分类[6]。
在遥感图像自动分类中,传统的基于数理统计的分类方法,主要包括最小距离分类、最大似然分类、波谱角分类、混合距离法分类等,主要依赖地物的光谱属性,基于单个像元进行分类。
统计模式识别方法本身的不足:1、最大似然法计算强度大,且要求数据服从正态分布2、K-means聚类分类精度低,分类精度依赖于初始聚类中心3、最小距离法没有考虑各类别的协方差矩阵,对训练样本数目要求低近年来对于神经网络分类方法的研究相当活跃。
它区别于传统的分类方法:在处理模式分类问题时,并不基于某个假定的概率分布,在无监督分类中,从特征空间到模式空间的映射就是通过网络自组织完成的。
在监督分类中,网络通过对训练样本的学习,获得权值,形成分类器,且具备容错性。
人工神经网络(ANN)分类方法一般可以获得更高精度的分类结果,因此ANN方法在遥感分类中被广泛应用,特别就是对于复杂类型的地物类型分类,ANN方法显示了其优越性。
专家系统分类法也在遥感分类取得了一定的应用。
专家系统就是模拟人类逻辑思维的智能系统,将其应用于遥感分类最大的优点就就是可以充分利用更多的辅助分类数据。
不过由于专家系统知识库难以建立,影响了它的进一步发展。
支持向量机(SVM)具有严格的理论基础,能较好地解决小样本、非线性、高维数等问题,被成功地应用到多光谱、高光谱遥感图像分类领域。
对于高光谱数据而言,由于波段多、数据量大、数据不确定性等,易受Hughes现象(即训练样本固定时,分类精度随特征维数的增加而下降)影响。
而样本的获取在高光谱分类中往往就是一项比较困难的工作,特别就是采用高维特征向量时要求每类的样本数都要比特征维数高,因此在高维信息处理中的精度与效率与高光谱遥感信息精细光谱与大数据量之间仍然存在着极大的矛盾。
三、卷积神经网络理论基础卷积神经网络就是人工神经网络的一种,它的权值共享网络结构使之更类似于生物神经网络,降低了网络模型的复杂度,减少的权值的数量以节约训练与测试的计算时间。
该优点在网络的输入就是多维图像时表现得更加明显,使图像可以直接作为网络的输入,避免了传统识别算法中复杂的特征提取与数据重建过程。
卷积神经网络就是为识别二维数据而专门设计的一个多层感知机,其网络对平移、比例变化与倾斜等具有高度不变性[7]。
在CNN中,图像的一小部分(局部感受区域)作为层级结构的最低层的输入,信息再依次传输到不同的层,每层通过一个数字滤波器去获得观测数据的最显著的特征。
这个方法能够获取对平移、缩放与旋转不变的观测数据的显著特征,因为图像的局部感受区域允许神经元或者处理单元可以访问到最基础的特征,例如定向边缘或者角点。
卷积神经网络就是一个多层的神经网络,每层由多个二维平面组成,每个平面又由多个独立的神经元组成。
图2为卷积神经网络的整体结构图。
一般地,C层(卷积层)为特征提取层,每个神经元的输入与前一层的局部感受野相连,并提取该局部的特征,一旦该局部特征被提取后,它与其她特征间的位置关系也随之确定下来;S层(下采样层)就是特征映射层,网络的每个计算层由多个特征映射组成,每个特征映射为一个平面,平面上所有神经元的权值相等。
特征映射结构采用sigmoid函数等映射函数作为卷积网络的激活函数,使得特征映射具有位移不变性。
此外,由于一个映射面上的神经元共享权值,因而减少了网络自由参数的个数,降低了网络参数选择的复杂度。
卷积神经网络中的每一个特征提取层(C-层)都紧跟着一个用来求局部平均与二次提取的计算层(S-层),这种特有的两次特征提取结构使网络在识别时对输入样本有较高的畸变容忍能力。
卷积神经网络采用有监督学习的方式进行训练,即任何一个训练样本的类别就是已知的,训练样本在空间中的分布不再就是依据其自然分布倾向来划分,而就是根据同类样本与不同类样本中的空间关系进行划分,这需要不断调整网络模型的参数用以划分样本空间的分类边界的位置,就是一个耗时且复杂的学习训练过程[8]。
神经网络在进行训练时,所有的网络权值都用一些不同的小随机数进行初始化,这些小的随机数能偶保证网络不会因为权值过大而进入饱与状态,导致训练失败。
神经网络训练算法包括4个主要部分:(1)样本集中取出样本 并将其输入网络,代表图像数组,代表其类别;(2)计算此次输入相应的实际输出,这就是一个前向传播的过程;(3)用一个指定的损失函数计算出实际输出与理想输出 的误差;(4)按极小化误差的方法反向传播调整网络权值。
四、 极限学习机极限学习机(extreme learning machine)ELM 就是一种简单易用、有效的单隐层前馈神经网络SLFNs 学习算法。
2004年由南洋理工大学黄广斌副教授提出。
传统的神经网络学习算法(如BP 算法)需要人为设置大量的网络训练参数,并且很容易产生局部最优解。
极限学习机只需要设置网络的隐层节点个数,在算法执行过程中不需要调整网络的输入权值以及隐元的偏置,并且产生唯一的最优解,因此具有学习速度快且泛化性能好的优点。
极限学习机的网络训练模型采用前向单隐层结构。
设,,m M n 分别为网络输入层、隐含层与输出层的节点数,()g x 就是隐层神经元的激活函数,i b 为阈值。
设有N个不同样本(),i i x t ,1i N ≤≤ ,其中[][]1212,,...,,,,...,TTm n i i i im i i i in x x x x R t t t t R =∈=∈ ,则极限学习机的网络训练模型如图1所示。
图1 极限学习机的网络训练模型极限学习机的网络模型可用数学表达式表示如下:()1,1,2,...,Miiiiji g x b o j N βω=+==∑g式中,[]12,,...,i i i mi ωωωω= 表示连接网络输入层节点与第i 个隐层节点的输入权值向量;[]12,,...,Ti i i in ββββ= 表示连接第i 个隐层节点与网络输出层节点的输出权值向量;[]12,,...,Ti i i in o o o o = 表示网络输出值。
极限学习机的代价函数E 可表示为()1,Nj j j E S o t β==-∑式中,(),,1,2,...,i i s b i M ω== ,包含了网络输入权值及隐层节点阈值。
Huang 等指出极限学习机的悬链目标就就是寻求最优的S ,β,使得网络输出值与对应实际值误差最小,即()()min ,E S β 。
()()min ,E S β可进一步写为()()()111,,min ,min ,...,,,...,,,...,i i M M N b E S H b b x x T ωββωωβ=-式中,H 表示网络关于样本的隐层输出矩阵,β表示输出权值矩阵,T 表示样本集的目标值矩阵,H ,β,T 分别定义如下:()()()()()111111111,...,,,...,,,...,M M M M N N m N M N M g x b g x b H b b x x g x b g x b ωωωωωω⨯++⎡⎤⎢⎥=⎢⎥⎢⎥++⎣⎦L M L11,T T T T M N M N N Nt T t βββ⨯⨯⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦M M极限学习机的网络训练过程可归结为一个非线性优化问题。
当网络隐层节点的激活函数无限可微时,网络的输入权值与隐层节点阈值可随机赋值,此时矩阵H 为一常数矩阵,极限学习机的学习过程可等价为求取线性系统H T β= 最小范数的最小二乘解ˆβ,其计算式为 ˆH T β+= 式中H +时矩阵H 的MP 广义逆。