金属热处理工艺学课后习题答案及资料
金属热处理习题及参考答案 (2)
金属热处理习题及参考答案一、判断题(共100题,每题1分,共100分)1.严格控制铸钢、铸铁中的硫含量可使铸件产生热裂纹的倾向大大降低。
()A、正确B、错误正确答案:A2.普通金属都是多晶体。
()A、正确B、错误正确答案:A3.当晶核长大时,随过冷度增大,晶核的长大速度增大。
但当过冷度很大时,晶核长大的速度很快减小。
()A、正确B、错误正确答案:A4.耐磨钢ZGMn13,经""水刨处理""后即可获得高耐磨性,而心部仍保持高的塑性和韧性。
()A、正确B、错误正确答案:B5.合金元素加入钢中,会降低钢的回火稳定性。
()A、正确B、错误正确答案:B6.共析转变时温度不变,且三相的成分也是确定的。
()A、正确B、错误正确答案:A7.在连续式热处理炉中,钢带是成卷进行处理的。
()A、正确B、错误正确答案:B8.铸铁可以经过热处理改变基体组织和石墨形态。
()A、正确B、错误正确答案:B9.光线照射物体能够使物体变热。
()A、正确B、错误正确答案:A10.火焰淬火最常用的燃料是氧-乙炔火焰混合气体。
()A、正确B、错误正确答案:A11.在轧制过程中,原料的体积和成品的体积是不变的,只是形状和尺寸发生了变化。
()A、正确B、错误正确答案:A12.对流板可提高罩式退火炉的传热效率。
()A、正确B、错误正确答案:A13.正火与退火在冷却方法上的区别是:正火冷却较快,在空气中冷却,退火则是缓冷。
()A、正确B、错误正确答案:A14.疲劳破坏是机械零件失效的主要原因之一。
()A、正确B、错误正确答案:A15.等温转变可以获得马氏体,连续冷却可以获得贝氏体。
()A、正确B、错误正确答案:A16.硬度是衡量材料软硬程度的指标。
()A、正确B、错误正确答案:A17.热加工是指在室温以上的塑性变形加工。
()A、正确B、错误正确答案:B18.正火工艺是将钢加热到AC3+(30~50℃)或Accm+(30~50℃),保温一定时间后出炉空冷。
《金属学与热处理》课后答案完整版.docx
第一章金属的晶体结构1-1作图表示出立方晶系( 1 2 3[-2 1 1]、[3 4 6]等晶向。
)、(0 -1 -2)、(4 2 1)等晶面和[-1 0 2]、答:1-2 立方晶系的 {1 1 1}晶面构成一个八面体,试作图画出该八面体,并注明各晶面的晶面指数。
答:{1 1 1} 晶面共包括( 1 1 1 )、(-1 1 1 )、(1 -1 1 )、(1 1 -1 )四个晶面,在一个立方晶系中画出上述四个晶面。
1-3某晶体的原子位于正方晶格的节点上,其晶格常数为a=b≠ c,c=2/3a 。
今有一晶面在 X、Y、Z 坐标轴上的结局分别为 5 个原子间距、 2 个原子间距和 3个原子间距,求该晶面的晶面指数。
答:由题述可得: X 方向的截距为×2a/3=2a 。
取截距的倒数,分别为1/5a ,1/2a ,1/2a5a, Y 方向的截距为2a,Z 方向截距为3c=3化为最小简单整数分别为故该晶面的晶面指数为(2,5,5 255 )1-4 体心立方晶格的晶格常数为a,试求出( 1 0 0 )、( 1 1 0 )、(1 1 1 )晶面的面间距大小,并指出面间距最大的晶面。
答:H( 1 0 0) ==a/2 H( 1 1 0) ==√2a/2H)==√3a/6(111面间距最大的晶面为( 1 1 0 )1-5 面心立方晶格的晶格常数为a,试求出( 1 0 0 )、( 1 1 0 )、(1 1 1 )晶面的面间距大小,并指出面间距最大的晶面。
答:H( 1 0 0) ==a/2H( 1 1 0) ==√2a/4H( 1 1 1) ==√3a/3面间距最大的晶面为( 1 1 1 )注意:体心立方晶格和面心立方晶格晶面间距的计算方法是:1、体心立方晶格晶面间距:当指数和为奇数是H=,当指数和为偶数时 H=2、面心立方晶格晶面间距:当指数不全为奇数是H=,当指数全为奇数是H=。
1-6 试从面心立方晶格中绘出体心正方晶胞,并求出它的晶格常数。
金属学与热处理课后答案(哈工大第3版)
金属学与热处理课后答案第一章填表:晶格类型原子数原子半径配位数致密度体心立方2a43868%面心立方4a421274%密排六方6a211274%5、作图表示出立方晶系(1 2 3)、(0 -1 -2)、(4 2 1)等晶面和[-1 0 2]、[-2 1 1]、[3 4 6] 等晶向10、已知面心立方晶格常数为a,分离计算(100)、(110)、和(111)晶面的晶面间距;并求出【100】、【110】和【111】晶向上的原子罗列密度(某晶向上的原子罗列密度是指该晶向上单位长度罗列原子的个数)第1 页/共18 页答:(100):(110):(111):14、何谓组元?何谓相?何谓固溶体?固溶体的晶体结构有何特点?何谓置换固溶体?影响其固溶度的因素有哪些?答: 组元:组成合金最基本的、自立的物质。
相:合金中结构相同、成分和性能均一并以界面互相分开的组成部分。
固溶体:合金组元之间以不同的比例互相混合形成的晶体结构与某一组元相同的固相。
固溶体的晶体结构特点:固溶体仍保持着溶剂的晶格类型,但结构发生了变化,主要包括以下几个方面:1)有晶格畸变,2)有偏聚与有序,3)当低于某一温度时,可使具有短程有序的固溶体的溶质和溶剂原子在囫囵晶体中都按—定的顺序罗列起来,改变为长程有序,形成有序固溶体。
置换固溶体:溶质原子位于溶剂晶格的某些结点位置所形成的固溶体。
影响置换固溶体固溶度的因素:原子尺寸,电负性,电子浓度,晶体结构15、何谓固溶强化?置换固溶体和间隙固溶体的强化效果哪个大?为什么?答:固溶强化:在固溶体中,随着溶质浓度的增强,固溶体的强度、硬度提高,而塑性、韧性有所下降的现象。
间隙固溶体的强化效果大于置换固溶体的强化效果。
缘故:溶质原子与溶剂原子的尺寸差别越大,所引起的晶格畸变也越大,强化效果越好。
间隙固溶体晶格畸变大于置换固溶体的晶格畸变16、何谓间隙相?它与间隙固溶体及复杂晶格间隙化合物有何区别?答:间隙相:当非金属原子半径与金属原子半径的比值小于0.59时,形成的容易的晶体结构称为间隙相。
金属学与热处理第二版课后习题参考答案
金属学与热处理第一章习题1.作图表示出立方晶系1 2 3、0 -1 -2、4 2 1等晶面和-1 0 2、-2 1 1、3 4 6 等晶向3.某晶体的原子位于正方晶格的节点上,其晶格常数a=b≠c,c=2/3a;今有一晶面在X、Y、Z坐标轴上的截距分别是5个原子间距,2个原子间距和3个原子间距,求该晶面的晶面参数;解:设X方向的截距为5a,Y方向的截距为2a,则Z方向截距为3c=3X2a/3=2a,取截距的倒数,分别为1/5a,1/2a,1/2a化为最小简单整数分别为2,5,5故该晶面的晶面指数为2 5 54.体心立方晶格的晶格常数为a,试求出1 0 0、1 1 0、1 1 1晶面的晶面间距,并指出面间距最大的晶面解:1 0 0面间距为a/2,1 1 0面间距为√2a/2,1 1 1面间距为√3a/3 三个晶面晶面中面间距最大的晶面为1 1 07.证明理想密排六方晶胞中的轴比c/a=证明:理想密排六方晶格配位数为12,即晶胞上底面中心原子与其下面的3个位于晶胞内的原子相切,成正四面体,如图所示则OD=c/2,AB=BC=CA=CD=a因△ABC是等边三角形,所以有OC=2/3CE由于BC2=CE2+BE2则有CD2=OC2+1/2c2,即因此c/a=√8/3=8.试证明面心立方晶格的八面体间隙半径为r=解:面心立方八面体间隙半径r=a/2-√2a/4=面心立方原子半径R=√2a/4,则a=4R/√2,代入上式有R=√2=设有一刚球模型,球的直径不变,当由面心立方晶格转变为体心立方晶格时,试计算其体积膨胀;b经X射线测定,在912℃时γ-Fe的晶格常数为,α-Fe 的晶格常数为,当由γ-Fe转化为α-Fe时,求其体积膨胀,并与a比较,说明其差别的原因;解:a令面心立方晶格与体心立方晶格的体积及晶格常数分别为V面、V 踢与a面、a体,钢球的半径为r,由晶体结构可知,对于面心晶胞有4r=√2a面,a面=2√2/2r,V面=a面3=2√2r3对于体心晶胞有4r=√3a体,a体=4√3/3r,V体=a体3=4√3/3r3则由面心立方晶胞转变为体心立方晶胞的体积膨胀△V为△V=2×V体-V面=B按照晶格常数计算实际转变体积膨胀△V实,有△V实=2△V体-V面=2x3-3=实际体积膨胀小于理论体积膨胀的原因在于由γ-Fe转化为α-Fe时,Fe 原子的半径发生了变化,原子半径减小了;10.已知铁和铜在室温下的晶格常数分别为和,求1cm3中铁和铜的原子数; 解:室温下Fe为体心立方晶体结构,一个晶胞中含2个Fe原子,Cu为面心立方晶体结构, 一个晶胞中含有4个Cu原子1cm3=1021nm3令1cm3中含Fe的原子数为N Fe,含Cu的原子数为N Cu,室温下一个Fe 的晶胞题解为V Fe,一个Cu晶胞的体积为V Cu,则N Fe=1021/V Fe=1021/3=N Cu=1021/V Cu=1021/3=11.一个位错环能不能各个部分都是螺型位错或者刃型位错,试说明之;解:不能,看混合型位错13.试计算{110}晶面的原子密度和111晶向原子密度;解:以体心立方{110}晶面为例{110}晶面的面积S=a x √2a{110}晶面上计算面积S内的原子数N=2则{110}晶面的原子密度为ρ=N/S= √2a-2111晶向的原子密度ρ=2/√3a15.有一正方形位错线,其柏式矢量如图所示,试指出图中各段线的性能,并指出任性位错额外串排原子面所在的位置;D CbA BAD、BC段为刃型位错;DC、AB段为螺型位错AD段额外半原子面垂直直面向里BC段额外半原子面垂直直面向外第二章习题1.证明均匀形核时,形成临界晶粒的ΔGk 与其体积V 之间的关系为ΔG k = V/2△G v证明:由均匀形核体系自由能的变化1可知,形成半径为r k的球状临界晶粒,自由度变化为2对2进行微分处理,有3将3带入1,有4由于,即3V=r k S 5将5带入4中,则有2.如果临界晶核是边长为a 的正方形,试求其△Gk 和a 的关系;为什么形成立方晶核的△G k比球形晶核要大3.为什么金属结晶时一定要有过冷度,影响过冷度的因素是什么,固态金属融化时是否会出现过热,为什么答:由热力学可知,在某种条件下,结晶能否发生,取决于固相的自由度是否低于液相的自由度,即G =GS-GL<0;只有当温度低于理论结晶温度Tm 时,固态金属的自由能才低于液态金属的自由能,液态金属才能自发地转变为固态金属,因此金属结晶时一定要有过冷度; 影响过冷度的因素:影响过冷度的因素:1金属的本性,金属不同,过冷度大小不同;2金属的纯度,金属的纯度越高, 过冷度越大;3冷却速度,冷却速度越大,过冷度越大; 固态金属熔化时会出现过热度;原因:由热力学可知,在某种条件下,熔化能否发生,取决于液相自固态金属熔化时会出现过热度;原因:由度是否低于固相的自由度,即G = GL-GS<0;只有当温度高于理论结晶温度Tm 时,液态金属的自由能才低于固态金属的自由能,固态金属才能自发转变为液态金属,因此金属熔化时一定要有过热度;4.试比较均匀形核和非均匀形核的异同点;相同点:均匀形核与非均匀形核具有相同的临界晶核半径,非均匀形核的临界形核功也等于三分之一.不同点:非均匀形核要克服的位垒比均匀形核的小得多,在相变的形核过程通常都是非均匀形核优先进行;核心总是倾向于以使其总的表面能和应变能最小的方式形成,因而析出物的形状是总应变能和总表面能综合影响的结果;5.说明晶体成长形状与温度梯度的关系1、在正的温度梯度下生长的界面形态:光滑界面结晶的晶体,若无其它因素干扰,大多可以成长为以密排晶面为表面的晶体,具有规则的几何外形;粗糙界面结构的晶体,在正的温度梯度下成长时,其界面为平行于熔点等温面的平直界面,与散热方向垂直,从而使之具有平面状的长大形态,可将这种长大方式叫做平面长大方式;2、在负的温度梯度下生长的界面形态粗糙界面的晶体在负的温度梯度下生长成树枝晶体;主干叫一次晶轴或一次晶枝;其它的叫二次晶或三次晶;对于光滑界面的物质在负的温度梯度下长大时,如果杰克逊因子α不太大时可能生长为树枝晶,如果杰克逊因子α很大时,即使在负的温度梯度下,仍有可能形成规则形状的晶体;6.简述三晶区形成的原因及每个晶区的性能特点形成原因:1表层细晶区:低温模壁强烈地吸热和散热,使靠近模壁的薄层液体产生极大地过冷, 形成原因形成原模壁又可作为非均匀形核的基底,在此一薄层液体中立即产生大量的晶核,并同时向各个方向生长; 晶核数目多,晶核很快彼此相遇,不能继续生长,在靠近模壁处形成薄层很细的等轴晶粒区;2 柱状晶区:模壁温度升高导致温度梯度变得平缓;过冷度小,不能生成新晶核,但利于细晶区靠近液相的某些小晶粒长大;远离界面的液态金属过热,不能形核;垂直于模壁方向散热最快,晶体择优生长;3中心等轴晶区:柱状晶长到一定程度后,铸锭中部开始形核长大---中部液体温度大致是均匀的,每个晶粒的成长在各方向上接近一致,形成等轴晶;性能特点:1表层细晶区:组织致密,力学性能好;2柱状晶区:组织较致密,存在弱面,力学性能有方向性;3中心等轴晶区:各晶粒枝杈搭接牢固,无弱面,力学性能无方向性;7.为了得到发达的柱状晶区应采用什么措施,为了得到发达的等轴晶区应采取什么措施其基本原理如何答:为了得到发达的柱状晶区应采取的措施:1控制铸型的冷却能力,采用导热性好与热容量大的铸型为了得到发达的柱状晶区应采取的措施:材料,增大铸型的厚度,降低铸型的温度;2提高浇注温度或浇注速度;3提高熔化温度; 基本原理:基本原理:1铸型冷却能力越大,越有利于柱状晶的生长;2提高浇注温度或浇注速度,使温度梯度增大,有利于柱状晶的生长;3熔化温度越高,液态金属的过热度越大,非金属夹杂物溶解得越多, 非均匀形核数目越少,减少了柱状晶前沿液体中的形核的可能,有利于柱状晶的生长;为了得到发达的等轴晶区应采取的措施:为了得到发达的等轴晶区应采取的措施:1控制铸型的冷却能力,采用导热性差与热容量小的铸型材等轴晶区应采取的措施料,增大铸型的厚度,提高铸型的温度;2降低浇注温度或浇注速度;3降低熔化温度;基本原理:基本原理:1铸型冷却能力越小,越有利于中心等轴晶的生长;2降低浇注温度或浇注速度,使温度梯度减小,有利于等轴晶的生长;3熔化温度越低,液态金属的过热度越小,非金属夹杂物溶解得越少,非均匀形核数目越多,增加了柱状晶前沿液体中的形核的可能,有利于等轴晶的生长;第三章习题1.在正温度梯度下,为什么纯金属凝固时不能呈树枝状生长,而固溶体合金却能呈树枝状成长纯金属凝固时,要获得树枝状晶体,必需在负的温度梯度下;在正的温度梯度下,只能以平面状长大;而固溶体实际凝固时,往往会产生成分过冷,当成分过冷区足够大时,固溶体就会以树枝状长大;2.何谓合金平衡相图,相图能给出任一条件下的合金显微组织吗合金平衡相图是研究合金的工具,是研究合金中成分、温度、组织和性能之间关系的理论基础,也是制定各种热加工工艺的依据;其中二元合金相图表示二元合金相图表示在平衡状态下,合金的组成相或组织状态与温度、成分、压力之间关系的简明图解;平衡状态:合金的成分、质量份数不再随时间而变化的一种状态; 合金的极缓慢冷却可近似认为是平衡状态;三元合金相图是指独立组分数为3的体系,该体系最多可能有四个自由度,即温度、压力和两个浓度项,用三维空间的立体模型已不足以表示这种相图;若维持压力不变,则自由度最多等于3,其相图可用立体模型表示;若压力、温度同时固定,则自由度最多为2,可用平面图来表示;通常在平面图上用等边三角形有时也有用直角坐标表示的来表示各组分的浓度;不能,相图只能给出合金在平衡条件下存在的合金显微组织4.何谓成分过冷成分过冷对固溶体结晶时晶体长大方式和铸锭组织有何影响在固溶体合金凝固时,在正的温度梯度下,由于固液界面前沿液相中的成分有所差别,导致固液界面前沿的熔体的温度低于实际液相线温度,从而产生的过冷称为成分过冷;这种过冷完全是由于界面前沿液相中的成分差别所引起的;温度梯度增大,成分过冷减小; 成分过冷必须具备两个条件:第一是固~液界面前沿溶质的富集而引起成分再分配;第二是固~液界面前方液相的实际温度分布,或温度分布梯度必须达到一定的值;对合金而言,其凝固过程同时伴随着溶质再分配,液体的成分始终处于变化当中,液体中的溶质成分的重新分配改变了相应的固液平衡温度,这种关系有合金的平衡相图所规定;利用“成分过冷”判断合金微观的生长过程;第四章习题1.分析分析ωc=%,wc=%,wc=%的铁碳合金从液态平衡冷却到室温的转变过程;ωc=%: L---L+δ---δ→γ1495度---γ+L---γ----α+γ----γ→α727度---α+Fe3C; γ=A,α=F;下同ωc=%: L---γ+L---γ----α+γ----γ→α727度---α+Fe3C;ωc=%: L---γ+L---γ----Fe3C+γ----γ→α727度---α+Fe3C;室温下相组成物的相对含量:ωc=%,渗碳体相对含量= %,余量铁素体ωc=%,渗碳体相对含量= %,余量铁素体ωc=% 渗碳体相对含量= %,余量铁素体室温下组织组成物的相对含量:ωc=%,珠光体相对含量=余量铁素体ωc=%,珠光体相对含量= %,余量铁素体ωc=%,渗碳体相对含量= %,余量珠光体2.分析ωc=%、ωc=%的铁碳合金从液态到室温的平衡结晶过程,画出冷却曲线和组织转变示意图,并计算室温下的组织组成物和相组成物;解:下图表示ωc=%%的铁碳合金从液态到室温的平衡结晶过程:下图表示ωc=%的铁碳合金从液态到室温的平衡结晶过程:3.计算铁碳合金中二次渗碳体和三次渗碳体最大可能含量;答:铁碳合金中二次渗碳体即Fe3CⅡ的最大可能含量产生在%C的铁碳合金中,因此Fe3CⅡmax=/x100%=%三次渗碳体即Fe3CⅢ的可能最大含量在%C的铁碳合金中,因此Fe3CⅢmax/x100%=%4.分别计算莱氏体中共晶渗碳体、二次渗碳体、共析渗碳体的含量;解:在莱氏体中,Fe3C共晶%=/100%=%Fe3CⅡ%=//100%=%Fe3C共析%=/%/100%=%5.为了区分两种弄混的钢,工人分别将A、B两块碳素钢试样加热至850 ℃保温后缓冷, 金相组织分别为:A试样的先共析铁素体面积为%,珠光体面积为%;B试样的二次渗碳体面积为%,珠光体面积为%;设铁素体和渗碳体的密度相同,铁素体的含碳量为零, 求A、B两种碳素钢的含碳量;解:这两个试样处理后都是得到的平衡态组织,首先判断A试样为亚共析钢,根据相图杠杆原理列出方程如下:/这样得到X=%,大概是45钢的成分范围;同理B试样为过共析钢/;X=%,大概是T12钢的范围,当然相应地还可以利用杠杆的另外一端来求了;6.利用Fe-FeC3相图说明铁碳合金的成分、组织和性能的关系;从相组成物的情况来看,铁碳合金在室温下的平衡组织均由铁素体和渗碳体组成,当碳质量分数为零时,合金全部由铁素体所组成,随着碳质量分数的增加,铁素体的量呈直线下降,到w c为%时降为零,相反渗碳体则由零增至100%;碳质量分数的变化不仅引起铁素体和渗碳体相对量的变化,而且两相相互组合的形态即合金的组织也将发生变化,这是由于成分的变化引起不同性质的结晶过程,从而使相发生变化的结果,由图3-35可见,随碳质量分数的增加,铁碳合金的组织变化顺序为:F→F+Fe3CⅢ→F+P→P→P+ Fe3CⅡ→P+ Fe3CⅡ+Le→Le→Le+ Fe3CⅠw c<%时的合金组织全部为铁素体,w c=%时全部为珠光体,w c=%时全部为莱氏体,w c=%时全部为渗碳体,在上述碳质量分数之间则为组织组成物的混合物;而且,同一种组成相,由于生成条件不同,虽然相的本质未变,但其形态会有很大的差异;如渗碳体,当w c<% 时,三次渗碳体从铁素体中析出,沿晶界呈小片状分布;经共析反应生成的共析渗碳体与铁素体呈交替层片状分布;从奥氏体中析出的二次渗体则以网状分布于奥氏体的晶界;共晶渗碳体与奥氏体相关形成,在莱氏体中为连续的基体,比较粗大,有时呈鱼骨状;从液相中直接析出的一次渗碳体呈规则的长条状;可见,成分的变化,不仅引起相的相对量的变化,而且引起组织的变化,从而对铁碳合金的性能产生很大的影响;1切削加工性能钢中碳质量分数对切削加工性能有一定的影响;低碳钢的平衡结晶组织中铁素体较多,塑性、韧性很好,切削加工时产生的切削热较大,容易黏刀,而且切屑不易折断,影响表面粗糙度,因此,切削加工性能不好;高碳钢中渗碳体较多,硬度较高,严重磨损刀具,切削性能也不好;中碳钢中铁素体与渗碳体的比例适当,硬度与塑性也比较适中,切削加工性能较好;一般说来,钢的硬度在170~250HBW时切削加工性能较好;2压力加工性能金属压力加工性能的好坏主要与金属的锻造性有关;金属的锻造性是指金属在压力加工时能改变形状而不产生裂纹的性能;钢的锻造性主要与碳质量分数及组织有关,低碳钢的锻造性较好,随着碳质量分数的增加,锻造性逐渐变差;由于奥氏体具有良好的塑性,易于塑性变形,钢加热到高温获得单相奥氏体组织时可具有良好的锻造性;白口铸铁无论在低温或高温,其组织都是以硬而脆的渗碳体为基体,锻造性很差,不允许进行压力加工;3铸造性能随着碳质量分数的增加,钢的结晶温度间隔增大,先结晶形成的树枝晶阻碍未结晶液体的流动,流动性变差;铸铁的流动性要好于钢,随碳质量分数的增加,亚共晶白口铁的结晶温度间隔缩小,流动性随之提高;过共晶白口铁的流动性则随之降低;共晶白口铁的结晶温度最低,又是在恒温下结晶,流动性最好;碳质量分数对钢的收缩性也有影响,一般说来,当浇注温度一定时,随着碳质量分数的增加,钢液温度与液相线温度差增加,液态收缩增大;同时,碳质量分数增加,钢的凝固温度范围变宽,凝固收缩增大,出现缩孔等铸造缺陷的倾向增大;此外,钢在结晶时的成分偏析也随碳质量分数的增加而增大; 相图有哪些应用,又有哪些局限性答:铁—渗碳体相图的应用:1在钢铁选材方法的应用;2在铸造工艺方法的应用;3在热锻、热轧、热锻工艺方法的应用;4在热处理工艺方法的应用;渗碳体相图的局限性:1只反映平衡相,而非组织;2只反映铁二元合金中相的平衡;3不能用来分析非平衡条件下的问题第五章习题1.试在A、B、C 成分三角形中,标出注下列合金的位置:1ωC=10%,ωC=10%,其余为A;2ωC=20%,ωC=15%,其余为A;3ωC=30%,ωC=15%,其余为A;4ωC=20%,ωC=30%,其余为A;5ωC=40%,A和B组元的质量比为1:4;6ωA=30%,A和B组元的质量比为2:3;解:6设合金含B 组元为WB,含C 组元为WC,则WB/WC=2/3WB+WC=130% 可求WB=42%,WC=28%;2.在成分三角形中标注P ωA=70%、ωB=20%、ωC=10%;QωA=30%、ωB=50%、ωC=20%;NωA=30%、ωB=10%、ωC=60%合金的位置,然后将5kgP合金、5kgQ合金和10kgN合金熔合在一起,试问新合金的成分如何解:设新合金的成分为ω新A、ω新B、ω新C ,则有ω新A=5×ωP A+5×ωQ A+10×ωN A/5+5+10=5×70%+5×30%+10×30%/20=% ;ω新B=5×ωP A+5×ωQ A+10×ωN A/5+5+10=5×20%+5×50%+10×10%/20=% ;ω新C=5×ωP A+5×ωQ A+10×ωN A/5+5+10=5×10%+5×20%+10×60%/20=%;所以,新合金的成分为:ω新A =%、ω新B =%、ω新C =%;第六习题1.计算方法τk=σs·cosλcosφ=F/A cosλcosφ4. 试用多晶体的塑性变形过程说明金属晶粒越细强度越高、塑性越好的原因是什么答:由Hall-Petch 公式可知,屈服强度σs 与晶粒直径平方根的倒数d v2呈线性关系; 在多晶体中,滑移能否从先塑性变形的晶粒转移到相邻晶粒主要取决于在已滑移晶粒晶界附近的位错塞积群所产生的应力集中能否激发相邻晶粒滑移系中的位错源,使其开动起来,从而进行协调性的多滑移; 由τ=nτ0知,塞积位错数目n越大,应力集中τ越大;位错数目n与引起塞积的晶界到位错源的距离成正比;晶粒越大,应力集中越大,晶粒小,应力集中小,在同样外加应力下,小晶粒需要在较大的外加应力下才能使相邻晶粒发生塑性变形; 在同样变形量下,晶粒细小,变形能分散在更多晶粒内进行,晶粒内部和晶界附近应变度相差较小,引起的应力集中减小,材料在断裂前能承受较大变形量,故具有较大的延伸率和断面收缩率;另外,晶粒细小,晶界就曲折,不利于裂纹传播,在断裂过程中可吸收更多能量,表现出较高的韧性;6.滑移和孪生有何区别,试比较它们在塑性变形过程的作用;答:区别:1滑移:一部分晶体沿滑移面相对于另一部分晶体作切变,切变时原子移动的距离是滑移方向原区别:区别子间距的整数倍;孪生:一部分晶体沿孪生面相对于另一部分晶体作切变,切变时原子移动的距离不是孪生方向原子间距的整数倍;2滑移:滑移面两边晶体的位向不变;孪生:孪生面两边的晶体的位向不同,成镜面对称;3滑移:滑移所造成的台阶经抛光后,即使再浸蚀也不会重现;孪生:由于孪生改变了晶体取向,因此孪生经抛光和浸蚀后仍能重现;4滑移:滑移是一种不均匀的切变,它只集中在某些晶面上大量的进行,而各滑移带之间的晶体并未发生滑移;孪生:孪生是一种均匀的切变,即在切变区内与孪生面平行的每一层原子面均相对于其毗邻晶面沿孪生方向位移了一定的距离;作用:晶体塑性变形过程主要依靠滑移机制来完成的;孪生对塑性变形的贡献比滑移小得多,但孪生改变了部分晶体的空间取向,使原来处于不利取向的滑移系转变为新的有利取向,激发晶体滑移;7.试述金属塑性变形后组织结构与性能之间的关系,阐明加工硬化在机械零构件生产和服役过程中的重要试述金属塑性变形后组织结构与性能之间的关系, 意义;答:关系:随着塑性变形程度的增加,位错密度不断增大,位错运动阻力增加,金属的强度、硬度增加,而关系:关系塑性、韧性下降;重要意义:1提高金属材料的强度;2是某些工件或半成品能够加工成形的重要因素;3提高零件或构件在使用过程中的安全性;8.金属材料经塑性变形后为什么会保留残留内应力研究这部分残留内应力有什么实际意义金属材料经塑性变形后为什么会保留残留内应力研究这部分残留内应力有什么实际意义答:残余内应力存在的原因1塑性变形使金属工件或材料各部分的变形不均匀,导致宏观变形不均匀;2塑性变形使晶粒或亚晶粒变形不均匀,导致微观内应力;3塑性变形使金属内部产生大量的位错或空位,使点阵中的一部分原子偏离其平衡位置,导致点阵畸变内应力;实际意义:可以控制材料或工件的变形、开裂、应力腐蚀;可以利用残留应力提高工件的使用寿命;9.何谓脆性断裂和塑性断裂,若在材料中存在裂纹时,试述裂纹对脆性材料和塑性材料断裂过程中的影响;答:塑性断裂又称为延性断裂,断裂前发生大量的宏观塑性变形,断裂时承受的工程应力大于材料的屈服强度;在塑性和韧性好的金属中,通常以穿晶方式发生塑性断裂,在断口附近会观察到大龄的塑性变形痕迹,如缩颈;金属脆性断裂过程中,极少或没有宏观塑性变形,但在局部区域任然存在着一定的微观塑性变形;断裂时承受的工程应力通常不超过材料的屈服强度,甚至低于按宏观强度理论确定的许用应力,因此又称为低应力断裂;在塑性材料中,断裂是胃口形成、扩大和连接的过程,在打的应力作用下,基体金属产生塑性变形后,在基体和非金属夹杂物、析出相粒子周围产生应力集中,使界面拉开,或使异相颗粒折断形成微孔;微孔扩大和链接也是基体金属塑性变形的结果;当微孔扩大到一定的程度,相邻微孔见的金属产生较大的塑性变形后就发生微观塑性失稳,就像宏观实验产生缩颈一样,此时微孔将迅速扩大,直至细缩成一线,最后由于金属与金属件的连线太少,不足以承载而发生断裂;脆性材料中,由于断裂前既无宏观塑性变形,又无其他预兆,并且一旦开裂后,裂纹扩展迅速,造成整体断裂或河大的裂口,有时还产生很多碎片,容易导致严重事故;10.何谓断裂韧度,它在机械设计中有何作用答:在弹塑性条件下,当应力场强度因子增大到某一临界值,裂纹便失稳扩展而导致材料断裂,这个临界或失稳扩展的应力场强度因子即断裂韧度;它反映了材料抵抗裂纹失稳扩展即抵抗脆断的能力,是材料的力学性能指标;第七章习题1.用冷拔铜丝制成导线,冷拔之后应如何处理,为什么答:冷拔之后应该进行退火处理;因为冷拔是在再结晶温度以下进行加工,因此会引起加工硬化,所以要通过回复再结晶,使金属的强度和硬度下降,提高其塑性;2.一块厚纯金属板经冷弯并再结晶退火后,试画出界面上的显微组织示意图;3.已知W、Fe、Cu的熔点分别为3399℃、1538℃和1083℃,试估算其再结晶温度;解:T再=σT m,其中σ=~,取σ =,则W、Fe、Cu的再结晶温度分别为3399℃×=1 ℃、1538℃×=℃和1083℃×=℃4.说明以下概念的本质区别:1一次再结晶和二次再结晶;2再结晶时晶核长大和再结晶后晶粒长大;解:1再结晶:当退火温度足够高、时间足够长时,在变形金属或合金的显微组织中,产生无应变的新晶粒──再结晶核心;新晶粒不断长大,直至原来的变形组织完全消失,金属或合金的性能也发生显着变化,这一过程称为再结。
金属热处理工艺学课后习题答案及资料
1.热处理工艺:通过加热,保温和冷却的方法使金属和合金内部组织结构发生变化,以获得工件使用性能所要求的组织结构,这种技术称为热处理工艺。
2.热处理工艺的分类:(1)普通热处理(退火、正火、回火、淬火)(2)化学热处理(3)表面热处理(3)复合热处理3.由炉内热源把热量传给工件表面的过程,可以借辐射,对流,传导等方式实现,工件表面获得热量以后向内部的传递过程,则靠热传导方式。
4.影响热处理工件加热的因素:(1)加热方式的影响,加热速度按随炉加热、预热加热、到温入炉加热、高温入炉加热的方向依次增大;(2)加热介质及工件放置方式的影响:①加热介质的影响;②工件在炉内排布方式的影响直接影响热量传递的通道;③工件本身的影响:工件的几何形状、表面积与体积之比以及工件材料的物理性质等直接影响工件内部的热量传递及温度场。
5.金属和合金在不同介质中加热时常见的化学反应有氧化,脱碳;物理作用有脱气,合金元素的蒸发等。
6.脱碳:钢在加热时不仅表面发生氧化,形成氧化铁,而且钢中的碳也会和气氛作用,使钢的表面失去一部分碳,含碳量降低,这种现象称为脱碳钢脱碳的过程和脱碳层的组织特点:①钢件表面的碳与炉气发生化学反应(脱碳反应),形成含碳气体逸出表面,使表面碳浓度降低②由于表面碳浓度的降低,工件表面与内部发生浓度差,从而发生内部的碳向表面扩散的过程。
半脱碳层组织特点;自表面到中心组织依次为珠光体加铁素体逐渐过渡到珠光体,再至相当于该钢件未脱碳时的退火组织。
(F+P—P+C—退火组织)全脱碳层组织特点:表面为单一的铁素体区,向里为铁素体加珠光体逐渐过渡到相当于钢原始含碳量缓冷组织在强氧化性气体中加热时,表面脱碳与表面氧化往往同时发生。
在一般情况下,表面脱碳现象比氧化现象更易发生,特别是含碳量高的钢。
7.碳势:即纯铁在一定温度下于加热炉气中加热时达到既不增碳也不脱碳并与炉气保持平衡时表面的含碳量。
8.退火:将组织偏离平衡状态的金属或合金加热到适当的温度,保持一定时间,然后缓慢冷却以达到接近平衡状态组织的热处理工艺称为退火。
金属学与热处理课后习题答案
金属学与热处理课后习题答案Standardization of sany group #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#第七章金属及合金的回复和再结晶7-1 用冷拔铜丝线制作导线,冷拔之后应如何如理,为什么答:应采取回复退火(去应力退火)处理:即将冷变形金属加热到再结晶温度以下某一温度,并保温足够时间,然后缓慢冷却到室温的热处理工艺。
原因:铜丝冷拔属于再结晶温度以下的冷变形加工,冷塑性变形会使铜丝产生加工硬化和残留内应力,该残留内应力的存在容易导致铜丝在使用过程中断裂。
因此,应当采用去应力退火使冷拔铜丝在基本上保持加工硬化的条件下降低其内应力(主要是第一类内应力),改善其塑性和韧性,提高其在使用过程的安全性。
7-2 一块厚纯金属板经冷弯并再结晶退火后,试画出截面上的显微组织示意图。
答:解答此题就是画出金属冷变形后晶粒回复、再结晶和晶粒长大过程示意图(可参考教材P195,图7-1)7-3 已知W、Fe、Cu的熔点分别为3399℃、1538℃和1083℃,试估算其再结晶温度。
答:再结晶温度:通常把经过严重冷变形(变形度在70%以上)的金属,在约1h的保温时间内能够完成超过95%再结晶转变量的温度作为再结晶温度。
≈δTm,对于工业纯1、金属的最低再结晶温度与其熔点之间存在一经验关系式:T再金属来说:δ值为,取计算。
2、应当指出,为了消除冷塑性变形加工硬化现象,再结晶退火温度通常要比其最低再结晶温度高出100-200℃。
=,可得:如上所述取T再W=3399×=℃再=1538×=℃Fe再Cu=1083×=℃再7-4 说明以下概念的本质区别:1、一次再结晶和二次在结晶。
2、再结晶时晶核长大和再结晶后的晶粒长大。
答:1、一次再结晶和二次在结晶。
定义一次再结晶:冷变形后的金属加热到一定温度,保温足够时间后,在原来的变形组织中产生了无畸变的新的等轴晶粒,位错密度显着下降,性能发生显着变化恢复到冷变形前的水平,称为(一次)再结晶。
金属学与热处理课后习题答案(崔忠圻版)-7-10章
金属学与热处理课后习题答案 (崔忠圻版 )第十章钢的热处理工艺10-1 何谓钢的退火?退火种类及用途如何?答:钢的退火:退火是将钢加热至临界点 AC1 以上或以下温度,保温一定时间以后随炉缓慢冷却以获得近于平衡状态组织的热处理工艺。
退火种类:根据加热温度可以分为在临界温度 AC1 以上或以下的退火,前者包括完全退火、不完全退火、球化退火、均匀化退火,后者包括再结晶退火、去应力退火,根据冷却方式可以分为等温退火和连续冷却退火。
退火用途:1、完全退火:完全退火是将钢加热至AC3 以上 20-30℃,保温足够长时间,使组织完全奥氏体化后随炉缓慢冷却以获得近于平衡状态组织的热处理工艺。
其主要应用于亚共析钢,其目的是细化晶粒、消除内应力和加工硬化、提高塑韧性、均匀钢的化学成分和组织、改善钢的切削加工性能,消除中碳结构钢中的魏氏组织、带状组织等缺陷。
2、不完全退火:不完全退火是将钢加热至 AC1- AC3(亚共析钢)或 AC1-ACcm (过共析钢)之间,保温一定时间以后随炉缓慢冷却以获得近于平衡状态组织的热处理工艺。
对于亚共析钢,如果钢的原始组织分布合适,则可采用不完全退火代替完全退火达到消除内应力、降低硬度的目的。
对于过共析钢,不完全退火主要是为了获得球状珠光体组织,以消除内应力、降低硬度,改善切削加工性能。
3、球化退火:球化退火是使钢中碳化物球化,获得粒状珠光体的热处理工艺。
主要用于共析钢、过共析钢和合金工具钢。
其目的是降低硬度、改善切削加工性能,均匀组织、为淬火做组织准备。
4、均匀化退火:又称扩散退火,它是将钢锭、铸件或锻轧坯加热至略低于固相线的温度下长时间保温,然后缓慢冷却至室温的热处理工艺。
其目的是消除铸锭或铸件在凝固过程中产生的枝晶偏析及区域偏析,使成分和组织均匀化。
5、再结晶退火:将冷变形后的金属加热到再结晶温度以上保持适当时间,然后缓慢冷却至室温的热处理工艺。
其目的是使变形晶粒重新转变为均匀等轴晶粒,同时消除加工硬化和残留内应力,使钢的组织和性能恢复到冷变形前的状态。
金属热处理原理及工艺习题(参考答案)
《金属热处理原理及工艺》习题二参考答案1.真空加热的特点有哪些?答:1)加热速度缓慢2)氧化作用被抑制3)表面净化4)脱气作用5)蒸发现象2.有一批马氏体不锈钢工件(1Cr13、2Cr13、3Cr13)在真空中加热淬火后发现表面抗蚀性显著下降,试分析可能的原因。
答:由于真空加热过程中的金属蒸发,表面Cr含量降低,不再满足1/8定律,从而导致抗蚀性显著下降。
3.试比较退火和正火的异同点。
答:相同点:均为中间热处理工艺;均获得接近平衡态珠光体类组织。
不同点:冷却速度不同;过冷度不同;正火会发生伪共析转变,对于高碳钢,无先共析相;正火可以作为性能要求不高零件的最终热处理。
4.简述正火和退火工艺的选用原则。
答:1)Wc<0.25%低碳钢:正火代替退火(从切削加工性角度考虑)2)0.25%<Wc<0.5%:正火代替退火(从经济性考虑(此时硬度尚可加工))3)0.5%<Wc<0.7%:完全退火(改善加工性)4)Wc>0.7%:球化退火(如果有网状渗碳体,先用正火消除)5)正火可作为性能要求不高零件的最终热处理6)在满足性能的前提下,尽可能用正火代替退火(经济性角度考虑)5.根据球化退火的工艺原理,球化退火可分为哪四大类?各自的适用范围是什么?答:球化退火工艺适用范围低温球化(接近Ac1长时间保温球化)Ac1-(10~30℃)高合金结构钢及过共析钢降低硬度、改善加工性,以及冷变形钢的球化退火。
球化效果差,原始组织粗大者更不适用。
细珠光体在低温球化后仍保留大量细片状碳化物。
缓慢冷却球化退火Ac1+(10~20℃)共析及过共析碳钢的球化退火;球化较充分,周期长。
等温球化退火Ac1+(20~30℃)Ar1-(20~30℃)过共析碳钢、合金工具钢的球化退火;球化充分,易控制,周期较短,适宜大件。
周期(循环)球化退火Ac1+(10~20℃)Ar1-(20~30℃)过共析碳钢及合金工具钢的球化退火;周期较短,球化较充分,但控制较繁,不宜大件退火。
【精品】金属热处理习题及答案
第一章金属的晶体结构与结晶1.解释下列名词点缺陷,线缺陷,面缺陷,亚晶粒,亚晶界,刃型位错,单晶体,多晶体,过冷度,自发形核,非自发形核,变质处理,变质剂.答:点缺陷:原子排列不规则的区域在空间三个方向尺寸都很小,主要指空位间隙原子、置换原子等.线缺陷:原子排列的不规则区域在空间一个方向上的尺寸很大,而在其余两个方向上的尺寸很小。
如位错。
面缺陷:原子排列不规则的区域在空间两个方向上的尺寸很大,而另一方向上的尺寸很小。
如晶界和亚晶界.亚晶粒:在多晶体的每一个晶粒内,晶格位向也并非完全一致,而是存在着许多尺寸很小、位向差很小的小晶块,它们相互镶嵌而成晶粒,称亚晶粒。
亚晶界:两相邻亚晶粒间的边界称为亚晶界.刃型位错:位错可认为是晶格中一部分晶体相对于另一部分晶体的局部滑移而造成。
滑移部分与未滑移部分的交界线即为位错线。
如果相对滑移的结果上半部分多出一半原子面,多余半原子面的边缘好像插入晶体中的一把刀的刃口,故称“刃型位错”。
单晶体:如果一块晶体,其内部的晶格位向完全一致,则称这块晶体为单晶体。
多晶体:由多种晶粒组成的晶体结构称为“多晶体”。
过冷度:实际结晶温度与理论结晶温度之差称为过冷度.自发形核:在一定条件下,从液态金属中直接产生,原子呈规则排列的结晶核心.非自发形核:是液态金属依附在一些未溶颗粒表面所形成的晶核.变质处理:在液态金属结晶前,特意加入某些难熔固态颗粒,造成大量可以成为非自发晶核的固态质点,使结晶时的晶核数目大大增加,从而提高了形核率,细化晶粒,这种处理方法即为变质处理.变质剂:在浇注前所加入的难熔杂质称为变质剂.2。
常见的金属晶体结构有哪几种?α-Fe、γ-Fe、Al、Cu、Ni、Pb、Cr、V、Mg、Zn各属何种晶体结构?答:常见金属晶体结构:体心立方晶格、面心立方晶格、密排六方晶格;α-Fe、Cr、V属于体心立方晶格;γ-Fe、Al、Cu、Ni、Pb属于面心立方晶格;Mg、Zn属于密排六方晶格;3。
金属学与热处理课后习题-参考答案
第十一章参考答案11-1试述影响材料强度的因素及提高强度的方法答:(1)影响材料强度的因素:化学成分、组织织构、加工工艺、形变温度、应变速率等。
以钢为例,合金元素的加入可能产生固溶强化、沉淀强化、细品强化,对提高钢材的强度有利。
对于同一化学成分的合金而言,组织结构不同,其力学性能也不相同。
为了提高其强度,可通过改变热处理工艺或加工工艺来实现。
一般情况下,降低形变温度或提高应变速率,合金的强度会增大。
(2)提高材料强度的途径:加工硬化/形变强化、固溶强化、第二相强化(沉淀强化和弥散强化)、细晶强化/晶界强度(较低温度)。
11-2试述影响材料塑性的因素及提高塑性的方法答:(1)影响材料塑性的因素:化学成分、组织织构、加工工艺、形变温度、应变速率等。
杂质元素通常对塑性不利,合金元素的加入一般对提高材料的强度有贡献,在等强温度下,只有晶界强化可以提高强度的同时,提高其韧性,使材料获得细品组织结构可提高其塑性。
一般而言,形变温度的降低或应变速率的提高对强度有利,而对提高塑性不利。
(2)提高材料塑性的途径:降低材料中杂质的含量、细化晶粒、加入韧化元素、加入细化晶粒元素、提高变形温度、降低应变速率。
11-4试就合金元素与碳的相互作用进行分类,指出1)哪些元素不形成碳化物?2)哪些元素为弱碳化物形成元素,性能特点如何?3)哪些元素为强碳化物形成元素,性能特点如何?4)何谓合金渗碳体,与渗碳体相比,其性能如何?答:1)非碳化物形成元素:Ni、Si、Co、Al、Cu等。
2)Mn为弱碳化物形成元素,除少量可溶于渗碳体中形成合金渗碳体外,几乎都溶于铁素体和奥氏体中。
3)Zr、Nb、V、Ti为强碳化物形成元素,与碳具有极强的亲和力,只要有足够的碳,就形成碳化物,仅在缺少碳的情况下,才以原子状态融入固溶体中。
4)合金元素溶入渗碳体中即为合金渗碳体,它是合金元素溶入渗碳体中并置换部分铁原子而形成的碳化物,合金渗碳体比一般渗碳体稳定,硬度高,可以提高耐磨性。
金属学热处理课后答案
1、原子中的电子按照什么规则排列?什么是泡利不相容原则?答:原子核外电子的排列是随原子序数的增加呈周期性变化。
把所有元素按相对原子质量及电子分布方式排列称为元素周期表。
一个原子中不可能存在四个量子数完全相同的两个电子为泡利不相同原理。
2、典型的金属晶体具体有那三种晶体结构?晶体结构中原子半径受那些因素而变化?答:典型金属具有面心立方、体心立方和密排六方三种晶体结构。
原子半径并非固定不变,除与温度、压力等外界条件有关外、还受结合键、配位数以及外层电子结构等因素的影响。
3、根据缺陷在空间的几何图形,将晶体缺陷分为那三类?晶体的面缺陷具体包括那些内容?表面吸附在工业中有什么意义?答:晶体缺陷分为点缺陷、线缺陷、面缺陷。
面缺陷包括晶体的外表面(表面或自由界面)和内界面(晶界、亚晶界、孪晶界、堆垛层错和相界)两类。
表面吸附是净化和分离技术的重要机理之一,广泛应用与三废治理、轻工、食品及石油、化工工业等。
4、晶体中位错有那两种基本类型?位错在晶体中主要运动方式有那两种?答:晶体中位错的基本类型是刃型位错和螺型位错,实际位错往往是两种类型的混合,称为混合位错。
位错在晶体中运动方式有两种:滑移和攀移。
其中滑移最重要。
5、控制铸件晶粒尺寸的有那些途径?铸锭的主要缺陷是什么?答:控制铸件晶粒尺寸的主要途径:增加环境冷却能力,化学变质法和增加液体流动。
铸锭的主要缺陷:宏观偏析(正常偏析、反偏析、比重偏析、夹杂和气孔、缩孔与疏松)和微观偏析(枝晶偏析和胞状偏析)。
6、根据轴的工作条件及失效方式,轴的材料应具备那些特征?答;根据轴的工作条件及失效方式,轴的材料应具备如下性能:a高的疲劳强度,防止轴的疲劳断裂b优良的综合力学性能,即较高的屈服强度和抗拉强度,较高的韧性,防止塑形变形及过载火冲击载荷下的折断和扭断c局部承受摩擦的部位具有较高的硬度和耐磨性,防止磨损失效d在特殊条件下工作的轴的材料应具备特殊性能,如蠕变抗力,耐蚀性等7、零件选材的基本原则是什么?答:零件选材的基本原则:根据材料的使用性能选材;根据材料的工艺性能选材;根据材料的经济性选材;在满足使用性能条件的前提下,充分考虑材料的工艺性能,同时要使生产零件的成本降低。
金属学与热处理课后答案 全
金属学与热处理课后答案第一章1.什么是金属键?并用其解释金属的特性答:金属键就是金属阳离子和自由电子之间的强烈的相互作用,可以决定金属的很多物理性质。
金属的延展性就是由于在金属被锻造的时候,只是引起了金属阳离子的重新排布,而由于自由电子可以在整块金属内自由流动,金属键并未被破坏。
再如由于自由电子的存在使金属很容易吸收光子而发生跃迁,发出特定波长的光波,因而金属往往有特定的金属光泽。
金属中的自由电子沿着电场定向运动,导电性;自由电子的运动及正离子的震动,使之具有导热性;温度升高,正离子或原子本身振动的幅度加大,阻碍电子的通过,使电阻升高,具有正的电阻温度系数2.画图用双原子模型说明金属中原子为什么会呈现周期性规则排列,并趋于紧密排列答:当大量金属原子结合成固体时,为使体系能量最低,以保持其稳定,原子间必须保持一定的平衡距离,因此固态金属中的原子趋于周期性规则排列。
原子周围最近邻的原子数越多,原子间的结合能越低(因为结合能是负值),把某个原子从平衡位置拿走,克服周围原子对它的作用力所需做的功越大,因此固态金属中的原子总是自发地趋于紧密排列。
4什么是晶体结构?什么是晶格?什么是晶胞?答:晶体结构:指晶体中原子(离子,原子,分子集团)的具体的排列情况,也就是指晶体中这些质点在三维空间内有规律的周期性重复排列;晶格:将阵点用一系列平行的直线连接起来构成的空间格架。
晶胞:构成点阵的最基本单元。
5、作图表示出立方晶系(1 2 3)、(0 -1 -2)、(4 2 1)等晶面和[-1 0 2]、[-2 1 1]、[3 4 6] 等晶向6立方晶系的{1 1 1}晶面构成一个八面体,试作图画出该八面体,并注明各晶面的晶面指数。
答:{1 1 1}晶面共包括(1 1 1)、(-1 1 1)、(1 -1 1)、(1 1 -1)四个晶面,在一个立方晶系中画出上述四个晶面。
7. 已知铁和铜在室温下的晶格常数分别为0.286nm和0.3607nm,求1cm3中铁和铜的原子数。
(完整)金属材料及热处理习题 有答案
第1章钢的热处理一、填空题1.热处理根据目的和工序位置不同可分为预备热处理和最终热处理.2.热处理工艺过程由加热、保温和冷却三个阶段组成。
3.珠光体根据层片的厚薄可细分为珠光体、索氏体和屈氏体。
4.珠光体转变是典型的扩散型相变,其转变温度越低,组织越细,强度、硬度越高。
5.贝氏体分上贝氏体和下贝氏体两种.6.感应加热表面淬火,按电流频率的不同,可分为高频感应加热淬火、中频感应加热淬火和工频感应加热淬火三种.而且感应加热电流频率越高,淬硬层越薄。
7.钢的回火脆性分为第一类回火脆性和第二类回火脆性,采用回火后快冷不易发生的是第二类回火脆性 . 8.化学热处理是有分解、吸收和扩散三个基本过程组成.9.根据渗碳时介质的物理状态不同,渗碳方法可分为固体渗碳、液体渗碳和气体渗碳三种.10.除Co外,其它的合金元素溶入奥氏体中均使C曲线向右移动,即使钢的临界冷却速度变小,淬透性提高。
11.淬火钢在回火时的组织转变大致包括马氏体的分解,残余奥氏体的分解,碳化物的转变,碳化物的集聚长大和a相的再结晶等四个阶段。
12.碳钢马氏体形态主要有板条和片状两种,其中以板条强韧性较好。
13、当钢中发生奥氏体向马氏体转变时,原奥氏体中碳含量越高,则Ms点越低,转变后的残余奥氏体量就越多二、选择题1.过冷奥氏体是C温度下存在,尚未转变的奥氏体。
A.Ms B.M f C.A12.过共析钢的淬火加热温度应该选择在A,亚共析钢则应该选择在C。
A.Ac1+30~50C B.Ac cm以上 C.Ac3+30~50C3.调质处理就是C。
A.淬火+低温回火 B.淬火+中温回火 C.淬火+高温回火4.化学热处理与其他热处理方法的基本区别是C.A.加热温度 B.组织变化 C.改变表面化学成分5.渗氮零件在渗氮后应采取( A )工艺。
A.淬火+低温回火B.淬火+中温回火 C。
淬火+高温回火 D.不需热处理6.马氏体的硬度主要取决于马氏体的(C )A.组织形态B.合金成分 C。
金属热处理习题及参考答案
金属热处理习题及参考答案一、判断题(共100题,每题1分,共100分)1.Q215钢适用于制造桥梁、船舶等。
()A、正确B、错误正确答案:A2.轴承钢为高碳钢,在加热过程中脱碳倾向较小。
()A、正确B、错误正确答案:B3.由于多晶体是晶体,符合晶体的力学特征,所以它呈各向异性。
()A、正确B、错误正确答案:B4.晶界越多,金属材料的性能越好。
()A、正确B、错误正确答案:A5.用锤子或铁块轻轻地叩击工件,若工件发出清晰的金属声音,并且声音衰减缓慢,尾音悠长,则说明工件上有肉眼观察不到的裂纹。
()A、正确B、错误正确答案:B6.光亮退火可以在空气中进行。
()A、正确B、错误正确答案:B7.冷却时,奥氏体可以通过马氏体相变机制转变为马氏体,同样重新加热时,马氏体也可以通过逆向马氏体相变机制转变成奥氏体,即马氏体相变具有可逆性。
()A、正确B、错误正确答案:A8.有焰燃烧需要设置通风机及冷风管道。
()A、正确B、错误正确答案:A9.晶胞可以是一个正六棱柱。
()A、正确B、错误正确答案:A10.亚共析钢的性能是随着含碳量的增加,其硬度、强度增加而塑性降低。
()A、正确B、错误正确答案:A11.塑性越好变形抗力越小。
()A、正确B、错误正确答案:A12.热负荷的分配既是设计中也是操作中的一个重要课题。
()A、正确B、错误正确答案:A13.碱性耐火材料对酸性炉渣的抵抗能力强。
()A、正确B、错误正确答案:B14.磷是由生铁带入钢中的有益元素。
()A、正确B、错误正确答案:B15.马氏体的硬度随着碳含量的增加而增加,故碳的质量分数为 1.2%的钢淬火后其便度一定大于相同淬火条件下碳的质量分数为 1.0%的钢。
()A、正确B、错误正确答案:B16.目前应用最多的滚动轴承钢有GCr15和GCr15SiMn。
()A、正确B、错误正确答案:A17.轧制节奏反映了轧制线生产速度的快慢。
()A、正确正确答案:A18.普通金属都是多晶体。
金属热处理习题及答案
第一章金属的晶体结构与结晶1.解释下列名词点缺陷,线缺陷,面缺陷,亚晶粒,亚晶界,刃型位错,单晶体,多晶体,过冷度,自发形核,非自发形核,变质处理,变质剂。
2.常见的金属晶体结构有哪几种?α-Fe 、γ- Fe 、Al 、Cu 、Ni 、Pb 、Cr 、V 、Mg、Zn 各属何种晶体结构?3.配位数和致密度可以用来说明哪些问题?4.晶面指数和晶向指数有什么不同?5.实际晶体中的点缺陷,线缺陷和面缺陷对金属性能有何影响?6.为何单晶体具有各向异性,而多晶体在一般情况下不显示出各向异性?7.过冷度与冷却速度有何关系?它对金属结晶过程有何影响?对铸件晶粒大小有何影响?8.金属结晶的基本规律是什么?晶核的形成率和成长率受到哪些因素的影响?9.在铸造生产中,采用哪些措施控制晶粒大小?在生产中如何应用变质处理?第二章金属的塑性变形与再结晶1.解释下列名词:加工硬化、回复、再结晶、热加工、冷加工。
2.产生加工硬化的原因是什么?加工硬化在金属加工中有什么利弊?3.划分冷加工和热加工的主要条件是什么?4.与冷加工比较,热加工给金属件带来的益处有哪些?5.为什么细晶粒钢强度高,塑性,韧性也好?6.金属经冷塑性变形后,组织和性能发生什么变化?7.分析加工硬化对金属材料的强化作用?8.已知金属钨、铁、铅、锡的熔点分别为3380℃、1538℃、327℃、232℃,试计算这些金属的最低再结晶温度,并分析钨和铁在1100℃下的加工、铅和锡在室温(20℃)下的加工各为何种加工?9.在制造齿轮时,有时采用喷丸法(即将金属丸喷射到零件表面上)使齿面得以强化。
试分析强化原因。
第三章合金的结构与二元状态图1.解释下列名词:合金,组元,相,相图;固溶体,金属间化合物,机械混合物;枝晶偏析,比重偏析;固溶强化,弥散强化。
2.指出下列名词的主要区别:1)置换固溶体与间隙固溶体;2)相组成物与组织组成物;3.下列元素在α-Fe 中形成哪几种固溶体?Si、C、N、Cr、Mn4.试述固溶强化、加工强化和弥散强化的强化原理,并说明三者的区别.5.固溶体和金属间化合物在结构和性能上有什么主要差别?6. 何谓共晶反应、包晶反应和共析反应?试比较这三种反应的异同点.7.二元合金相图表达了合金的哪些关系?8.在二元合金相图中应用杠杆定律可以计算什么?9. 已知A(熔点600℃)与B(500℃) 在液态无限互溶;在固态300℃时A溶于B 的最大溶解度为30% ,室温时为10%,但B不溶于A;在300℃时,含40% B 的液态合金发生共晶反应。
金属热处理习题及答案
金属热处理习题及答案一、判断题(共100题,每题1分,共100分)1.由于感应淬火时加热速度极快、仅改变工件表面组织而保持心部的原始组织,因此心部冷态金属的高强度会制约表层淬火时所产生的裂纹,使工件开裂倾向小。
另外、由于感应加热时间短、因此工件表面氧化、脱碳也少。
()A、正确B、错误正确答案:B2.奥氏体的强度、硬度不高、但具有良好的塑性。
()A、正确B、错误正确答案:A3.金属的同素异构转变是在恒温下进行的。
()A、正确B、错误正确答案:A4.尺寸较大的马氏体不锈钢工件无需预热,可直接淬火。
()A、正确B、错误正确答案:B5.由于多晶体是晶体,符合晶体的力学特征,所以它呈各向异性。
()A、正确B、错误正确答案:B6.变质处理是在浇注前往液态金属中加入形核剂(又称变质剂),促进形成大量的非均匀晶核来细化晶粒。
()A、正确B、错误正确答案:A7.片状珠光体的力学性能主要取决于于片间距和珠光体团的直径。
因为珠光体的片层越细,珠光体中铁素体和渗碳体的相界面越多,其塑性变形抗力就越大,因而其强度、硬度也就越高。
()A、正确B、错误正确答案:A8.不同金属材料的密度是不同的。
()A、正确B、错误正确答案:A9.耐磨钢是指在巨大压力和强烈冲击载荷作用下能发生硬化的高锰钢。
()A、正确B、错误正确答案:A10.非晶体的原子是呈无序、无规则堆积的物质。
()A、正确B、错误正确答案:A11.LY12为超硬铝合金。
()A、正确B、错误正确答案:B12.铁素体的本质是碳在α-Fe中的间隙相。
()A、正确B、错误正确答案:B13.非晶体没有规则的几何图形。
()A、正确B、错误正确答案:A14.除含铁(Fe)和碳(C)外,还含有其它元素的钢就是合金钢。
()A、正确B、错误正确答案:B15.液态金属只有在过冷条件下才能够结晶。
()A、正确B、错误正确答案:A16.在半环状工件淬火冷却时,为使圆弧不增大,可使内圆弧向上冷却或用夹具固定工件冷却。
金属热处理练习题库含答案
金属热处理练习题库含答案一、单选题(共87题,每题1分,共87分)1.为了达到取向硅钢内有利夹杂充分固溶的目的,钢的内外温差必须小,钢()部分也要有充分的固溶时间。
A、末端B、边缘C、中心D、表面正确答案:C2.为保证高速钢淬火后的残留奥氏体转变为马氏体,产生二次硬化,其回火次数一般为()。
A、一次B、三次C、不超过两次D、两次正确答案:B3.无磁钢指在常温状态下不具有磁性的稳定的()合金钢。
A、铁素体型B、马氏体型C、贝氏体型D、奥氏体型正确答案:D4.原始记录是企业管理的一项重要内容,必须按本企业的规定表格认真填写并负责地()。
A、保管好B、保持清洁C、记录好D、公示正确答案:A5.医疗用手术刀应选用()钢制造。
A、Crl2MoVB、W18Cr4VC、GCr15D、40Crl3正确答案:D6.T10钢的含碳量为()。
A、0.01%B、1.00%C、10%D、0.10%正确答案:B7.金属和合金中的()缺陷使得力学性能变坏,故必须加以消除。
A、晶格B、分子C、晶体D、原子正确答案:C8.奥氏体的晶格类型为()。
A、面心立方B、体心立方C、四方体D、密排六方正确答案:A9.下列选项中不属于预备热处理的是()。
A、退火B、淬火加回火C、正火D、调质正确答案:B10.生产上消除枝晶偏析的热处理方法为()。
A、完全退火B、去应力退火C、球化退火D、扩散退火正确答案:D11.在体心立方晶格中,原子密度最大的晶面是()。
A、{110}B、{122}C、{100}D、{111}正确答案:A12.()都是硬而脆的相。
A、马氏体B、奥氏体C、珠光体D、贝氏体正确答案:A13.从灰铸铁的牌号可以看出它的()指标。
A、韧性B、硬度C、强度D、塑性正确答案:C14.珠光体是一种()。
A、Fe与C的混合物B、两相化合物C、两相混合物D、单相固溶体正确答案:C15.炼钢生产是()反应在工业上的应用。
A、还原B、氧化-还原D、氧化正确答案:A16.同普通淬火处理相比,高温形变淬火后并经适当的温度回火,其力学性能具有()。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.热处理工艺:通过加热,保温和冷却的方法使金属和合金内部组织结构发生变化,以获得工件使用性能所要求的组织结构,这种技术称为热处理工艺。
2.热处理工艺的分类:(1)普通热处理(退火、正火、回火、淬火)(2)化学热处理(3)表面热处理(3)复合热处理3.由炉内热源把热量传给工件表面的过程,可以借辐射,对流,传导等方式实现,工件表面获得热量以后向内部的传递过程,则靠热传导方式。
4.影响热处理工件加热的因素:(1)加热方式的影响,加热速度按随炉加热、预热加热、到温入炉加热、高温入炉加热的方向依次增大;(2)加热介质及工件放置方式的影响:①加热介质的影响;②工件在炉内排布方式的影响直接影响热量传递的通道;③工件本身的影响:工件的几何形状、表面积与体积之比以及工件材料的物理性质等直接影响工件内部的热量传递及温度场。
5.金属和合金在不同介质中加热时常见的化学反应有氧化,脱碳;物理作用有脱气,合金元素的蒸发等。
6.脱碳:钢在加热时不仅表面发生氧化,形成氧化铁,而且钢中的碳也会和气氛作用,使钢的表面失去一部分碳,含碳量降低,这种现象称为脱碳钢脱碳的过程和脱碳层的组织特点:①钢件表面的碳与炉气发生化学反应(脱碳反应),形成含碳气体逸出表面,使表面碳浓度降低②由于表面碳浓度的降低,工件表面与内部发生浓度差,从而发生内部的碳向表面扩散的过程。
半脱碳层组织特点;自表面到中心组织依次为珠光体加铁素体逐渐过渡到珠光体,再至相当于该钢件未脱碳时的退火组织。
(F+P—P+C—退火组织)全脱碳层组织特点:表面为单一的铁素体区,向里为铁素体加珠光体逐渐过渡到相当于钢原始含碳量缓冷组织在强氧化性气体中加热时,表面脱碳与表面氧化往往同时发生。
在一般情况下,表面脱碳现象比氧化现象更易发生,特别是含碳量高的钢。
7.碳势:即纯铁在一定温度下于加热炉气中加热时达到既不增碳也不脱碳并与炉气保持平衡时表面的含碳量。
8.退火:将组织偏离平衡状态的金属或合金加热到适当的温度,保持一定时间,然后缓慢冷却以达到接近平衡状态组织的热处理工艺称为退火。
退火的目的在于均匀化学成分,改善机械性能及工艺性能,消除或减少内应力,并为零件最终热处理准备合适的内部组织。
9.钢件退火工艺按加热温度分类:(1)在临界温度以上的退火,又称相变重结晶退火,包括完全退火,不完全退火。
扩散退火和球化退火。
(2)在临界温度以下的退火,包括软化退火,再结晶退火及去应力退火。
按冷却方式可分为连续冷却退火及等温退火。
10.正火:是将钢材或钢件加热到Ac3(或Accm)以上适当温度,保温适当时间后在空气中冷却,得到珠光体类组织的热处理工艺。
目的是获得一定的硬度,细化晶粒,并获得比较均匀的组织和性能。
11.扩散退火: 将金属铸锭,铸件或锻坯,在略低于固相线的温度下长期加热,消除或减少化学成分偏析及显微组织(枝晶)的不均匀性,以达到均匀化目的的热处理工艺称为扩散退火,又称均匀化退火。
12.完全退火:将钢件或钢材加热到Ac3点以上,使之完全奥氏体化,然后缓慢冷却,获得接近于平衡组织的热处理工艺称为完全退火。
13.不完全退火:将钢件加热到Ac1和Ac3之间,经保温并缓慢冷却,以获得接近平衡组织。
14.球化退火:使钢中的碳化物球状化,或获得“球状珠光体”退火工艺称为球化退火。
球化退火的目的:①降低硬度,改善切削性能。
②获得均匀组织,改善热处理工艺性能③经淬火,回火后获得良好的综合机械性能。
15.各类铸件在机械加工前应进行消除应力处理。
一般正火加热温度为Ac1+(30-50℃)。
16.正火时应考虑的问题:(1)低碳钢正火的目的之一是为了提高切削性能(2)中碳钢的正火应该根据钢的成分及工件尺寸来确定冷却方式(3)过共析钢正火,一般是为了消除网状碳化物,故加热时必须保证碳化物全部溶入奥氏体中(4)双重正火,有些铸件的过热组织或铸件粗大铸造组织,一次正火不能达到细化组织的目的,为此采用二次正火。
17.退火和正火的缺陷:过烧,黑脆,粗大魏氏组织(>Ac3加热,快冷或慢冷,严重时双重正火),反常组织(重新退火),网状组织(重新正火),球化不均匀(正火和一次球化退火),硬度过高(退火)。
18.淬火:把钢加热到临界点Ac1或Ac3以上,保温并随之以大于临界冷却速度冷却,以得到介稳状态的马氏体或下贝氏体组织的热处理工艺方法称为淬火。
目的:①提高工具,渗碳零件和其他高强度耐磨机器零件等的硬度,强度和耐磨性;②结构钢通过淬火和回火之后获得良好的综合机械性能;③改善钢的物理和化学性能。
19.实现淬火过程的必要条件:(1)加热温度必须高于临界点以上,以获得奥氏体组织(2)其后的冷却速度必须大于临界冷却速度,而淬火得到的组织是马氏体或下贝氏体,(低碳钢水冷得到P,称水冷正火,高速钢空冷得到M,称淬火)20.最常用的淬火介质是液态介质,液态淬火介质分成两类,有物态变化的和无物态变化的。
常用淬火介质有水及其溶液,油,水油混合物以及低熔点熔盐。
21.在有物态变化的淬火介质中淬火冷却时,钢件冷却过程分为3个阶段:蒸气膜阶段,沸腾阶段,对流阶段。
22.淬火介质的冷却能力最常用的表示方法使用淬火烈度H ,他实质上反映了该种淬火介质的冷却能力。
23.钢的淬透性是指钢材被淬透的能力,或者说钢的淬透性是指表征钢材淬火时获得马氏体能力的特性,主要取决于钢的临界淬火冷速的大小。
钢的淬硬性是指钢在理想条件下淬火所能达到的最高硬度来表征的材料特征,它主要与淬火加热时固溶于A中的碳含量有关。
可硬性指淬成M可能得到的硬度,主要和钢中含碳量有关。
24.影响钢的淬透性的因素:(1)钢的化学成分(除Ti,Zr,Co外,所有合金元素都提高钢的淬透性)(2)奥氏体晶粒度(增大,增大)(3)奥氏体化温度(增大,晶粒增大,淬透性增大)(4)第二相的存在和分布(5)钢的原始组织,应变和外力场等对钢的淬透性也有影响。
25.在淬火冷却过程中可能产生两种内应力:一种是热应力,即工件在加热或冷却时,由于不同部位的温度差异,导致热涨或冷缩的不一致所引起的应力,另一种是组织应力,即由于工件不同部位组织转变不同时性而引起的内应力。
26.影响淬火应力的因素:①含碳量的影响②合金元素的影响③工件尺寸的影响27.淬火时,工件发生的变形有两类,一种是翘曲变形,一是体积变形。
28.工件淬火冷却时,如其瞬时内应力超过该时钢材的断裂强度,则将发生淬火裂缝。
①纵向裂缝,②横向裂缝和弧形裂缝,③表面裂缝29.淬火加热温度,主要根据钢的相变点来确定。
对亚共析钢,一般选用淬火加热温度为Ac3+(30-50℃),过共析钢则为Ac1+(30-50℃)。
确定淬火加热温度时,尚应考虑工件的形状,尺寸,原始组织,加热速度,冷却介质和冷却方式等因素。
30.一般情况下把升温和保温两段时间通称为淬火加热时间。
31.分级淬火法:把工件由奥氏体化温度淬入高于该种钢马氏体开始转变温度的淬火介质中,在其中冷却直至工件各部分温度达到淬火介质的温度,然后缓冷至室温,发生马氏体转变。
32.等温淬火法:工件淬火加热后,若长期保持在下贝氏体转变区的温度,使之完成奥氏体的等温转变,获得下贝氏体组织,这种淬火称为等温淬火。
进行等温淬火的目的是为了获得变形少,硬度较高并兼有良好韧性的工件。
33.当钢全淬成马氏体再加热回火时,随着回火温度升高,按其内部组织结构变化,分四个阶段进行:马氏体的分解,残余奥氏体的转变,碳化物的转变,相状态的变化及碳化物的聚集长大。
34.回火的目的是减少或消除淬火应力,提高韧性和塑性,获得硬度,强度,塑性和韧性的适当配合,以满足不同工件的性能要求。
35.低温回火一般用于以下几种情况:(1)工具和量具的回火(2)精密量具和高精度配合的结构零件在淬火后进行120-150℃(12h,甚至几十小时)回火。
(3)低碳马氏体的低温回火(4)渗碳钢淬火回火36.中温回火得到回火屈氏体组织,主要用于处理弹簧钢37.高温回火,这一温度区间回火的工件,常用的有如下几类:(1)调质处理。
即淬火加高温回火,以获得回火索氏体组织。
这种处理称为调质处理,主要用于中碳碳素结构钢或低合金结构钢以获得良好的综合机械性能。
一般调质处理的回火温度选在600℃以上。
(2)二次硬化型钢的回火(3)高合金渗碳钢的回火。
38.钢件淬火时最常见的缺陷有淬火变形,开裂,氧化,脱碳,硬度不足或不均匀,表面腐蚀,过烧,过热及其他按质量检查标准规定金相组织不合格。
39.39、常见的回火缺陷有硬度过高或过低,硬度不均匀,以及回火产生变形及脆性等。
40.40、表面淬火是指被处理工件在表面有限深度范围内加热至相变点以上,然后迅速冷却,在工件表面一定深度范围内达到淬火目的的热处理工艺。
41.表面淬火的目的:在工件表面一定深度范围内获得马氏体组织,而其心部仍保持着表面淬火前的组织状态(调质或正火状态),以获得表面层硬而耐磨,心部又有足够塑性,韧性的工件。
42.表面淬火的分类:(1)感应加热表面淬火(2)火焰淬火(3)电接触加热表面淬火(4)电解液加热表面淬火(5)激光加热表面淬火(6)电子束加热表面淬火(7)等离子束加热表面淬火。
其他还有红外线聚焦加热表面淬火等一些表面淬火方法。
43.感应加热表面淬火是利用感应电流通过工件产生的热效应,使工件表面局部加热,继之快速冷却,获得马氏体组织的工艺。
44.火焰淬火可用下列混合气体作为燃料:(1)煤气和氧气(2)天然气和氧气(3)丙烷和氧气(4)乙炔和氧气。
不同混合气体所能达到的火焰温度不同,最高为氧乙炔焰,可达3100,最低为氧丙烷焰,可达2650,通常用氧乙炔焰,简称氧炔焰。
火焰分为焰心,还原区和全燃区,其中还原区温度最高,应尽量利用这个高温区加热工件。
45.化学热处理:金属制件放在一定的化学介质中,使其表面与介质相互作用,吸收其中某些化学元素的原子或离子并通过加热,使该原子自表面向内部扩散的过程称为化学热处理。
化学热处理的结果是改变了金属表面的化学成分和性能。
简言之,所谓金属的化学热处理就是改变金属表面层的化学成分和性能的一种热处理工艺。
常见的化学热处理方法有渗碳,渗氮,碳氮共渗,渗硫等46.一般固体表面对气相的吸附分成两类,即物理吸附和化学吸附。
在化学热处理时,有两种情况,一种是被渗元素渗入很快,表面浓度很快达到界面反应平衡浓度,这时化学热处理过程主要取决于扩散过程,称为扩散控制型。
另一种是化学热处理过程中表面不能立即达到平衡浓度,此时渗层的增长速度取决于界面的反应速度和金属中该元素的扩散速度,这种化学热处理过程称为混合控制型的。
47.加速化学热处理过程的途径:(1)物理催渗法1.高温化学热处理2.高压或负压化学热处理3.高频化学热处理4.采用弹性振荡加速化学热处理(2)化学催渗法1.卤化物催碳法2.提高渗剂活性的催渗方法。