光开关主流技术

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

光开关主流技术

北京锦坤科技有限公司w

陈希明,周平( 重庆邮电学院光电工程学院, 重庆400065)

摘要:光开关是光网络中完成全光交换的核心器件,它的研究日益成为全光通信领域关注的焦点。文章重点介绍了光开关在全光网络中的应用、MEMS 光开关和

热光开关的基本工作原理及两种光开关技术的进展,并就其他光开关作了简要介绍。

关键词:全光网络;光开关;光通信.中图分类号: TN929.11 文献标志码: A

1 前言

全光网络是指上、下载的业务信号及交换过程均以光波的形式进行, 没有任何的光电及电光转换, 全部过程都在光域范围内完成[1, 2]。光开关是按一定要求将一个光通道的光信号转换到另一个光通道的器件。光开关可使光路之间进行直接交换, 是光网络中完成全光交换的核心器件, 随着全光网络市场的扩大, 光开关的研究日益成为全光通信领域关注的焦点。在全光网络中, 光开关可实现在全光层的路由选择、波长选择、光交叉连接以及自愈保护等重要功能,因此光开关是全光通信许多设备中的关键光器件, 其响应速度、串音、插入损耗等性能将直接影响全光通信的质量[3- 6]。其中光交叉连接设备(OXC) 和光分插复用设备(OADM) 可以说是全光网的核心[7]。而光开关和光开关阵列恰恰是OXC 和OADM的核心技术。研制全光的交叉连接OXC 和分插复用OADM设备, 成为建设大容量通信干线网络十分重要的一环。全光网络中应用的光开关应具有快的响应速度、低的插入损耗、低通道串音、对偏振不敏感、可集成性和可扩展性、低成本、低功耗、热稳定性好等特性[6- 8]。

2 光开关在全光网络中的应用

当前业已成熟的、且已实现商品化的微电子机械光开关和热光开关, 集中了机械式光开关和波导光开关的优点, 同时又克服了它们固有的缺点。此类光开关主要采用硅微加工技术将开关集成在单片硅基底上并能构成大规模矩阵阵列。另外, 此类开关批量生产时成本较低, 在开关损耗、串扰、消光比、开关尺寸等性能方面优势明显, 是光开关的较佳选择。

2.1 微电子机械系统(MEMS - micro - electro - mechanical-sys tems )

MEMS 是通过微制造技术将微型机械元件、微型传感器、微型执行器和信号处理及控制电路等在普通硅基底上集成。我国的MEMS 研究始于1989 年, 经过十几年的发展, 在多种微型传感器、微执行器和若干微系统样机等方面已有一定的基础和技术储备, 开发出了若干小批量、多品种、高质量的MEMS 器件和系统, 目前已广泛应用于工业领域[9]。而MEMS 光开关是基于半导体微细加工技术构筑在半导体基片上的微镜阵列, 即将电、机械和光集成为一块芯片, 能透明地传送不同速率、不同协议的业务。目前已成为一种最流行的光开关制作技术。其基本原理通过静电力或电磁力的作用, 使可以活动的微镜产生升降、旋转或移动, 从而改变输入光的传播方向以实现光路通断的功能, 使任一输入和输出端口相连接, 且1 个输出端口在同一时间只能和1 个输入端口相连接。与现有的基于光波导技术的光开关相比, MEMS 光开关具有低串音、低插损的优点成为全光网络中的关键光器件。同时它既有机械光开关和波导光开关的优点, 又克服了光机械开关难以集成和扩展性差等缺点[10- 13], 它结构

紧凑、重量轻, 且扩展性较好。MEMS 光开关的特性可概括为[14- 16]: 低插入损耗; 低串扰; 与波长、速率、调制方式无关; 功耗低; 坚固、寿命长; 可集成扩展成大规模光开关矩阵; 适中的响应速度(开关时间从100ns~10ms)。在光交叉连接及需要支持大容最交换的系统中, 基于MEMS 技术的解决方案已是主流。MEMS 光开关可以分为二维和三维光开关。二维

光开关由一种受静电控制的二维微小镜面阵列组成,光束在二维空间传输。准直光束和旋转微镜构成多端口光开关, 对于M×N 的光开关矩阵, 光开关具有M×N个微反射镜。二维光开关的微反射镜具有两个状态0和1(通和断), 当光开关处于1 态时, 反射镜处于由输入光纤准直系统出射的光束传播通道内, 将光束反射至相应的输出通道并经准直系统进入目标输出光纤;当光开关处于0 态时, 微反射镜不在光束传播通道内, 由输入通道光纤出射的光束直接进入其对面的光纤。三维MEMS 的微镜固定在一个万向支架上, 可以沿任意方向偏转。每根输入光纤都有一个对应的MEMS 输入微镜, 同样, 每根输出光纤也都有其对应的MEMS 输出微镜[17]。因此, 对于M×N 三维MEMS光开关,则具有M+N 个MEMS 微反射镜。由每根输出光纤出射的光束可以由其对应的输入微镜反射到任意一个输出微镜, 而相应的输出微镜可以将来自任一输入微镜的光束反射到其对应的输出光纤。对于M×N 三维MEMS 光开关, 每个输入微镜有N 个态, 而输出微镜则具有M个状态。目前, Iolon 利用MEMS 实现了光

开关的大量自动化生产。该结构开关时间小余5ms。Xeros 基于MEMS 微镜技术, 设计了能升级到1152×1152 的光交叉连接设备, 交换时间小余50ms。随着全光网络的发展, 三维MEMS 阵列可成为大型交叉连接的最佳候选者之一。

2.2 热光开关

热光开关是利用热光效应制造的小型光开关。热光效应是指通过电流加热的方法, 使介质的温度变化, 导致光在介质中传播的折射率和相位发生改变的物理效应。折射率随温度的变化关系为[18]:

式中n0为温度变化前的介质的折射率, ΔT 为温度的变化, α为热光系数, 它与材料的种类有关。此类开关采用可调节热量的波导材料, 如Si02、Si和有机聚合物等。在硅衬底上, 用蒸发、溅射、光刻、腐蚀等工艺形成分支波导阵列, 然后在每个分支上蒸发金属薄膜加热器和电极。电极加上电流后, 加热器的温度使下面的波导被加热, 温度上升, 热光效应引起波导折射率下降, 这样就将光耦合从主波导引导至分支波导。聚合波导技术是非常有吸引力的技术, 它成本低、串扰低、功耗小、与偏振和波长无关。聚合物波导的热光系数很高, 而导热率很低, 因而能更有效地利用热来控制光的传播方向, 开关时间相对减小可达lms 以内。热光开关的速度介于电光开关和MEMS 之间[19]。

热光开关一种是基于SoS(Silica- on- Silicon)技术,该光开关具有透明性、高可靠性、亚毫秒级恢复能力和无阻塞特性, 速度可达到100μs。随着高密度、高集成度光路的产生, SoS 开关的优势更明显。目前主要有两种类型的热光开关, M- Z 干涉型光开关和数字光开关。干涉型光开关结构紧凑, 但对光波长敏感, 需要进行精密温度控制; 数字光开关性能更稳定, 只要加热到一定温度, 光开关就保持稳定的状态。它通常用硅或高分子聚合物制备, 聚合物的导热率较低而热光系数高, 因此需要的功率小, 消光比可达20dB, 但插入损耗较大,一般为3~4dB。热光开关阵列可以和阵列波导光栅集成在一起组成光分插复用器。热光开关体积非常小,可实现微秒级的交换速度。

图1 为M- Z 干涉型热光开关结构示意图。

相关文档
最新文档