人教版初中数学函数基础知识知识点总复习
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
∴y2<y1<y3.
故选:B.
【点睛】
本题考查了比较函数值大小的问题,掌握二次函数的性质、代入法是解题的关键.
6.如图,已知矩形OABC,A(4,0),C(0,4),动点P从点A出发,沿A﹣B﹣C﹣O的路线匀速运动,设动点P的运动路程为t,△OAP的面积为S,则下列能大致反映S与t之间关系的图象是( )
∵AD∥BC,
∴∠ADC+∠BCD=180°,
∵∠BCD=90°,
∴∠ADC=180°-90°=90°,
∴四边形AGCD是矩形,
∴CG=AD=4,AG=CD=4,
∴BG=BC-CG=6-4=2,
∴AB= =2 .
故选C.
【点睛】
本题主要考查了动点的函数问题,三角形中位线定理,勾股定理.
2.如图,边长为 的等边 和边长为 的等边 ,它们的边 , 位于同一条直线 上,开始时,点 与点 重合, 固定不动,然后把 自左向右沿直线 平移,移出 外(点 与点 重合)停止,设 平移的距离为 ,两个三角形重合部分的面积为 ,则 关于 的函数图象是()
【答案】B
【解析】
【分析】
结合函数图像中的(a, )可知OB=OA=a,S△AOB= ,由此可求得a的值,再利用弧长公式进而求得b的值即可.
【详解】
解:由图像可知,当点P到达点A时,OB=OA=a,S△AOB= ,
过点A作AD⊥OB交OB于点D,
则∠AOD=90°,
∴在Rt△AOD中,sin∠AOD= ,
A. B.
C. D.
【答案】D
【解析】
【分析】
根据题意可以得到点P运动的快,点Q运动的慢,可以算出动点P和Q相遇时用的时间和点Q到达终点时的时间,从而可以解答本题.
【详解】
:设点Q的运动时间是t(单位:s)时,两个动点之间的距离为s(单位:cm),
6=2t+t,解得:t=2,即t=2时,P、Q相遇,即S=0,.
A. B.
C. D.
【答案】D
【解析】
【分析】
根据上学,可得离学校的距离越来越小,根据开始步行,可得距离变化慢,后来坐车,可得距离变化快.
【详解】
解:A、距离越来越大,选项错误;
B、距离越来越小,但前后变化快慢一样,选项错误;
C、距离越来越大,选项错误;
D、距离越来越小,且距离先变化慢,后变化快,选项正确;
故选:C.
【点睛】
本题主要考查的是动点问题的函数图象,求得函数的解析式是解题的关键.
3.如图,在 中, , , , 两点同时从点 分别出发,点 以 的速度,沿 运动,点 以 的速度,沿 运动,相遇后停止,这一过程中,若 两点之间的距离 ,则 与时间 的关系大致图像是()
A. B.
C. D.
【答案】A
∵∠AOB=60°,
∴sin60°= ,
∴AD= ,
∵S△AOB= ,
∴ ,
∴a=4(舍负),
∴弧AB的长为: ,
∴ .
故选:B.
【点睛】
本题是动点函数图象问题,考查了扇形弧长、解直角三角形等相关知识,解答时注意数形结合思想的应用.
8.小丽早上步行去车站然后坐车去学校,下列能近似的刻画她离学校的距离随时间变化的大致图象是()
A. B.
C. D.
【答案】A
【解析】
【分析】
分三段求解:①当P在AB上运动时;②当P在BC上时;③当P在CO上时;分别求出S关于t的函数关系式即可选出答案.
【详解】
解:∵A(4,0)、C(0,4),
∴OA=AB=BC=OC=4,
①当P由点A向点B运动,即 , ;
②当P由点A向点B运动,即 , ;
③当P由点A向点B运动,即 , ;
A. B. C. D.
【答案】C
【解析】
【分析】
分为0≤x≤1、1<x≤2、2<x≤3三种情况画出图形,然后依据等边三角形的性质和三角形的面积公式可求得y与x的函数关系式,于是可求得问题的答案.
【详解】
解:如图1所示:当0≤x≤1时,过点D作DE⊥BC′.
∵△ABC和△A′B′C′均为等边三角形,
△DBC′为等边三角形.
A. B.
C. D.
【答案】D
【解析】
【分析】
根据函数图像的横坐标确定时间,纵坐标确定离家距离,然后进行判断即可解答.
【详解】
解:0分钟到报亭离家的距离随时间的增加而增加,看报10分钟,离家的距离不变;15分钟回家离家的距离岁时间的增加而减少,故D符合题意.
故答案为D.
【点睛】
本题考查了函数图像的应用,根据图像确定出时间与离家距离的关系是解答本题的关键.
A.1个B.2个C.3个D.4个
【答案】B
【解析】
【分析】
根据函数图象上的特殊点以及函数图象自身的实际意义进行判断即可.
【详解】
解:①由图象可知,汽车走到距离出发点140千米的地方后又返回出发点,所以汽车共行驶了280千米,故①错;
②从3时开始到4时结束,时间在增多,而路程没有变化,说明此时在停留,停留了4-3=1(小时),故②对;
12.如图,两块完全重合的正方形纸片,如果上面的一块绕正方形的中心O逆时针0°~90°的旋转,那么旋转时露出的△ABC的面积(S)随着旋转角度(n)的变化而变化,下面表示S与n关系的图象大致是( )
A. B. C. D.
【答案】B
【解析】
【分析】
注意分析y随x的变化而变化的趋势,而不一定要通过求解析式来解决.
P到达B点的时间为:6÷2=3s,此时,点Q距离B点为:3,即S=3
P点全程用时为12÷2=6s,Q点全程用时为6÷1=6s,即P、Q同时到达A点
由上可得,刚开始P和Q两点间的距离在越来越小直到相遇时,它们之间的距离变为0,此时用的时间为2s;
相遇后,在第3s时点P到达B点,从相遇到点P到达B点它们的距离在变大,1s后P点从B点返回,点P继续运动,两个动点之间的距离逐渐变小,同时达到A点.
解:如右图,
连接OP,由于OP是Rt△AOB斜边上的中线,
所以OP= AB,不管木杆如何滑动,它的长度不变,也就是OP是一个定值,点P就在以O为圆心的圆弧上,那么中点P下落的路线是一段弧线.
故选D.
11.小亮的奶奶出去散步,从家走了20分钟到一个离家900米的报亭,奶奶看了10分钟报纸后,用了15分钟返回家,下面图中的哪一幅能表示奶奶离家的时间与距离之间的关系()
∴DE= BC′= x,
∴y= BC′•DE= x2.
当x=1时,y= ,且抛物线的开口向上.
如图2所示:1<x≤2时,过点A′作A′E⊥B′C′,垂足为E.
∵y= B′C′•A′E= ×1× = .
∴函数图象是一条平行与x轴的线段.
如图3所示:2<x≤3时,过点D作DE⊥B′C,垂足为E.
y= B′C•DE= (x-3)2,函数图象为抛物线的一部分,且抛物线开口向上.
【答案】B
【解析】
【分析】
把三个点的坐标代入二次函数解析式分别计算出则y1、y2、y3的值,然后进行大小比较.
【详解】
解:∵A(﹣3,y1)、B(0,y2)、C(2,y3)为二次函数y=(x+1)2+1的图象上的三点,
∴y1=(﹣3+1)2+1=5,y2=(0+1)2+1=2,y3=(2+1)2+1=10,
∴ ,
故选:A.
【点睛】
此题主要考查了动点问题的函数图象,正确理解PQ长与时间是一次函数关系,并得出函数关系式是解题关键.
4.如图,线段 ,动点 以 的速度从 在线段 上运动,到达点 后,停止运动;动点 以 的速度从 在线段 上运动,到达点 后,停止运动.若动点 同时出发,设点 的运动时间是 (单位: )时,两个动点之间的距离为S(单位: ),则能表示 与 的函数关系的是( )
结合图象可知,符合题意的是A.
故选:A.
【点睛】
本题主要考查了动点问题的函数图象,解题的关键是根据图形求出S关于t的函数关系式.
7.如图1,在扇形 中, ,点 从点 出发,沿 以1 的速度匀速运动到点 ,图2是点 运动过程中, 的面积 随时间 变化的图象,则 , 的值分别为()
Baidu Nhomakorabea图1 图2
A.4, B.4, C. , D. ,
【详解】
旋转时露出的△ABC的面积(S)随着旋转角度(n)的变化由小到大再变小.
故选B.
【点睛】
考查动点问题的函数图象问题,关键要仔细观察.
13.如图所示的图象(折线 )描述了一辆汽车在某一笔直的公路上的行驶过程中,汽车离出发地的距离 (千米)与行驶时间 (小时)之间的函数关系,根据图中提供的信息,给出下列说法:①汽车共行驶了140千米;②汽车在行驶途中停留了1小时;③汽车出发后6小时至9小时之间行驶的速度比汽车出发后4小时至6小时之间行驶的速度大;④汽车出发后6小时至9小时之间行驶的速度在逐渐减小.其中正确的说法共有()
【答案】A
【解析】
【分析】
由点P的运动路径可得△PAB面积的变化,根据图2得出AB、BC的长,进而求出矩形ABCD的面积即可得答案.
【详解】
∵点P在AB边运动时,△PAB的面积为0,在BC边运动时,△PAB的面积逐渐增大,
∴由图2可知:AB=4,BC=10-4=6,
∴矩形ABCD的面积为AB·BC=24,
故选:B.
【点睛】
本题考查函数图象,由函数图象的实际意义,理解函数图象所反映的运动过程是解答本题的关键.
14.在全民健身环城越野赛中,甲乙两选手的行程y(千米)随时间(时)变化的图象(全程)如图所示.有下列说法:①起跑后1小时内,甲在乙的前面;②第1小时两人都跑了10千米;③甲比乙先到达终点;④两人都跑了20千米.其中正确的说法有()
③汽车4小时至6小时之间的速度为:(140-90)÷(6-4)=25(千米/小时),
汽车6小时至9小时之间的速度为:140÷(9-6)≈46.7(千米/小时),所以汽车出发后6小时至9小时之间行驶的速度比汽车出发后4小时至6小时之间行驶的速度大,故③对;
④汽车自出发后6小时至9小时,图象是直线,说明是在匀速前进,故④错;
人教版初中数学函数基础知识知识点总复习
一、选择题
1.如图甲,在四边形ABCD中,AD//BC,∠C=90°动点P从点C出发沿线段CD向点D运动.到达点D即停止,若E、F分别是AP、BP的中点,设CP=x,△PEF的面积为y,且y与x之间的函数关系的图象如图乙所示,则线段AB长为()
A.2 B.2 C.2 D.2
【解析】
【分析】
根据题意分当 、 时两种情况,分别表示出 的长 与 的关系式,进而得出答案.
【详解】
解:在 中, , ,AB=10,
∴AC=5, ,
I.当 时,P在AB上,Q在AC上,由题意可得: , ,
依题意得: ,
又∵
∴ ,
∴
则 ,
II.当 ,P、Q在BC上,由题意可得:P走过的路程是 ,Q走过的路程是 ,
故选D.
【点睛】
本题考查动点问题的函数图象,解题的关键是明确各个时间段内它们对应的函数图象.
5.若A(﹣3,y1)、B(0,y2)、C(2,y3)为二次函数y=(x+1)2+1的图象上的三点,则y1、y2、y3的大小关系是()
A.y1<y2<y3B.y2<y1<y3C.y3<y1<y2D.y1<y3<y2
A.1个B.2个C.3个D.4个
【答案】C
【解析】
【分析】
【详解】
解:①由纵坐标看出,起跑后1小时内,甲在乙的前面,故①正确;
②由横纵坐标看出,第一小时两人都跑了10千米,故②正确;
故选:A.
【点睛】
本题考查分段函数的图象,根据△PAB面积的变化,正确从图象中得出所需信息是解题关键.
10.木杆AB斜靠在墙壁上,当木杆的上端A沿墙壁NO竖直下滑时,木杆的底端B也随之沿着射线OM方向滑动.下列图中用虚线画出木杆中点P随之下落的路线,其中正确的是( )
A. B.
C. D.
【答案】D
【解析】
【答案】C
【解析】
【分析】
根据三角形中位线定理,得到S△PEF= S△ABP,由图像可以看出当x为最大值CD=4时,S△PEF=2,可求出AD=4,当x为0时,S△PEF=3,可求出BC=6;过点A作AG⊥BC于点G,根据勾股定理即可得解.
【详解】
解:∵E、F分别为AP、BP的中点,
∴EF∥AB,EF= AB,
故选:D.
【点睛】
本题考查了函数图象,观察距离随时间的变化是解题关键.
9.如图1,在矩形ABCD中,动点P从点A出发,以相同的速度,沿A→B→C→D→A方向运动到点A处停止.设点P运动的路程为x,△PAB的面积为y,如果y与x的函数图象如图2所示,则矩形ABCD的面积为()
A.24B.40C.56D.60
∴S△PEF= S△ABP,
根据图像可以看出x的最大值为4,
∴CD=4,
∵当P在D点时,△PEF的面积为2,
∴S△ABP=2×4=8,即S△ABD=8,
∴AD= = =4,
当点P在C点时,S△PEF=3,
∴S△ABP=3×4=12,即S△ABC=12,
∴BC= = =6,
过点A作AG⊥BC于点G,
∴∠AGC=90°,
故选:B.
【点睛】
本题考查了比较函数值大小的问题,掌握二次函数的性质、代入法是解题的关键.
6.如图,已知矩形OABC,A(4,0),C(0,4),动点P从点A出发,沿A﹣B﹣C﹣O的路线匀速运动,设动点P的运动路程为t,△OAP的面积为S,则下列能大致反映S与t之间关系的图象是( )
∵AD∥BC,
∴∠ADC+∠BCD=180°,
∵∠BCD=90°,
∴∠ADC=180°-90°=90°,
∴四边形AGCD是矩形,
∴CG=AD=4,AG=CD=4,
∴BG=BC-CG=6-4=2,
∴AB= =2 .
故选C.
【点睛】
本题主要考查了动点的函数问题,三角形中位线定理,勾股定理.
2.如图,边长为 的等边 和边长为 的等边 ,它们的边 , 位于同一条直线 上,开始时,点 与点 重合, 固定不动,然后把 自左向右沿直线 平移,移出 外(点 与点 重合)停止,设 平移的距离为 ,两个三角形重合部分的面积为 ,则 关于 的函数图象是()
【答案】B
【解析】
【分析】
结合函数图像中的(a, )可知OB=OA=a,S△AOB= ,由此可求得a的值,再利用弧长公式进而求得b的值即可.
【详解】
解:由图像可知,当点P到达点A时,OB=OA=a,S△AOB= ,
过点A作AD⊥OB交OB于点D,
则∠AOD=90°,
∴在Rt△AOD中,sin∠AOD= ,
A. B.
C. D.
【答案】D
【解析】
【分析】
根据题意可以得到点P运动的快,点Q运动的慢,可以算出动点P和Q相遇时用的时间和点Q到达终点时的时间,从而可以解答本题.
【详解】
:设点Q的运动时间是t(单位:s)时,两个动点之间的距离为s(单位:cm),
6=2t+t,解得:t=2,即t=2时,P、Q相遇,即S=0,.
A. B.
C. D.
【答案】D
【解析】
【分析】
根据上学,可得离学校的距离越来越小,根据开始步行,可得距离变化慢,后来坐车,可得距离变化快.
【详解】
解:A、距离越来越大,选项错误;
B、距离越来越小,但前后变化快慢一样,选项错误;
C、距离越来越大,选项错误;
D、距离越来越小,且距离先变化慢,后变化快,选项正确;
故选:C.
【点睛】
本题主要考查的是动点问题的函数图象,求得函数的解析式是解题的关键.
3.如图,在 中, , , , 两点同时从点 分别出发,点 以 的速度,沿 运动,点 以 的速度,沿 运动,相遇后停止,这一过程中,若 两点之间的距离 ,则 与时间 的关系大致图像是()
A. B.
C. D.
【答案】A
∵∠AOB=60°,
∴sin60°= ,
∴AD= ,
∵S△AOB= ,
∴ ,
∴a=4(舍负),
∴弧AB的长为: ,
∴ .
故选:B.
【点睛】
本题是动点函数图象问题,考查了扇形弧长、解直角三角形等相关知识,解答时注意数形结合思想的应用.
8.小丽早上步行去车站然后坐车去学校,下列能近似的刻画她离学校的距离随时间变化的大致图象是()
A. B.
C. D.
【答案】A
【解析】
【分析】
分三段求解:①当P在AB上运动时;②当P在BC上时;③当P在CO上时;分别求出S关于t的函数关系式即可选出答案.
【详解】
解:∵A(4,0)、C(0,4),
∴OA=AB=BC=OC=4,
①当P由点A向点B运动,即 , ;
②当P由点A向点B运动,即 , ;
③当P由点A向点B运动,即 , ;
A. B. C. D.
【答案】C
【解析】
【分析】
分为0≤x≤1、1<x≤2、2<x≤3三种情况画出图形,然后依据等边三角形的性质和三角形的面积公式可求得y与x的函数关系式,于是可求得问题的答案.
【详解】
解:如图1所示:当0≤x≤1时,过点D作DE⊥BC′.
∵△ABC和△A′B′C′均为等边三角形,
△DBC′为等边三角形.
A. B.
C. D.
【答案】D
【解析】
【分析】
根据函数图像的横坐标确定时间,纵坐标确定离家距离,然后进行判断即可解答.
【详解】
解:0分钟到报亭离家的距离随时间的增加而增加,看报10分钟,离家的距离不变;15分钟回家离家的距离岁时间的增加而减少,故D符合题意.
故答案为D.
【点睛】
本题考查了函数图像的应用,根据图像确定出时间与离家距离的关系是解答本题的关键.
A.1个B.2个C.3个D.4个
【答案】B
【解析】
【分析】
根据函数图象上的特殊点以及函数图象自身的实际意义进行判断即可.
【详解】
解:①由图象可知,汽车走到距离出发点140千米的地方后又返回出发点,所以汽车共行驶了280千米,故①错;
②从3时开始到4时结束,时间在增多,而路程没有变化,说明此时在停留,停留了4-3=1(小时),故②对;
12.如图,两块完全重合的正方形纸片,如果上面的一块绕正方形的中心O逆时针0°~90°的旋转,那么旋转时露出的△ABC的面积(S)随着旋转角度(n)的变化而变化,下面表示S与n关系的图象大致是( )
A. B. C. D.
【答案】B
【解析】
【分析】
注意分析y随x的变化而变化的趋势,而不一定要通过求解析式来解决.
P到达B点的时间为:6÷2=3s,此时,点Q距离B点为:3,即S=3
P点全程用时为12÷2=6s,Q点全程用时为6÷1=6s,即P、Q同时到达A点
由上可得,刚开始P和Q两点间的距离在越来越小直到相遇时,它们之间的距离变为0,此时用的时间为2s;
相遇后,在第3s时点P到达B点,从相遇到点P到达B点它们的距离在变大,1s后P点从B点返回,点P继续运动,两个动点之间的距离逐渐变小,同时达到A点.
解:如右图,
连接OP,由于OP是Rt△AOB斜边上的中线,
所以OP= AB,不管木杆如何滑动,它的长度不变,也就是OP是一个定值,点P就在以O为圆心的圆弧上,那么中点P下落的路线是一段弧线.
故选D.
11.小亮的奶奶出去散步,从家走了20分钟到一个离家900米的报亭,奶奶看了10分钟报纸后,用了15分钟返回家,下面图中的哪一幅能表示奶奶离家的时间与距离之间的关系()
∴DE= BC′= x,
∴y= BC′•DE= x2.
当x=1时,y= ,且抛物线的开口向上.
如图2所示:1<x≤2时,过点A′作A′E⊥B′C′,垂足为E.
∵y= B′C′•A′E= ×1× = .
∴函数图象是一条平行与x轴的线段.
如图3所示:2<x≤3时,过点D作DE⊥B′C,垂足为E.
y= B′C•DE= (x-3)2,函数图象为抛物线的一部分,且抛物线开口向上.
【答案】B
【解析】
【分析】
把三个点的坐标代入二次函数解析式分别计算出则y1、y2、y3的值,然后进行大小比较.
【详解】
解:∵A(﹣3,y1)、B(0,y2)、C(2,y3)为二次函数y=(x+1)2+1的图象上的三点,
∴y1=(﹣3+1)2+1=5,y2=(0+1)2+1=2,y3=(2+1)2+1=10,
∴ ,
故选:A.
【点睛】
此题主要考查了动点问题的函数图象,正确理解PQ长与时间是一次函数关系,并得出函数关系式是解题关键.
4.如图,线段 ,动点 以 的速度从 在线段 上运动,到达点 后,停止运动;动点 以 的速度从 在线段 上运动,到达点 后,停止运动.若动点 同时出发,设点 的运动时间是 (单位: )时,两个动点之间的距离为S(单位: ),则能表示 与 的函数关系的是( )
结合图象可知,符合题意的是A.
故选:A.
【点睛】
本题主要考查了动点问题的函数图象,解题的关键是根据图形求出S关于t的函数关系式.
7.如图1,在扇形 中, ,点 从点 出发,沿 以1 的速度匀速运动到点 ,图2是点 运动过程中, 的面积 随时间 变化的图象,则 , 的值分别为()
Baidu Nhomakorabea图1 图2
A.4, B.4, C. , D. ,
【详解】
旋转时露出的△ABC的面积(S)随着旋转角度(n)的变化由小到大再变小.
故选B.
【点睛】
考查动点问题的函数图象问题,关键要仔细观察.
13.如图所示的图象(折线 )描述了一辆汽车在某一笔直的公路上的行驶过程中,汽车离出发地的距离 (千米)与行驶时间 (小时)之间的函数关系,根据图中提供的信息,给出下列说法:①汽车共行驶了140千米;②汽车在行驶途中停留了1小时;③汽车出发后6小时至9小时之间行驶的速度比汽车出发后4小时至6小时之间行驶的速度大;④汽车出发后6小时至9小时之间行驶的速度在逐渐减小.其中正确的说法共有()
【答案】A
【解析】
【分析】
由点P的运动路径可得△PAB面积的变化,根据图2得出AB、BC的长,进而求出矩形ABCD的面积即可得答案.
【详解】
∵点P在AB边运动时,△PAB的面积为0,在BC边运动时,△PAB的面积逐渐增大,
∴由图2可知:AB=4,BC=10-4=6,
∴矩形ABCD的面积为AB·BC=24,
故选:B.
【点睛】
本题考查函数图象,由函数图象的实际意义,理解函数图象所反映的运动过程是解答本题的关键.
14.在全民健身环城越野赛中,甲乙两选手的行程y(千米)随时间(时)变化的图象(全程)如图所示.有下列说法:①起跑后1小时内,甲在乙的前面;②第1小时两人都跑了10千米;③甲比乙先到达终点;④两人都跑了20千米.其中正确的说法有()
③汽车4小时至6小时之间的速度为:(140-90)÷(6-4)=25(千米/小时),
汽车6小时至9小时之间的速度为:140÷(9-6)≈46.7(千米/小时),所以汽车出发后6小时至9小时之间行驶的速度比汽车出发后4小时至6小时之间行驶的速度大,故③对;
④汽车自出发后6小时至9小时,图象是直线,说明是在匀速前进,故④错;
人教版初中数学函数基础知识知识点总复习
一、选择题
1.如图甲,在四边形ABCD中,AD//BC,∠C=90°动点P从点C出发沿线段CD向点D运动.到达点D即停止,若E、F分别是AP、BP的中点,设CP=x,△PEF的面积为y,且y与x之间的函数关系的图象如图乙所示,则线段AB长为()
A.2 B.2 C.2 D.2
【解析】
【分析】
根据题意分当 、 时两种情况,分别表示出 的长 与 的关系式,进而得出答案.
【详解】
解:在 中, , ,AB=10,
∴AC=5, ,
I.当 时,P在AB上,Q在AC上,由题意可得: , ,
依题意得: ,
又∵
∴ ,
∴
则 ,
II.当 ,P、Q在BC上,由题意可得:P走过的路程是 ,Q走过的路程是 ,
故选D.
【点睛】
本题考查动点问题的函数图象,解题的关键是明确各个时间段内它们对应的函数图象.
5.若A(﹣3,y1)、B(0,y2)、C(2,y3)为二次函数y=(x+1)2+1的图象上的三点,则y1、y2、y3的大小关系是()
A.y1<y2<y3B.y2<y1<y3C.y3<y1<y2D.y1<y3<y2
A.1个B.2个C.3个D.4个
【答案】C
【解析】
【分析】
【详解】
解:①由纵坐标看出,起跑后1小时内,甲在乙的前面,故①正确;
②由横纵坐标看出,第一小时两人都跑了10千米,故②正确;
故选:A.
【点睛】
本题考查分段函数的图象,根据△PAB面积的变化,正确从图象中得出所需信息是解题关键.
10.木杆AB斜靠在墙壁上,当木杆的上端A沿墙壁NO竖直下滑时,木杆的底端B也随之沿着射线OM方向滑动.下列图中用虚线画出木杆中点P随之下落的路线,其中正确的是( )
A. B.
C. D.
【答案】D
【解析】
【答案】C
【解析】
【分析】
根据三角形中位线定理,得到S△PEF= S△ABP,由图像可以看出当x为最大值CD=4时,S△PEF=2,可求出AD=4,当x为0时,S△PEF=3,可求出BC=6;过点A作AG⊥BC于点G,根据勾股定理即可得解.
【详解】
解:∵E、F分别为AP、BP的中点,
∴EF∥AB,EF= AB,
故选:D.
【点睛】
本题考查了函数图象,观察距离随时间的变化是解题关键.
9.如图1,在矩形ABCD中,动点P从点A出发,以相同的速度,沿A→B→C→D→A方向运动到点A处停止.设点P运动的路程为x,△PAB的面积为y,如果y与x的函数图象如图2所示,则矩形ABCD的面积为()
A.24B.40C.56D.60
∴S△PEF= S△ABP,
根据图像可以看出x的最大值为4,
∴CD=4,
∵当P在D点时,△PEF的面积为2,
∴S△ABP=2×4=8,即S△ABD=8,
∴AD= = =4,
当点P在C点时,S△PEF=3,
∴S△ABP=3×4=12,即S△ABC=12,
∴BC= = =6,
过点A作AG⊥BC于点G,
∴∠AGC=90°,