复合材料的基体材料(2)
复合材料基体(Matrix)材料
![复合材料基体(Matrix)材料](https://img.taocdn.com/s3/m/074a28ed1711cc7931b716f5.png)
2、非氧化物陶瓷
主要有氮化物、碳化物、硼化物和硅化物。 特点:是耐火性和耐磨性好,硬度高,但脆
性也很强。碳化物、硼化物的抗热氧 化温度约900-1000C,氮化物略低些 ,硅化物的表面能形成氧化硅膜,所 以抗热氧化温度可达1300-1700C。
★ 氮化硅(Si3N4)属六方晶系,有、两种 晶相。其强度和硬度高、抗热震和抗高温蠕变 性好、摩擦系数小,具有良好的耐(酸、碱和 有色金属)腐蚀(侵蚀)性。抗氧化温度可达 1000C,电绝缘性好。
★ -SiC属六方晶系,- SiC属等轴晶系。 高温强度高,具有很高的热传导能力以及较 好的热稳定性、耐磨性、耐腐蚀性和抗蠕变性。
★ 氮化硼具有两种结构: A、类似石墨的六方结构,可作为高温自润滑材料
在高温(1360C)和高压作用下可转变成立方 结构的-氮化硼。 B、 -氮化硼立方结构,耐热温度高达2000C, 硬度极高,可作为金刚石的代用品。
其熔点在1700C以上,主要为单相多晶结构, 还可能有少量气相(气孔)。微晶氧化物的强度 较高;粗晶结构时,晶界残余应力较大,对强度 不利。氧化物陶瓷的强度随环境温度升高而降低。 这类材料应避免在高应力和高温环境下使用。这 是因为Al2O3和ZrO2的抗热震性差;SiO2在高温下 容易发生蠕变和相变等。
复合材料--基体(Matrix)材料
一、聚合物及其分类
聚合物包括:热固性聚合物和热塑性聚合物。 1、热固性聚合物:
通常为分子量较小的液态或固态预聚体,经加 热或加固化剂发生交联化学反应并经过凝胶化和固 化阶段后,形成不溶、不熔的三维网状高分子。
主要包括:环氧、酚醛、双马、聚酰亚胺树脂等。 各种热固性树脂的固化反应机理不同,根据使
4、 玻璃陶瓷(微晶玻璃)
许多无机玻璃可通过适当的热处理使其由非 晶态转变为晶态,这一过程称为反玻璃化。对于 某些玻璃反玻璃化过程可以控制,最后能够形成 无残余应力的微晶玻璃。这种材料成为玻璃陶瓷。
复合材料中的基体材料
![复合材料中的基体材料](https://img.taocdn.com/s3/m/a49e994217fc700abb68a98271fe910ef12daeb4.png)
复合材料中的基体材料复合材料是由两种或更多种不同材料组成的材料,其中一种材料称为基体材料。
基体材料在复合材料中起到支撑和固定增强材料(通常是纤维或颗粒)的作用。
基体材料的选择对复合材料的性能和应用起着至关重要的作用。
下面将介绍一些常见的基体材料及其特点。
1.金属基体材料:金属基体材料主要是指铝、镁、钛等金属材料。
金属基复合材料具有高强度、高刚度、优良的导热性、良好的耐腐蚀性和可加工性等优点。
金属基复合材料广泛应用于航空航天、汽车工业、船舶制造和建筑等领域。
2.高分子基体材料:高分子基体材料主要是指树脂类材料,如环氧树脂、聚酯树脂、聚酰亚胺等。
高分子基复合材料具有重量轻、绝缘性能好、抗腐蚀性能好等特点。
高分子基复合材料广泛应用于航空航天、汽车工业、电子电器等领域。
3.陶瓷基体材料:陶瓷基体材料主要是指氧化铝、氧化硅、碳化硅等无机材料。
陶瓷基复合材料具有高硬度、高耐磨性、抗高温等特点。
陶瓷基复合材料广泛应用于制造耐火材料、摩擦材料和高温结构材料等领域。
4.碳基体材料:碳基体材料主要是指碳纤维、炭黑等碳材料。
碳基复合材料具有重量轻、高强度、高刚度、耐高温、导电性能好等特点。
碳基复合材料广泛应用于航空航天、汽车工业、体育器材等领域。
5.纳米基体材料:纳米基体材料主要是指纳米颗粒、纳米管、纳米片等纳米材料。
纳米基复合材料具有独特的物理、化学和力学性能,如高强度、高硬度、低摩擦系数等。
纳米基复合材料在材料科学领域具有重要的应用前景。
总之,基体材料是复合材料中重要的组成部分,其种类和性能直接影响着复合材料的性能和应用范围。
随着科技的发展,不断有新型的基体材料涌现,为复合材料的开发和应用带来了新的可能性。
复合材料的基体材
![复合材料的基体材](https://img.taocdn.com/s3/m/7d51205e6ad97f192279168884868762caaebbcf.png)
复合材料的基体材
常见的复合材料基体材料包括金属、聚合物和陶瓷等。
金属基体材料是最早被应用于复合材料的基体材料之一、金属基复合材料具有高强度、刚性和导热性能,还具有优良的机械性能和良好的成型性能。
由于金属本身的导热性和良好的电导性,金属基复合材料广泛应用于热传导和电传导方面的应用,如散热器、导电线和电子器件等。
聚合物基体材料是应用最广泛的复合材料基体材料之一、聚合物基复合材料具有重量轻、加工性能好、电绝缘性好、化学稳定性好等特点。
此外,聚合物基体材料的成本相对较低,易于大规模生产。
因此,聚合物基复合材料广泛应用于航空航天、汽车工业、电子设备和建筑等领域。
陶瓷基体材料具有高强度、高硬度、高耐压性和高耐磨性等特点。
陶瓷基复合材料的主要优点是在高温和高压环境下具有出色的性能。
陶瓷基复合材料常用于高性能陶瓷刀具、高温热力设备和用于材料强化的陶瓷纤维等领域。
此外,还有一些其他的基体材料,如碳纤维基体材料和纤维增强中空玻璃基体材料等。
碳纤维基体材料具有重量轻、高强度、高弹性模量和耐腐蚀性强等特点,常用于航空航天、汽车和体育器材等领域。
而纤维增强中空玻璃基体材料以其低密度、优良的隔热性能和抗雷击性能而得到广泛应用。
综上所述,复合材料的基体材料类型丰富多样,每种材料都有其独特的优点和应用领域。
随着科技的不断进步和需求的不断增加,对基体材料的研发和应用也在不断深入,为复合材料的发展提供了更广阔的空间。
复合材料的基体材料
![复合材料的基体材料](https://img.taocdn.com/s3/m/f5a5896b284ac850ac024229.png)
基体材料
高分子化合物的物理形态
基体材料
环氧树脂
泛指分子中含有两个或两个以上环氧基团的 有机高分子化合物,分子结构是以分子链中 含有活泼的环氧基团为其特征
O 环氧基团:—CH—CH—
基体材料
性能和特性
1、形式多样。各种树脂、固化剂、改性剂体系几乎可以适应 各种应用对形式提出的要求,其范围可以从极低的粘度到高熔 点固体。 2、 固化方便。选用各种不同的固化剂,环氧树脂体系几乎可 以在0~180℃温度范围内固化。 3、 粘附力强。环氧树脂分子链中固有的极性羟基和醚键的存 在,使其对各种物质具有很高的粘附力。环氧树脂固化时的收 缩性低,产生的内应力小,这也有助于提高粘附强度。 4、 收缩性低。环氧树脂和所用的固化剂的反应是通过直接加 成反应或树脂分子中环氧基的开环聚合反应来进行的,没有水 或其它挥发性副产物放出。它们和不饱和聚酯树脂、酚醛树脂 相比,在固化过程中显示出很低的收缩性(小于2%)。
基体材料
基体的作用
把纤维粘在一起; 分配纤维间的载荷; 保护纤维不受环境影响
基体材料
基体材料的工艺性
成型的基本过程:用树脂浸渍纤维—烘干定型— 固化 浸润性能、黏接性能、流动性能、固化性能(成 型方法选择和工艺参数确定的主要依据)。 固化:线形树脂在固化剂存在或加热条件下,发 生化学反应转变成不溶、不熔、具有体型结构的 固态树脂的全过程。黏流态——固态
基体材料
复合材料的组成和结构
![复合材料的组成和结构](https://img.taocdn.com/s3/m/6ba7812a5e0e7cd184254b35eefdc8d376ee14a5.png)
复合材料的组成和结构随着科技的不断发展,复合材料已经成为了现代工业领域不可或缺的一部分。
它们可以广泛应用于飞机、汽车、船舶、建筑、电子设备和医学器械等领域。
那么,什么是复合材料呢?复合材料的组成和结构是什么?下面将为您详细解答。
一、何为复合材料?复合材料(Composite Materials)是指由两种或两种以上不同材料组合而成的新型材料。
它的特点在于不同材料之间有更强的结合力,这种结合力可以使复合材料具有独特的性质和优良的性能。
二、复合材料的组成1. 基体材料基体材料通常是具有良好强度和刚度的聚合材料(如环氧树脂),金属(如铝、钛等)或陶瓷(如氧化铝)等。
基体材料形成了复合材料的主要骨架结构。
2. 增强材料增强材料通常是一种纤维材料,如碳纤维、玻璃纤维、芳纶纤维等。
这些纤维具有高强度和高模量特性,经过加工可以将它们布置在基体材料的表面上,形成所谓的增强材料。
3. 界面材料由于基体材料和增强材料的化学和物理性质有很大的差异,所以界面材料的作用是防止它们之间的层间剥离,保证复合材料整体强度。
目前,界面改性技术已经成为大量研究的主要方向之一。
三、复合材料的结构复合材料结构是由增强材料和基体材料的交替叠加形成的。
正常情况下,复合材料的厚度都很小,只有几毫米到几十厘米不等。
其结构特点主要包括以下几个方面:1. 纤维结构复合材料中的纤维结构通常是由排列有序的纤维复合体构成的。
这样的排列方式可以使纤维之间相互贯通,在应力作用下相互支撑,提高复合材料的抗拉强度和抗剪强度。
2. 层间结构层间结构是由交替叠加的增强材料和基体材料构成的。
由于增强材料比基体材料更硬,所以在外力作用下,增强材料首先承受应力,从而优化整个结构的抗振性能。
3. 裂纹结构相对于单一材料的均质结构而言,复合材料内部有很多不同性质的材料组合而成,因此对外部应力有更强的韧性和耐久性。
裂纹结构是在复合材料发生破裂时形成的,通过层间叠加的结构来缓解应力并防止破碎。
第二章聚合物基复合材料的基体
![第二章聚合物基复合材料的基体](https://img.taocdn.com/s3/m/3a954c65af1ffc4ffe47acb9.png)
第二章聚合物基复合材料的基体1.聚合物基体的作用复合材料=基体+增强剂(填充剂)复合材料的原材料包括基体材料和增强材料聚合物基体是FRP的一个必需组分。
在复合材料成型过程中,基体经过复杂的物理、化学变化过程,与增强纤维复合成具有一定形状的整体,因而整体性能直接影响复合材料性能。
基体的作用主要包括以下四个部分①将纤维粘合成整体并使纤维位置固定,在纤维间传递载荷,并使载荷均衡;②基体决定复合材料的一些性能。
耐热性、横向性能、剪切性能、耐介质性能(如耐水、耐化学品性能)等;③基体决定复合材料成型工艺方法以及工艺参数选择等。
④基体保护纤维免受各种损伤。
此外,基体对复合材料的另外一些性能也有重要影响,如纵向拉伸、尤其是压缩性能,疲劳性能,断裂韧性等。
2.聚合物基体材料的分类用于复合材料的聚合物基体有多种分类方法,如按树脂热行为可分为热固性及热塑性两类。
热塑性基体如聚丙烯、聚酰胺、聚碳酸酯、聚醚砜、聚醚醚酮等,它们是一类线形或有支链的固态高分子,可溶可熔,可反复加工成型而无任何化学变化。
热固性基体如环氧树脂、酚醛树脂、双马树脂、不饱和聚酯等,它们在制成最终产品前,通常为分子量较小的液态或固态预聚体,经加热或加固化剂发生化学反应固化后,形成不溶不熔的三维网状高分子,这类基体通常是无定形的。
聚合物基体按树脂特性及用途分为:一般用途树脂、耐热性树脂、耐候性树脂、阻燃树脂等。
按成型工艺分为:手糊用树脂、喷射用树脂、胶衣用树脂、缠绕用树脂、拉挤用树脂等。
不饱和聚酯树脂、环氧树脂、酚醛树脂及被称为三大通用型热固性树脂。
它们是热固性树脂中用量最大、应用最广的品种。
3.聚合物基体的选择对聚合物基体的选择应遵循下列原则:(1)能够满足产品的使用需要;如使用温度、强度、刚度、耐药品性、耐腐蚀性等。
高拉伸(或剪切)模量、高拉伸强度、高断裂韧性的基体有利于提高FRP力学性能。
(2)对纤维具有良好的浸润性和粘接力;(3)容易操作,如要求胶液具有足够长的适用期、预浸料具有足够长的贮存期、固化收缩小等。
复合材料中的基体材料
![复合材料中的基体材料](https://img.taocdn.com/s3/m/382402d28bd63186bcebbcfd.png)
•
2.2.2.2. 各类环氧树脂
2.2.2.2.1. 缩水甘油醚型ER
O R-O-CH2-CH-CH2
含活泼氢的酚或醇 + 环氧氯丙烷 缩聚 缩水甘油醚类ER
NER M ×100
定义:环氧值是指100g树脂中所含环氧基团的克当量数 =
例如:ER的平均分子量340,含有两个环氧基团,则
2 环氧值 = ×100 = 0.588 340
2.2.1.2. 不饱和树脂的合成
(1) 合成不饱和树脂的原材料
① 不饱和二元酸或酸酐 反丁烯二酸、氯代马来酸; 顺丁烯二酸及其酸酐; 丙烯酸、甲基丙烯酸 ② 饱和二元酸或酸酐 间苯二甲酸、对苯二甲酸及其酸酐; 己二酸及其酸酐、癸二酸、四氯苯酐 ③ 二元醇:乙二醇、丙二醇、一缩二乙二醇等 ④ 烯类单体交联剂:苯乙烯、MMA、邻苯二甲酸 二烯丙酯等
纤维断裂,裂纹也不会从一根纤维扩展到其他纤 维上,因此提高了复合材料的抗疲劳强度; 4. 复合材料的横向拉伸性能、压缩性能、剪切性能、 耐热性能和耐介质性能等都与基体有着密切关系。
2.1.2 在CM中对基体的几点要求
(1)基体对纤维(或增强材料)具有适度的 粘结性
这个主要涉及到基体与增强材料的界面问题, 一般材料表面具有等极性基团,而基体材料则应 与之能够反应或都有较强的作用力。
② 羟基酸之间或羟基酸与二元醇之间进行缩聚反应
2HOR'-OCORCOOH k1 k2 HOR'OCORCOOR'OCORCOOH + H2O
HOR'-OCORCOOH + HOR'OH
k1 k2
HOR'OCORCOOR'OH + H2O
⑶ 饱和酸与不饱和酸或酸酐的混合使用
复合材料组成
![复合材料组成](https://img.taocdn.com/s3/m/c1e2c5640166f5335a8102d276a20029bd6463d4.png)
复合材料组成
复合材料是由两种或两种以上不同性质的材料,通过物理或化学的方法,在宏观上复合而成的一种新型材料。
复合材料主要由两部分组成:
•增强材料(或称为粒料、纤维或片状材料),主要用于承受载荷,提供复合材料力学性能。
增强材料包括玻璃纤维、碳纤维、硼纤维、天然纤维、合成纤维等,以及各种金属和非金属基体。
•基体材料(或称为粘结材料),主要用于保护固定增强材料,并改善复合材料部分性能。
基体材料可以分为金属基体和非金属基体,常用的金属基体材料有钛、铝、铜、镁及其合金;常用的非金属基体材料有树脂、碳、石墨、橡胶等。
这两部分材料在复合材料中发挥着不同的作用,通过精心的组合和设计,可以显著提高材料的综合性能,使其优于各单独的组分材料。
根据增强材料的形态,复合材料大致可以分为纤维增强复合材料、细粒增强复合材料和薄片增强复合材料三类。
其中,纤维增强复合材料由纤维状增强材料和基体材料组成,其纤维材料包括玻璃纤维、石棉纤维、天然纤维、合成纤维以及碳纤维、硼纤维、陶瓷纤维、晶须等。
常用的基体材料有塑料、橡胶、水泥、陶瓷、金属等。
复合材料因其比强度高、抗疲劳性和减振性好、耐高温、易成型及性能可按使用要求设计等特点,广泛应用于宇航、航空、国防、机电、建筑、化工、交通等各部门。
复合材料总思考题和参考题答案
![复合材料总思考题和参考题答案](https://img.taocdn.com/s3/m/aea5ef3117fc700abb68a98271fe910ef12dae82.png)
复合材料概论总思考题—•复合材料总论1.什么是复合材料?复合材料的主要特点是什么?①复合材料是由两种或两种以上物理和化学性质不同的物质组合而成的一种多相固体材料。
②1)组元之间存在着明显的界面;2)优良特殊性能;3)可设计性;4)材料和结构的统一2.复合材料的基本性能(优点)是什么?——请简答6个要点(1)比强度,比模量高(2)良好的高温性能(3)良好的尺寸稳定性(4)良好的化学稳定性(5)良好的抗疲劳、蠕变、冲击和断裂韧性(6)良好的功能性能3.复合材料是如何命名的?如何表述?举例说明。
4种命名途径①根据增强材料和基体材料的名称来命名,如碳纤维环氧树脂复合材料②(1)强调基体:酚醛树脂基复合材料(2)强调增强体:碳纤维复合材料(3)基体与增强体并用:碳纤维增强环氧树脂复合材料(4)俗称:玻璃钢4•常用不同种类的复合材料(PMC,MMC,CMC)各有何主要性能特点?5.复合材料在结构设计过程中的结构层次分几类,各表示什么?在结构设计过程中的设计层次如何,各包括哪些内容?3个层次答:1、一次结构:由集体和增强材料复合而成的单层材料,其力学性能决定于组分材料的力学性能、相几何和界面区的性能;二次结构:由单层材料层复合而成的层合体,其力学性能决定于单层材料的力学性能和铺层几何三次结构:指通常所说的工程结构或产品结构,其力学性能决定于层合体的力学性能和结构几何。
2、①单层材料设计:包括正确选择增强材料、基体材料及其配比,该层次决定单层板的性能;②铺层设计:包括对铺层材料的铺层方案作出合理安排,该层次决定层合板的性能;③结构设计:最后确定产品结构的形状和尺寸。
6.试分析复合材料的应用及发展。
答:①20世纪40年代,玻璃纤维和合成树脂大量商品化生产以后,纤维复合材料发展成为具有工程意义的材料。
至60年代,在技术上臻于成熟,在许多领域开始取代金属材料。
②随着航空航天技术发展,对结构材料要求比强度、比模量、韧性、耐热、抗环境能力和加工性能都好。
复合材料的基体材料
![复合材料的基体材料](https://img.taocdn.com/s3/m/60923b03dd36a32d73758155.png)
复合材料的基体材料热塑性基体的缺点: ?、是热塑性基体的熔体或溶液粘度很高,纤维浸渍困难,预浸料制备及制品成型需要在高温高压下进行, ?、聚碳酸酯或尼龙这样一些工程塑料,因耐热性、抗蠕变性或耐药品性等方面问题而使应用受到限制。
二、热固性基体热固性基体主要是不饱合聚酯树脂、环氧树脂、酚醛树脂一直在连续纤维增强树脂基复合材料中占统治地位。
不饱合聚酯树脂、酚醛树脂主要用于玻璃增强塑料,其中聚酯树脂用量最大,约占总量的80,,而环氧树脂则一般用作耐腐蚀性或先进复合材料基体。
(一) 热固性树脂下表为一些常用的热固性树脂其它物理性能 1(不饱和聚酯树脂 1 不饱和聚酯树脂及其特点不饱和聚酯树脂是指有线型结构的,主链上同时具有重复酯键及不饱和双键的一类聚合物。
不饱和聚酯的种类很多,按化学结构分类可分为顺酐型、丙烯酸型、和丙烯酸环氧酯型聚酯树脂。
不饱和聚酯树脂在热固性树指中是工业化较早,产量较多的一类,它主要应用于玻璃纤维复合材料。
由于树脂的收缩率高且力学性能较低,因此很少用它与碳纤维制造复合材料。
但近年来由于汽车工业发展的需耍,用玻璃纤维部分取代碳纤维的混杂复合材料得以发展,价格低廉的聚酯树脂可能扩大应用。
不饱和聚酯的主要优点是: ,、工艺性能良好,如室温下粘度低,可以在室温下固化,在常压下成型,颜色浅,可以制作彩色制品,有多种措施来调节其工艺性能等; ,、固化后树脂的综合性能良好,并有多种专用树脂适应不同用途的需要; ,、价格低廉,其价格远低于环氧树脂,略高于酚醛树脂。
不饱和聚酯的主要缺点是: 固化时体积收缩率较大,成型时气味和毒性较大,耐热性、强度和模量都较低,易变形,因此很少用于受力较强的制品中。
2 交联剂、引发剂和促进剂 a 交联剂不饱和聚酯分子链中含有不饱和双键,因而在热的作用下通过这些双键,大分子链之间可以交联起来,变成体型结构。
但是(这种交联产物很脆,没有什么优点,无实用价值。
因此,在实际中经常把线型不饱和聚酯溶于烯类单体中,使聚酯中的双键间发生共聚合反应,得到体型产物,以改善固化后树脂的性能。
复合材料知识点总结
![复合材料知识点总结](https://img.taocdn.com/s3/m/f7d8077bef06eff9aef8941ea76e58fafab0453b.png)
复合材料知识点总结一、复合材料的分类根据复合材料中各种材料所起的作用不同,复合材料可以分为增强复合材料和基体复合材料。
增强材料一般用于提高复合材料的力学性能,例如增加复合材料的强度、硬度、耐热性、耐腐蚀性等;而基体材料则用于提供基本的形状和结构,比如塑料、橡胶、树脂等。
根据增强材料的种类不同,复合材料可以分为纤维增强复合材料和颗粒增强复合材料。
纤维增强复合材料的增强材料是纤维,可以是碳纤维、玻璃纤维、芳纶纤维等;颗粒增强复合材料的增强材料则是颗粒,可以是金属颗粒、陶瓷颗粒、碳纳米颗粒等。
根据不同的基体材料,复合材料可以分为有机基复合材料和无机基复合材料。
有机基复合材料的基体材料是有机物质,比如树脂、塑料、橡胶等;无机基复合材料的基体材料是无机物质,比如金属、陶瓷、玻璃等。
二、复合材料的特点1. 高强度:复合材料中的增强材料可以有效地提高材料的强度,使其具有更高的拉伸、压缩、弯曲等强度。
2. 轻质:由于增强材料通常采用纤维和颗粒等轻质材料,所以复合材料通常具有很高的强度和刚度,同时重量较轻。
3. 耐热耐腐蚀性:纤维增强复合材料由于采用高强度的纤维材料,具有很好的耐热性和耐腐蚀性,可以在较高温度和腐蚀环境下长时间使用。
4. 成形性好:复合材料可以通过挤压、注塑、压制等多种成型方法加工成各种形状,适用于各种复杂的结构。
5. 良好的设计性:通过改变复合材料中的增强材料的种类、形状、分布、比例等来调节和改变材料的力学性能,可以根据需要进行定向设计。
6. 良好的防护性:复合材料可以通过增加增强材料和基体材料的层数、厚度和结构来增强材料的防护性,有较好的抗冲击、防弹、防爆性能。
三、复合材料的制备工艺1. 纤维增强复合材料的制备工艺(1)手工层叠法:将预先浸渍结合的纤维连续层叠到工件模具内,在每一层的纤维层之间涂覆树脂黏合剂,然后将所有层放置在加压机中,施加适当的压力和温度,使树脂固化。
(2)自动层叠法:采用机械装置将预先浸渍结合的纤维连续层叠到工件模具内,然后使用自动化设备完成树脂涂布和固化过程。
复合材料的基体材料
![复合材料的基体材料](https://img.taocdn.com/s3/m/02f082723868011ca300a6c30c2259010302f353.png)
复合材料的基体材料
复合材料的基体材料是复合材料的核心,包括基体材料和纤维材料,
是支撑和固定复合材料结构的主要材料。
市场上主要的基体材料有:金属
材料、陶瓷材料、树脂材料、橡胶材料等,其中,金属材料主要是钢材、
铝材、铜材等,陶瓷材料主要是碳化硅等陶瓷,树脂材料主要是玻璃树脂、聚氨酯树脂等,橡胶材料主要是聚氯乙烯橡胶、氯丁橡胶等。
金属材料是复合材料中最常用的基体材料,因其强度高、韧性好、耐
磨性好等特点,被广泛应用于航空航天、舰船、汽车、机械制造等领域。
除了可以直接作为复合材料的基体材料外,金属材料还可以作为复合材料
的抗剥裂固化剂和增强剂,为复合材料的抗剥裂性能和强度增加提供有效
支撑。
陶瓷材料是复合材料中热强度高、导热性好的基体材料,主要用于抗
高温高压腐蚀等领域。
陶瓷材料具有良好的耐寒性、耐热性和耐腐蚀性,
能够在极端的温度和压力条件下发挥出良好的性能。
树脂材料是复合材料中最常用的基体材料,可以提供轻量、柔韧、隔
热和耐腐蚀的性能,主要用于制造复合材料工件。
《复合材料力学》2复合材料的基体材料(标准版)
![《复合材料力学》2复合材料的基体材料(标准版)](https://img.taocdn.com/s3/m/f75f08ec9b89680203d825d4.png)
行复合,如碳化硅/铝,碳纤维/铝,氧化铝/铝等 复合材料用作发动机活塞、缸套等零件。
20
工业集成电路: 高导热、低膨胀 如:银、铜、铝作为基体,与高导热性、低热膨胀
的超高模量石墨纤维、金刚石纤维、碳化硅颗粒 复合,用作散热元件和基板。
21
2 金属基复合材料组成特点
针对不同的增强体系,应充分分析和考虑 增强物的特点来正确选择基体合金材料。
强材料与基体复合而成的复合材料。
4
复合材料性能的综合比较
使用温度 ℃
强度 耐老化
导热性 W/(mK)
耐化学 腐蚀
树脂基复 合材料
60~250
可设计
最差
0.35~0.45
最好
金属基复 合材料
400~600
可设计
一般
50~65
一般
陶瓷基复 1000~150
可设计
合材料
0
5
最好
0.7~3.5
最好
工艺 成熟 一般 复杂
氮化硅陶瓷(Si3N4)
共价键化合物的原子自扩散系数非常高,高 纯的Si3N4 的固相烧结极为困难。因此,常用反 应烧结和热压烧结。前者是将Si3N4粉以适当的 方式成形后,在氮气氛中进行氮化合成(约 1350℃)。后者是将加适当的助烧剂 (MgO,Al2O3,1600~1700℃) 烧结。
复合材料学(第二章 复合材料的基体材料) (2)
![复合材料学(第二章 复合材料的基体材料) (2)](https://img.taocdn.com/s3/m/ae7701f5a0c7aa00b52acfc789eb172ded639912.png)
是主要承载物,基体的强度对非连续增强金 属基复合材料具有决定性的影响。因此要获 得高性能的金属基复合材料必须选用高强度 的铝合金为基体,这与连续纤维增强金属基 复合材料基体的选择完全不同。如颗粒增强 铝基复合材料一般选用高强度的铝合金为基 体。
用于电子封装的金属基复合材料有:高碳 化 硅 颗 粒 含 量 的 铝 基 (SiCp/A1) 、 铜 基 (SiCp/Cu)复合材料,高模、超高模石墨纤维 增强铝基(Gr/Al)、铜基(Gr/Cu)复合材料, 金刚石颗粒或多晶金刚石纤维铝、铜复合材 料,硼/铝复合材料等, 其基体主要是纯铝
和纯铜。
1、用于450℃以下的轻金属基体
目前研究发展最成熟、应用最广泛的金属 基复合材料是铝基和镁基复合材料, 用于航
天飞机、人造卫星、空间站、汽车发动机零 件、刹车盘等,并已形成工业规模生产。对 于不同类型的复合材料应选用合适的铝、镁 合金基体。连续纤维增强金属基复合材料一 般选用纯铝或含合金元素少的单相铝合金, 而颗粒、晶须增强金属基复合材料则选择具 有高强度的铝合金。
用于耐磨零部件的金属基复合材料有:碳 化硅、氧化铝、石墨颗粒、晶须、纤维等增 强铝、镁、铜、锌、铅等金属基复合材料, 所用金属基体主要是常用的铝、镁、锌、铜、 铅等金属及合金。
用于集电和电触头的金属基复合材料有: 碳(石墨)纤维、金属丝、陶瓷颗粒增强铝、 铜、银及合金等。
功能用金属基复合材料所用的金属基体均 具有良好的导热、导电性和良好的力学性能, 但有热膨胀系数大、耐电弧烧蚀性差等缺点。
飞机和人造卫星构件上应用,取得了巨大的 成功。
基体材料是金属基复合材料的主要组成, 起着固结增强物、传递和承受各种载荷(力、 热、电)的作用。基体在复合材料中占有很大 的体积百分数。在连续纤维增强金属基复合 材 料 中 基 体 约 占 50%-70% 的 体 积 , 一 般 占 60%左右最佳。颗粒增强金属基复合材料中 根据不同的性能要求,基体含量可在90% ~ 25%范围内变化。多数颗粒增强金属基复合 材料的基体约占80%~90%。而晶须、短纤 维增强金属基复合材料基体含量在70%以上,
《复合材料概论》心得与总结
![《复合材料概论》心得与总结](https://img.taocdn.com/s3/m/b5ebdbccaf1ffc4fff47ac7e.png)
《复合材料概论》心得与总结卫琦 1306030118通过学习《复合材料概论》,我了解了复合材料的命名、分类以及复合材料的基本性能。
复合材料的基体材料有四种:金属材料、无机胶凝材料、陶瓷材料、聚合物材料。
了解了碳纤维的优点以及碳纤维在生活中被广泛的应用。
以及对聚合物基复合材料,金属基复合材料,陶瓷基复合材料的了解。
以下是我对一些知识点的总结。
第一章总论一、复合材料定义:复合材料是由两种或两种以上物理和化学性质不同的物质组合而成的一种多相固体材料;在复合材料中通常有一个相为连续相,称为基体,另一相为分散相,称为增强材料。
二、复合材料的分类1.按增强材料形态分类(连续纤维复合、短纤维复合、颗粒复合、编织复合)2.按增强材料纤维种类分类(玻璃纤维、碳纤维、有机纤维、金属纤维、陶瓷纤维、混合)3.按基体材料分类(聚合物基、金属基、无机非金属基)4.按材料作用分类(结构复合材料、功能复合材料)三、复合材料的基本性能1.可综合发挥各组成材料的优点2.可按对材料性能的需要进行材料的设计和制造(最大特点!)3.可制成所需的任意形状的产品四、复合材料结构设计的三个结构层次①:一次结构:指由基体和增强材料复合而成的单层材料②:二次结构:指由单层材料层合而成的层合体③:三次结构:指通常所说的工程结构或者产品结构第二章复合材料的基体材料复合材料的基体材料有以下四种:①:金属材料主要包括铝及铝合金、镁合金、钛合金、镍合金、铜与铜合金、锌合金、铅、钛铝、镍铝金属间化合物等无机胶凝材料主要包括水泥、石膏、菱苦土和水玻璃等陶瓷材料主要包括玻璃、玻璃陶瓷、氧化物陶瓷、非氧化物陶瓷聚合物材料主要包括不饱和聚酯树脂、环氧树脂、酚醛树脂及各种热固性/热塑性聚合物。
第三章复合材料的增强材料一、增强材料的定义:在复合材料中,凡事能基体材料力学性能的物质,均称为增强材料。
二、玻璃纤维的分类:1.以玻璃原料成分分类:无碱玻璃纤维(E玻纤);中碱玻璃纤维;有机玻璃纤维(A玻璃);特种玻璃纤维。
复合材料学的基体材料和增强材料各论
![复合材料学的基体材料和增强材料各论](https://img.taocdn.com/s3/m/01255a75a32d7375a417804d.png)
设计人员可根据所需制品对力学及其它性能的要求, 对结构设计的同时对材料本身进行设计。
具体体现在两个方面
力学设计—— 给制品一定的 强度和刚度
功能设计——给 制品除力学性能 外的其他性能
3、工艺性能好 复合材料的工艺性能十分a、优电越绝,缘其性成能好型,方不法受
多种多样,成型条件机动灵活。电磁作用; 具1导的/体1热玻0到0系 璃~玻数 钢1璃/小 可1纤0, 耐0维0是瞬;增金时特强属高殊树材温类脂料。型基复合bc制、、材品可微料。制波特作穿性成透:不性带好静;电的
碳纤维II/环氧 1.45
1.5
1.4
1.03
0.97
碳纤维I/环氧
1.6
1.07
2.4
0.67
1.5
有机纤维/环氧 1.4
1.4
0.8
1.0
0.57
硼纤维/环氧
2.1
1.38
2.1
0.66
1.0
硼纤维/铝
2.65
1.0
2.0
0.38
0.57
由表1-2可见:FRC的密度约为钢的1/5,铝的1/2
比模量:高模量碳纤维/环氧复合材料为钢的5倍,
2007年6月8日, “阿特兰蒂斯”号 航天飞机在位于美 国佛罗里达州卡纳 维拉尔角的肯尼迪 航天中心发射升空, 飞往国际空间站。
美国全部用碳纤维复合材料制成一架八座商用飞机-里尔芳2100号,并试飞成功,这架飞机仅重567kg,它 以结构小巧重量轻而称奇于世。
采用大量先进复合材料制成的哥伦比亚号航天飞机。
无机非金属材料:具有性质稳定,抗腐蚀、 耐高温等优点。但质脆,经不起热冲击。
金属材料:力学性能好,耐高温。但密度 大,抗腐蚀性能差。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相反。对于非连续增强(颗粒、晶须、短纤维)金属 基复合材料,基体的强度对复合材料具有决定性的影响,
因此,要选用较高强度的合金来作为基体。
所以,要获得高性能金属基复合材料必须选用高强度
铝合金作为基体,这与连续纤维增强金属基复合材料基体
的选择完全不同。 如颗粒增强铝基复合材料一般选用高强度铝合金(如 A365,6061,7075)为基体。
13
③ 基体金属与增强物的相容性
首先,由于金属基复合材料需要在高温下成型,制备过 程中,处于高温热力学非平衡状态下的纤维与金属之间很容 易发生化学反应,在界面形成反应层。 界面反应层大多是脆性的,当反应层达到一定厚度后, 材料受力时将会因界面层的断裂伸长小而产生裂纹,并向周 围纤维扩展,容易引起纤维断裂,导致复合材料整体破坏。
9
② 根据金属基复合材料组成特点
选用不同类型的增强材料如连续纤维、短纤维
或晶须,对基体材料的选择有较大影响。
10
例如在连续纤维增强的复合材料中,基体的主 要作用应是以充分发挥增强纤维的性能为主,基体 本身应与纤维有良好的相容性和塑性,而并不要求 基体本身有很高的强度。 因此,考虑到要充分发挥纤维的作用,希望选
金属基复合材料中,基体主要是各种金
属或金属合金。
3
1、金属基体材料的选择原则
金属与合金的品种繁多,目前用作金属
基体材料的主要有铝及铝合金、镁合金、钛
合金、镍合金、钢与铜合金、锌合金、铅、
钛铝金属间化合物等。分组 合和发挥基体金属和增强物的性能特点,获得 预期的优异综合性能满足使用要求十分重要。 所以,在选择基体金属时应考虑以下几方面:
第三章
复合材料的基体材料
复合材料的原材料包括基体材料和增强材料。
基体材料主要包括以下三部分:
金属基体材料、陶瓷基体材料和聚合物基体材料
1
一、金属基体材料
1、金属基体材料的选择原则
2、结构用金属基复合材料的基体
3 功能用金属基复合材料的基体
2
金属基复合材料学科主要涉及材料表面、 界面、相变、凝固、塑性形变、断裂力学等。
5
① 根据金属基复合材料的使用要求
金属基复合材料构件的使用性能要求是选择金属基体材
料最重要的依据。
如在航天、航空技术中,高比强度和比模量以及尺寸稳
定性是最重要的性能要求;作为飞行器和卫星的构件宜选用
密度小的轻金属合金(如镁合金和铝合金)作为基体,与高
强度、高模量的石墨纤维、硼纤维等组成石墨/镁、石墨/铝、
14
其次,由于基体金属中往往含有不同类型的合金
元素,这些合金元素与增强物的反应程度不同,反应
后生成的反应产物也不同,需在选用基体合金成分时
充分考虑,尽可能选择既有利于金属与增强物浸润复
合,又有利于形成合适稳定的界面合金元素。
15
如碳纤维增强铝基复合材料中,在纯铝中加入 少量的Ti,Zr等合金元素可明显改善复合材料的界 面结构和性质,大大提高复合材料的性能。 用铁、镍作为基体,碳纤维作为增强物是不可 取的。因为Ni,Fe元素在高温时能有效地促使碳纤 维石墨化,破坏了碳纤维的结构,使其丧失了原有
23
高温金属基复合材料的基体合金的成分和性能
24
A、用于450 ℃以下的轻金属基体
在这个温度范围内使用的金属基体主要是 铝、镁和它们的合金,而且主要是以合金的形
式被广泛的应用。例如,用于航天飞机、人造
合材料可制作发动机活塞、缸套等零件。
8
工业集成电路需要高导热、低膨胀的金属基复合材料 作为散热元件和基板。 因此,可以选用具有高导热率的银、铜、铝等金属为 基体与高导热性、低热膨胀的超高模量石墨纤维、金刚石 纤维、碳化硅颗粒复合成具有低热膨胀系数和高导热率、 高比强度、高比模量等性能的金属基复合材料。
硼/铝复合材料。
6
高性能发动机则要求复合材料不仅有高比强度和比模 量,还要具有优良的耐高温性能,能在高温、氧化性气氛 中正常工作。此时不宜选用一般的铝、镁合金,而应选择 钛合金、镍合金以及金属间化合物作为基体材料。 如碳化硅/钛、钨丝/镍基超合金复合材料可用于喷气发
动机叶片、转轴等重要零件。
7
在汽车发动机中要求其零件耐热、耐磨、导热、一 定的高温强度等,同时又要求成本低廉,适合于批量生 产,因此选用铝合金作基体材料与陶瓷颗粒、短纤维组 成颗粒(短纤维)/铝基复合材料。 如碳化硅/铝复合材料、碳纤维或氧化铝纤维/铝复
高比模量的轻型结构件,广泛的用于宇航、航空、
汽车等领域。
18
在发动机,特别是燃气轮机中所需要的结
构材料是热结构材料,要求复合材料零件在高
温下连续安全工作,工作温度在650~1200 ℃ 左右,同时要求复合材料有良好的抗氧化、抗
蠕变、耐疲劳和良好的高温力学性质。
19
铝、镁复合材料一般只能用在450 ℃左
的强度,使复合材料性能恶化。
16
因此,选择基体材料时,应充分注意与增强 物的相容性(特别是化学相容性),并尽可能在
复合材料成型过程中抑制界面反应。例如:
对增强纤维进行表面处理; 在金属基体中添加其他成分;
选择适宜的成型方法;
缩短材料在高温下的停留时间等。
17
2、结构用金属基复合材料的基体
用于各种航天、航空、汽车、先进武器等结构 件的复合材料一般均要求有高的比强度和比刚度, 因此大多选用铝及铝合金、镁及镁合金作为基体金 属。目前研究发展较成熟的金属基复合材料主要是 铝基、镁基复合材料,用它们制成各种高比强度、
用塑性较好的基体。实验证明,此时如果采用较高
强度的合金材料,复合材料的性能将有所降低。
11
如碳纤维增强铝基复合材料中,纯铝或含有少 量合金元素的铝合金作为基体比高强度铝合金要好 得多,使用后者制成的复合材料的性能反而低。 在研究碳铝复合材料基体合金的优化过程中发 现,铝合金的强度越高,复合材料的性能越低。这 可能与基体和纤维的界面状态、脆性相的存在、基 体本身的塑性等有关。
右、而钛合金基体复合材料可用到650℃ 、
而镍、钴基复合材料可在1200℃使用。 另外,还有最近正在研究的金属间化合
物为热结构复合材料的基体。
20
结构复合材料的基体大致可分为轻
金属基体和耐热合金基体两大类。
21
下表列出了一些基体金属和合金的主要特性
22
用作高温金属基复合材料的基
体合金的成分和性能列于下表中。