函数的极大值与极小值(精选)

合集下载

第五节 函数的极值与最大值最小值

第五节  函数的极值与最大值最小值

第第五五节节 函函数数的的极极值值与与最最大大值值最最小小值值
例例33求求函函数数 ff ((xx)) ||xx22||eexx在在闭闭区区间间[[00,,33]]上上的的最最
大大值值与与最最小小值值..

(x 2)ex , f (x) (x 2)eyx ,
f
( x)
(x 1)ex
(x
Step1 求导数 f (x); Step2 求出函数全部驻点与不可导点; Step3 列表,用第一充分条件或第二充分条件判别 在Step2中求出的点处函数是否取得极值。 Step4 求出各极值点的函数值。
第第五五节节函函数数的的极极值与值最与大最值大最值小最值小值
例例1 求求函函数数f f( x( )x ) x 2x( x2 (4 x43x 23 x 32 )的3 )极的值极. 值.
极小 极大
y
y (x 2 4)3 x 2
(3) 极值点可能是驻点或不可导点.
O
x
第五节 函数的极值与最大值最小值
2. 极值存在的条件
定理1(必要条件) 设函数 f (x) 在 x0 处可导,且在
x0 处取得极值,那么 f (x0) = 0 .
y
说明:可导函数的极值点一定是驻点,
y x3
但驻点不一定是极值点. 如 y=x3 在驻点 x = 0 处取不得极值
1)e x
,
,
y
0 x2,
2 x3, 0 f( xx) | x2,2 | e x
2 x 3. O
f (x) | x 2 | ex
x
所以在(0 , 3)内,有唯一驻点 x = 1 . 又 x=2 是不可导点,
由于
O
x
f (0) = 2 , f (1) = e , f (2) = 0 , f (3) = e3 ,

函数的极值与最大值最小值

函数的极值与最大值最小值

lim
x x0
f (x) f (x0 ) (x x0 )n
2
(n为正整数)
试讨论 f (x)在 x x0 点的极值问题.
解:由于 lim f (x) f (x0 ) 2 0, xx0 (x x0 )n

0,当x U (x0, ) 时,有
f
(x) f (x0 ) (x x0 )n
a 1 当a 1时,则1 e1a 0,a 1 0,于是,f (a) 0; 当a 1时,则1 e1a 0,a 1 0,于是,f (a) 0; 因此,当a 1时,f (a) 0,由第二充分条件可知: f (a) 为极小值.
-11-
例 4 设 f (x)在 x0 的某个邻域内连续,且
切线与直线 y 0 及 x 8所围成的三角形面积最大.
解 如图,设所求切点为 P(x0, y0 ), y
T
则切线PT为:y y0 2x0 (x x0 ),
B
P
y0 x02 ,
oA
Cx
A(
1 2
x0
,
0),
C(8, 0),
B(8, 16x0 x02 )
SABC
1(8 2
1 2 x0 )(16 x0
由极值定义可知:f (x)在 x0 不取得极值.
-13-
二、最大值最小值问题
假定:f (x)在[a,b]上连续,在(a,b)内除有限个点外可导, 且至多有有限个驻点.
讨论:f (x) 在[a,b]上的最大值与最小值的问题.
★ 最值的存在性:
若 f (x)在[a,b] 上连续,则 f (x) 在[a,b]上的最值必定存在.
如:y x3,y x0 0, 但 x 0 不是极值点.
【注 2】函数的极值点只可能是驻点或导数不存在的点.

《函数的极大值与极小值》ppt课件

《函数的极大值与极小值》ppt课件

x3
3
4x
4)
'
=
x2
4
=
(
x
2)( x
2)
3
令y′=0,解得x1=-2,x2=2
当x变化时,y′,y的变化情况如下表
x (-∞,-2) -2 (-2,2) 2 (2,+∞)
f (x) +
0

0
+
f (x)

28
极大值3

极小值
4 3

∴当x=-2时,y有极大值且y极大值= 28
当当a=-1/2时,f 由 f ( x) = 0 得
( x) = 3x2 3
x
=
1
2

2
x 3 2
x=
=
1
3( x

1)(
x
1 2
)
列表如下:
x
(, 1) 1
2
2
f (x) + 0
( 1 ,1) 2

1 (1, ) 0+
f (x) Z 极大值 ] 极小值 Z
在x=1时取极小值,符合题意. 综上a=-1/2.
函数f(x)的极大值为f(2)=
4 e2
14
例3.函数y=alnx+bx2+x在x=1和x=2处有
极值,(1)求a、b的值.
(2)求出极值并指出是极大值还是极小值
解:
y ' = (a ln x bx2 x) ' = a 2bx 1
x
由题意,在x=1和x=2处,导数为0

a a 2
2b 1 = 0 4b 1 = 0

函数的极值-最大值与最小值省公开课获奖课件说课比赛一等奖课件

函数的极值-最大值与最小值省公开课获奖课件说课比赛一等奖课件
(1) 求f (x).
(2) 找出f (x)的所有驻点和f (x)不存在的点
x1,, xk .
(3) 鉴定每个驻点和导数不存在旳点
xi (i 1,2,, k) 两侧(在xi 较小旳邻域内)
f (x)旳符号, 依定理鉴定xi 是否为f(x)旳 极值点.
例1.求y 3x4 8x3 6x2的极值与极值点.
令 0, 得驻点 x 2.4 (0, )
根据问题旳实际意义, 观察者最佳站位存在, 驻点 又唯一, 所以他站在距墙 2.4 m 处看图最清楚 .
特殊情况下旳最大值与最小值: 若 f(x)在一区间(有限或无限 开或闭)内可导且
有且只有一种驻点x0 则: 当f(x0)是极大值时 f(x0)就是f(x)在该区间上旳
可导 且
(2) 令f (x)0 得驻点x1 x1为不可导点 (3) 列表判断
x ( 1) 1 (1 1) 1 (1 )
f (x) 不可导 0
f(x) ↗
0


定理3 (第二充分条件) 设函数f(x)在点x0处 具有二阶导数, 且 f (x0 ) 0, f (x0 ) 0, 则
(1)当f (x0 ) 0时,x0为f (x)的极大值点,
例4. 求 y 2x3 3x2 12x 14 在 [3,4] 上旳最大值与最小值. 解: y 6x2 6x 12 6(x 2)(x 1),
令 y 0, 得驻点 x1 2, x2 1.
因为
f (3) 23, f (2) 34, f (1) 7, f (4) 142,
所以
M max{ f (3), f (2), f (1), f (4)} f (4) 142,
极小值, 称 x0为f(x)旳极小值点;

函数的极值与最大值最小值

函数的极值与最大值最小值
第五节 函数的极值与最大值最小值
一、函数的极值及其求法 二、最大值与最小值问题
一、函数的极值及其求法
极值定义 设函数 f ( x)在 x0 的某邻域U ( x0 )内有定义,
如果对 x U ( x0 ) ,有 f ( x ) f ( x0 ) ( 或 f ( x ) f ( x0 ) ),
求函数 f ( x ) x 2 3 x 2 在 [3,4] 上的 例3 最大值与最小值 .
解: 显然
一定取得最大值与最小值.
f ( x) ( x 2)( x 1)

x 1, x 2为不可导点
x [3,1] [2,4] x (1,2).
x 2 3 x 2, f ( x) 2 x 3 x 2,

2 5
0 0.33
2 ( 5 , )
其极大值为 是极大点,
是极小点, 其极小值为
确定函数极值点和极值的步骤
(1) 确定函数定义域 , 并求导数 f ( x );
(2) 求出 f ( x ) 的全部驻点与不可导点;
(3)驻点和不可导点将定义域区间分成若干个区间, 列表考察导函数在各个区间内的符号,以便确定该点
x 最大(小)值若在区间内部取得,则它一定是极大(小)值. o a x1 x2 x3x4 b x 2 , x4 为极小值点
费马( Fermat )引理
设函数 f ( x)在 x0 的某邻域U ( x0 )内有定义,
若 (1) f ( x)在 x0 点可导
则 f ( x0 ) 0.
(2) f ( x)在 x0 点取得极大值或极小值
点处的切线与直线 y 0 及 x 8 所围成的三角形

函数的极值与最大值最小值

函数的极值与最大值最小值
)
(
)
3
(
检查
x
f
¢
0
)
(
)
2
(
的根
求驻点,即方程
=
¢
x
f
);
(
)
1
(
x
f
¢
求导数
.
)
4
(
求极值
例1
求函数 的极值.

得驻点

的左右两侧附近,
因此 不是极值.

点左侧,当 时,
2.9 函数的极值与最大值最小值
讨论蛋白质含量随积温变化的情况.
解 单位土地面积上黑麦草的蛋白质含量的比例为 此函数导数的计算比较复杂,作近似计算 §2.9 函数的极值与最大值最小值


得w = 683,是最大值点,
此时收获得到的蛋白质数量最多;

得w =493,是增长曲线的拐点,
此时是蛋白质数量增加最快的阶段.
只有一个驻点,而最大值一定存在,此驻点就是最大值点,
即当产量为300件时,总利润最大,为25000元.
L(300)=25000,
§2.9 函数的极值与最大值最小值
例6
河北沧州地区种植黑麦草作为饲料,单位土地面积上黑麦草的干物质积累量m是积温w的函数,
而随着植物的生长,干物质中的蛋白质含量 的比例逐渐下降,经验公式为
极值,
定理1
(必要条件)
证明略. (费马引理)
导数等于零的点称为函数的驻点.
§2.9 函数的极值与最大值最小值
例如,

① 可导函数的极值点一定是驻点,但反过来驻点不一定是极值点;
② 导数不存在的点也可能是极值点.

4.4函数的极值与最大 (小) 值

4.4函数的极值与最大 (小) 值
2 ) 设 f ( x ) C [ a , b ] D ( a , b ) , 且 f ( x ) 0 , 则 f (a )为最小值 , f (b)为最大值 . 设 f ( x ) C [ a , b ] D ( a , b ) , 且 f ( x ) 0 , 则 f (a )为最大值 , f (b)为最小值 .
1.求 f ( x ) ; 2.求 f ( x ) 0的点和 f ( x )不存在的点: x1 , x2 ,, xk
3.计算 f ( x1 ) , f ( x2 ) ,, f ( xk ) 及 f (a ), f (b) .
4.比较上述值的大小,有:
max f ( x ) max{ f ( x1 ) ,, f ( xk ), f (a ), f (b ) }.
x[ a ,b ] x[ a ,b ]
min f ( x ) min{ f ( x1 ) ,, f ( xk ), f (a ), f (b ) }.
例6 求函数 y 2 x 3 3 x 2 12 x 14 的在[3,4]
上的最大值与最小值 .
解 f ( x ) 6( x 2)( x 1)
§4.5 函数的极值与最大 (小) 值
一、极 值 二、最大值和最小值
一、极值
y
y f ( x)
ax
y
1
O
x2
x3
x4
x5
x6
b
x
y
O
x0
x
O
x0
x
定义 设函数f ( x )在区间( a , b )内有定义, x0是
(a , b )内的一个点, 如果存在着点x0的一个邻域, 对于这邻域内 的任何点 x , 除了点 x0 外 , f ( x ) f ( x0 )均成立, 就称 f ( x0 )是函数f ( x )的一个极大值;

函数的极大(小)值和最大(小)值

函数的极大(小)值和最大(小)值

§2-6 函数的极大(小)值和最大(小)值1.函数的极大(小)值 一个函数在它有定义的区间上可能没有最大(小)值,但它在某个部分区间上可能会有最大(小)值,即局部最大值或局部最小值.函数的局部最大值或局部最小值,又称为函数的极大值或极小值.具体地说,设函数)(x f 在点),(0b a x ∈连续.若有足够小的正数δ,使)||0()()(00δ<-<<x x x f x f (图2-21) 则称函数)(x f 在点0x 取到极大值)(0x f ,并称点0x 为函数)(x f 的极大值点.同理,使 )||0()()(11δ<-<>x x x f x f (图2-21) 则称函数)(x f 在点1x 取到极小值)(1x f ,并称点1x 为函数)(x f 的极小值点.函数的极大值和极小值统称为函数的极值,而函数的极大值点和极小值点统称为函数的极值点. 因为函数的极值是函数在小范围内的最大值或最小值,根据定理2-1,我们就有下面的结论:若函数()f x 在某区间内的点0x 处取到极值且有导数'0()f x ,则'=0()0f x .因此,0()0f x '=是可微函数....在点0x 取到极值的必要条件,但它不是可微函数取到极值的充分条................件.! 例如函数3)(x x f =,尽管有0)0(='f ,但0不是它的极值点(图2-22).以后,就把使0()0f x '=的点0x 称为函数)(x f 的驻点(可能不是极值点.......).需要指出,不能把上面的结论简单说成“函数取到极值的必要条件”.例如,函数()f x x =(图2-23),它在点0有极小值(也是最小值),可是它在点0没有导数.因此,函数在区间内部的极值点只可能是它的驻点或没有导数的点.它们合在一起称为函数的临界点.一般情形下,求连续函数)(x f 在开区间),(b a 内的极值时,一般步骤是:第一步,求出)(x f 在区间),(b a 内的所有临界点(即驻点或没有导数的点);第二步,对于每一个临界点,再用下面的判别法验证它是否为极值点;第三步,求出函数在极值点处的函数值(即函数的极大值或极小值).判别法Ⅰ 设0x 为连续函数)(x f 在区间),(b a 内的临界点(驻点或没有导数的点).若有足够小的正数δ,使(见图2-24)⑴)(x f 在),(00x x δ-内是增大的且在),(00δ+x x 内又是减小的,则)(0x f 是极大值; 图2-23x图2-21[或] [或]⑵)(x f 在),(00x x δ-内是减小的且在),(00δ+x x 内又是增大的,则)(0x f 是极小值;[或0)(<'x f ] [或0)(>'x f ]⑶)(x f 在),(00δδ+-x x 内是增大的或是减小的,则)(0x f 不是极值.当0x 为函数)(x f 的驻点且0)(0≠''x f 时,就用下面的判别法Ⅱ.判别法Ⅱ 设0x 为函数)(x f 在区间),(b a 内的驻点[即0)(0='x f ].若有二阶导数0)(0≠''x f ,则⑴ 当0)(0<''x f 时,)(0x f 是极大值; ⑵ 当0)(0>''x f 时,)(0x f 是极小值.[当0)(0=''x f 时,函数)(x f 在点0x 是否取到极值,需要做进一步的讨论]证 根据例22(§2-5),则有222200000011()()()()()()()()22f x h f x f x h f x h o h f x f x h o h '''''+=+++=++于是得 20001()()[()(1)]2f x h f x f x o h ''+-=+ 因为0)(0≠''x f ,所以当||h 足够小时,)]1()([0o x f +''与)(0x f ''同符号.因此,有正数δ,使当0||h δ<≤时,0()f x h +0()f x -=000,()00,()0f x f x ''<<⎧⎨''>>⎩ 这就是要证的结论.例23 求函数1323-+=x x y 的极值.解 2363(2)y x x x x '=+=+,666(1)y x x ''=+=+由0='y 得驻点122,0x x =-=.因为2060,60x x y y =-=''''=-<=>,所以31)2(3)2(232=--+-=-=x y 是极大值; 01x y ==-是极小值.【注】若函数()f x 在点0x 没有导数或二阶导数0()0f x ''=,就去用上面的判别法Ⅰ.2.函数的最大(小)值(又称为绝对极值) 函数的最大(小)值是指函数在定义域或定义域中某个区间上的最大(小)值.求连续函数)(x f 在闭区间],[b a 上的最大值和最小值时,方法更简单:第一步,先求出)(x f 在开区间),(b a 内的临界点;并求出)(x f 在所有临界点上的函数值.(1) 0图2-24 (2)(3)第二步,把以上函数值与区间端点上的函数值)(a f 和)(b f 放在一起做比较,其中最大者就是函数)(x f 在闭区间],[b a 上的最大值,最小者就是函数)(x f 在闭区间],[b a 上的最小值.非闭区间上的连续函数可能没有最大值或最小值.在这种情形下,就要根据具体问题,经过分析后才能确定某个函数值是最大值或最小值.例如,⑴ 函数)(x f 在区间),[b a 上增大(减小)时,)(a f 就是最小值(最大值);⑵ 函数)(x f 在区间],(b a 上增大(减小)时,)(b f 就是最大值(最小值);⑶ 设有点),(b a c ∈. 若函数)(x f 在区间],(c a 上增大且又在区间),[b c 上减小,则)(c f 就是最大值;若函数)(x f 在区间],(c a 上减小且又在区间),[b c 上增大,则)(c f 就是最小值.例24 证明不等式:)0(1e >+>x x x .证 令)0()1(e )(≥+-=x x x f x ,则)(x f 在),0[+∞上是连续函数.因为)0(01e )(>>-='x x f x [即函数()f x 是增函数]所以(0)0f =是最小值.因此,()0(0)f x x >>,即)0(1e >+>x x x .例25 证明:函数)10()(<<-=αααx x x f 在区间),0(+∞内有最大值α-=1)1(f . 由此再证明近代数学中著名的赫尔窦(H ölder)不等式:11110,0,0,0;1p q ab a b a b p q p qp q ⎛⎫≤+>>>>+= ⎪⎝⎭ 证 由0)1()(11=-=-='--αααααx x x f 得驻点1=x . 因为 当10<<x 时, 0)1()(1>-='-ααx x f [即)(x f 增大],当+∞<<x 1时, 0)1()(1<-='-ααx x f [即)(x f 减小],所以α-=1)1(f 是最大值.其次,令q p b a x p ==-,1α,则111qp p p p p q p q q q a a a f ab a b b b p b p --⎛⎫⎛⎫=-⋅=- ⎪ ⎪⎝⎭⎝⎭ 而根据上述结论,即α-≤1)(x f ,则得不等式111(1)11q p q p aba b f p p q α---≤=-=-= 两端同乘q b ,并注意1=-p q q ,则得要证的不等式q p b qa p ab 11+≤. 在非闭区间上求一个函数的最大(小)值问题,常常出现在实际应用问题中.解这类问题时,首先需要根据问题本身,运用几何学或物理学或其他有关科学中的知识,列出“目标函数”(即要求它的最大值或最小值的函数)的函数式.这样,问题就变成求目标函数的最大值或最小值.例如, “当矩形周长l 为定值时,它的长和宽为何值时面积最大?”或“当矩形面积S 为定值时,它的长和宽为何值时周长最小?”设矩形的一边长为x ,则前一个问题的目标函数就是(矩形面积)()2l S x x x ⎛⎫=- ⎪⎝⎭ 02l x ⎛⎫<< ⎪⎝⎭ 而后一个问题的目标函数就是(矩形周长)()2S l x x x ⎛⎫=+ ⎪⎝⎭ )0(+∞<<x 这样,问题就变成求函数)(x S 的最大值或求函数)(x l 的最小值.例26 设有闭合电路如图2-25. 它由电动势E 、内阻r 和纯电阻负载E 所构成.若E 和r 是已知常数,问负载R 为何值时,电流的电功率最大?解 根据电学的知识,闭合电路中电流的电功率为R I P 2=(I 为电流强度)而根据闭合电路的欧姆定律,电流强度R r E I +=. 因此,电功率为 22)(R r R E P += (自变量为R ) 由0='P ,即由0)()()()(2)(324222=+-=++⋅-+⋅='R r R r E R r R r R E R r E P 得r R =. 因此,当负载r R =(内阻)时,电功率取到最大值r E P 4/2=.例27 由材料力学的知识,横截面为矩形的横梁的强度是2h x k =ε(k 为比例系数,x 为矩形的宽,h 为矩形的高)今要将一根横截面直径为d 的圆木,切成横截面为矩形且有最大强度的横梁,那么矩形的高与宽之比应该是多少?解 如图2-26,因为222x d h -=,所以22()(0)kx d x x d ε=-<<.令0='x ε,即22222()2(3)0x k d x x k d x ε'=--=-=⎡⎤⎣⎦ 则得驻点x d=根据实际问题的提法,当矩形的宽/x d =强度ε取到最大值.此时,因为d dd x d h 32)3(2222=-=-= 所以2/=x h .图2-26在实际工作中,技术人员是按下面的几何方法设计的:把圆木的横截面(圆)的直径AB 分成三等份(如图2-27),再分别自分点C 和D 向相反方向作直径AB 的垂线,交圆周后做成图中那样的矩形.这个矩形的长边与短边的比值就是2.例28 已知某工厂生产x 件产品的成本为21()2500020040C x x x =++(元) 问:⑴ 要使平均成本最小,应生产多少件产品? ⑵ 若产品以每件500元售出,要获得最大利润,应生产多少件产品?最大利润是多少? 解 ⑴ 平均成本为x x x x C x C 40120025000)()(++==(元/件) 让040125000)(2=+-='x x C ,则得1000=x (件).因此,生产1000件产品时平均成本最小. ⑵ 售出x 件产品时,收入为x 500(元),而利润为=)(x L (收入)x 500-(成本))40120025000(500)(2x x x x C ++-= 212500030040x x =-+- 让020300)(=-='x x L ,则得6000=x (件).因此,生产6000件产品并全部售出时,获得的利润最大.最大利润为900000)6000(=L (元). 习 题1.求下列函数的极值(极大值或极小值):求连续函数在定义区间内的极值时,应先找出导数等于零的点(驻点)和没有导数的点,然后按上面指出的判别法,去判别函数在这些点上是否取到极大值或极小值.⑴x x x f -=3)(; ⑵242)(x x x f -=; ⑶122)(2-+-=x x x x f ;⑷()f x x = ⑸x x x f -=e )(; ⑹x x x f ln )(=; ⑺x x x f -+=e )1()(3; ⑻3231)1()(x x x f -=.答案:⑴max minf f ⎛= ⎝;⑵1)1(,0)0(m in m ax -=±=f f ; ⑶2)2(,2)0(m in m ax =-=f f ;⑷min 34f ⎛⎫= ⎪⎝⎭;⑸1m ax e )1(-=f ;⑹12m in e 2)e (---=f ;⑺2m ax e 27)2(-=f ;⑻max min 1(1)03f f ⎛⎫= ⎪⎝⎭. 2.求下列函数在指出区间上的最大值和最小值:⑴];2,2[,1823-+--=x x x y ⑵];1,1[,15-++=x x y⑶];2,1[,13--=x x y ⑷511,,1;12y x x ⎡⎤=-⎢⎥++⎣⎦ ⑸211,1,12x y x +⎡⎤=-⎢⎥+⎣⎦. 答案:⑴;11,27203-⑵;1,3-⑶;443,23-⑷;31,1532⑸0,2242-. 3.设n a a a <<< 21. 当x 为何值时,函数∑=-=ni i a x x f 12)()(取最小值?答案:n a a a x n +++=21(算术平均值). 4.设.0>a 求函数||11||11)(a x x x f -+++=的最大值. 提示:把区间),(+∞-∞分成三个区间(,0),(0,),(,)a a -∞+∞. 答案:21a a++. 5.证明下面的不等式: ⑴ );01(2)1ln(2<<--<+x x x x ⑵ 12ln 1(0);21x x x ⎛⎫+>> ⎪+⎝⎭ ⑶ );0(arctan 33><<-x x x x x ⑷ 1e 1(0)x x x -≥>. 6.设有方程033=+-c x x (c 为常数).问:当c满足什么条件时,方程有:⑴三个实根,⑵两个实根,⑶一个实根? [提示:分别研究下图⑴,⑵,⑶]答案:⑴22<<-c ;⑵2±=c ;⑶2-<c 或2>c .7.在什么条件下,方程()300x px q pq ++=≠有:⑴一个实根,⑵三个实根?提示:参考上一题的做法. 答案:⑴042723>+q p ;⑵042723<+q p . 8.确定下列各方程实根的个数,并指出只含有一个实根的区间:⑵ 第6题图⑴ 0109623=-+-x x x ; ⑵ 020********=-+--x x x x ;⑶ )0(ln ≠=k kx x ; ⑷2e (0)x ax a =>.答案:⑴一个实根,在)5,4(内;⑵两个实根,32,1221<<-<<-x x ;⑶当0<k 时有一个实根,在)1,0(内;当1e0-<<k 时有两个实根,+∞<<<<21e ,e 1x x ; 当1e -=k 时有一个实根e =x ;当1e ->k 时没有实根.⑷当4e 02<<a 时有一个实根,在)0,(-∞内;当4e 2>a 时有三个实根, 1230,02,2x x x -∞<<<<<<+∞.9.设有二阶导数)(a f ''. 证明:⑴ 若函数)(x f 在点a 取到极大值,则0)(≤''a f ;⑵ 若函数)(x f 在点a 取到极小值,则0)(≥''a f .10.设函数21()22sin (0),(0)2f x x x f x ⎛⎫=-+≠= ⎪⎝⎭. 证明:)(x f 有最大值2)0(=f ,但)(x f 在点0的左旁附近不是增大的,而且在点0的右旁附近不是减小的(这说明判别法Ⅰ中的条件不是必要的).11.应用题 ⑴设两正数x 与y 的和等于常数a (a y x =+).求)0,0(>>n m y x n m 的最大值.⑵设两正数x 与y 的乘积等于常数a (a xy =).求)0,0(>>+n m y x n m 的最小值.⑶在有一定体积的所有正圆柱体中,当底圆半径与高之比为何值时,它有最小的表面积?⑷用薄钢板做一个容积为定值v 的无盖圆柱形桶.假若不计钢板厚度和剪裁时的损耗,问桶底半径r 与高h 各为多少时,用料最省?⑸从半径为R 的圆上切掉一个扇形后,把余下部分卷成一个漏斗.问余下部分扇形的圆心角θ为何值时,卷成漏斗的容积最大?第11⑸题图⑵ ⑴ 第11⑹题图x⑹(反射定律) 如图示,由点A 经点B ,再到点C . 证明:当入射角α等于反射角β时,折线ABC 的长度最短.⑺一商家销售某种商品的价格为x p 2.07-=(万元/T),其中x 为销售量(单位:T);商品的成本为13+=x C (万元).(i )若每销售一吨商品,政府要征税t 万元,求商家获最大利润时的销售量;(ii )t 为何值时,政府税收的总额最大?答案:⑴n m n m n m n m n m a +++)(;⑵n m n m mn n m a n m +⎪⎪⎭⎫ ⎝⎛+1)(;⑶1∶2;⑷r h ==⑸2θ=弧度);⑺(i )t x 5.210-=;(ii )2=t .。

函数的极值与最大值最小值

函数的极值与最大值最小值

函数的极值与最大值最小值在数学中,对于一个给定的函数,我们常常关心它的极值以及最大值和最小值。

这些概念在微积分中扮演着重要的角色,不仅在数学理论中有着深刻的意义,也在实际问题中有着广泛的应用。

1. 极值的定义极值是指函数在某个区间内取得的局部最大值或最小值。

具体来说,设函数f(x)在区间I上有定义,若存在$x_0 \\in I$,使得对任意$x\\in I$,有$f(x)\\leqf(x_0)$或者$f(x) \\geq f(x_0)$,则称f(x0)是函数f(x)在区间I上的一个极大值或极小值。

2. 求极值的方法常见求函数极值的方法有:•导数法:通过求函数的导数(一阶导数或高阶导数)来找到函数的驻点,然后通过二阶导数的符号来判断是极大值还是极小值。

•边界法:求出函数在区间端点处的函数值,以及在可能的间断点处的函数值,然后比较这些值来确定最大值和最小值。

•微分中值定理:借助中值定理的思想,将函数f(x)在区间I上的极值归结为函数导数在该区间上的零点问题。

3. 最大值与最小值与极值类似,函数的最大值和最小值是指函数在定义域内取得的最大值和最小值。

最大值可以是有限值,也可以是无穷大;最小值也可以是有限值,也可以是负无穷。

4. 求最大值最小值的方法确定函数的最大值和最小值,主要采用以下方法:•导数法:同样利用导数的性质来判断函数的最大值和最小值,这一点与求极值的方法类似。

•二次型法:当函数为二次函数时,可以通过完全平方的方式将其转化为标准形式,进而求得最值。

•辅助线法:有时候在求最值的过程中,通过引入一条辅助线,并考虑其和原函数之间的关系,来得到最值的情况。

5. 总结函数的极值和最值是微积分中一个重要的概念,通过对函数的极值和最值进行研究,我们可以更好地理解函数的性质,优化问题和实际问题也经常涉及到函数的极值和最值。

因此,熟练掌握求解函数极值和最值的方法是数学学习中的关键一环。

函数的极值与最大(小)值(解析版)

函数的极值与最大(小)值(解析版)

函数的极值与最大(小)值(解析版)函数的极值与最大(小)值(解析版)函数的极值与最大(小)值是数学分析中一个重要的概念和研究内容,它在很多领域具有广泛的应用,如经济学、物理学、工程学等。

本文将介绍函数的极值与最大(小)值的定义、求解方法以及一些实际问题中的应用。

一、函数的极值与最大(小)值的概念函数的极值是指在一个特定的区间内,函数取得的最大值或最小值。

定义域中的极值点可以是局部极大值或局部极小值,也可是全局的最大值或最小值。

二、求解函数的极值与最大(小)值求解函数的极值与最大(小)值通常有以下方法:1. 导数法:根据函数的导数(或导函数),可以找到函数的驻点和拐点,并通过一阶和二阶导数的符号来判断极值点的类型,即极大值或极小值。

其中,一阶导数为零的点即为函数的驻点,二阶导数为零的点即为函数的拐点。

2. 边界法:在给定的区间内,如果函数在区间的端点处取得最大或最小值,则该值也是函数的极值。

通过比较函数在边界点和内部点的取值,可以确定函数的最大(小)值。

3. 高阶导数法:对于一些特殊的函数,可以通过多阶导数的方法求解极值。

通过计算函数的高阶导数,可以得到函数的极值点。

4. 参数方程法:对于参数方程给出的函数,可以通过求解参数方程中的参数值,得到函数的极值。

这种方法在实际问题中应用较多。

三、实际问题中的应用函数的极值与最大(小)值在各个领域中都有广泛的应用,例如:1. 经济学中,通过对供需函数的极值分析,可以确定市场的均衡价格和数量,从而指导市场调节和政策制定。

2. 物理学中,通过对物体运动轨迹方程的极值分析,可以确定物体在运动过程中最大(小)值速度、加速度等相关参数。

3. 工程学中,通过对成本、效益、材料使用等函数的极值分析,可以优化设计方案,提高工程效率和经济性。

4. 生物学中,通过对生态系统中的种群数量变化函数的极值分析,可以研究种群的稳定性和生态系统的平衡状态。

总之,函数的极值与最大(小)值是数学分析中的重要内容,它不仅具有理论意义,还在实际应用中发挥着重要的作用。

函数的极值与最大值最小值

函数的极值与最大值最小值

∴ f (x) 在 x = ±1处没有极值. 说明 极值的判别法 (定理2 ~ 定理4) 都是充分的. 当这些充分条件不满足时,不能说明极值不存在. 无极值的判断 ① 无可疑极值点的函数必无极值;
② 单调函数无极值; ③ 无定义的点一定不是极值点.
2 x2 的极值. 例5 求函数 f ( x) 2 (1 x)
① 求出 f (x) 在 (a , b) 内的驻点 x1 , x2 , 及不可导点 xm1 , xm2 ,
, xn ;
, xm
② 计算 f ( xi ) (i 1,2, , n) 及 f (a) , f (b) ; ③ 比较大小.
最大值:
M max f ( x1 ), f ( x2 ), , f ( xn ), f (a), f (b) , f ( xn ), f (a), f (b)
所以,极大值为 f (1) 10 , 极小值为 f (3) 22 .
例4 求函数 f ( x) ( x 2 1)3 1 的极值. 解
f ( x) 6 x ( x 2 1) 2 , f ( x) 6( x 2 1)(5 x 2 1)
令 f ( x) 0, 得驻点 x1 0, x2 1, x3 1
L( x ) R ( x ) C ( x ) ,
ቤተ መጻሕፍቲ ባይዱ
那么生产多少件产品时,利润函数 L(x) 最大? 解题思路
① 根据题意建立数学模型,即写出利润函数;
② 对利润函数求最值.
例7 已知某厂生产 x 件产品的成本为 1 2 C ( x) 25000 200 x x (元). 40 若产品以每件 500 元售出,要使利润最大,应生产 多少件产品?
1 2 解 利润函数为 L( x) 25000 300 x x 40

第五节函数的极值与最大最小值

第五节函数的极值与最大最小值

(2) 最大值
M m f(x1),a f(x2), x ,f(xm), f (a), f (b)
最小值
m m f (x1), fi (x2n ),,f(xm), f (a), f (b)
特别:
• 当 f (x) 在 [a,b]内只有一个极值可疑点时,
若在此点取极大 (小)值 , 则也是最大 (小)值 .

x0

ma mn
是区间唯一的驻点,
故 f ( x0 ) 为区间(0, a)之间的最大值
fma x f(m m n)a m m nn(m a n)m n
例7. 铁路上 AB 段的距离为100 km , 工厂C 距 A 处20
Km , AC⊥ AB , 要在 AB 线上选定一点 D 向工厂修一条
实际问题求最值应注意:
(1)建立目标函数; (2)求最值;
若 目 标 函 数 只 有 点,则 唯该 一点 驻的 函 数 值 即 为 所 求 的 最 小( )或 值最 .
例8. 一张 1.4 m 高的图片挂在墙上 , 它的底边高于
观察者的眼睛1.8 m , 问观察者在距墙多远处看图才最
清楚(视角 最大) ?
例6. 设 x1是, x任2 意两正数,满足: x 1 x 2 a (a 0 )
求 x1m x2n 最大值。
解: 设 f (x) xm(ax)n
0xa
即求 f (x) 在 ( 0, a ) 内的最大值
f'(x ) x m 1 ( a x )n 1 [ m ( m a n )x ]令 f'(x)0

o
x0
x
求极值的步骤:
(1)给出定义域,并找出定义域内所给函数的驻点及连续不可导点; (2)考察这些点两侧导函数的符号,从而确定极值点; (3)求出极值点的函数值,即为极值.

5.3.2 函数的极值与最大(小)值(精讲)(解析版)

5.3.2 函数的极值与最大(小)值(精讲)(解析版)

5.3.2导数的极值与最大(小)值一、导数的极值1、极值的概念:极大值与极小值统称为极值(1)函数的极大值:一般地,设函数y =f (x )在点x 0及附近有定义,如果对x 0附近的所有的点,都有f (x )<f (x 0),就说f (x 0)是函数y =f (x )的一个极大值,记作y 极大值=f (x 0),x 0是极大值点.(2)函数的极小值:一般地,设函数y =f (x )在点x 0及附近有定义,如果对x 0附近的所有的点,都有f (x )>f (x 0),就说f (x 0)是函数y =f (x )的一个极小值,记作y 极小值=f (x 0),x 0是极小值点.2、极值与导数的关系如图(1),若x 0是极大值点,则在x 0的左侧附近f (x )只能是增函数,即f ′(x )>0,在x 0的右侧附近f (x )只能是减函数,即f ′(x )<0.如图(2),若x 0是极小值点,则在x 0的左侧附近f (x )只能是减函数,即f ′(x )<0;在x 0的右侧附近f (x )只能是增函数,即f ′(x )>0.综合以上情形,可以得到:若x 0满足f ′(x 0)=0,且在x 0的两侧f (x )的导数异号,则x 0是f (x )的极值点,f (x 0)是极值.若f ′(x )在x 0的两侧满足“左正右负”,则x 0是f (x )的极大值点,f (x 0)是极大值;若f ′(x )在x 0的两侧满足“左负右正”,则x 0是f (x )的极小值点,f (x 0)是极小值.【注意】(1)可导函数的极值点.必须是导数为0的点,但导数为0的点不一定是极值点.即“点x 0是可导函数f (x )的极值点”是“f ′(x 0)=0”的充分不必要条件.不可导的点可能是极值点也可能不是极值点.例如:①导数为0的点是极值点:y =x 2,y ′|x =0=0,x =0是极值点.②导数为0的点不是极值点:y =x 3,y ′|x =0=0,x =0不是极值点.③不可导的点是极值点:y =|sin x |,x =0不可导,但x =0是极值点.(2)函数的极值只是一个局部性的概念,是仅对某一点及左、右两侧区域而言的.在函数的整个定义区间内可能有多个极大值或极小值,且极大值不一定比极小值大,如图,点x 1、x 3是极大值点,x 2、x 4是极小值点,且在点x 1处的极大值小于在点上x 4处的极小值.(3)极值点是自变量的值,极值指的是函数值.(4)函数的极值点一定出现在区间的内部,区间的端点不能成为极值点.(5)若f (x )在(a ,b )内有极值,那么f (x )在(a ,b )内绝对不会是单调函数,即在区间上的单调函数没有极值.3、利用导数求函数极值的方法步骤(1)求导数f ′(x );(2)求方程f ′(x )=0的所有实数根;(3)观察在每个根x 0附近,从左到右导函数f ′(x )的符号如何变化.①如果f ′(x )的符号由正变负,则f (x 0)是极大值;②如果由负变正,则f (x 0)是极小值.③如果在f ′(x )=0的根x =x 0的左右侧f ′(x )的符号不变,则不是极值点.题型一已知函数求极值或极值点【例1】已知函数()()()2312f x x x =--,则()f x 的极大值点为()A.1B.75C.-1D.2【答案】B【解析】因为()()()()()()()()32222123121275'=-----=---f x x x x x x x x ,所以()f x 在(,1)-∞,7,5⎛⎫+∞ ⎪⎝⎭上单调递减,在71,5⎛⎫ ⎪⎝⎭上单调递增,所以()f x 的极大值点为75.所以B 正确.故选:B.【变式1-1】设函数()1x f x xe =+,则()A.1x =为()f x 的极大值点B.1x =为()f x 的极小值点C.1x =-为()f x 的极大值点D.1x =-为()f x 的极小值点【答案】D【解析】由()1x f x xe =+,可得()(1)x f x x e '=+,令()0f x '>可得1x >-,即函数()f x 在(1,)-+∞上是增函数;令()0f x '<可得1x <-,即函数()f x 在(1)-∞-上是减函数,所以1x =-为()f x 的极小值点.故选:D.【变式1-2】求下列函数的极值:(1)()2221xf x x =-+;(2)()ln xf x x=.【答案】(1)极小值为3-;极大值为1-;(2)极大值为1e,没有极小值【解析】(1)因为()()()()()()22222221421111x x x x f x x x +-+-'==++.令()0f x '=,解得11x =-,21x =.当x 变化时,()f x ',()f x 的变化情况如下表:x(),1-∞--1()1,1-1()1,+∞()f x '-0+0-()f x 单调递减-3单调递增-1单调递减由上表看出,当=1x -时,()f x 取得极小值,为()13f -=-;当1x =时,()f x 取得极大值,为()11f =-.(2)函数()ln x f x x =的定义域为()0,∞+,且()21ln xf x x -'=.令()0f x '=,解得e x =.当x 变化时,()f x '与()f x 的变化情况如下表:x()0,e e()e,+∞()f x '+0-()f x 单调递增1e单调递减因此,e x =是函数的极大值点,极大值为()1e ef =,没有极小值.【变式1-3】知函数ln ()=xxf x e 的极值点为0x x =,则0x 所在的区间为()A.10,2⎛⎫ ⎪⎝⎭B.1,12⎛⎫⎪⎝⎭C.()1,2D.()2,e 【答案】C【解析】由ln ()=x x f x e ,得'1ln ()xxx f x e-=(0x >),令1()ln g x x x =-(0x >),则'211()0g x x x=+>,所以()g x 在(0,)+∞上单调递增,因为1(1)10,(2)ln 2ln 202g g =-<=-=->,所以存在0(1,2)x ∈,使0()0g x =,即'0()0f x =,当01x x <<时,'()0,()0g x f x <>,当02x x <<时,'()0,()0g x f x ><,所以0x 为ln ()=xxf x e 的极大值点,所以0x 所在的区间为()1,2,故选:C 【变式1-4】已知函数()1ex af x x =++,求函数()f x 的极值.【答案】见解析.【解析】()1e x a f x x =++,定义域为R ,()e 1e ex x x a af x -=-='.①当0a ≤时,()0f x '>,()f x 在R 上为增函数,()f x 无极值.②当0a >时,令()0f x '=,得e x a =,ln x a =.当(),ln x a ∈-∞,()0f x '<;当()ln ,x a ∈+∞,()0f x '>;∴()f x 在(),ln a -∞上单调递减,在()ln ,a +∞上单调递增,()f x 在ln x a =取得极小值,极小值为()ln ln 2f a a =+,无极大值.综上所述,当0a ≤时,()f x 无极值;当0a >时,()f x 有极小值()ln ln 2f a a =+,无极大值.题型二函数(导函数)图象与极值的关系【例2】函数()f x 的定义域为(),a b ,导函数()f x '在(),a b 内的图像如图所示,则下列命题不正确的是()A.函数()f x 在(),a b 内一定不存在最小值B.函数()f x 在(),a b 内只有一个极小值点C.函数()f x 在(),a b 内有两个极大值点D.函数()f x 在(),a b 内可能没有零点【答案】A【解析】设()0f x '=的根为1x ,2x ,3x ,且123a x x x b <<<<,则由图可知,函数()f x 在()1,a x 内单调递增,在()12,x x 内单调递减,在()23,x x 内单调递增,在()3,x b 内单调递减;所以函数()f x 在区间(),a b 内有极小值()2f x ,当()()2f x f a ≤,()()2f x f b ≤时,()2f x 是函数()f x 在区间(),a b 内的最小值,所以A 错误,B 正确;函数()f x 在区间(),a b 内有极大值()1f x 、()3f x ,所以C 正确;当()0f a ≥,()20f x >,()0f b ≥时,函数()f x 在(),a b 内没有零点,所以D 正确.故选:A.【变式2-1】设函数()f x 在R 上可导,其导函数为()f x ',且函数()()g x x f x =⋅'的图象如图所示,则下列结论中一定成立的是()A.()f x 有两个极值点B.(2)f -为函数的极大值C.()f x 有两个极小值D.(1)f -为()f x 的极小值【答案】C【解析】()()g x x f x '=⋅,并结合其图像,可得到如下情况,当<2x -时,()0,()0g x f x '><,()f x 在(,2)-∞-单调递减;当20x -<<时,()0,()0g x f x '<>,()f x 在(2,0)-单调递增;当01x <<时,()0,()0g x f x '<<,()f x 在(0,1)单调递减;当1x >时,()0,()0g x f x '>>,()f x 在()1,∞+单调递增∴()f x 在2x =-和1x =处取得极小值,故B,D 错,C 正确;在0x =处取得极大值.所以()f x 有3个极值点,故A 错.故选:C.【变式2-2】函数()f x 的导函数是()f x ',下图所示的是函数()()()1R y x f x x '=+⋅∈的图像,下列说法正确的是()A.=1x -是()f x 的零点B.2x =是()f x 的极大值点C.()f x 在区间()2,1--上单调递增D.()f x 在区间[]2,2-上不存在极小值【答案】B【解析】当2<<1x --时,10x +<,而0y >,故()0f x '<;当12x -<<时,10x +>,而0y >,故()0f x '>;当2x >时,10x +>,而0y <,故()0f x '<;所以(2,1),(2,)--+∞上()f x 递减;(1,2)-上()f x 递增,则=1x -、2x =分别是()f x 的极小值点、极大值点.故A、C、D 错误,B 正确.故选:B【变式2-3】如图,可导函数()f x 在点()()00,P x f x 处的切线方程为()y g x =,设()()()h x g x f x =-,()h x '为()h x 的导函数,则下列结论中正确的是()A.()00h x '=,0x 是()h x 的极大值点B.()00h x '=,0x 是()h x 的极小值点C.()00h x '≠,0x 不是()h x 的极大值点D.()00h x '≠,0x 是()h x 的极值点【答案】B【解析】由题得,()h x 的几何意义为当x 取同值时,()g x 到()f x 的距离.根据题意,当()0,x x ∞∈-+时,()h x 单调递减,当()0,x x ∈+∞时,()h x 单调递增,又()()()0000h x g x f x =-''=',则有0x 是()h x 的极小值点,故选:B.题型三根据函数的极值或极值点求参数【例3】函数32()422f x x ax bx =--+在1x =处有极值3-,则a b -的值等于()A.0B.6C.3D.2【答案】A【解析】2()1222f x x ax b'=--因为()f x 在1x =处有极值3-,所以(1)12220(1)4223f a b f a b =--=⎧⎨=--+=-'⎩,解得3a b ==所以0a b -=故选:A【变式3-1】设函数()()330f x x mx n m =-+>的极大值为6,极小值为2,则m n +=__________.【答案】5【解析】()(2333f x x m x x '=-=,∴当(),x ∈-∞+∞时,()0f x '>;当(x ∈时,()0f x '<;∴()f x 在(,-∞,)+∞上单调递增,在(上单调递减,∴的极大值(26f m n ==;极小值22f n =-=,4n ∴=,1m =,5m n ∴+=.【变式3-2】已知函数()f x 321132x x cx d =+--有极值,则c 的取值范围为()A.14c <-B.14c ≤-C.14c ≥-D.14c >-【答案】D【解析】由题意知,定义域为R ,()2f x x x c '=+-,要使函数()f x 有极值,则()f x '必有两个不等的实根,则140c ∆=+>,解得14c >-.故选:D.【变式3-3】已知函数32()3(1)3(1)3f x x m x m x =+-+++既有极大值,又有极小值,则m 的取值范围是()A.3m ≥或0m ≤B.3m >或0m <C.3m >D.0m <【答案】B【解析】由2()3[2(1)(1)]f x x m x m '=+-++,又()f x 有极大值、极小值,所以()f x '有两个变号零点,则24(1)4(1)0m m ∆=--+>,整理得230m m ->,可得3m >或0m <.故选:B【变式3-4】若函数()()22e xx a f x x =++⋅在R 上无极值,则实数a 的取值范围()A.()2,2-B.(-C.⎡-⎣D.[]22-,【答案】D【解析】由()()22e xx a f x x =++⋅可得()()()()222e 2e 22e x x xx a x ax x a x f a x ⎡⎤=+⋅+++⋅=++++⋅⎣⎦',e 0x >恒成立,()222y x a x a =++++为开口向上的抛物线,若函数()()22e xx a f x x =++⋅在R 上无极值,则()2220y x a x a =++++≥恒成立,所以()()22420a a ∆=+-+≤,解得:22a -≤≤,所以实数a 的取值范围为[]22-,,故选:D.题型四利用导数求函数的最值【例4】函数e x y x =在[]2,4x ∈上的最小值为()A.22e B.1eC.44e D.22e 【答案】A【解析】∵e x y x =,∴()e e 1e x x xy x x '=+=+,当[]2,4x ∈时,()1e 0xy x '=+>∴函数e x y x =在区间[]2,4上单调递增,∴当2x =时,函数e x y x =取得最小值,2min 2e y =,∴函数e x y x =在[]2,4x ∈上的最小值为22e .故选:A.【变式4-1】函数()e cos x f x x =在区间3π0,4⎡⎤⎢⎥⎣⎦上取得最大值时x 的值为()A.0B.π4C.π2D.3π4【答案】B【解析】由()e cos x f x x =得()πe cos e sin cos 4x x xf x x x x ⎛⎫=-+ ⎝'⎪⎭,令()0f x '=,即πcos()04x +=在区间3π0,4⎡⎤⎢⎥⎣⎦上解得π4x =,当π04x ≤<时,()0f x '>,()f x 为增函数,当π3π44x ≤≤时,()0f x '<,()f x 为减函数,所以当π4x =时,()f x 取得最大值.故选:B.【变式4-2】已知函数()ln 2f x x =+,设函数()()12h x f x x =+--,则()h x 的最大值是______.【答案】0【解析】因为()()ln 1h x x x =+-定义域为()1,-+∞,所以()1111xh x x x '=-=-++.当()1,0x ∈-时,()0h x '>;当()0,x ∈+∞时,()0h x '<.所以()h x 在()1,0-上为增函数,在()0,∞+上为减函数,从而()()max 00h x h ==.【变式4-3】设函数()()2ln 23f x x x =++(1)讨论()f x 的单调性;(2)求()f x 在区间31,44⎡⎤-⎢⎥⎣⎦的最大值和最小值.【答案】(1)函数()f x 单调递增区间为31,1,22⎛⎫⎛⎫---+∞ ⎪ ⎪⎝⎭⎝⎭;单调递减区间为11,2⎛⎫-- ⎪⎝⎭;(2)()f x 在区间31,44⎡⎤-⎢⎥⎣⎦上的最大值为17ln 162+,最小值为1ln 24+.【解析】(1)函数()()2ln 23f x x x =++的定义域为32⎛⎫-+∞ ⎪⎝⎭,,又()()141232223232x x f x x x x x ⎛⎫++ ⎪⎛⎫⎝⎭'=+=>- ⎪++⎝⎭.令()0f x '>,解得12x >-或312x -<<-;令()0f x '<,解得112x -<<-.所以函数()f x 单调递增区间为31,1,22⎛⎫⎛⎫---+∞ ⎪ ⎪⎝⎭⎝⎭;单调递减区间为11,2⎛⎫-- ⎪⎝⎭;(2)由(1)可得:函数()f x 在区间31,42⎡⎤--⎢⎥⎣⎦内单调递减,在11,24⎡⎤-⎢⎣⎦内单调递增.所以当12x =-时,函数()f x 取得最小值11ln 224f ⎛⎫-=+ ⎪⎝⎭,又393ln 4162f ⎛⎫-=+ ⎪⎝⎭,117ln 4162f ⎛⎫=+ ⎪⎝⎭,而319317131ln ln ln ln044162162272f f ⎛⎫⎛⎫--=-=+<+ ⎪ ⎝⎭⎝⎭,所以当14x =时,函数()f x 取得最大值为:17ln 162+.即()f x 在区间31,44⎡⎤-⎢⎥⎣⎦上的最大值为17ln 162+,最小值为1ln 24+.题型五已知函数的最值求参数【例5】若函数323()42a f x x x =-+在区间[1,2]上的最小值为0,则实数a 的值为()A.-2B.-1C.2D.103【答案】C【解析】由323()42a f x x x =-+,得2()333()f x x ax x x a '=-=-,当0a ≤时,()0f x '>在[1,2]上恒成立,所以()f x 在[1,2]上递增,所以min 3()(1)1402a f x f ==-+=,解得103a =(舍去),当0a >时,由()0f x '=,得0x =或x a =,当01a <≤时,()0f x '>在[1,2]上恒成立,所以()f x 在[1,2]上递增,所以min 3()(1)1402a f x f ==-+=,解得103a =(舍去),当12a <<时,当1x a <<时,()0f x '<,当2a x <<时,()0f x '>,所以()f x 在(1,)a 上递减,在(,2)a 上递增,所以当x a =时,()f x 取得最小值,所以323()402a f a a a =-+=,解得2a =(舍去),当2a ≥时,当12x ≤≤时,()0f x '<,所以()f x 在[1,2]上递减,所以3min 3()(2)24402af x f ==-⨯+=,解得2a =,综上,2a =,故选:C 【变式5-1】若函数()ln 12,0()1,0x ax x f x x a x x ⎧+-->⎪=⎨++<⎪⎩的最大值为2a -,则实数a 的取值范围为()A.(,e]-∞B.10,e ⎛⎤⎥⎝⎦C.1,e∞⎡⎫+⎪⎢⎣⎭D.[e,)+∞【答案】C【解析】当x <0时,()11()2f x x a x a a a xx =++=--++≤-=--,当且仅当x =−1时,()f x 取得最大值f (−1)=a −2,由题意可得x >0时,()()ln 12f x x ax =+--的值域包含于(−∞,a −2],即ln(1)22x ax a +--≤-在x >0时恒成立即ln(1)1x a x +≥+在x >0时恒成立,即maxln(1)1x a x +⎡⎤≥⎢⎥+⎣⎦设ln(1)()1x g x x +=+,21ln(1)()(1)x g x x -+'∴=+当0e 1x <<-时,()0,()g x g x >'在(0,e 1)-上单调递增,当e 1x >-时,()0,()g x g x <'在(e 1,)-+∞上单调递减,()()max ln e 1e 1e e g x g ∴=-==1ea ∴≥,故选:C.【变式5-2】若函数()33f x x x =-在区间()2,3a a +上有最小值,则实数a 的取值范围是()A.12,2⎛⎫- ⎪⎝⎭B.()2,1-C.11,2⎡⎫-⎪⎢⎣⎭D.(]2,1--【答案】C【解析】因为函数()33f x x x =-,所以()233f x x ¢=-,当1x <-或1x >时,()0f x '>,当11x -<<时,()0f x '<,所以当1x =时,()f x 取得最小值,因为()f x 在区间()2,3a a +上有最小值,且(1)(2)2f f =-=-所以2213a a -≤<<+,解得112a -≤<,所以实数a 的取值范围是1[1,)2-.故选:C【变式5-3】若函数()()()()2=ln +21,+f x x ax a x x ∞--∈有最小值,则实数a 的取值范围为()A.()1,0-B.(),1-∞-C.()0,1D.()1,1-【答案】A【解析】由题意可得:()()()()112122ax x f x ax a xx+-'=-+-=∵1x >,则120x -<当0a ≥,则10ax +>当1x >时恒成立,即()0f x '<∴()f x 在()1,+∞上单调递减,则()f x 在()1,+∞上无最值,即0a ≥不成立当1a ≤-,则10ax +<当1x >时恒成立,即()0f x '>,∴()f x 在()1,+∞上单调递增,则()f x 在()1,+∞上无最值,即1a ≤-不成立当10a -<<,令10ax +<,则11x a>->∴()f x 在1,a⎛⎫-+∞ ⎪⎝⎭上单调递增,在11,a ⎛⎫- ⎪⎝⎭单调递减,则()f x 在()1,+∞上有最小值1f a ⎛⎫- ⎪⎝⎭,即10a -<<成立故选:A.【变式5-4】设函数()()3230f x ax ax b a =-+>在区间[]1,4上有最大值23,最小值3,求a ,b 的值.【答案】1a =,7b =【解析】因为()323f x ax ax b =-+,所以()236f x ax ax'=-令()()236320f x ax ax ax x '=-=-=,则0x =或2x =由于0a >,[]14x ∈,当()12x ∈,时,()0f x '<;当()24x ∈,时,()0f x '>故在2x =,()323f x ax ax b =-+取得最小值3所以()()28124313223f a a b a b f a a b a b =-+=-+=⎧⎪⎨=-+=-+=⎪⎩或者()()281243464481623f a a b a b f a a b a b =-+=-+=⎧⎪⎨=-+=+=⎪⎩所以10a =,43b =或者1a =,7b =若10a =,43b =,则()32103043f x x x =-+而()3241043044320323f =⨯-⨯+=>,不合题意,舍去;若1a =,7b =,则()3237f x x x =-+,而()3211317523f =-⨯+=<故1a =,7b =题型六函数的极值与最值综合应用【例6】已知函数()ln 2f x x x =--.(1)求曲线()=y f x 在=1x 处的切线方程;(2)记函数21()2()2g x x bx f x =---,设1x ,212()x x x <是函数()g x 的两个极值点,若32b ≥,且()()12g x g x k -≥恒成立,求实数k 的最大值.【答案】(1)1y =-;(2)152ln2.8-【解析】(1)()11f x x'=-,所以切线斜率为()10f '=,又()11f =-,切点为()11-,,所以切线方程为:1y =-.(2)21()ln (1)2g x x x b x =+-+,21(1)1()(1),x b x g x x b x x -++'∴=+-+=若32b ≥,则()()()214310b b b +-=+->恒成立,121x x b ∴+=+,121x x =,22112121221()()ln ()(1)()2-=+--+-x g x g x x x b x x x 11221ln (1)()2=-+-x b x x x 11212212()()1ln2+-=-x x x x x x x x 1122211ln ()2=--x x x x x x ,120x x <<,设12x t x =,则01t <<,令11()ln ()2G t t t t =--,01t <<,则222111(1)()(1)022t G t t t t -'=-+=-<,()G t ∴在()01,上单调递减;32b ≥,225(1)4b ∴+≥,2222112212122(1)()x x x x b x x x x +++=+=1221122x x t x x t =++=++,12524t t ∴++≥,241740t t ∴-+≥,104t ∴<≤,∴当14t =时,min 115()()2ln 248==-G t G ,152ln 28∴≤-k ,即实数k 的最大值为152ln 2.8-【变式6-1】己知函数21()2ln (21)(0)2f x x ax a x a =-+->.(1)若曲线(=)y f x 在点(1,(1))f 处的切线经过原点,求a 的值;(2)设2()2g x x x =-,若对任意(0,2]s ∈,均存在(0,2]t ∈,使得()()f s g t <,求a 的取值范围.【答案】(1)=4a ;(2)(0,1ln 2)-.【解析】(1)由21()2ln (21)(0)2f x x ax a x a =-+->,可得2()21f x ax a x'=-+-.因为(1)2211f a a a '=-+-=+,13(1)21122f a a a =-+-=-,所以切点坐标为3(1,1)2a -,切线方程为:()311(1)2a y a x ⎛⎫--=+- ⎪⎝⎭,因为切线经过(0,0),所以3112aa -=+,解得=4a .(2)由题知()f x 的定义域为(0,)+∞,21()[(21)2]f x ax a x x '=----,令()f x '=2(21)20ax a x ---=,解得1x a=-或=2x ,因为0,a >所以10a -<,所以12a-<,令()0f x '>,即2(21)20ax a x ---<,解得:12x a -<<,令()0f x '<,即2(21)20ax a x --->,解得:1x a<-或2x >,所以()f x 增区间为(0,2),减区间为(2,)+∞.因为()22()211g t t t t =-=--,所以函数()g t 在区间(0,2]的最大值为0,函数()f s 在(0,2)上单调递增,故在区间(0,2]上max ()(2)2ln 222f s f a ==+-,所以2ln 2220a +-<,即ln 210a +-<,故1ln 2a <-,所以a 的取值范围是(0,1ln 2)-.【变式6-2】已知实数a 满足12a <≤,设函数()321132a f x x x ax +=-+.(1)当=2a 时,求()f x 的极小值;(2)若函数()()()324362g x x bx b x b =+-+∈R 与()f x 的极小值点相等,证明:()g x 的极大值不大于10.【答案】(1)23;(2)证明见解析【解析】(1)当=2a 时()3213232f x x x x =-+,所以()()()23212f x x x x x =-+=--'.列表如下:x (),1-∞1()1,22()2,+∞()f x '+0-0+()f x 单调递增极大值单调递减极小值单调递增所以()f x 的极小值为()223f =.(2)证明:()()()()211f x x a x a x x a '=-++=--.由于1a >,所以当x a >或1x <时()0f x '>,当1x a <<时()0f x '<,即()f x 在(),1-∞和(),a +∞上单调递增,在()1,a 上单调递减,所以当=x a 时,()f x 取极小值,所以()g a 为()g x 的极小值,而()()()()2=12+66+2=612++2g x x bx b x x b --',所以22b a +=-,即()21b a =-+.所以当x a >或1x <时()0g x '>,当1x a <<时()0g x '<,即()g x 在(),1-∞和(),a +∞上单调递增,在()1,a 上单调递减,又因为12a <≤,所以()()()14362386210g x g b b b a ==+-+=--=-≤极大值.故()g x 的极大值不大于10.【变式6-3】已知函数()2e xf x x -=.(1)求()f x 的单调区间和极值.(2)若关于x 的方程()f x k =有唯一的实数根,求实数k 的取值范围.【答案】(1)递增区间为()0,2,递减区间为(),0∞-,()2,+∞,极小值为0,极大值为24e -;(2){}()204e,-+∞【解析】(1)()()()222e e 2e 2e x x x xf x x x x x x x ----'=-=-+=--,由()0f x '<得0x <或2x >,由()0f x '>得02x <<,所以()f x 的递增区间为()0,2,递减区间为(),0∞-,()2,+∞.极小值为()00f =,极大值为()224e f -=.(2)方程()f x k =有唯一的实数根等价于函数()y f x =与直线y k =有唯一的交点,画出()f x 的大致图像如图所示,所以实数k 的取值范围为{}()204e,-+∞.。

函数极大值极小值的定义

函数极大值极小值的定义

函数极大值极小值的定义在数学中,函数的极大值和极小值是函数理论中非常重要的概念。

它们帮助我们研究函数的特性和性质,进而解决各种实际问题。

本文将围绕函数的极大值和极小值展开讨论,介绍它们的定义、性质和应用。

一、极大值和极小值的定义在函数的定义域内,如果存在某个点,使得该点的函数值比它周围的其他点的函数值都要大或都要小,那么这个点就被称为函数的极大值或极小值。

具体来说,设函数f(x)在区间(a, b)上有定义,如果存在x0∈(a, b),使得对于任意的x∈(a, b),都有f(x0)≥f(x),那么f(x0)就是函数f(x)在区间(a, b)上的极大值;如果存在x0∈(a, b),使得对于任意的x∈(a, b),都有f(x0)≤f(x),那么f(x0)就是函数f(x)在区间(a, b)上的极小值。

二、极值点的性质1. 极值点是局部性质:极大值和极小值都是函数在某个区间内的性质,只关注该区间内的函数值,而不关注整个函数的性质。

2. 极值点的必要条件:如果函数f(x)在点x0处有极值,那么在x0处的导数f'(x0)应该不存在或为零。

这是因为导数表示函数在某点的变化率,极值点处函数的变化率应该为零或不存在。

3. 极值点的充分条件:如果函数f(x)在点x0处的导数f'(x0)存在,并且在x0的左右两侧导数的符号相反,那么x0就是函数f(x)的极值点。

这是因为导数的符号表示函数的增减性,符号相反说明函数在x0的左右两侧增减性改变,即存在极值点。

三、求解极值的方法1. 导数法:根据极值点的必要条件,可以通过求函数的导数来寻找极值点。

首先求出函数的导数,然后令导数等于零,解方程得到极值点的横坐标,再带入函数中计算纵坐标。

2. 二阶导数法:根据极值点的充分条件,可以通过求函数的二阶导数来判断极值点的类型。

如果二阶导数大于零,则函数在该点处有极小值;如果二阶导数小于零,则函数在该点处有极大值。

四、极值在实际问题中的应用函数的极值在实际问题中有着广泛的应用。

数学分析(上) 6-4函数的极值与最大(小)值

数学分析(上) 6-4函数的极值与最大(小)值
前页 后页 返回
例1 求函数 f ( x) 3arctan x ln x 的极值点 .
解由
f
( x)
3 1 x2
1 x
( x2 3 x 1) x(1 x2 )
0,
求得稳定点
3 5
3 5
x1 2 , x2 2 .
x
3 (0,
5 3 )
5 (3 5 ,3
5) 3
5
(3
5 , )
2
2
2
2
2
6( x 1)( x 2)
, ,
1 4
0
x
x0 .
5 2
容易计算 f (0 0) 12, f (0 0) 12, 并且 f ( x)
在 x = 0 连续,由导数极限定理推知
12 f(0) f(0) 12, 故在 x = 0 不可导.
前页 后页 返回
这样就得到不可导点为 0, 稳定点为 1, 2. 又因
其中 n( x)
f (n)( x0 ) o (1) , n!
它在某邻域 U ( x0; )
内恒与 f (n)( x0 ) 同号.
(i) 当 n 为偶数, 而 f (n)( x0 ) 0 时 , 有
前页 后页 返回
n( x)( x x0 )n 0 , x U( x0; ),
故 f ( x) f ( x0 ) , x U ( x0; ), 即 x0 是极小值点 ;
f (0) 0 , f (1) 1 ,
因此 x = 1 不是极值点( n = 3 是奇数 ). 又因 f (4)( x) 24(35x3 45x2 15x 1) ,
f (4)(0) 0 , 所以 f (0) 0 是极大值( n = 4是偶数 ).
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档