远距离FM调频发射电路
调频发射机电路

1W调频发射机电路[日期:2009-03-03 ] [来源:net 作者:佚名] [字体:大中小] (投递新闻)Veronica FM发射机容易制作,性能稳定,信号纯净, 不使用专业零件和IC, 并有辅助测试功能使您在没有专业设备的情况下轻易地进行调试。
它有两个版本, 1瓦和5瓦。
1瓦版本适用于3公里发射距离,所需的电源是12-16V 200mA;5瓦版本适用于8公里发射距离,所需的电源是12-16V 900mA。
本文介绍1瓦版本。
图1: 1W Veronica 线路图该发射器自带一个混音器,使您同时发射来自CD和话筒的音频信号。
晶体管T1是话筒放大器,可变电阻R1和R2调节音量大小(参见调试部分)。
在R8和C21之间是振荡器,是产生无线电射频信号的部件。
二极管D1是一个所谓的“变容管”,相当于一个可调电容,它由音频信号控制,改变振荡器的振荡频率,起到变频的作用。
C12,C13,和L1决定振荡器的频率。
这个振荡器实际上是由两个反相振荡器组成,每个运行在50MHz附近,当两个信号结合时,便成了一个100MHz的信号。
这种电路比单个100MHz振荡器稳定很多。
振荡器的信号由T4放大到1W。
在T4右边的电路包括天线阻抗匹配和低通滤波功能。
D2、D 3、T5组成的电路是辅助调试用的,它将射频输出的信号取样,控制发光二极管D5,输出高时,D5也明亮一些。
此电路本身不带立体声调制器,你若需要播放立体声节目,请参照这里制作立体声调制器。
电阻:R1+2 10k 可调R3 820k R4 4.7k R5-7 220 R19 220 R8 1.5k R9 15k R10+11 1k R1 2 33k R13+14 56 R15+16 68k R17 47 R18 270 R20 10k电容: 除特殊指定外,用瓷介或云母电容。
C1,2,7, 16,17,19, 24,29及31 1n C3-5及8 10u 电解C6,18及30 220u 电解C9,10及20 10n C11 22p* C12 47p* C13 22p 微调C14及15 15p* C21,25及26 65p 微调C2 2 100p C23 5.6p C27及28 1.8p*C11, 12, 14 和15 决定振荡频率,最好用高质量云母电容。
几款无线话筒电路电路图及原理

几款无线话筒电路来源:滕州科苑电子作者:未知字号:[大中小]编者按:本文较详尽地介绍了颇有代表性的几款业余情况下容易制作成功的88~108MHz调频广播范围内的小功率发射电路,其中有简易的单管发射电路,也有采用集成电路的立体声发射电路。
主要用于调频无线耳机、电话无线录音转发、遥控、无线报警、监听、数据传输及校园调频广播等。
单声道调频发射电路图1是较为经典的1.5km单管调频发射机电路。
电路中的关键元件是发射三极管,多采用D40,D5O,2N3866等。
工作电流为60--80mA。
但以上三极管难以购到,且价格较高,假货较多。
笔者选用其他三极管实验,相对易购的三极管C2053和C1970是相当不错的,实际视距通信距离大于1.5km。
笔者也曾将D40管换成普通三极管8050,工作电流有60--80mA,但发射距离达不到1.5km,若改换成9018等,工作电流更小,发射距离也更短,电路中除了发射三极管以外;线圈L1和电容C3的参数选择较重要,若选择不当会不起振或工作频率超出88--108MHz范围。
其中L1,L2可用0.31mm的漆包线在3.5mm左右的圆棒上单层平绕5匝及10匝,C3选用5-20pF的瓷介或涤纶可调电容。
实际制作时,电容C5可省略,L2上也可换成10-100mH的普通电感线圈。
若发射距离只要几十米,那么可将电池电压选择为1.5-3V,并将D40管换成廉价的9018等,耗电会更少,也可参考《电子报》2000年第8期第五版(简易远距离无线调频传声器)一文后稍作改动。
图1介绍的单管发射机具有电路简单,输出功率大,制作容易的特点,但是不便接高频电缆将射频信号送至室外的发射天线,一般是将0.7--0.9m的拉杆天线直接连在C5上作发射的,由于多普勒效应,人在天线附近移动时,频漂现象很严重,使本来收音正常的接收机声音失真或无声。
若将本发射机作无线话筒使用,手捏天线时,频漂有多严重就可想而知了。
图2为2km调频发射机电路。
FM发射器电路——全集

FM发射器电路——全集一.FM调频发射器............................................................................. - 1 - 二.容易制的FM调频发射器........................................................... - 8 - 三.FM发射器电路——全集 ............................................................ - 13 - MC2831组成的无线电发射电路 ...................................................... - 23 - 微型无线监听调频(FM)发射机电路图(二张原理图) .................... - 25 - FM发射器模块电路图....................................................................... - 31 - BP机式FM立体声发射装置............................................................ - 48 - 一.FM调频发射器电阻:1k x 1 ; 3.3k x 1; 47k x 1 4.7k x 1; 4.3k x 1; 51k x 1; 6.8k x 1; 10k x 2;电容:1)、电解型:1uF x 1 ; 10uF x 1;2)、普通型:1000pF x 2 ; 1uF x 1 ; 20pF x 2 ; 10pF x 2 ; 12pF x 1 ; 68pF x 1 ;三极管:9014 x 1 ; 9018 x 2 ;电感线圈:0.47mm&6T x 3;发射天线1根;Microphone 1个;DC 直流电源供电3.7V直稳制作分析:声音清晰,不跑频,调制在96MHZ附近。
调频发射机电路设计

调频发射机电路设计
调频发射机电路设计是一项关键性的工程任务,它涉及到无线通讯系统中发射
机的设计和构建。
在调频(Frequency Modulation,FM)通信中,确保发射机电路
的正常运行和高质量的信号传输至关重要。
为了实现调频发射机的设计,首先需要确定合适的调频器件。
调频电路中最重
要的组件是电感、电容和晶体管。
电感和电容用于形成谐振电路,晶体管则负责信号放大与调制。
根据设计要求,选择适当的电感和电容值,并确保所选的晶体管具备足够的功率输出和频率响应。
在调频发射机电路的设计中,还需要考虑到整体电路的稳定性和抗干扰能力。
通过添加适当的滤波电路、功率放大器和限制器,可以有效提高电路的稳定性,并减少不必要的信号干扰。
另外,为了满足信号传输的要求,调频发射机电路还需要采用合适的调制技术。
调频通信系统常用的调制方式有直接频率调制和间接频率调制。
根据设计需求和系统性能要求,选择适当的调制方式,并确保调制电路的可靠性和精确性。
还有一点需要注意的是,调频发射机电路设计中必须遵循相应的通信法规和标准。
确保电路符合相关的无线电频率和功率规定,以及其他相关的技术标准,以保证系统的合法性和安全性。
总之,调频发射机电路设计是一项复杂而细致的工作。
通过合理选择电子元器件,设计滤波器和调制电路,并严格遵循通信法规和标准,可以实现高质量和高性能的调频发射机电路。
这将为无线通讯系统的稳定运行和高质量的信号传输提供坚实的基础。
FM调频发射器制作资料

调频无线话筒电路图-调频无线话筒制作-自制无线话筒本文介绍一种简单的无线话筒。
可在调频广播波段实行无线发射。
本机可用于监听、信号转发和电化教学。
由于结构简单、装调容易,所以很适合初学者装置。
一、无线话筒的电路图和工作原理图1是调频无线话筒的电路图。
图1 无线话筒的电路图驻极体话筒将声音转变为音频电流,加在由晶体管V、线圈L和电容器C1组成的高频振荡器上,形成调频信号由天线发射到空间。
在10米范围内,由具有调频广播波段(FM波段)的收音机接收,经扬声器还原成的声音,实现声音的无线传播。
二、元件的规格和检测方法本机结构简单,包括电池在内,一共才有8只元件。
C1为10PF瓷片电容器C2为10uF电解电容器R为lk 1/8W碳膜电阻k为拨动开关V为高频三极管9018日BM为小型驻极体话筒L为空心线圈。
驻极体话筒灵敏度越高,无线话筒的效果越好。
它的外形和测试方法见图2,对话筒吹气时,万用表指针摆动越大,驻极体话筒越灵敏。
图2 驻极体话筒检测L是空心电感线圈。
用?0.5毫米的漆包线在元珠笔芯上密绕10圈。
用小刀将线圈两端刮去漆皮后镀锡,可点上一些石蜡油固定线圈然后抽出元珠笔芯,形成空心线圈(如图3)。
三、焊接电路图4是调频无线话筒的印刷电路图。
图3 线圈L的绕法图4 印刷电路板1.将各元件引脚镀锡后插入印刷电路板对应位置。
各元件引脚应尽量留短一些。
2.逐个焊接各元件引脚。
焊点应小而圆滑不应有虚焊和假焊。
焊接线圈时,注意不能使线圈变形。
3.用一根长40-60厘米的多股塑皮软线做天线。
一端焊在印刷电路板上,另一端自然伸开。
四、电路的调试1.先检查印刷电路板和焊接情况,应元短路和虚、假焊现象。
然后可接通电源。
2.用万用表直流电压档测量晶体管V基极发射极问电压,应为0·7伏左右。
若将线圈L两端短路,电压应有一定变化,说明电路已经振荡。
3.打开收音机,拉出收音机天线,波段开关置于FM波段,(频率范围为88兆赫至108兆赫)将无线话筒天线搭在收音机上。
远距离FM调频无线发射器

远距离FM调频无线发射器
寻求一种发射距离远、拾音灵敏度高、长时间工作不跑频、调试简单易制作,且成本低廉的无线传声器是很多爱好者迫切希望的。
本文介绍的单管远距离无线调频侍声器即具备以上特点:
由于发射用的环形天线L1兼作振荡线圈,该天线内流动的是与振荡颊率同步谐振的高频:电流,所以始终处于最佳发射状态。
经实践,在空旷地发射距离大约100—150m(接收机用的是TOLYl781袖珍收音机,该机天线加长至0.8米时所能达到的接收距离)。
相比之下,在工作电压、工作电流和发射频率同等的情况下,L1换成普通螺旋线圈、振荡三极管集电极接上一只5P电容至0.8m长的拉杆天线作发射实验,前后两种发射方式的发射距离几乎相当,证;明该内藏式环形天线兼作振荡线圈时的发射效率是相当高的。
内藏式环形天线、采用长度160mm,直径1mm的漆包线制成金属圆环或方框形,嵌入机壳内;调节电容C3,使发射频率落人88-108MHz之间,以便用调频收音机接受收。
’当电池电压在1.2-2V 之间变化时,长时间工作,本电路发射频率稳定不变。
电池电压1.5V时,整.机工作—电流约2.5mA。
调试时,手不要靠近环形天线,安放时不要靠近金属物,以免影响振荡频率和发射距离。
关于调频发射机的电路设计

关于调频发射机的电路设计在五花八门的无线电制作项目中,调频发射机一直受到众多爱好者的青睐,然而这方面的制作涉及到一些高频技术,使得不少初学者在制作调试中被诸如停振、干扰、跑频、失真等一系列故障搞得心烦意乱,乃至放弃。
本文以手边的“FT3S调频发射机套件电路为例,详细地向读者介绍FM发射机的装调经验及常见故障的排除方法,希望对读者略有帮助。
简易型无线话筒是无线发射机的一个典型,虽然以其“一装即成”的优点博得众多读者的欢心。
然而电路中。
引起的严重频率飘移将会令我们难以忍受。
图1电路采用的晶体振荡器有效地避免了“跑频”这一致命弱点;倍频放大器将工作频率设置在普通收音机可接收的频段上;同时多级高频放大器把射频功率提升到80mW水平以实现较远距离的发射。
元器件选用:所有部件型号参数见图1;1.微型色码高频电容为首选对象,并采用卧式安装以减小引线电感造成的影响;2.JT选用标称频率为49.860MHz的泛音式晶体,对于不同的输出功率要求,可根据实际情况选择用其它频点;3.L1、L2、L3为倍频及高频放大器谐振电感,建议选用Φ0.8mm镀银线在4.0mm骨架上绕制,匝数分别为5T、4T、5T;Vl、V2决定着高频级的噪声系数及增益,可选用β值在300左右的低噪管,如C945、C9014等;V3-V5要求β100-120间,fT>500MHz,C1975、C9018等均可择用。
V6要求β=100,fT>800MHz,Pc>500mW的高频中功率管,如C2581、D40、C2053,对输出功率要求不高时,还可将其省去。
TX可选用拉杆天线或1.5m软导线,当工作频率为100MHz时75cm长度为理想值。
制作调试:自制前应先集齐所有元件,并对其质量及参数进行细心的检测,再根据所需的体积设计一款合适的线路板。
总而言之,良好的元件质量、合适的印板布局是有效提高自制成功率的保证,主要调试步骤如下:一、将所有元件连同天线一并焊在印板上,对安装焊接工艺要求是:尽量缩短高频部分元件引线;电阻、电容尽可能卧式安装,并无虚焊、脱焊现象。
实验四 远距离调频无线话筒

实验四远距离调频无线话筒一、制作目的1.制作远距离调频无线话筒2.加深理解晶体管的特性二、电路器件晶体管3个电容8个电阻8个电源1个话筒1个电感2个三、电路原理及说明电路工作原理如方框图(见图1)所示。
声音信号由驻极体话筒BM接受,并转换成相应的音频电信号,送入晶体管VT1进行音频放大。
晶体管VT2等构成三点式高频振荡器,振荡频率约49MHZ。
VT1输出的音频信号加至VT2基极,使其结电容发生相应变化,从而使振荡频率随之变化,实现频率调制。
被调信号再由VT3进行倍频放大后,输出98HZ的调频无线电波经天线发射出去。
图 1四、制作步骤及调试1.电感线圈需自行绕制。
绕制L1:利用一直径3.5mm左右的圆棒作为模具,用直径0.5mm裸铜丝或漆包线,在模具上绕10圈,脱胎为空心线圈,并将其均匀拉长为8mm,然后在线圈中间(5圈处)焊出一抽头引线。
2.绕制L2:用直径0.5mm裸铜丝或漆包线,在直径3.5mm左右的圆棒模具上绕5圈,脱胎成为空心线圈,并将其均匀拉长为6mm即可。
3.电路板尺寸为35mm×55mm,用单面敷铜板制成,并钻好元器件安装孔。
4.将元器件焊入电路板。
由于驻极体话筒BM自身无引出线,需在其背后接点处焊上两截短导线后,方能焊入电路板。
将电源开关S与电池扣板用导线连入电路板。
天线是一段80mm长的软导线,将其一头焊入电路板的相应位置。
5.该调频无线话筒外壳可用小收音机机壳或小塑料盒改制,在外壳正面面板上部,钻两排小孔作为传声孔;在面板中部开一个小长方形孔作为开关孔,在外壳后盖中部钻一小孔,用于天线引出。
6.电源开关直接固定在外壳上。
电路板应用小螺钉或双面胶垫等固定在外壳中,不使其摇动。
6V层叠电池位于下部,盖上后盖后,电池不应有大的晃动。
7.整机组装结束检查无误后,即可进行调试。
首先调整高频振荡频率,见图2,将C7与VT3的连线临时断开,直接接天线。
对着话筒说话,同时调节L1的匝距,使能在电视机1频道接受到信号(1频道有无节目均可,画面表现为明显的干扰条纹)。
一款利用变容二极管制作的FM调频无线发射器

一款利用变容二极管制作的FM调频无线发射器工作原理如图所示,整个发送器由低频放大、变容管偏置、振荡电路组成。
音频信号由BG1放大后,送至变容管,使其容量随信号变化,对振荡电路直接调频,消除了采用三极管结电容调频的寄生调幅现象,谐波成分少。
已调频的射频信号直接由L1向空间辐射。
元器件选择电感L1用∮1mm的漆包线在∮8mm的圆管上绕5匝,脱胎空心。
L2用∮0.1~0.3mm的漆包线在1/4W阻值大于100kΩ的碳膜电阻上绕100匝而成,接头焊于电阻两端,C2、C11、C4、C3、C5应采用优质瓷片电容。
电阻均用1/8W,0.01μF的退耦电容用普通瓷片电容即可。
安装与调试建议采用腐蚀法制作电路板,先焊接阻容元件,再焊接半导体元件,焊接完毕检查无误后,通上+6V电源,测9014发射极对地应有0.47~0.9V的电压,若不对,应调整R1。
再测9018发射极对地应有1~2V的电压,若不对可调整R6,再测变容二极管两极应无电压,或两极电压差小于0.25V。
若两极压差过大,可调整R3或R4。
调整上述项目后,打开收音机FM段,收到发送器发射的信号,拉开至5米以上距离,若找不到发送器发送的信号,可调整L1,拉伸L1,基波频率上升,压缩L1,基波频率下降,使发送器发射频率避开当地电台,又能可靠接收。
再接上单放机等设备的输出信号,仔细调整W1,使音乐在大音量时不失真为好(不可将单放机等设备音量开至最大,而要开在常用的音量位置)。
以上项目调整完后,调试基本结束,将其装入结实的塑料或木盒中(不可用金属盒),加以装饰,用来听音乐或作电视伴音发射器,均与FM电台信号无异,清晰、稳定,可以称得上是一支“业余的专业发送器”。
且无需天线,体积又小,由于在家中使用无须担心发射距离。
本人用它作电视伴音发射器,将音频输入接电视机的音频输出,用6V蓄电池供电,用一鳄鱼夹作开关。
电路板用橡皮筋绑在电池上,连续用几十天,也不必担心电量用完。
课程设计参考电路-调频发射

简易调频发射电路
发射距离:小于1000米
频率范围: 70M-108M
芯片: 9018 9014 9011
工作电压: 5V-15V
载波由C4、L1构成的LC振荡器产生,从三极管基极(b极)输入音频信号,经载波调制后发射出去,发射频率即为载波频率。
前置放大电路作用是改善麦克风/话筒录入的声音音质,若用耳机插头直接输入音频信号,则用以下高频放大电路就能实现。
测试参数:100MHz示波器观察值,正弦波
L1、L2为漆包线在圆棒(中性笔芯)上绕4圈和3圈,频率会随着圈数变化,这要用100M示波器观察。
整个电路最好用电池供电,可达到音质和频率稳定的最佳效果。
调试时先关闭BG2的工作,调好你所需的频率,一般在88M-108M 之间,最后打开BG2电路调节功率。
为了防止电磁干扰,最好将电路装在一个金属盒里。
未标注单位的电容为pf级,图中未注器件:耳机插头一个(用作音频输入接口),电池盒一个(装三节或四节电池的都可以),拉杆天线一支(收音机天线,或10cm长的导线做天线也可以),麦克风:驻极体话筒。
BG1:9011 9013 9014 9018 (高频发射管)
BG2:C1959 C1970 C1971 (高频功率管,其中C1959效果不明显)
带高频功率放大级的电路。
FM(调频)无线话筒电路图

FM(调频)无线话筒电路图该话筒语音清晰度较高,主要采取了几个措施:MIC输出的信号先送到BG1管进行放大,其中R1和C1是附加的高音预加重电路。
C2和C3是BG1管的输入和输出耦合电容,其值用得较小,是为了衰减低音,提升中高音。
BG1管输出端反向并联的二极管D3、D4与C4、R7的电路,是利用二极管正向导通时内阻变小的特性对强信号起限幅作用,而正常强度的信号不受影响,同时对话筒与扬声器之间的正反馈引起的啸叫也有良好的抑制作用。
话筒信号经BG1放大后,通过L5加到IC内部的变容管上,对高频信号进行调频调制,可得到较大的频偏。
C7、C8和C9、L1组成调频信号调谐电路,其工作频率在88MHz~108MHz之间。
IC的第脚输出的高频信号经L2和C10调谐选频后送C11再耦合到BG2管进行射频放大(BG2可用一般的超高频管)后,向空间辐射调频的话筒信号。
整机装在一个袖珍半导体收音机的外壳内。
MIC用一根80cm长的单芯屏蔽软线引出,此话筒引线兼作发射天线。
C13输出的高频信号用电感L4与地隔离,接到屏蔽线的外层。
MIC装在一个合适的乳胶管内,再用一个领带夹与乳胶管固定在一起。
使用时将话筒夹在胸前靠近衣领处,机器挂在裤带上,使话筒线展开,其发射效果最好。
L1、L2、L3用∮0.5mm左右的漆包线在直径为5mm的圆棒上绕5圈,L2上有一抽头。
L4、L5和L6可用普通小型色码电感。
调试时先调L1的松紧度,使收音机在FM段能收到该调频话筒发射的信号,再调C16使信号更强。
最后将收音机天线缩短后调L3,使发射距离最远。
如有简易场强计配合调试,能调到效果最佳。
本机频率稳定,一次调好后使用数月不会漂移。
本人使用4.5V电源时,发射—接收距离25米之内无方向性,用调频收音机收听,感觉就像是一个调频广播电台。
调频无线话筒接收机电路上传者:dolphin 浏览次数:1869调频无线话筒接收机电路大致几个大的部分:1。
调频接收及变频:由IC1 (BA4424),本振回路(Q1,Q2)及外围元件组成。
FM发射电路图

FM发射器电路——全集本电路图所用到的元器件:BBC109C电路如图所示。
它包括红外传感头、电子开关、音响发声电路、无线FM电路等。
将它安装在银行、密室或库房等需要监护的场所,用于晚上代替人员值守,当有人潜入作案时,电路将自动发出调频(FM)无线报警信号,附近(500m)的值班人员从FM收音机中可收到“呜呜……”作响的报警信号.从而采取积极的防范措施。
高频发射管D40揭密最早的关于"D40"文章从电路明显可以看出电路还较简易,不够完善,但这篇文章的历史意义要远远大于他的实际制作意义,我想也是这篇文章给了业余调频发烧友一个美丽的梦。
晓吴:这是一篇刊登在《家电维修》1992年第7期上的文章,名叫《超远程无线话筒》,作者是李栋鑫,说是能在开阔地最远可以发射1.5kM。
我看到这篇文章是在95年还是96年的时候,当时我真的对这管子是日思夜想,千方百计的想买到这个神奇的管子,但几年后我终于明白了些什么…………D40 这个管子最早初现在1992年《家用电器》刊登的一篇《超远程调频无线话筒》文章提到的,文章发表后,无线电爱好者无不为它神往,但确苦于没D40的参数,无法制做,正在吊足所有人胃口时,巧在这时,半年后又一篇《超远程调频无线话筒》一文答读者见刊,声称D40为特殊新型产品,并提供了该管的性能指标:D40 管是台湾敏通公司的产品,进口时型号已被抹去,电气参数BVCE0>9V、ft>280MHz、PCM:1W、ICM:150mA、β>120,声称据他们了解国内市场目前是不可能有买或替代品,只有他们有货可供,12.5元/只(相当与一只2SC1971的价)。
几年来,圈内又相继出现了所谓发射距离更远的D50的精品发射管,一时间电子报刊与网上有供D40、D50的信息漫天飞,,无意例外他们的价格都高的离谱,甚至我还看到了声称可以发射5公里的发射管D60的广告,我的天那!但是到你经过千方百计真的把那些所谓的D系列弄到手时,你却发现并不像传说的那样好使,为什么哪?当你仔细观察这些D管是它们不是被打磨掉了原有型号就是又被重新印是了D40、D50的字样,没见有人买到过真正用激光印有D40的管子。
FM发射器使用的集成电路UPC1651的电路图

FM发射器使用的集成电路UPC1651的电路图
展开全文
类别:电子综合
介绍:
这里是一个FM发射器使用的集成电路UPC1651的电路图 。UPC1651是一个宽带UHF硅MMIC放大器。该IC具有1200MHZ的和功率增益高达19dB.The集成电路宽广的频率响应,可从5V直流操作。麦克风拾取的音频信号反馈到输入引脚的IC(PIN2),通过电容C1。C1作为一个噪声滤波器。调制的调频信号,将可在IC的输出引脚(PIN4 )。电感L1和电容C3的形式创建的振荡必要的LC电路。发射器的频率可以是多种
调频(FM)无线话筒

300m FM无线话筒电路概述:这里向各位介绍的一部袖珍发射机,十分适合初学者,电路简单易制,造价低廉,输出功率不超过8mW,发射范围在房屋区可至300米左右,用一部普通的FM收音机接收,显示其灵敏度和清晰度俱佳,电路设计中最富挑战性的部份就是只用3V电源和半波天线便有如此的发射能力.电路的电流损耗少于5mA,用两枚干电池可连续工作80至100小时.电路在正常工作下非常稳定,频率漂移极小.测试:工作8小时之后,仍不需再校接收机.唯一影响输出频率是电池的状况,当电池老化时,频率有轻微改变.工作原理:从电路图可见,该电路分两级,一级音频放大器和一级RF振荡器.驻极体话筒内实际藏有一枚FET,如您喜欢的话,可视之为一级,FET将话筒前振膜之电容变化放大,这就是驻极休话筒很灵敏的原因.音频放大级乃由其射极晶休管Q1担任,增益20~50,将放大的讯号送往振荡级之基极.振荡级Q2工作于约88MHz,这频率是由振荡线圈(共5圈)和47pF电容器调整的,该频率也决定于晶体管,18pF回输电容器及还有少数偏压元件,例如470Ω射极电阻和22K基极电阻.电源接通时,1nF基极电容器通过22K电阻逐渐充电,而18pF则经振荡线圈的470Ω电阻充电,但更加之快,47pF电容也充电(其两端虽仅得小的电压),线圈产生磁场.基极电压渐渐上升时,晶体管导通,并有效地将内阻并接在18pF两侧.当1nF电容充电至该极的工作电压时,就会发生好几个杂乱的周波,故我们假定讨论在靠近工作电压之时基极电压继续上升,18nF电容试图阻止射极用压的移动,到电容器内的能量耗尽及再不阻止射级移动之时,基一射极电压降低,晶体管截止,流人线圈的电流也停止,磁场衰溃.磁场衰溃,产生一个相反方向的电压,集极电压反过来从原本的2.9V上升至超过3V,并以相反方向47pF电容充电,这电压也影响到对18pF电容充电,及470Ω射极电阻上的电压降使到晶休管进入更深的截止.18pF电容充电时,射电压下跌,并跌到某一晶休管开始导通,电流流入线圈,与衰溃磁场对抗.线圈上之电压反转,形成集极电压下降,这个变化通过18pF电容传送到射极上,结果晶休管进入更深的导通,把18pF电容短路,周期再开始重复,故此,Q2在此形成一个振荡,产生88MHz的交流讯号.放大后之音频讯号经0.1uF电容溃入到Q2之基极,改变振荡频率,产生所需的FM电磁波.制作过程:现在将所有零件放在工作桌上,逐个零件分清楚其数值,然后分类按次序排列好,这佯做很有条理,避免焊错零件.锡线方面最好采用特细0.6lmm的树脂(松香)锡线,因其身细,焊接起来很快并易上锡, 15~20 W小型电烙铁已足够,使用前用海绵将烙铁咀抹干净,唯一须自制的是线圈,需用一段22号BS(Ф0.5mm)或24号BS(Фm.71mm)的漆包铜线或者包锡铜线,在3mm直径的线圈架上绕5圈,如在中型螺丝起子上绕亦可,然后将圈与圈之间分隔开的5.5mm左右.到最后调整频率的时候,就要接着将线圈前后压缩或者拉长,改变输出频率.如您的线圈用漆包线做的话,须把线的两头上的漆皮剥掉,然后上一点锡.电路调试:所有零件都焊接完毕后,最好先用肉眼检视一切焊接点,是否有假焊,或者焊料用得太多而造成与临近短路,彻底查清楚后,才可进行校准和测试性能,测试步骤是加一条短的天线(5~10cm长)于底板的A点上调谐-部FM收音机于整个波段上,寻找该信号.最好令发射机与收音机保持一定距离,以防止检拾到任何谐波或者侧波.如收音机未能检到载波,表示频率可能太低,将振荡线圈稍为拉长,及再次尝试.如果采用包锡铜线绕制线圈,注意圈与圈之间不应彼此碰到.如采用漆皮铜线,则须要知道圈的连通性,可用万用表之低阻挡去量度它,或者量度电路电流,应约4~6mA.一旦检到载波,话筒的负载电阻R1决定灵敏度,可将之减至10k或者加至47k,视所需求的灵敏度而定.要确定发射之频率完全远离开您本地任何FM广播电台,因为电台发出之信号强大.将线圈压缩,频率便降低;将之拉长,频率便上升,这样免用到微调电容,节省本机的造价,不过,如您喜欢亦可用微调电容.顺道一提, C4最好用一枚39pF陶瓷电容,将另一个10pF或22pF微调电容并于共上,这样可更仔细调整电路.用线圈调整很容易偏离FM波段.理论上,用感器也应调节至维持调谐电路的L/C比,但我们需要的范围很小,故并没有限制。
收藏!经典,双管,微型FM发射机电路图,简单到可自制

收藏!经典,双管,微型FM发射机电路图,简单到可自制这里介绍的微型FM调频发射机电路,是微型无线调频话筒的一种。
它使用双管推挽式发射电路,发射频率设定在88~108MHz民用调频广播频段,使用普通调频收音机就能够接收信号。
1、电路原理如下图所示,是微型FM调频发射机电路图。
微型FM调频发射机电路图电路中,包括音频转换和高频振荡调制两部分。
驻极体话筒BM拾取外界音频,并转换成电信号,经C1耦合到高频振荡电路进行调频调制。
两个三极管VT1和VT2的集电极与基极相互交叉连接,并与L、C2组成的谐振回路,构成高频振荡器。
振荡频率,由三极管的结电容、L、C2共同决定,经过C1耦合到来的音频信号,将改变三极管的结电容,引起谐振回路参数改变,从而将振荡频率调制,让频率的变化跟随音频信号而变化。
调制后的调频信号,经过C3耦合到天线,发射出去。
2、元器件选择与制作谐振电感L需要自制,如下图所示。
谐振电感的制作谐振电感L,用直接0.5mm漆包线在直径5mm钻头柄上,作为骨架绕制5匝,然后抽出,形成空心线圈,并适当拉长即可。
驻极体话筒的焊盘,一般没有安装引脚,可以根据自己的安装需要,用电线或者电阻的引脚作为安装引出线,如下图所示。
给驻极体话筒安装引脚对于发射天线,可以使用一根30cm~50cm的软导线。
3、电路调试调试第一步,要确定电路是否起振,如下图所示,无示波器时,可以使用万用表简单的检测是否起振。
无示波器时的振荡器起振的检测方法尽量使用指针万用表,放置直流10V档位,测量R2的压降,测量时,用导线短路L,点触即可,可以迫使电路在振荡和停振来回切换,以便判断是否起振。
调试第二步,调制发射频率,如下图所示。
发射频率的调整调整L的每匝间距,可以改变发射频率,用FM调频收音机,设定一个没有电台的频率,然后调节L的间距,直到收音机中收到信号即可。
内容来自今日头条。
FM调频发射器制作资料

调频无线话筒电路图-调频无线话筒制作-自制无线话筒本文介绍一种简单的无线话筒。
可在调频广播波段实行无线发射。
本机可用于监听、信号转发和电化教学。
由于结构简单、装调容易,所以很适合初学者装置。
一、无线话筒的电路图和工作原理图1是调频无线话筒的电路图。
图1无线话筒的电路图驻极体话筒将声音转变为音频电流,加在由晶体管V、线圈L和电容器C1组成的高频振荡器上,形成调频信号由天线发射到空间。
在10米范围内,由具有调频广播波段(FM波段)的收音机接收,经扬声器还原成的声音,实现声音的无线传播。
二、元件的规格和检测方法本机结构简单,包括电池在内,一共才有8只元件。
C1为10PF瓷片电容器C2为10uF电解电容器R为lk 1/8W碳膜电阻k为拨动开关V为高频三极管9018日BM为小型驻极体话筒L为空心线圈。
驻极体话筒灵敏度越高,无线话筒的效果越好。
它的外形和测试方法见图2,对话筒吹气时,万用表指针摆动越大,驻极体话筒越灵敏。
图2 驻极体话筒检测L是空心电感线圈。
用?0.5毫米的漆包线在元珠笔芯上密绕10圈。
用小刀将线圈两端刮去漆皮后镀锡,可点上一些石蜡油固定线圈然后抽出元珠笔芯,形成空心线圈(如图3)。
三、焊接电路图4是调频无线话筒的印刷电路图。
图3 线圈L的绕法图4 印刷电路板1.将各元件引脚镀锡后插入印刷电路板对应位置。
各元件引脚应尽量留短一些。
2.逐个焊接各元件引脚。
焊点应小而圆滑不应有虚焊和假焊。
焊接线圈时,注意不能使线圈变形。
3.用一根长40-60厘米的多股塑皮软线做天线。
一端焊在印刷电路板上,另一端自然伸开。
四、电路的调试1.先检查印刷电路板和焊接情况,应元短路和虚、假焊现象。
然后可接通电源。
2.用万用表直流电压档测量晶体管V基极发射极问电压,应为0·7伏左右。
若将线圈L两端短路,电压应有一定变化,说明电路已经振荡。
3.打开收音机,拉出收音机天线,波段开关置于FM波段,(频率范围为88兆赫至108兆赫)将无线话筒天线搭在收音机上。
频率稳定的简易调频发射电路

一、频率稳定的调频信号传输电路。
图1所示电路可以将音频信号以调频(FM)的方式传送到异地。
图中,VT1、R2、R3、C2、C3、L1、Cx组成谐振频率在88MHz~110MHz之间的电容三点式调频振荡电路。
话筒B将声音信号转换成电信号后经过耦合电容C1送入三极管VT1的基极。
此时,VT1的基极电压将随着音频信号的变化而变化,于是VT1的集电结电容也相应变化,引起振荡器的振荡频率随之变化,达到调频的目的。
VT1集电极负载L1、Cx、C3等调谐回路决定了高频振荡器的振荡频率(即发射频率),由于C3、L1的参数为固定值,所以电容Cx为振荡频率调整电容,调整电容Cx可以改变该发射器的发射频率,当Cx的电容量为12.5pF时,发射频率约为108MHz。
包含有声音信号的调频信号由VT1的集电极输出,并由发射天线向空中发射。
天线接在VT1的集电极,长度约为690mm时发射效果最佳。
L1的电感量为0.17μH,如果买不到成品电感,也可以自己绕制。
绕制电感的电感量与线圈骨架的直径、长度以及匝数有关,如图2所示。
图中,r表示骨架的半径(单位为mm),x表示线圈成型后的长度(单位为mm),n表示线圈的匝数,电感量为n2×r2/(228.6r+254x)(μH)。
据以上方法,电感L1用φ0.1mm的漆包线在直径为6.7mm的圆形木棒上绕5~6匝,然后脱胎并将线圈长度拉至6.4mm即可二、高保真调频音频信号传输电路在深夜看电视时通常都要降低音量以免影响他人休息,这就有可能听不清电视伴音。
如果有一个电路能够将电视伴音信号发射到周围空间,然后再用调频收音机接收就能很好地解决这个问题。
该电路如图1所示。
图1电路中,VT1及其外围电路组成振荡电路,振荡频率约为98MHz,R1、Cx为音频预加重电路,用来改善音频信号的频率响应,提高音质。
L1、L2均采用1mm的漆包线在5mm的骨架上绕10匝脱胎而成,将其长度拉长为11mm左右即可,如图2所示。
FM调频发射器制作资料

调频无线话筒电路图-调频无线话筒制作-自制无线话筒本文介绍一种简单的无线话筒。
可在调频广播波段实行无线发射。
本机可用于监听、信号转发和电化教学。
由于结构简单、装调容易,所以很适合初学者装置。
一、无线话筒的电路图和工作原理图1是调频无线话筒的电路图。
图1 无线话筒的电路图驻极体话筒将声音转变为音频电流,加在由晶体管V、线圈L和电容器C1组成的高频振荡器上,形成调频信号由天线发射到空间。
在10米范围内,由具有调频广播波段(FM波段)的收音机接收,经扬声器还原成的声音,实现声音的无线传播。
二、元件的规格和检测方法本机结构简单,包括电池在内,一共才有8只元件。
C1为10PF瓷片电容器C2为10uF电解电容器R为lk 1/8W碳膜电阻k为拨动开关V为高频三极管9018日BM为小型驻极体话筒L为空心线圈。
驻极体话筒灵敏度越高,无线话筒的效果越好。
它的外形和测试方法见图2,对话筒吹气时,万用表指针摆动越大,驻极体话筒越灵敏。
图2 驻极体话筒检测L是空心电感线圈。
用?0.5毫米的漆包线在元珠笔芯上密绕10圈。
用小刀将线圈两端刮去漆皮后镀锡,可点上一些石蜡油固定线圈然后抽出元珠笔芯,形成空心线圈(如图3)。
三、焊接电路图4是调频无线话筒的印刷电路图。
图3 线圈L的绕法图4 印刷电路板1.将各元件引脚镀锡后插入印刷电路板对应位置。
各元件引脚应尽量留短一些。
2.逐个焊接各元件引脚。
焊点应小而圆滑不应有虚焊和假焊。
焊接线圈时,注意不能使线圈变形。
3.用一根长40-60厘米的多股塑皮软线做天线。
一端焊在印刷电路板上,另一端自然伸开。
四、电路的调试1.先检查印刷电路板和焊接情况,应元短路和虚、假焊现象。
然后可接通电源。
2.用万用表直流电压档测量晶体管V基极发射极问电压,应为0·7伏左右。
若将线圈L两端短路,电压应有一定变化,说明电路已经振荡。
3.打开收音机,拉出收音机天线,波段开关置于FM波段,(频率范围为88兆赫至108兆赫)将无线话筒天线搭在收音机上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
远距离FM调频发射电路本文介绍的小功率调频发射电路,由于使用了专用的发射管,调制度深,不产生幅度调制,失真小,发送距离远,工作稳定。
电路简单易制,只要焊接无误即可工作,电路原理见图1所示。
图1电路中,由专用发射管T2和其外围件组成一频率在88~108MHz范围内的高频振荡器,驻极体话筒拾取的音频信号先经T1进行放大,放大后的低频信号再对高频载波进行调制。
如断开驻极话筒M,在输入端接放音机输出就能很好地传送音乐信号。
需要说明的是射频发射专用管T2,其型号是FF501,采用标准的T0-92封装(像9000系列三极管一样),外形及引脚排列如图2所示,其ICM为45mA,fT大于1.3GHz,VCEO为13V。
专用管的优点就是一致性好,射频输出功率较大,电路容易调整,FF501完全可工作在更高的频段,读者可尝试将发射管用于其它电路的高频发射实验。
电路中的L2用∮1.0mm的漆包线在∮5.1mm的钻头上绕5匝脱胎拉长至0.8cm,C3~C8可用高频瓷介电容,天线最好用1.2米的拉杆,并垂直放立。
天线一定要架好后再上电。
电路的工作电流约25±5mA。
如发射频率不在88~108MHz范围内,可适当调整谐振线圈L2的长度。
电路装调好后,用FM段调频收音机作接收,有效传送半径可达500m。
新颖的调频接收机本文介绍的调频接收机利用超再生调频接收原理,因采用了高增益微型集成电路,故电路简单新颖。
接收效果达到一般调频接收机的水平,同时克服了超再生接收机选择性差、噪声大等缺点,又保持了灵敏度高、耗电少、线路简单和成本低(元件费用不足5元)等优点。
适合电子爱好者制作。
该机的电路原理图如图所示。
由超再生调频接收、FM-AM变换部分、调幅检波及低放电路组成。
调频波的超再生接收,实际上就是将调频波转换成调幅波,同时对调幅波进行包络检波以得到低频信号。
图中的三极管VTl及外围元件组成典型的超再生调频接收电路,并将调频波信号转换成调幅信号以及进行包络检波输出音频信号。
如果直接从R3端取出包络检波后的音频信号进行放大,得到的音频噪声比较大,但使接收机的选择性变差。
因此,这里采用从VT1的发射极通过串联回路中的高频扼流圈上感应到的调幅信号再进行高频放大、检波输出音频信号的方法,以克服上述不足。
当VT1工作时,在高频扼流圈上会形成一个被调频节目调制的调幅信号。
这个信号通过互感器T1耦合到调幅专用接收微型IC1 7642上进行调幅波的解调。
这块集成电路包含了一级高阻输入、三级高频放大及检波输出的全过程,而且增益大于70dB。
检波输出的音频信号由电容C9耦合到三极管VT2进行低频放大,通过耳机插座CZ 输出到负载(耳机)收听广播节目。
高频扼流圈T2作用是防止高频信号与电池及其他部分形成回路而被衰减,但对音频信号却无阻碍作用。
电容C6为小型瓷介微调电容,焊接时要求把动片接在图中的A端,目的是减小调台时人体感应对调谐回路的影响。
高频电感L1采用Φ1.0mm的漆包线在Φ5.0mm的圆棒上绕3圈脱胎而成。
高频扼流互感器T1选用从旧机中拆下的AM-IFT微型中周绕制,把原来绕制在“工”字形磁心上的漆包线拆下,再用ΦO.07mm的高强度漆包线重绕,初级高频扼流部分绕约50圈,次级感应部分绕约150圈后加上调节磁帽及外屏蔽即可。
高频扼流圈T2选用双孔磁环,用Φ0.2mm的漆包线在各孔中各绕10圈制成。
先通过调节R1把VT1的集电极电流调为0.3mA—0.5mA,调节电阻R7使VT2的集电极电流约为2mA。
此时用耳机便可收听到“丝丝”流水响声(电噪声),通过调节C6的电容量来收听调频台的广播节目。
细调L1匝距和T1的磁帽,使音质音量最好。
频率稳定的简易调频发射电路工作电压为9V,工作电流2~6mA,元件参数如图可知,BG1为9018、BG2为C1959(也可以是9018,不过功率很小,如果是D-40可以将射距离扩大到1000米,D-40在电子商店很难买到。
),L1、L2为0.5mm的漆包线在0.5的圆棒上绕4和3圈,工作电压可以提高到12V,这样发射的距离可增加,不过频率会变化,整个电路最好用电池供电,可达到音质和稳频的最佳效果,调试时先关闭BG2的工作,调好你所需的频率,最后打开BG2电路调节功率。
本电路我是采用BG1--D40、BG2--C1970效果很好,电压12V,BG1工作电压6V,距离是3000米(定向实验)。
如果你要采用D-40,请你要注意D-40的工作电压是6V!最好将本电路装在一个铁盒里,输入端加一个衰落减网络。
浅谈调频发射机的制作及调试在五花八门的无线电制作项目中,调频发射机一直受到众多爱好者的青睐,然而这方面的制作涉及到一些高频技术,使得不少初学者在制作调试中被诸如停振、干扰、跑频、失真等一系列故障搞得心烦意乱,乃至放弃。
本文以手边的"FT3S调频发射机套件电路为例,详细地向读者介绍FM发射机的装调经验及常见故障的排除方法,希望对读者略有帮助。
简易型无线话筒是无线发射机的一个典型,虽然以其“一装即成”的优点博得众多读者的欢心。
然而电路中。
引起的严重频率飘移将会令我们难以忍受。
图1电路采用的晶体振荡器有效地避免了“跑频”这一致命弱点;倍频放大器将工作频率设置在普通收音机可接收的频段上;同时多级高频放大器把射频功率提升到80mW水平以实现较远距离的发射。
元器件选用所有部件型号参数见图1;1.微型色码高频电容为首选对象,并采用卧式安装以减小引线电感造成的影响;2.JT选用标称频率为49.860MHz的泛音式晶体,对于不同的输出功率要求,可根据实际情况选择用其它频点;3.L1、L2、L3为倍频及高频放大器谐振电感,建议选用Φ0.8mm镀银线在4.0mm骨架上绕制,匝数分别为5T、4T、5T;Vl、V2决定着高频级的噪声系数及增益,可选用β值在300左右的低噪管,如C945、C9014等;V3-V5要求β100-120间,fT>500MHz,C1975、C9018等均可择用。
V6要求β=100,fT>800MHz,Pc>500mW的高频中功率管,如C2581、D40、C2053,对输出功率要求不高时,还可将其省去。
TX可选用拉杆天线或1.5m软导线,当工作频率为100MHz时75cm长度为理想值。
制作调试自制前应先集齐所有元件,并对其质量及参数进行细心的检测,再根据所需的体积设计一款合适的线路板。
总而言之,良好的元件质量、合适的印板布局是有效提高自制成功率的保证,主要调试步骤如下:一、将所有元件连同天线一并焊在印板上,对安装焊接工艺要求是:尽量缩短高频部分元件引线;电阻、电容尽可能卧式安装,并无虚焊、脱焊现象。
二、参照图2临时搭焊一个简易场强计配合调试。
三、给发射机通电,电压为9V。
场强计引线与天线相距5cm,反复调节L1、L2、L3匝间距离以使场强计示数增至最大,必要时对各级的谐振电容进行调节。
四、通过在小幅度内修改天线长度,使场强计示数继续增大,并注意调整时,发射天线应避免与人体或金属接触。
五、最后将电路放进金属屏蔽罩进行固定,并将地线与外壳连通。
以上的调试过程看似比较简单,但并不是每位读者都能顺利地完成,或多或少会遇到某些困扰,下面介绍一些在实际制作中常常出现的问题及解决方法:一、近距离使用时,特别拾取强度较高的信号时,收音机存在严重的啸叫声或失真。
这是由于音频放大级增益很高,同时配用的驻极体话筒又具有较高的拾音灵敏度所引起。
解决方法很简单:只需将R3的阻值增至820Ω。
二、用AIN接口输入音源信号时,收音机输出声音小且伴有交流声。
这类问题,相信很多曾自制中功率高频发射机的朋友都经历过。
原因之一:由于使用了滤波效果差的整流电源所引起,但若改用电池供电仍不能解决问题,就可能是因为高频信号过强,干扰音源(如CD、Walkma等)中的放大电路,致使输出音频受到污染所致,可通过以下方法改善:1,尽量缩短音频输入引线;2,在发射机与音源二条连线中各串联一个10uH高频电感;3,对音源进行屏蔽隔离;4,最直接而有效的方法应是减小输出功率或缩短发射天线,在近距离传输且需要保真度较高的场合下可考虑使用此法。
三、不起振或振荡弱;此故障表现在用收音机在整个波段内接收不到静噪声,输出功率小,若能保证元件的质量,以下步骤可助你排除故障:1,在CC两端并联一个7pF电容(注意:该电容不可过大,否则你会发现调制失效);2,调振荡级偏置电阻;3,改变C6容量一试,如果上述方法不能解决,也有可能是元件布局不合理引起,可重新对电路板进行布线。
四、发射距离近:这类问题除了常见的天线放置不当、接收收灵敏度低、使用环境有高大建筑物等原因外,另一方面是由于振荡弱所引起,故仍有必要参考上述的操作增加晶体振荡器输出强度。
还有一原因可能是倍频器工作频率并非调在收音机接收范围内,实际上收音机接收到的只是微弱的谐波信号,其表现在虽然场强计示数较大但有效发射距离很小,不到100米(正常条件下,配合良好的收音机,开阔地有效距离约为500—800米)。
对于无频率测量仪器的爱好者来说,要解决这类问题,除谐振电感,电容应严格按照以上参数选用外,有时还需要读者的一份细心和耐心,相信自己,经过多次的调整后,你是会解决所有困难的。
调频发射又一新招目前广泛介绍的发射器大多采用电容三点式振荡电路,其频率稳定度不高,再加上不少初学者受限于高频电路的理论和实际经验,做出来的发射器不是无法工作就是谐波太多。
晶振电路虽然稳定,但电路比较复杂且频偏小,无法满足对音乐的要求。
在此笔者介绍一款能满足业余要求的高稳定发射器。
找一个VCD射频调制器,这种调制器在不少VCD上都是单独的一个屏蔽盒,输入端分别为+5V电源、视频、音频、外壳接地。
因一般调制器工作在8-10频道,频率较高,实际制作时要做适当处理:找到调制器中的振荡线圈,用一个电感量更大的线圈代替,以降低频率。
笔者用的是中lmm漆包线,在+5mm杆上绕7圈而成,频率在107.5MHz。
为了改善效果可将视频部分断开,以减小干扰。
再将音频部分电容用钽电容或其他优质电容代换,一个绝佳的发射器便初告段落。
由于电路采用丁科必茨振荡,其稳定性较之电容三点式大为改观,再加上其几乎滴水不漏的屏蔽,频率相当稳定。
无论手摸天线还是碰其他金属也没从收音机中感觉跑频。
唯一不足就是输出功率较小。
但加一个适当的功放,相信已难不倒爱好者,再为其加上一个漂亮的外壳,就可美滋滋地享受电台级的音乐了三管调频无线话筒的制作该话筒采用直接调频方式,中心频率为90MHz,发射功率约0.5W,最大频偏士50kHz,发射距离不小于50米。
电路方框图其方框图及原理图如图1、2所示。
驻极体话筒产生的音频信号作用于调制器T1的发射结作为调制电压。