蛋白质多肽类药物

合集下载

生物制药多肽与蛋白质类药物

生物制药多肽与蛋白质类药物
• b.种子培养基 1%蛋白胨、0.5%酵母提取 物、0.5%NaCl。
• c.种子摇瓶培养 在4个1000mL三角瓶中, 分别装入250mL种子培养基,分别接种人干 扰素αⅡb基因工程菌,30℃摇床培养10h,
第28页/共46页
• d.发酵培养基 1%蛋白胨、0.5%酵母提取物、 0.01%NH4Cl、0.05%NaCl,0.6% Na2HPO4、0.001%CaCl2、0.3%KH2PO4、 0.01%MgSO4、0.4%葡萄糖、50mg/ml氨 苄西林、少量消泡剂。
第9页/共46页
• 沉淀4加原体积l/25000量pH=8.0的 0.1mol/L PBS溶解,调至pH=7~7.5,对 PBS(pH=7.3)透析,过夜,离心,收集上清液, 检测,得IFN-B。上清液3中加盐酸使pH值降 至3.0,离心,得沉淀5。沉淀5加入原体积 1/5000量的pH=8、0.1mol/L PBS溶解,加 NaOH调节pH=7~7.5,对PBS(pH=7.3)透 析过夜,离心收集上清液,检测,得IFN-A。 每份灰黄层约能制备100万单价的纯化干扰素。
第10页/共46页
• 此法特点是一次纯化量大,回收率高于60%; 经济,简便,易于普及。效价可达1.2×108 U/ml,比活2.2×106 U/mg(蛋白)。IFNA中干扰素含量占回收干扰素的82%,比活 也比较高。IFN1的比活较低[5×104 U/mg (蛋白)],一般可作外用滴鼻剂或点眼剂等。
第14页/共46页
• 将0.5µg平头末端cDNA用末端转移酶加15 个dC,并将2µg质粒pBB322在PstⅠ位点 线性化,用末端转移酶加15个dG,再将两者 连接,利用这种方法可产生新的PstⅠ位点, 利于从载体上再次切下cDNA。将产生的质 粒转化大肠杆菌HB101后,用微量板培养。 合成引物5′-CCTTCTGGAACTG- 3′,该序 列是IFN-α、β最长的不间断保守序列,用其 作引物可同时调出IFN-α、β。

多肽与蛋白质类药物

多肽与蛋白质类药物
A. 许多活性蛋白质、多肽都是由无活性的蛋白质前体,经 过酶的加工剪切转化而来的有共同的来源,相似的结构 ,保留着若干彼此所特有的生物活性。研究活性多肽结 构与功能的关系及活性多肽之间结构的异同与其活性的 关系,将有助于设计和研制新的活性多肽药物。
B. 对蛋白质类药物进行结构修饰
多肽、蛋白质类药物分类
3.3.1 反相高效液相色谱
3.3.1 反相高效液相色谱
分离机理:
①用C4~C8烷基作配基,将配基键合在固定基质上作为固定相 ,以水溶性有机溶剂(如甲醇、乙腈、异丙醇)加强酸作流 动相(流动相极性大于固定相)。
②蛋白质分子中既有亲水性基团(-OH,-NH、-COOH、SH 等),也有疏水性基团(如苯环、-CH3、-CH2和-CH等)。
理论上,每公顷红花田可生产出1公斤人胰岛素原料药。
3.2 多肽和蛋白质药物的生产方法
加拿大渥太华大学生物技术研究中心的科研人员也利 用另两种高产作物——烟草和水稻植株生产出了一种 名为“胰岛素样生长因子”(ILGF)的新型降血糖药物 。
据称,ILGF的降糖效果甚至优于常规口服降糖药。 如果ILGF能通过临床试验并成功上市,或将成为前景
3.2 多肽和蛋白质药物的生产方法
加拿大SembioSys生物工程公司利用北美洲普遍栽培的高 产油料作物——红花作为转基因植物“平台”,成功生 产出“红花子来源人胰岛素”,
该胰岛素顺利通过动物实验与Ⅰ~Ⅱ期临床试验,其药 代动力学与药效学试验结果与美国礼来利用大肠杆菌表 述胰岛素基因生产的重组DNA人胰岛素基本一样。
多肽和蛋白质的物化性质
4. 变性 ➢ 天然蛋白质的严密结构在某些物理或化学因素作用下,
其特定的空间结构被破坏,从而导致理化性质改变和生 物学活性的丧失,如酶失去催化活力,激素丧失活性, 称之为蛋白质的变性作用(denaturation)。 ➢ 变性蛋白质和天然蛋白质最明显的区别是溶解度降低

蛋白质多肽类药物

蛋白质多肽类药物
▪ 20世纪80年代 研究者克隆了人干扰素基因,实现了基因工程
rhuIFN的大规模生产。
▪ 到了20世纪90年代 以提高rhuIFN的生物利用度和药代动力学
为主要开发方向,进行了干扰素聚乙二醇(PEG)修饰,研制了长效 干扰素,减少了给药次数,提高了疗效。
▪ 1986年 第一个重组人α干扰素Roferon(Huffman-La Roche)上市,现
复杂的化学降解和物理变化而失活。
实用文档
蛋白多肽类药物的关键问题
提高稳定性的方法: (1)温和的生产条件如对温度、机械搅拌强度和有 机溶剂的选择,对无菌条件的控制,容器的吸附效 应,水分控制,低温冷藏等。 (2)设计正确的处方如PH、缓冲对、电解质;加 入适宜稳定剂、冻干保护剂、阻聚剂如非离子表面 活性剂、糖、甘露醇、山梨醇、PEG、人血清白蛋 白等以及制备包合物等。
实用文档
蛋白多肽类药物的关键问题 蛋白多肽类药物关键问题
▪1)结构特征:蛋白质分子的化学结构决定其活性;药物的空间结
构即二维、三维结构也同样影响生物活性;另外,多肽及蛋白质的分子 量常为数千至几十万,颗粒大小在l~100nm之间,不能透过半透膜。
▪2)体内外不稳定性:蛋白质药物在体内外环境可能经受多种
实用文档
▪粒细胞/单核细胞集落刺激因子GM-CSF(1985年Wong和克隆出人GM-CSF的cDNA,并实现了表 达,1993年张智清等人在国内首次克隆了人GM-CSFcDNA,并在大肠杆菌里获得表达)
▪其他造血相关因子
实用文档
人细胞因子
▪刺激网织红细胞的早期向血液中释放 EPO 的功效在一
定剂量范围内呈剂量依赖性,但剂量超过太大后并不增加药效。
实用文档
rHuEPO的应用

蛋白质多肽类药物课件

蛋白质多肽类药物课件

24
.
蛋白多肽类药物的关键问题
▪ 3)吸收特征: 蛋白质药物半衰期短、清除率高、 分子量大透股能力差、易受体内酶和细菌以及体 液的破坏、非注射给药生物利用度低,一般都仅 为百分之几,提高蛋白质药物吸收的方法一般有 化学修饰或制备成前体药物,使用酶抑制剂,吸 收促进剂,选择适宜剂型保护等。
25
.
LOGO
而提高人体运输氧的能力,提高人体最大摄氧量; 4)rHuEPO主要生理作用是调节红系前体细胞分化为成熟的红细胞,进而
维持外周血红细胞的水平, 临床上主要用于治疗肾衰后引起的贫血。
19
.
rHuEPO的不良反应 常见不良反应:
高血压: 大多发生于慢性肾衰病人,可能是Het快速 增加、血液粘稠度增高、周围血管阻力增加等所致 。
重组人抗凝血酶(ATryn)是2006年批准的、第一个由 转基因动物(羊)生产的重组药物。
11
.
人骨形成蛋白
是最年轻的一组 第一个产品2001年批准上市
12
.
融合蛋白
1)是为数很少的以抑制为作用机理的重组药物,仅有 3个
2)1998年批准的Enbrel(Amgen): 是TNF受体和IgG 的Fc片段的融合蛋白,含934个氨基酸,适应症为 风湿性关节炎
8
.
人造血因子
包括:
重组人促红细胞生成素: 1985年成功表达了重组人促红细胞生成素 (rhEPO,1989年上市第一个重组人促红细胞生成素。
新红细胞生成刺激蛋白(NESP): 美国 Amgen 公司研制的长效 EPO 制剂 , 于 2001 年 6 月底获得欧洲药物评审委员会批准 ,用于慢性肾衰引起的贫 血。NESP 是一种高糖基化 rhEPO 类似物,也是第一个被批准用于临床的 新型促红细胞生成素 ,具rhEPO 相似的作用机制即刺激红系造血。法国学 者Dalle等 ,于2001 年利用基因重组技术合成了一种二聚体 EPO ,由两个 EPO 及一个 9 肽连接而成的融合蛋白。

多肽和蛋白质类药物

多肽和蛋白质类药物

甲状腺激素 胰岛激素
胃肠道激素
胸腺激素
甲状旁腺激素(PTH)、降钙素(CT)
胰高血糖素、胰解痉多肽
胃泌素、胆囊收缩素-促胰酶素(CCK-PZ)、肠泌 素、肠血管活性肽(VIP)、抑胃素(GIP)、缓激 肽、P物质
胸腺素、胸腺肽、胸腺血清因子
4
多肽类药物分类
多肽类细胞生长调 表皮生长因子(EGF),转移因子(TF),心
意方法本身的回收率的高低。
12
纯化方法选择指南
13
END
谢谢大家!
粘蛋白
胃膜素、硫酸糖肽、内在因子等。
胶原蛋白 碱性蛋白质
明胶、阿胶等 硫酸鱼精蛋白
蛋白酶抑制剂
胰蛋白酶抑制剂
凝集素
PHA、ConA
7
多肽与蛋白质类药物的制造方法
重点
提取分离纯化法(重点) 化学合成法
微生物发酵法
蛋白质药物
重点
原料选择
发酵
沉淀
变性 复性
上清
生物 组织 破碎 提取
蛋白质纯化
纯度 活性鉴定
合格
不合格
精品9
原料选择 提取
重点
10
纯化 根据目的蛋白与杂质之间的差异进行纯化。
1.根据蛋白质的pI的不同进行纯化,其方法有:
1)pI沉淀法
2)pI沉淀法与盐析法相结合
3)等电聚焦法
2.蛋白质分子形状和大小的不同进行纯化,其方法有
1)凝胶过滤
2)超滤法
3) 离心法
4)透析法
3.蛋白质的溶解度不同进行纯化,其方法有:
a)盐溶与盐析法
b)结晶法
c)有机溶剂沉淀法
4.蛋白质电离性质不同进行分离:离子交换法 5.蛋白质功能专一性不同进行纯化:亲和层析法 6.蛋白质在溶剂系统中分配不同进行纯化:萃取法 7.蛋白质的选择性吸附的性质进行纯化:吸附法 8.蛋白质的其他特殊性质进行纯化

多肽与蛋白质类药物

多肽与蛋白质类药物

两性物质的等电点会因条件不同(如在不同离子 强度的不同缓冲溶液中,或含有一定的有机溶媒的 溶液中)而改变。当盐存在时,蛋白质若结合了较 多的阳离子,则等电点向较高的pH值偏移。反之, 蛋白质若结合较多的阴离子,则等电点移向较低的 pH值。
用等电点法沉淀蛋白质常需配合盐析操作,而除 去不需要的杂蛋白时,常需配合热变性操作。
肝细胞生长因子是从肝细胞分化最旺盛阶段的胎 儿、胎猪或胎牛肝中获得的。若用成年动物,必须经 过肝脏部分切除手术后,才能获得富含肝细胞生长因 子的原料。
(3)生物状态 动物饱食后宰杀,胰脏中的胰岛素含 量增加,对提取胰岛素有利,但胆囊收缩素的分泌使 胆汁排空,对胆汁的收集不利。严重再生障碍性贫 血症患者尿中的EPO含量增加。
葡聚糖凝胶含有少量的酸性基团,故有较弱的离子 交换作用,此外还有吸附作用。在纯化蛋白质时,可 采用mol/L),或者用与待分离蛋白质相同的标准 蛋白质预先使凝胶柱平衡,以期不损失所分离的蛋白 质。
3、根据蛋白质溶解度的不同来纯化蛋自质
蛋白质的溶解度受溶液的pH、离子强度、溶剂的 电解质性质及温度等多种因素的影响。在同一特定条 件下,不同蛋白质有不同的溶解度,适当改变外界条 件,可以有选择地控制某一种蛋白质的溶解度,达到 分离的目的。
应用最多的氨基保护剂是苄氧羰酰氯(Cbz-Cl), 可用催化氢化法或钠氨法(用金属钠在液氨中处理) 除去保护基,也可用叔丁氧羰酰氯(BOC-Cl)作保 护剂,用稀盐酸或乙酸在室温除去保护基。
羧基保护剂通常用无水乙醇或甲醇在盐酸存在下 进行酯化,使羧基接上烷基。除去保护基可在常温下 用氢氧化钠皂化法。
等电聚焦电泳除了用于分离蛋白质外,也可用于 测定蛋白质的等电点。
2、根据蛋白质分子形状和大小的不同来纯化蛋白质

多肽与蛋白质类药物-氨基酸多肽蛋白质

多肽与蛋白质类药物-氨基酸多肽蛋白质

二.多肽与蛋白质类药物的制造方法


3.分离纯化
多肽及蛋白质的分离纯化是将提取液中的目的蛋 白质与其他非蛋白质杂质及各种不同蛋白质分离 开来的过程. 常用的分离纯化方法有: (1) 根据蛋白质等电点的不同来纯化蛋白质 在等电点时蛋白质性质比较稳定,其物理性质如 导电性,溶解度,黏度,渗透压等皆最小,因此可利用 蛋白质等电点时溶解度最小的性质来制备蛋白质.
不十分清楚,从活性肽或细胞生长调节因子的角度去研究 它们的物质基础和作用机制,预计可获得成效
主要多肽类药物
1.多肽激素 ① 垂体多肽激素: 促皮质素(ACTH),促黑激素(MSH),催产素(OT) ② 下丘脑激素: 促甲状腺激素释放激素(TRH),生长素抑制激素(GRIF) ③ 甲状腺激素: 甲状旁腺激素(PTH),降钙素(CT)。 ④ 胰岛激素: 胰高血糖素γ,胰解痉多肽γ。 ⑤胃肠胃道激素: 胃泌素,胆囊收缩素一促胰激素(CCK-PZ),缓激肽 ⑥ 胸腺激素: 胸腺素、胸腺肽, 胸腺血清因子
返回目录
(一)蛋白类药物的分类

6.碱性蛋白质
硫酸鱼精蛋白,存在于鱼类成熟的精子中,强碱
性。

7.蛋白酶抑制剂 胰蛋白酶抑制剂,亦称抑肽酶。

8.植物凝集素 PHA、ConA。
返回目录
(二)蛋白类药物作用方式

已从生化药物对机体各系统和细胞生长的调节 扩展到被动免疫、替代疗法、抗凝血剂以及蛋 白酶的抑制物等多种领域
返回目录
(三)应用基因工程技术制备重要的 蛋白类药物

已实现产品工业化的有几十种,并正从微生物 和动物细胞的表达转向基因动植物的表达。
返回目录
(四)蛋白质工程技术的应用

蛋白多肽肺部给药研究进展

蛋白多肽肺部给药研究进展

蛋白多肽肺部给药研究进展近年来,随着生物医药技术的不断发展,蛋白质多肽肺部给药成为了尽管研究热点。

肺部给药是一种非常理想的给药途径,它具有吸收迅速、药效高、剂量易于控制等诸多优点,尤其对一些难以通过口服给药途径的药物来说,肺部给药可以克服口服给药的缺陷。

此外,肺部给药的药物低毒性、低副反应,是迄今为止最安全的给药方式之一。

因此,蛋白质多肽肺部给药领域的研究引起了广泛的关注和重视。

1、蛋白质多肽药物及其应用蛋白质多肽是一种由多个氨基酸残基组成的生物高分子,分子量一般在6000-10000之间,由于其具有高度特异性、高效治疗、安全性等优点,被广泛应用于药物治疗领域。

蛋白质多肽药物包括部分剪切酶抑制剂、利妥昔单抗、沙利度胺、糖皮质激素、肝素、白蛋白等。

在糖皮质激素类药物中,布地奈德是一种适用于过敏性鼻炎、哮喘等呼吸系统相关疾病的常用治疗药物。

在肝素类药物中,肝素盐酸盐、依诺佐肝素等普遍应用于防治深静脉血栓。

2、蛋白质多肽肺部给药的研究现状在肺部给药的研究中,针对蛋白质多肽类型的药物,研究人员开始尝试使用肺部给药途径,以期提高药物吸收效率、减少药物在体内的代谢和降低药物在体内的毒性。

因此,蛋白质多肽肺部给药途径成为了当前该领域的研究热点之一。

目前,国内外有许多研究团队致力于蛋白质多肽的肺部给药途径的研究,该研究领域在药品的性能、剂量、次数等方面都获得了重要进展。

许多研究中,研究人员通过改变蛋白质多肽的结构以提高其肺部选结、尝试使用吸入剂或气溶胶的形式给药等方式,以实现肺应用。

同时,还有研究人员致力于利用基因工程技术制造蛋白质多肽型药物以便进行肺部给药研究。

3、蛋白质多肽肺部给药的研究进展及意义蛋白质多肽肺部给药的研究已经成功地应用于药物治疗领域。

例如,布地奈德通过肺部递送给药已广泛应用于过敏性鼻炎、哮喘等疾病,其疗效已经得到证实。

又如,利妥昔单抗通过肺部给药后,其生物利用度能够显著提高,适应于肿瘤治疗领域。

多肽及蛋白质类药物

多肽及蛋白质类药物

结业论文多肽及蛋白质类药物学院环境工程学院专业生物工程班级生物11001班目录摘要一、前言二、多肽类药物和蛋白质类药物(一)多肽类药物(二)蛋白质类药物(三)多肽和蛋白类药物的主要生产方法三、重要多肽类药物(一)胸腺激素(二)促皮质素(三)降钙素四、重要蛋白类药物(一)白蛋白(二)干扰素(三)胰岛素(四)生长素(五)免疫球蛋白多肽及蛋白质类药物摘要随着蛋白组学计划的逐步深入,蛋白质结构与功能关系逐渐被破解,近年来越来越多的多肽及蛋白质类物质在诊断、治疗或作为疫苗预防各种疾病方面发挥着重要作用。

多肽和蛋白质类药物主要以20种天然氨基酸为基本结构单元依序连接而得,代谢物氨基酸为人体生长的基本营养成分,可通过农产品发酵而制备,药效高、副作用小、不积累中毒,作为人体内源性物质参与人体新陈代谢的调控,与人体高度契合。

多肽和蛋白类药物是目前医药研发领域中最有前景、进展最快的部分。

关键字:氨基酸多肽蛋白质一、前言多肽和蛋白质类药物指用于预防、治疗和诊断的多肽和蛋白质类物质生物药物。

多肽是α-氨基酸以肽链连接在一起而形成的化合物,它也是蛋白质水解的中间产物。

N条多肽链按一定的空间结构缠绕纠结就构成了蛋白质。

大分子蛋白质水解会生成多肽。

多肽和蛋白质类生物药物按药物的结构分类可分为:氨基酸及其衍生物类药物、多肽和蛋白质类药物、酶和辅酶类药物、核酸及其降解物和衍生物类药物、糖类药物、脂类药物、细胞生长因子和生物制品类药物。

随着生物工程技术的迅速发展,生物技术活性物质不断面世,已有不少生物技术药物应用于临床,国内外已批准上市的约40多种,1995年开发数为234种,目前正在研究的则成倍增加,在这些品种中,大量的均为多肽和蛋白质类药物。

由于多肽和蛋白质药物的体内外不稳定性,临床主要剂型是溶液型注射剂和冻干粉针。

为解决长期用药的问题,克服注射剂的不便和缺点,发展适宜给药途径的非注射传输系统是药剂学面对的挑战。

二、多肽类药物和蛋白质类药物(一)多肽类药物多肽类药物主要包括多肽疫苗、抗肿瘤多肽、多肽导向药物、细胞因子模拟肽、抗菌性活性肽、诊断用多肽及其它药用小肽等7大类。

多肽与蛋白质类药物 ppt课件

多肽与蛋白质类药物  ppt课件
疾病发病机理的揭示, 对体内各种酶, 辅酶, 生长代谢调 节因子的深入认识, 可以针对性开展多肽和蛋白质类药物 的研发。
12
多肽和蛋白质类药物研发技术与方向
1) 化学合成方法
2) 改造生物活性多肽及现有多肽药物
3) 提高活性多肽及现有多肽药物档次
4) 针对具生物活性的多肽天然产物研发
13
三、多肽及蛋白质类药物的生产方法
(3)胰岛素及其它激素 生长素释放抑制因子,是一种人 脑激素,治疗肢端肥大症, 50万个羊脑提取5mg. 工程菌:7.5L培养液可得到5mg.
肢端肥大症
2.血浆蛋白质
白蛋白,纤维蛋白溶酶原,血纤蛋白等
3.蛋白质类细胞生长调节因子 干扰素α、 β、 γ(IDN),白细胞介素(1~16)(IL)神经生 长因子等
IFN:干扰素 IL:白细胞介素 hGH:生长激素 FDGF:成纤维细胞衍化生长因子
CSF:克隆刺激因子 EPO:红细胞生成素
10
二、多肽和蛋白质类药物特点
1) 基本原料简单易得 多肽和蛋白质类药物主要以20种天然氨基酸为基本结构
单元依序连接而得,代谢物氨基酸为人体生长的基本营养成分, 可通过农产品发酵而制备。
t-PA(tissue-plasminogen activator)译成中文为组织纤溶 酶原激活剂,人体内自然存在,同时也是临床上用于急性心 肌梗死的一种生物蛋白药物,有18个半胱氨酸,9对二硫键
1953年,人类用化学合成法合成了有生物活性的多
肽----催产素。
(2)天然动植物及重组动植物提取法
通过生化工程技术,从天然动植物中分离纯化。由 于天然动植物中的有效成分含量过低,杂质太多,引起人 们对重组动植物的重视。
重组动植物只通过基因工程技术手段,将药物基因 或能对药物基因起调节作用的基因转导入动植物细胞,以 提高动植物合成药用成分的能力,再经过生化分离,制得 生物制品。

蛋白质与多肽类药物探讨

蛋白质与多肽类药物探讨

蛋白质与多肽类药物探讨摘要:在蛋白质、多肽类的制药和应用中,如何提高其稳定性和吸收率是一个重要的问题。

本文通过蛋白质、多肽类药物的稳定性、给药方式进行分析,对如何提高该类药物的稳定性,促进药物吸收进行了研究。

关键词:药物;制药;蛋白质;多肽引言当前蛋白质、多肽类药物在临床上被广泛的应用,蛋白质类药物如胰岛素、干扰素等,多肽类药物有多肽疫苗、抗菌肽等。

该类药物具有效果显著、副作用低的特点。

但由于该类药物多为大分子物质,因此在保持稳定性和吸收上存在着一定的困难,导致药效难以达到理想的水平。

本文从蛋白质、多肽类药物的稳定性、给药方式进行研究,对如何提高该类药物的稳定性,促进药物吸收进行了研究。

1.蛋白、多肽类的稳定性对于蛋白质、多肽类药物来说,其在稳定性上与其他小分子药物存在着一定的差异。

蛋白、多肽类药物的稳定性不仅取决于一级结构,还受到其空间构型和构象,即高级结构的影响。

该类药物一级结构的稳定性决定了其化学稳定性,主要体现在天然蛋白质、多肽类药物的氨基酸残基容易发生各种反应而被修饰变化;高级结构则决定了其物理稳定性,主要体现在当蛋白质、多肽二级结构的氢键以及三、四级结构的次级键发生变化而导致其三维构象发生改变,进而导致药物变性,使其药物效果发生改变。

通常情况下,蛋白质、多肽类药物具有一定的抵抗外界因素导致其展开变性的能力,即热力学稳定性,一般使用其展开变性后与天然结构下的吉布斯能差进行表示,能差越高表示其越稳定。

蛋白质、多肽类药物抵抗非自然条件导致的不可逆结构变化的能力则被称为动力学稳定性或长期稳定性,其主要是指蛋白质展开速度,一般以半衰期来表示,半衰期越长则表示其越稳定。

2.蛋白、多肽类药物给药系统及障碍在蛋白质、多肽类药物的使用上,给药途径的选择对于药物的吸收情况有着非常大的影响。

(1)蛋白质类药物如果口服给药则会被胃酸或其他消化酶破坏,导致其失去活性,因此口服给药通常仅适用于缤纷多肽类药物。

(2)黏膜给药通常会选择人体的鼻腔黏膜或者口腔黏膜,这些部位的血管分布较多,黏膜通透性较好,且很少受到消化液、消化酶的影响,因此药物吸收率较高,其中鼻腔黏膜是最好的黏膜给药途径。

多肽和蛋白质类药物特点是什么

多肽和蛋白质类药物特点是什么

多肽和蛋白质类药物特点是什么多肽和蛋白质类药物特点是什么多肽和蛋白质类药物指用于预防、治疗和诊断的多肽和蛋白质类物质生物药物。

下面是店铺给大家整理的多肽和蛋白质类药物的特点简介,希望能帮到大家!多肽和蛋白质类药物的特点1) 基本原料简单易得多肽和蛋白质类药物主要以20种天然氨基酸为基本结构单元依序连接而得,代谢物氨基酸为人体生长的基本营养成分,可通过农产品发酵而制备。

2)药效高,副作用低,不蓄积中毒多肽和蛋白质类药物本身是人体内源性物质或针对生物体内调控因子研发而得,医学教育网搜|集整理通过参与,介入,促进或抑制人体内或细菌病毒中生理生化过程而发挥作用,副作用低,药效高,针对性强,不会蓄积于体内而引起中毒。

3)用途广泛,品种繁多,新型药物层出不穷多肽和蛋白质类药物是目前医药研发领域中最活跃,进展最快的部分,是二十一世纪最有前途的产业之一。

将20种基本氨基酸按不同序列相互连接,可得到品种繁多,可用于治疗各种类型疾病的多肽和蛋白质类药物。

众多新型多肽和蛋白质类药物在治疗艾滋病,癌症,肝炎,糖尿病,慢性疼痛效果显著。

4) 研发过程目标明确,针对性强借助生命科学领域取得的大量研究成果,包括对各类疾病发病机理的揭示,对体内各种酶,辅酶,生长代谢调节因子的深入认识,可以针对性开展多肽和蛋白质类药物的研发。

多肽和蛋白质类药物的研发技术1) 化学合成方法以化学合成方法研制开发多肽和蛋白质类药物,已成为广泛采用的有效手段。

通过液相合成,固相合成,固/液合成相结合以及片段连接等方式, 已成功研发众多多肽和蛋白质类药物。

2) 改造生物活性多肽及现有多肽药物以生物活性多肽或现有多肽药物作参照,通过组合筛选,氨基酸序列简化或替代改造,是研发多肽药物的有效途径。

3) 提高活性多肽及现有多肽药物档次通过对内源性多肽或现有多肽药物进行结构修饰,以克服原有产物的弱点,减少副作用,提高药效, 是研发多肽蛋白质类新药的重要渠道。

4) 针对具生物活性的.多肽天然产物研发以生物活性天然多肽,尤其是海洋生物活性多肽为模板, 开展构效关系研究,以提高活性与效价,简化结构并降低副作用,是研发多肽蛋白质类新药的重要方向。

蛋白质、多肽类药物质量控制

蛋白质、多肽类药物质量控制

可能导致产品质量存在差异,需要加强批次间一致性的控制。
03
稳定性差
蛋白质、多肽类药物容易受到温度、湿度、光照等因素的影响,导致其
稳定性较差,需要加强存储和使用过程中的保护措施。
未来发展方向
加强创新研究
加强国际合作与交流
通过加强创新研究,开发更加精准、 高效的质量控制技术和方法,提高蛋 白质、多肽类药物的质量控制水平。
可以揭示蛋白质的三维结构,对于理解蛋白质功能和药物设计具有重要意义。
纯度测定
总结词
纯度测定是评估蛋白质、多肽类药物质量的重要指标,主要通过色谱技术、电泳技术和质谱技术等方法进行。
详细描述
纯度测定是评估蛋白质、多肽类药物中目标成分的纯度和杂质的含量。色谱技术如凝胶电泳、高效液相色谱等可 以根据分子大小、电荷和疏水性等性质将目标成分与杂质分离。电泳技术则根据蛋白质、多肽的电荷和大小进行 分离。质谱技术可以用于鉴定和定量目标成分和杂质,具有高灵敏度和高分辨率的特点。
蛋白质、多肽类药物 质量控制
目录
CONTENTS
• 蛋白质、多肽类药物概述 • 蛋白质、多肽类药物质量控制标准 • 蛋白质、多肽类药物质量控制方法 • 蛋白质、多肽类药物质量控制现状与挑
战 • 新技术与新方法在蛋白质、多肽类药物概述
定义与分类
定义
蛋白质和多肽类药物是指通过基 因工程技术或化学合成方法制备 的,具有特定生物学活性的大分 子药物。
04 蛋白质、多肽类药物质量 控制现状与挑战
质量控制现状
蛋白质、多肽类药物质量控制标准不断完善
随着蛋白质、多肽类药物的广泛应用,各国药典和国际组织不断完善相关质量控制标准, 以确保药物的安全性和有效性。
质量控制技术不断进步

蛋白质、多肽类药物质量控制

蛋白质、多肽类药物质量控制
杂质来源:不稳定氨 基酸,高温灭菌,生 产工艺差距。
2.2 分子量与分子量分布
2.2.1
分子排阻色谱
原理 • 多孔凝胶为固定相,流动 相中组份分子量大的先流 出,分子量小的后流出。
优点 • 最简单,样品量少,条件 温和,设备简单。
缺点 • pH6-8范围内线性关系良 好,极端pH蛋白质变性, 误差5%左右。
甲酰等)反应,再分离检测。
优点:灵敏度高,分辨率 高,普通HPLC即可分析。
番外篇——氨基酸类药物的有关物质 研究
目前《中国药典》 2015年版对于氨基 酸类制剂的杂质控制 是测定“其他氨基酸 ”,采用TLC法喷茚 三酮试液显色。
其他杂质如何控制?
难点:种类多,分子 量小,弱紫外吸收, 两性电解质,溶解性 差异大。
《中国药典》2015年版四部通则3405肽图检查 法
第一法 胰蛋白酶裂解——反相高效液相色谱 法
– 供试品和对照品用胰蛋白酶恒温水解,终止反应后, 离心取上清。液相C18或C8柱,0.1%三氟乙酸的水和 0.1%三氟乙酸的乙腈梯度淋洗,检测波长214nm。
第二法 溴化氰裂解——SDS聚丙烯酰胺凝胶
3.1 凯氏定氮法
适用 0.2~2.0mg氮,用于标 范围 准蛋白含量的准确测定。
优点
范围广泛,重现性好, 误差±2%
缺点
灵敏度低,费时,测定 结果偏高。
3.2 福林酚法
原理:在碱性条件下, 蛋白质与铜作用生成络 合物,蛋白质中的酪氨 酸和苯丙氨酸残基将 FolIn试剂中的磷钼酸盐磷钨酸盐中六价钨还原 成深蓝色混合物。在 650nm处的吸光度与蛋 白质含量成正比。
供电试泳品图谱与对 事实是基本做
照品图谱进行比 较,即得。
不出来一样的

蛋白质 多肽类药物新剂型与新技术发展动态

蛋白质 多肽类药物新剂型与新技术发展动态

结论:
本次演示对蛋白质、多肽类药物新剂型与新技术的研究进展进行了综述。在 药物分子设计方面,CADD技术的应用已经取得了重要进展;在制备工艺方面,基 因工程、细胞工程和蛋白质工程技术的发展提高了蛋白质、多肽类药物的产量和 纯度;在质量控制方面,
蛋白质组学、生物信息学和免疫学等技术的应用为保障药物的质量和安全性 提供了有力支持。然而,目前仍然存在一些问题需要解决,如新药研发周期长、 成本高以及质量控制方面的不足等。未来的研究方向应该包括进一步优化药物分 子设计方法,提高制备工艺的效率和稳定性,以及机技术的不断发展,计算机辅助药物设计 (CADD)已经成为新药研发的重要手段。利用CADD技术,可以预测和评估药物与 靶点之间的相互作用,从而提高药物的疗效和降低副作用。例如,通过结构生物 学和计算生物学技术,成功设计出一种新型抗肿瘤蛋白质药物,具有良好的肿瘤 抑制作用和较低的副作用。
1、新技术的应用:纳米技术、生物技术、微封装技术等在药物制剂中的应 用研究。
2、新剂型的探索:脂质体、微球、纳米粒等新型药物载体的制备及应用研 究。
3、药物释放机制的研究:研究药物在体内的释放机制,提高药物的疗效和 降低不良反应。
4、制剂工艺的研究:研究新的制剂工艺,提高制剂的质量和生产效率。
5、制剂质量控制的研究:建立有效的质量控制体系,保证制剂的质量和稳 定性。
3、生物降解材料
生物降解材料是一种能够在体内降解吸收的新型材料,可以用于药物的载体 和赋形剂,提高药物的疗效和降低不良反应。生物降解材料的制备方法包括化学 合成法、天然提取法、微生物发酵法等,制备出的生物降解材料可以根据需要进 一步修饰和功能化,以实现药物的定向输送和控制药物的释放。生物降解材料在 药物制剂领域的应用主要包括药物的生物降解载体、药物的生物降解涂层等。

基于蛋白质互作的多肽药物研发

基于蛋白质互作的多肽药物研发

基于蛋白质互作的多肽药物研发蛋白质互作是指两个或多个蛋白质之间发生相互作用的过程,是细胞内许多生物进程的基础。

多肽药物是一类由10到50个氨基酸组成的生物大分子,具有高度的特异性,能够精确地调控目标蛋白的活性和功能。

基于蛋白质互作的多肽药物研发是当前药物研发领域的热点之一,具有广阔的应用前景。

一、多肽药物的优势和挑战相比其他药物类型,多肽药物具有以下几个优点:1)高特异性和选择性,能够与目标蛋白结合并调控其活性和功能,减少对其他非靶向蛋白的影响,从而减少副作用;2)生物可降解和可吸收性,易于清除和代谢,减少在体内存留时间和毒性;3)可调控性和可设计性,通过调整多肽序列和结构等方面进行有针对性的药物设计。

然而,多肽药物也存在一些挑战,如易受酶解和去除,药代动力学不佳,难以穿过细胞膜等。

二、基于蛋白质互作的多肽药物研发策略基于蛋白质互作的多肽药物研发涉及多个方面,主要包括以下几个步骤:1)目标蛋白的筛选和确定。

针对不同的疾病和治疗需求,选定合适的目标蛋白,通过基因工程技术获得目标蛋白的纯化样本。

2)多肽药物的筛选和设计。

通过生化和分子生物学方法,筛选或设计具有高亲和力和特异性的多肽药物。

其中,融合蛋白、突变肽和带电荷的多肽等具有自身独特的优势。

3)多肽药物的构象和稳定性研究。

确立多肽药物的构象和稳定性对于药物设计和优化至关重要。

通过核磁共振、圆二色谱、表面等离子共振、荧光光谱等多种技术手段进行研究。

4)多肽药物的性质研究。

除了前面提到的药代动力学、穿膜等问题,还需要考虑多肽药物的毒性、免疫原性、稳定性等方面的问题。

在研发过程中,需要进行大量的体外、体内和临床试验来评估药物的安全性和有效性。

三、基于蛋白质互作的多肽药物的应用前景多肽药物在治疗肿瘤、代谢性疾病、自身免疫性疾病、心血管疾病、神经系统疾病等领域都有广泛的应用前景。

例如,早期的多肽药物象肽(somatostatin)已用于治疗神经内分泌肿瘤和胃肠疾病;奥曲肽(octreotide)和利普腾钠(lanreotide)则是高效的胰岛素抑制剂,可用于治疗胰岛素高、肥胖等疾病;桑白巴拉汀(anakinra)是一种模拟人体自然环节蛋白刺激剂,用于治疗风湿性关节炎等自身免疫性疾病。

第十三章 多肽与蛋白质类药物

第十三章  多肽与蛋白质类药物
Biblioteka 2、生产工艺工艺路线:
除盐
(三)干扰素(Interferon,IFN)
1、结构和性质
1957年Isaacs和Lindenman在进行鸡胚细胞流感病毒感染 试验中首次发现一类能干扰和抑制病毒复制的可溶性细胞分泌 物,故取名为干扰素(interferon)
干扰素(IFN)系指由干扰素诱生剂诱导有关生物细胞所 产生的一类高活性、多功能的诱生蛋白质。在细胞上具有光谱 抗病毒活性。
这类诱生蛋白质从细胞中产生和释放之后,作用于相 应的其他同种生物细胞,并使其获得抗病毒和抗肿瘤等多 方面的“免疫力”。人干扰素按抗原性分为α、β、γ三型。 根据氨基酸序列的差异,又分为若干亚型。三种干扰素的 理化及生物学性质有明显差异,即使是IFN-α的各亚型之间, 生物学作用也不尽相同。
抑制病毒等细胞内微生物的增值 抗细胞增殖 通过作用于巨噬细胞、NK细 胞、T淋巴细胞、B淋巴细胞而 进行免疫调节。 改变细胞表面的状态,使负电 荷增加,组织相溶性抗原表达增加
胸腺激素制剂总的说来都与调节免疫功能有关

(1)结构和性质 胸腺素组分5是由在80℃热稳定的40~50种多肽组 成的混合物,分子量在1000~15000之间,等电点 在3.5~9.5之间。 为了便于不同实验室对这些多肽的鉴别和比较,根 据它们的等电点以及在等电聚焦分离时的顺序而命名。 共分三个区域:α区包括等电点低于5.0的组分,β区 包括等电点在5.0~7.0之间的组分,γ区则指其等电 点在7.0以上者(此区内组分很少)。对分离的多肽进 行免疫活性测定,有活性的称为胸腺素。
易溶于水,等电点为6.6。在干燥和酸性溶液中较稳定,虽经 100℃加热,但活力不减;在碱性溶液中容易失活。能溶解于 70%的丙酮或70%的乙醇中。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
段的融合蛋白,含934个氨基酸,适应症为风湿性关节炎
3)1999年上市的免疫毒素Ontak(Ligand):适应症
是皮肤T细胞淋巴瘤(CTCL),是缺失细胞结合域的白喉毒素与IL-2的 N端133个氨基酸的融合蛋白。
4)2003年上市的Amevive(Biogen Idec):是LEF-3
的CD2与IgG的Fc
精品课件
rHuEPO原理
•rHuEPO是一种酸性糖蛋白 •分子量:29.8士0.3kDa •1985年问世并成为注册药物。 •启动子构建成表达载体→不同的细胞株[有中国仓鼠卵细胞(CH0)、幼仓鼠肾细胞(BHK)及C127
小鼠纤维细3]作为受体进行表达→获取rHuEPO。
• rHuEPO与EPO: 1)氨基酸序列完全相同,仅糖基部分有微小差别; 2)在结构上的不同是N-端唾液酸含量的差异; 3)作用极为相似,可以明显提高人体的红细胞数量及血红蛋白含量,从
▪ 20世纪80年代 研究者克隆了人干扰素基因,实现了基因工程
rhuIFN的大规模生产。
▪ 到了20世纪90年代 以提高rhuIFN的生物利用度和药代动力学
为主要开发方向,进行了干扰素聚乙二醇(PEG)修饰,研制了长效干 扰素,减少了给药次数,提高了疗效。
▪ 1986年 第一个重组人α干扰素Roferon(Huffman-La Roche)上市,
在此仅计为1个)
▪3个"重磅炸弹": Humulin(野生型胰岛素)、Humalog (Eli
Lilly,胰岛素突变体)、Lantus (Anvents,胰岛素突变体)
▪人生长激素(1985年第一个重组人生长激素Protropin(Genetech)
上市)
▪卵泡刺激激素 ▪其他激素
精品课件
人造血因子
重组人抗凝血酶(ATryn)是2006年批准的、第一个 由转基因动物(羊)生产的重组药物。
精品课件
人骨形成蛋白 是最年轻的一组 第一个产品2001年批准上市
精品课件
融合蛋白
1)是为数很少的以抑制为作用机理的重组药物,仅有3个 2)1998年批准的Enbrel(Amgen):是TNF受体和IgG的Fc片
包括: ▪重组人促红细胞生成素: 1985年成功表达了重组人促红细胞生成素(rhEPO,1989年
上市第一个重组人促红细胞生成素。
▪新红细胞生成刺激蛋白(NESP):美国 Amgen 公司研制的长效 EPO 制剂 ,于 2001
年 6 月底获得欧洲药物评审委员会批准 ,用于慢性肾衰引起的贫血。NESP 是一种高糖基 化 rhEPO 类似物,也是第一个被批准用于临床的新型促红细胞生成素 ,具rhEPO 相似的作 用机制即刺激红系造血。法国学者Dalle等 ,于2001 年利用基因重组技术合成了一种二聚 体 EPO ,由两个 EPO 及一个 9 肽连接而成的融合蛋白。
2)与以往的小分子药物相比,蛋白质药物具有高活性、特异性强、低毒性 、生物功能明确、有利于临床应用的特点。由于其成本低、成功率高、安全 可靠,已公司首先将重 组胰岛素投放市场,标志着第一个重组蛋白质药物的诞生。
精品课件
基因工程蛋白质或多肽类药物
精品课件
LOGO
基因工程---蛋白质多肽类药 物
精品课件
基因工程蛋白质或多肽类药物
简介
分类
rHuEPO
蛋白多肽类药物
蛋白重组药物-8类
原理、方法、应用
精品课件
简介
基因工程被认为是21世纪最具主导地位的高新 技术之一,基因工程药物基本都是蛋白多肽类药物,对肿 瘤遗传性和非遗传性疾病有着特殊的疗效,随着科学与技 术的不断发展以及人民对生活质量的要求在不断提高蛋白 类药物的制备将发展为21世纪我国最具吸引力的新技术产 业之一。蛋白质和多肽类作为药物,具有生理活性强、免 疫原性低、疗效高等诸多优点,随着基因工程的不断发展 ,在人类治疗疾病中的地位也日趋重要,目前成为国际药 学界的研究重点之一 。
精品课件
蛋白多肽类药物的关键问题 蛋白多肽类药物关键问题
▪1)结构特征:蛋白质分子的化学结构决定其活性;药物的空间结
构即二维、三维结构也同样影响生物活性;另外,多肽及蛋白质的分子 量常为数千至几十万,颗粒大小在l~100nm之间,不能透过半透膜。
▪2)体内外不稳定性:蛋白质药物在体内外环境可能经受多种
简介
分类
rHuEPO
蛋白多肽类药物
蛋白重组药物:8类
原理、方法、应用
精品课件
重组蛋白药物分类
目前目前上市的蛋白重组药物大致可以分为以下几 类:
●多肽类激素药 ●人造血因子 ●人细胞因子 ● 人血浆蛋白因子 ● 人骨形成蛋白 ● 重组酶 ● 融合蛋白 ● 外源重组蛋白
精品课件
多肽类激素药
包括: ▪人胰岛素(1982年第一个重组人胰岛素Humulin (Eli Lilly)上市 ▪12种制剂(Novo Nordisk的8个速效、中效和长效重组胰岛素突变体
而提高人体运输氧的能力,提高人体最大摄氧量; 4)rHuEPO主要生理作用是调节红系前体细胞分化为成熟的红细胞,进而
维持外周血红细胞的水平, 临床上主要用于治疗肾衰后引起的贫血。
精品课件
rHuEPO的不良反应 常见不良反应:
▪高血压:大多发生于慢性肾衰病人,可能是Het快速增加、血液粘稠
度增高、周围血管阻力增加等所致。
▪粒细胞/单核细胞集落刺激因子GM-CSF(1985年Wong和克隆出人GM-CSF的cDNA,并实现了表达,1993年张 智清等人在国内首次克隆了人GM-CSFcDNA,并在大肠杆菌里获得表达)
▪其他造血相关因子
精品课件
人细胞因子
▪刺激网织红细胞的早期向血液中释放 EPO 的功效在一
定剂量范围内呈剂量依赖性,但剂量超过太大后并不增加药效。
精品课件
rHuEPO的应用
rHuEPO 适用于: ▪慢性肾衰贫血的治疗:此类贫血的一个主要原因是EPO 生成缺
乏。EPO 可谓替代治疗方法,其疗效达95%以上
▪艾滋病(AIDS)病人伴贫血 ▪肿瘤病人化疗所致贫血 ▪慢性病贫血 ▪造血干细胞疾病的贫血 ▪自体供血输注。

背景
原理
应用

不良反应
精品课件
rHuEPO背景
在运动竞赛中兴奋剂的使用日益受到人们的重视。尽 管现在对兴奋剂的检测力度不断加大,但兴奋剂的使用并未 销声匿迹,不断有新的兴奋剂在悄悄使用。随着生物技术的 进步,运用基因重组技术开发出了许多重组激素类药物。如 重组人促红细胞生成素( rHuEPO ),近些年来被滥用于一 些耐力性运动项目中,例如长距离跑、游泳、自行车等项目 。早期的一项来自德国的报告表明,有18名自行车运动员的 死亡与rHuEPO 的滥用有关。
精品课件
蛋白多肽类药物的关键问题
▪ 3)吸收特征:蛋白质药物半衰期短、清除率高、分子
量大透股能力差、易受体内酶和细菌以及体液的破坏、非 注射给药生物利用度低,一般都仅为百分之几,提高蛋白 质药物吸收的方法一般有化学修饰或制备成前体药物,使 用酶抑制剂,吸收促进剂,选择适宜剂型保护等。
精品课件
LOGO
精品课件
重组酶 1993年 第一个重组酶Pulmozyme(Genetech)上市
精品课件
外源重组蛋白
重组水蛭素(hirudin) 1986年 水蛭素的cDNA被克隆出来,获得了建立在多种载体上的
重组水蛭素,包括在大肠杆菌,枯草杆菌,酵母菌及真核细胞等的成 功表达。
1998年 重组水蛭素药物在德国正式上市 1999年 英国批准上市.复旦大学成功研制国家一类新药RGD-
▪癫痫发作:原因不明,偶见于慢性肾衰病人; ▪其它: 头痛、心动过速、恶心、呕吐、呼吸加快、透析管栓塞等。
运动员长期滥用rHuEPO 将可能导致上述症状的出现,严重者甚至导致死 亡。
精品课件
rHuEPO的应用 rHuEPO 的作用
▪促使红系祖细胞的增殖和分化,骨髓内红细胞池扩 大
▪促使红细胞的成熟和Hb 的合成
精品课件
简介
•概念
多肽和蛋白质类药物:指用于预防、治疗和诊断的多肽和蛋白质
类物质生物药物。
•特点
▪ 基本原料简单易得:主要以20种天然氨基酸为基本结构单元 ▪ 药效高,副作用低, 不蓄积中毒 ▪ 用途广泛,品种繁多,新型药物层出不穷 ▪ 研发过程目标明确,针对性强
精品课件
简介
1)蛋白质药物可分为: 多肽和基因工程药物 单克隆抗体和基因工程抗体 重组疫苗
现有5个同类产品,其中2个(组)为"重磅炸弹",一是Pegasys( Roche,PEG化的重组人α干扰素-2a),另一组是Schering Plough的 PEG-Intron A/Intron A
精品课件
人血浆蛋白因子
▪重组人凝血因子Ø ▪重组人凝血因子× ▪重组人凝血因子Ù ▪组织血浆酶原激活物tPA ▪C反应蛋白 ▪重组人抗凝血酶
复杂的化学降解和物理变化而失活。
精品课件
蛋白多肽类药物的关键问题
提高稳定性的方法: (1)温和的生产条件如对温度、机械搅拌强度和有 机溶剂的选择,对无菌条件的控制,容器的吸附效 应,水分控制,低温冷藏等。 (2)设计正确的处方如PH、缓冲对、电解质;加入 适宜稳定剂、冻干保护剂、阻聚剂如非离子表面活 性剂、糖、甘露醇、山梨醇、PEG、人血清白蛋白等 以及制备包合物等。
Hirudin
2005年 获准正式进入一期临床试验。 2006年 两种水蛭素和一种水蛭素类似物已被美国FDA批准生产,
分别是lepirudin,desirudin,angianmax.)
精品课件
基因工程蛋白质或多肽类药物
简介
分类
rHuEPO
蛋白多肽类药物
蛋白重组药物:8类
相关文档
最新文档