2015绵阳二诊 四川省绵阳市2015届高三第二次诊断性考试 数学理 扫描版无答案
【绵阳二诊】四川省绵阳市2017届高三第二次诊断性测试 数学(理) 扫描版含答案
数学(理工类)参考解答及评分标准一、选择题:本大题共12小题,每小题5分,共60分.BACAB CCDAD CB二、填空题:本大题共4小题,每小题5分,共20分.13.-1114.3215.5316.55三、解答题:本大题共6小题,共70分.17.解 :(Ⅰ) 令n n n a a c -=+1,则n n c c -+1=(12++-n n a a )-(n n a a -+1)=1212=+-++n n n a a a (常数), 2121=-=a a c ,故{a n +1-a n }是以2为首项,1为公差的等差数列. ………………………4分 (Ⅱ)由(Ⅰ)知1+=n c n , 即a n +1-a n =n +1, 于是11211)()()(a a a a a a a a n n n n n +-+-+-=-- 2)1(12)2()1(+=+++-+-+=n n n n n , …………………………8分故)111(2)1(21+-=+=n n n n a n . ∴ S n =2(1-21)+2(21-31)+2(31-41)+…+)111(2+-n n =2(111+-n )=12+n n . ………………………………………………………………12分 18.解:(Ⅰ) ∵a c 2=,∴ 由正弦定理有sin C =2sin A . …………………………………………2分 又C =2A ,即sin2A =2sin A ,于是2sin A cos A =2sin A , …………………………………………………4分 在△ABC 中,sin A ≠0,于是cos A =22, ∴ A =4π. ……………………………………………………………………6分(Ⅱ)根据已知条件可设21+=+==n c n b n a ,,,n ∈N *. 由C =2A ,得sin C =sin2A =2sin A cos A , ∴ acA C A 2sin 2sin cos ==. ……………………………………………………8分 由余弦定理得acbc a c b 22222=-+, 代入a ,b ,c 可得nn n n n n n 22)2)(1(2)2()1(222+=++-+++, ……………………………………………10分 解得n =4,∴ a =4,b =5,c =6,从而△ABC 的周长为15,即存在满足条件的△ABC ,其周长为15. ………………………………12分19.解:(Ⅰ)由已知有1765179181176174170=++++=x ,6656870666462=++++=y ,2222)176179()176181()176174()176170()6668)(176179()6670)(176181()6664)(176174()6662)(176170(ˆ-+-+-+---+--+--+--=b=3727≈0.73, 于是17673.066ˆˆ⨯-=-=b a=-62.48, ∴ 48.6273.0ˆˆˆ-=+=x a x b y.………………………………………………10分 (Ⅱ) x =185,代入回归方程得48.6218573.0ˆ-⨯=y=72.57, 即可预测M 队的平均得分为72.57. ………………………………………12分 20.解:(Ⅰ) 设椭圆C 的焦半距为c ,则c =6,于是a 2-b 2=6.由12222=+b y a c ,整理得y 2=b 2(1-22a c )=b 2×222a c a -= 24a b ,解得y =a b 2±,∴ 222=ab ,即a 2=2b 4, ∴ 2b 4-b 2-6=0,解得b 2=2,或b 2=-23(舍去),进而a 2=8, ∴ 椭圆C 的标准方程为12822=+y x . ……………………………………4分 (Ⅱ)设直线PQ :1+=ty x ,)()(2211y x Q y x P ,,,.联立直线与椭圆方程:⎪⎩⎪⎨⎧+==+,,112822ty x y x消去x 得:072)4(22=-++ty y t , ∴ y 1+y 2=422+-t t ,y 1y 2=472+-t . ………………………………………7分于是482)(22121+=++=+t y y t x x , 故线段PQ 的中点)444(22+-+t tt D ,. ………………………………………8分 设)1(0y N ,-, 由NQ NP =,则1-=⋅PQ ND k k ,即t t t t y -=+--++4414220,整理得4320++=t t t y ,得)431(2++-t t t N ,.又△NPQ 是等边三角形, ∴ PQ ND 23=,即2243PQ ND =, 即]474)42)[(1(43)44()144(22222222+-⋅-+-+=+++++t t t t t t t t , 整理得22222)4(8424)144(++=++t t t , 即222222)4(8424)48(++=++t t t t , 解得102=t ,10±=t , …………………………………………………11分 ∴ 直线l 的方程是0110=-±y x . ………………………………………12分 21.解:(Ⅰ)222221)(x m x x x m x f -=+-=', ……………………………………1分 ①m ≤0时,)(x f '>0,)(x f 在)0(∞+,上单调递增,不可能有两个零点. …………………………………………………………2分 ②m >0 时,由0)(>'x f 可解得m x 2>,由0)(<'x f 可解得m x 20<<, ∴ )(x f 在)20(m ,上单调递减,在)2(∞+,m 上单调递增,于是)(x f min =)2(m f =12ln 212-+m m m , ……………………………………4分 要使得)(x f 在)0(∞+,上有两个零点, 则12ln 212-+m m m <0,解得20em <<,即m 的取值范围为)20(e,. ………………………………………………5分(Ⅱ)令x t 1=,则11ln 21)1(--=xx m x f 1ln 2--=t mt ,由题意知方程1ln 2--t mt =0有两个根t 1,t 2,即方程tt m 22ln +=有两个根t 1,t 2,不妨设t 1=11x ,t 2=21x .令tt t h 22ln )(+=,则221ln )(t t t h +-=',由0)(>'t h 可得e t 10<<,由0)(<'t h 可得et 1>, ∴ )10(e t ,∈时,)(t h 单调递增,)1(∞+∈,et 时,)(t h 单调递减.故结合已知有 t 1>e1>t 2>0. ……………………………………………………8分 要证e x x 21121>+,即证et t 221>+,即e t e t 1221>->. 即证)2()(21t eh t h -<. …………………………………………………………9分令)2()()(x eh x h x --=ϕ,下面证0)(<x ϕ对任意的)10(ex ,∈恒成立.22)2(21)2ln(21ln )2()()(x e x e x x x e h x h x ----+--=-'+'='ϕ.………………………10分 ∵ )10(ex ,∈,∴ 22)2(01ln x ex x -<>--,,∴ )(x ϕ'22)2(21)2ln()2(21ln x e x e x e x ----+--->=2)2(22)2(ln x ee x x --+--. ∵ )2(x e x -<221]2)2([ex e x =-+,∴ )(x ϕ'>0,∴ )(x ϕ在)10(e ,是增函数,∴ )(x ϕ<)1(eϕ=0,∴ 原不等式成立.……………………………………………………………12分22.解:(Ⅰ)消去参数得1322=+y x . …………………………………………5分(Ⅱ)将直线l 的方程化为普通方程为0323=++y x . 设Q (ααsin cos 3,),则M (ααsin 211cos 23+,), ∴ 233)4sin(26232sin 233cos 23++=+++=παααd ,∴ 最小值是4636-.………………………………………………………10分 23.解:(Ⅰ) 当t =2时,21)(-+-=x x x f .若x ≤1,则x x f 23)(-=,于是由2)(>x f 解得x <21.综合得x <21. 若1<x <2,则1)(=x f ,显然2)(>x f 不成立 . 若x ≥2,则32)(-=x x f ,于是由2)(>x f 解得x >25.综合得x >25.∴ 不等式2)(>x f 的解集为{x | x <21,或x >25}. …………………………5分 (Ⅱ))(x f ≥x a +等价于a ≤f (x )-x .令g (x )= f (x )-x . 当-1≤x ≤1时,g (x )=1+t -3x ,显然g (x )min =g (1)=t -2. 当1<x <t 时,g (x )=t -1-x ,此时g (x )>g (1)=t -2. 当t ≤x ≤3时,g (x )=x -t -1,g (x )min =g (1)=t -2. ∴ 当x ∈[1,3]时,g (x )min = t -2. 又∵ t ∈[1,2],∴ g (x )min ≤-1,即a ≤-1.综上,a 的取值范围是a ≤-1. ……………………………………………10分。
四川省绵阳市高三数学第二次诊断性考试试题 理(扫描版)
四川省绵阳市2015届高三数学第二次诊断性考试试题理(扫描版)绵阳市高2012级第二次诊断性考试 数学(理工类)参考解答及评分标准①当1≥-ab,即a b -≥时,13)1()(0)0()(max min ≤+====b a f x f f x f ,, 即211313≤⇒+≤⇒⎩⎨⎧≤--≤b b b b a a b ,,.②当1<-ab即a b -<时, 233403)1(12)()(0)0(3max ≤⇒⎩⎨⎧≤--≤⇒⎪⎪⎩⎪⎪⎨⎧≥+=≤-=-==b b a a b b a f a b b a b f x f f ,,,,,,此时233-=a . 将233-=a ,23=b 代入检验正确. 二、填空题:本大题共5小题,每小题5分,共25分.11.27 12.-160 13. 23-14.65 15.①③ 15.提示:③ 法一:21)(x x f -=和)2()(>+-=b b x x g 是(-1,1)上的“接近函数”,结合图形,)11(,-∈∃x 使max 22)11(11++-≤⇔≤--+-x x b x b x ,令)11(11)(2<<-++-=x x x x h ,,22011)(2±=⇒=--='x x x x h , 即)2222(,-∈x 时,0)(>'x h ;)122(,∈x 时,0)(<'x h . 所以12)22()(max +==h x h . 法二:数形结合求出直线和半圆相切时切点)2222(,P ,当直线和圆在)2222(,P 的“竖直距离”为1 时,12+=b .④若ex xxx f 2ln )(+=与22)(e a x x g ++=是)1[∞+,上的“远离函数”, 即)1[∞+∈∀,x ,x x ex e a x e a x ex x x ln 22ln 2222--++=---+1ln )(2>-+-=xxa e x .令a e x x P +-=21)()(,则)(1x P 在)(e ,-∞递减,在)(∞+,e 递增, ∴ a e P x P ==)()(1min 1; 令xx x P ln )(2=,22ln 1)(x xx P -=',易得)(2x P 在)(e ,-∞递增,在)(∞+,e 递减,∴e e P x P 1)()(2max 2==,∴ ea e a 1111+>⇒>-. 三、解答题:本大题共6小题,共75分.16.解:(Ⅰ)设所选取的2人中至少有1人为“满意观众”的事件为A ,则A 为所选取的人中没有1人为“满意观众”,∴ P (A )=1-P (A )=1-21224C C =1-111=1110, 即至少有1人为“满意观众”的概率为1110. ………………………………4分 (Ⅱ) 由茎叶图可以得到抽样中“满意观众”的频率为32128=,即从观看此影片的“满意观众”的概率为32,同理,不是“满意观众”的概率为31.…6分由题意有ξ=0,1,2,3,则P (ξ=0)=303)31(C =271,P (ξ=1)=213)31(32⨯⨯C =92,P (ξ=2)=31)32(223⨯⨯C =94,P (ξ=3)=333)32(C =278, ∴ ξ的分布列为10分∴ ξ的数学期望E ξ=0×271+1×92+2×94+3×278=2.………………………12分 17.解:(Ⅰ) 如图,连结AC 、BD 交于O ,连结OE .由ABCD 是正方形,易得O 为AC 的中点,从而OE 为△PAC 的中位线,∴ EO //PA .∵ EO ⊂面EBD ,PA ⊄面EBD ,∴ PA //面EBD .………………………………………………………………4分 (Ⅱ)由已知PD ⊥底面ABCD ,得PD ⊥AD ,PD ⊥CD .如图,以DA ,DC ,DP 所在直线为坐标轴,D 为原点建立空间直角坐标系.设AD =2,则D (0,0,0),A (2,0,0),P (0,0,2),E (0,1,1),B (2,2,0),PB =(2,2,-2),=(2,0,0).…………………………………6分 设F (x 0,y 0,z 0),PB PF λ=,则由=(x 0,y 0,z 0-2)得(x 0,y 0,z 0-2)=λ(2,2,-2) ,即得⎪⎩⎪⎨⎧-===,,,λλλ2222000z y x于是F (2λ,2λ,2-2λ). ∴ =(2λ,2λ-1,1-2λ). 又EF ⊥PB ,∴ 0)2()21(2)12(22=-⨯-+⨯-+⨯λλλ,解得31=λ. ∴ )343232(,,F ,)343232(,,=DF . ………………………………………8分设平面DAF 的法向量是n 1=(x ,y ,z ),则⎪⎩⎪⎨⎧=⋅=⋅,,0011n n 即⎩⎨⎧=++=,,0202z y x x 令z =1,得n 1=(0,-2,1).又平面PAD 的一个法向量为n 2=(0,1,0), ………………………………10分 设二面角P -AD -F 的平面角为θ, 则cos θ=2121n n n n ⋅55252==,即二面角P -AD -F 的余弦值为552. ………………………………………12分 18.解:(Ⅰ)由余弦定理得412212cos 222==-+=bc bcbc a c b A ,则415cos 1sin 2=-=A A . …………………………………………………4分 (Ⅱ)由A +B +C =π有C =π-(A +B ),于是由已知sin B +sin C =210得210)(sin sin =++B A B ,即210sin cos cos sin sin =++B A B A B , 将415sin =A ,41cos =A 代入整理得210cos 415sin 45=+B B .①………7分 根据1cos sin 22=+B B ,可得B B 2sin 1cos -±=. 代入①中,整理得8sin 2B -410sin B +5=0, 解得410sin =B . ……………………………………………………………10分 ∴ 由正弦定理BbA a sin sin =有364154101sin sin =⨯==A B a b . ………………12分19.解:(Ⅰ) ∵二次函数x a x a x f n n n ⋅-+⋅=+-)2(21)(12的对称轴为x =21, ∴ a n ≠0,2121221=⨯--+-n n n a a ,整理得n n n a a 21211+=+,………………………2分左右两边同时乘以12+n ,得22211+=++n n n n a a ,即22211=-++n n n n a a (常数), ∴ }2{n n a 是以2为首项,2为公差的等差数列, ∴ n n a n n 2)1(222=-+=, ∴ 1222-==n n n nn a . ……………………………………………………………5分 (Ⅱ)∵ 12210221232221--+-+++=n n n nn S , ① n n n nn S 221232221211321+-+++=- , ②①-②得:n n n n S 2212121211211321-++++=- n n n 2211211---=, 整理得 1224-+-=n n n S .…………………………………………………………8分 ∵ )224(23411-++--+-=-n n n n n n S S =n n 21+>0, ∴ 数列{S n }是单调递增数列.………………………………………………10分∴ 要使S n <3成立,即使1224-+-n n <3,整理得n +2>12-n , ∴ n =1,2,3.………………………………………………………………12分20.解:(Ⅰ)设椭圆的标准方程为12222=+by a x ,焦点坐标为(c ,0),由题知:⎪⎩⎪⎨⎧=+=,,53322b a a c 结合a 2=b 2+c 2,解得:a 2=3,b 2=2, ∴ 椭圆E 的标准方程为12322=+y x . ………………………………………4分(Ⅱ) 设M (x 1,y 1),N (x 2,y 2),H (x 0,y 0), 由已知直线MN 的方程为y =kx +3k +4,联立方程⎩⎨⎧++==+,,)43(63222k kx y y x消去y ,得0)427227()43(6)32(222=++++++k k x k k x k ,于是x 1+x 2=232)43(6k k k ++-,x 1x 2=2232427227k k k +++.① ………………………7分又P ,M ,H ,N 四点共线,将四点都投影到x 轴上,2102133x x x x x x --=++, 整理得:)(6)(322121210x x x x x x x ++++=. …………………………………………10分将①代入可得=++-+++-⨯++++⨯=2222032)43(6632)43(63324272272k k k k k k k k k x k k 2176-+, …… 12分 ∴ kk k k k k k kx y 2142)43(2176)43(00-+=++-+=++=, 消去参数k 得01200=+-y x ,即H 点恒在直线012=+-y x 上. ………13分21.解:(Ⅰ) ∵ 11)(+-='xax x f ,x ∈(0,+∞), ………………………1分 ∴ a =2时,xx x x x x x f )1)(12(12)(2+-=-+='=0, ∴ 解得x =21,x =-1(舍). 即)(x f 的极值点为x 0=21. ……………………………………………………3分 (Ⅱ) xx ax x ax x f 111)(2-+=+-='.(1)0=a 时,)(x f 在)1,0(上是减函数,在)1,0(上是增函数;0≠a 时, 对二次方程ax 2+x -1=0,Δ=1+4a ,(2)若1+4a ≤0,即41-≤a 时,ax 2+x -1<0,而x >0,故)(x f '<0,∴ )(x f 在(0,+∞)上是减函数. (3)若1+4a >0,即a >41-时,ax 2+x -1=0的根为aa x 241121+±-=,, ①若<-41a <0,则a a 2411+-->a a2411++->0, ∴ 当x ∈(a a 2411++-,a a 2411+--)时,ax 2+x -1>0,即)(x f '>0,得)(x f 是增函数;当x ∈)2411,0(aa ++-, (a a 2411+--,+∞)时,ax 2+x -1<0,即)(x f '<0,得)(x f 是减函数. ②若a >0,a a 2411+--<0<aa2411++-,∴ 当x ∈(0,aa 2411++-)时,ax 2+x -1<0,即)(x f '<0, 得)(x f 是减函数;当x ∈(aa 2411++-,+∞)时,ax 2+x -1>0,即)(x f '>0得)(x f 是增函数.∴ 综上所述,0=a 时,)(x f 在)1,0(上是减函数,在)1,0(上是增函数 当41-≤a 时,)(x f 在(0,+∞)上是减函数; 当41-<a <0时,)(x f 在(aa 2411++-,a a2411+--)上是增函数,在)2411,0(aa ++-, (a a2411+--,+∞)上是减函数; 当a >0时,)(x f 在(a a 2411++-,+∞)上是增函数,在(0,aa2411++-)上是减函数.…………………………………………………………………………7分 (Ⅲ)令)1(21)()()(+-++='-=a xa ae x f x g x h x ,x >0, 于是222)1(1)(xa x ae x a ae x h x x+-⋅=+-='. 令)1()(2+-⋅=a x ae x p x ,则)2()(+⋅='x x ae x p x >0, 即p (x )在(0,+∞)上是增函数.∵ p (x )=-(a +1)<0,而当x →+∞时,p (x )→+∞, ∴ ∃x 0∈(0,+∞),使得p (x 0)=0.∴ 当x ∈(0,x 0)时,p (x )<0,即)(x h '<0,此时,h (x )单调递减; 当x ∈(x 0,+∞)时,p (x )>0,即)(x h '>0,此时,h (x )单调递增, ∴ )()(0min x h x h ==)1(210+-++a x a ae x .① 由p (x 0)=0可得0)1(200=+-⋅a x ae x ,整理得210x a ae x +=,②…………10分代入①中,得)(0x h =)1(21102+-+++a x a x a , 由∀x ∈(0,+∞),恒有)(x g ≥)(x f ',转化为)1(21102+-+++a x a x a ≥0,③ 因为a >0,③式可化为21102-+x x ≥0,整理得12020--x x ≤0, 解得21-≤x 0≤1. 再由x 0>0,于是0<x 0≤1.…………………………………………………12分由②可得aa x e x 1200+=⋅. 令)(0x ϕ=200x e x ⋅ ,则根据p (x )的单调性易得)(0x ϕ在1]0(,是增函数, ∴ )0(ϕ<)(0x ϕ≤)1(ϕ,即0<aa 1+≤e , 解得a ≥11-e ,即a 的最小值为11-e .……………………………………14分。
绵阳市2015级高三数学二诊模拟试题(四)
绵阳市2015级高三二诊模拟试题(四)数 学(理工类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择),考生作答时,须将答案答答题卡上,在本试卷、草稿纸上答题无效。
满分150分,考试时间120分钟。
第Ⅰ卷(选择题,共60分)注意事项:1.必须使用2B 铅笔在答题卡上将所选答案对应的标号涂黑. 2.考试结束后,将本试题卷和答题卡一并交回。
一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一个是符合题目要求的.1.设集合(){}2log 2A x y x ==-,{}2|320B x x x =-+< ,则A B =ð( ) A .(,1)-∞B .(,1]-∞C .(2,)+∞D .[2,)+∞2.已知i 是虚数单位,复数z 满足z z-+i 2=i 21+,则复数z 的共轭复数为( )A .i 4543--B .i 4543+-C .i 4543+ D .i 4543- 3.已知直线l 是圆C :222410x y x y +-++=的切线,且直线l 与直线3410x y --=平行,则直线l 的方程为( ) A .3x -4y -2=0B .3x -4y +1=0C .3x -4y -21=0D .3x -4y +21=04.已知117161717,log log a b c ===,,a b c 的大小关系为( ) A .a b c >> B .a c b >>C .b a c >>D .c b a >>5. 已知ABC △中,sin 2sin cos 0A B C +=c =,则tan A 的值是( ) A .33B .233C . 3D .4336 函数4lg ||||x x y x =的图象大致是()7. 若(),z f x y =称为二元函数,已知(),f x y ax by =+,()()()1,2501,1403,1100f f f --≤⎧⎪-≤⎨⎪-≥⎩,则()1,1z f =-的最大值等于( )A .2B .-2C . 3D .-38. 已知双曲线x 2a 2-y 2b 2=1(a >0,b >0) 的左、右焦点分别为F 1,F 2,且焦点与椭圆x 236+y 22=1 的焦点相同,离心率为e =345,若双曲线的左支上有一点M 到右焦点F 2的距离为18,N 为MF 2的中点,O 为坐标原点,则|NO |等于( ) A .23B .1C .2D .49. 运行如图所示的程序框图,若输出的结果为10082017 ,则判断框内可以填( )A .k >2016?B .k ≥2016?C .k ≥2017?D .k >2017?10. 已知F 1,F 2是双曲线x 2a 2-y2b 2=1(a >0,b >0)的左、右焦点,过F 2作双曲线一条渐近线的垂线,垂足为点A ,交另一条渐近线于点B ,且AF 2→=13F 2B→,则该双曲线的离心率为( )A .62B .52C . 3D .211. 已知函数()22sin 22cos 148f x x x ππ⎛⎫⎛⎫=+++- ⎪ ⎪⎝⎭⎝⎭,把函数()f x 的图象向右平移8π个单位,得到函数()g x 的图象,若12,x x 是()0g x m -=在0,2π⎡⎤⎢⎥⎣⎦内的两根,则12sin()x x +的值为( )A .255B .55C .-55D .-25512. 若对0x ∀>,不等式()()22ln 112x x ax x a x +++-+>∈+R 恒成立,则a 的取值范围是( )A .[1,+∞)B .(1,+∞)C .[2,+∞)D .(2,+∞)第II 卷(非选择题,共90分)本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须做答.第22题~第23题为选考题,考生根据要求做答.二、填空题:本大题共4个小题,每小题5分,共20分,把答案直接填在答题卷的横线上 13.校高三年级要从5名男生和2名女生中任选3名代表参加数学竞赛(每人被选中的机会均等),则在男生甲被选中的情况下,男生乙和女生丙至少一个被选中的概率是______. 14.在△ABC 中,|AB |=2,|BC |=1,∠ABC =60°,2AD →=DC →,点F 在BD 上,且CF ⊥AB ,BF →=xBA →+yBC →,则x +y =______.15.已知(2n x (n ∈N *)展开式中二项式系数的和为256,则该展开式中含1x 项的系数为_____. 16.已知直线l :nx +(n +2)y =1(n ∈N *)与坐标轴围成的面积为a n ,则数列{a n }的前n 项和S n 为_____. 三、解答题:本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)如图所示,在四边形ABCD 中,∠D =2∠B ,且AD =1,CD =3,cos ∠B =33. (1)求△ACD 的面积;(2)若BC =23,求AB 的长.18.(本小题满分12分)已知{a n }为等差数列,前n 项和为S n (n ∈N *),{b n }是首项为2的等比数列,且公比大于0,b 2+b 3=12,b 3=a 4-2a 1,S 11=11b 4. (1)求{a n }和{b n }的通项公式;(2)求数列{a 2n b 2n -1}的前n 项和(n ∈N *).19.(本小题满分12分)2016 年国家已全面放开“二胎”政策,但考虑到经济问题,很多家庭不打算生育二孩,为了解家庭收入与生育二孩的意愿是否有关,现随机抽查了某四线城市50个一孩家庭,它们中有二孩计划的家庭频数分布如下表:(1)由以上统计数据完成如下2×2列联表,并判断是否有95%的把握认为是否有二孩计划与家庭收入有关?说明你的理由.(2)若二孩的性别与一孩性别相反,则称该家庭为“好字”家庭,设每个有二孩计划的家庭为“好字”家庭的概率为12 ,且每个家庭是否为“好字”家庭互不影响,设收入在8千~1万的3个有二孩计划家庭中“好字”家庭有X 个,求X 的分布列及数学期望. K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ),其中(n =a +b +c +d )下面的临界值表供参考:20.(本小题满分12分)已知椭圆C 1:x a 2+y 3=1(a >0)与抛物线C 2:y 2=2ax 相交于A ,B 两点,且两曲线的焦点F 重合. (1)求C 1,C 2的方程;(2)若过焦点F 的直线l 与椭圆分别交于M ,Q 两点,与抛物线分别交于P ,N 两点,是否存在斜率为k (k ≠0)的直线l ,使得|PN ||MQ |=2?若存在,求出k 的值;若不存在,请说明理由.21.(本小题满分12分)已知函数f (x )=(ln x -k -1)x (k ∈R ). (1)当x >1时,求f (x )的单调区间和极值;(2)若对于任意x ∈[e ,e 2],都有f (x )<4ln x 成立,求k 的取值范围; (3)若x 1≠x 2,且f (x 1)=f (x 2),证明:x 1x 2<e 2k .请考生在第22、23题中任选一题做答,如果多做,则按所做的第一题进行评分. 22.(本小题满分10分)【选修4-4:坐标系与参数方程】在平面直角坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =1+cos α,y =sin α(α为参数);在以O 为极点,x轴正半轴为极轴的极坐标系中,曲线C 2的极坐标方程为ρcos 2θ=sin θ. (1)求C 1的普通方程和C 2的直角坐标方程;(2)若射线l :y =kx (x ≥0)分别交C 1,C 2于A ,B 两点(A ,B 异于原点),当k ∈(1,3]时,求|OA |·|OB |的取值范围.23.(本小题满分10分)【选修4-5:不等式选讲】 已知x ,y ∈R +,x +y =4.(1)要使不等式1x +1y ≥|a +2|-|a -1|恒成立,求实数a 的取值范围;(2)求证:x 2+2y 2≥323,并指出等号成立的条件.。
四川省绵阳市高中高三第二次诊断性考试(数学理)
保密 ★ 启用前 【考试时间:1月15日下午15:00 — 17:00】绵阳市高中第二次诊断性考试数 学(理科)本试卷分为试题卷和答题卷两部分,其中试题卷由第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)组成,共4页;答题卷共4页.全卷满分150分.考试结束后将答题卡和答题卷一并交回.第Ⅰ卷(选择题,共60分)注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上.2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦擦干净后,再选涂其他答案,不能答在试题卷上.参考公式:如果事件A 、B 互斥,那么P (A + B )= P (A )+ P (B ); 如果事件A 、B 相互独立,那么P (A ·B )= P (A )·P (B );如果事件A 在一次试验中发生的概率为P ,那么在n 次独立重复试验中恰好发生k 次的概率:k n k kn n P P C k P --⋅⋅=)1()(.一、选择题:本大题共12个小题,每个小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的,把它选出来填涂在答题卡上.1.设集合I = { x ︱︱x -2︱≤2,x ∈N *},P = { 1,2,3 },Q = { 2,3,4 },则 I (P ∩Q )=A .{ 1,4 }B .{ 2,3 }C .{ 1 }D .{ 4 } 2.若向量a 、b 、c 满足 a + b + c = 0,则a 、b 、cA .一定能构成一个三角形B .一定不能构成一个三角形C .都是非零向量时一定能构成一个三角形D .都是非零向量时也可能无法构成一个三角形 3.将直线x -3y -2 = 0绕其上一点逆时针方向旋转60︒得直线l ,则直线l 的斜率为A .33 B .3 C .不存在 D .不确定4.已知f (x ) = sin (x +2π),g (x ) = cos (x -2π),则下列命题中正确的是 A .函数y = f (x ) · g (x ) 的最小正周期为2πB .函数y = f (x ) · g (x ) 是偶函数C .函数y = f (x ) + g (x ) 的最小值为-1D .函数y = f (x ) + g (x ) 的一个单调增区间是]4,43[ππ-5.为了得到函数)62sin(π-=x y 的图象,可以将函数y = cos 2x 的图象A .向右平移6π个单位长度 B .向右平移3π个单位长度 C .向左平移6π个单位长度 D .向左平移3π个单位长度6.设双曲线的焦点为F 1、F 2,过点F 2作垂直于实轴的弦PQ ,若∠PF 1Q = 90︒,则双曲线的离心率e 等于A .2+ 1B .2C .3D .3+ 17.已知x ,y 满足线性约束条件:2302902690x y x y x y -+≥⎧⎪+-≤⎨⎪+-≥⎩,若目标函数z =-x + my 取最大值的最优解有无数个,则m =A .-3或-2B .21-或31 C .2或-3 D .218.已知焦点(设为F 1,F 2)在x 轴上的双曲线上有一点P (x 0,23),直线x y 3= 是双曲线的一条渐近线,当021=⋅PF PF 时,该双曲线的一个顶点坐标是 A .(2,0) B .(3,0) C .(2,0) D .(1,0) 9.若不等式︱x -a ︱-︱x ︱< 2-a 2 当x ∈R 时总成立,则实数a 的取值范围是 A .(-2,2) B .(-2,1) C .(-1,1) D .(-∞,-1)∪(1,+∞)10.已知抛物线C :y 2 = 8x 的焦点为F ,准线与x 轴的交点为Q ,点P (x 0,y 0)在C 上且||||0QF y =,则︱y 0︱=A .2B .4C .6D .8 11.已知等腰三角形的面积为23,顶角的正弦值是底角正弦值的3倍,则该三角形一腰的长为 A .2 B .3 C .2 D .612.设函数f (x )的定义域为A ,若存在非零实数t ,使得对于任意x ∈C (C ⊆ A ),有x + t ∈A ,且f(x + t )≤ f (x ),则称f (x )为C 上的t 低调函数.如果定义域为 [ 0,+∞)的函数f (x )=-︱x -m 2︱+ m 2,且 f (x )为 [ 0,+∞)上的10低调函数,那么实数m 的取值范围是 A .[-5,5 ] B .[-5,5] C .[-10,10] D .]25,25[-第Ⅱ卷 (非选择题 共90分)注意事项:答第Ⅱ卷前,考生务必将自己的姓名、准考证号用钢笔或圆珠笔(蓝、黑色)写在答题卷密封线内相应的位置.答案写在答题卷上,请不要答在试题卷上.二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.13.不等式 13>x的解是 .14.已知函数f (x )= sin x -cos (6-πx ),x ∈[ 0,2π),则满足f (x )>0的x 值的集合为 .15.设a >2b >0,则29()(2)a b b a b -+-的最小值是 .16.给出下列命题:① “sin α-tan α>0”是“α 是第二或第四象限角”的充要条件;② 平面直角坐标系中有三个点A (4,5)、B (-2,2)、C (2,0),则直线AB 到直线BC 的角为4arctan3; ③ 函数xx x f 22cos 3cos )(+=的最小值为32; ④ 设[m ] 表示不大于m 的最大整数,若x ,y ∈R ,那么[x + y ]≥[x ] + [y ] . 其中所有正确命题的序号是 .(将你认为正确的结论序号都写上) 三、解答题:本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤.17.(本题满分12分)设△ABC 三个角A ,B ,C 的对边分别为a ,b ,c ,向量)2,(b a p =,)1,(sin A q =,且//.(Ⅰ)求角B 的大小;(Ⅱ)若△ABC 是锐角三角形,)tan cos sin ,1(),cos ,(cos B A A n B A m -==,求⋅的取值范围. 18.(本题满分12分)如图,在平面直角坐标系xOy 中, AB 是半圆⊙O :x 2 + y 2= 1(y ≥0)的直径,C 是半 圆O (除端点A 、B )上的任意一点,在线段AC 的 延长线上取点P ,使︱PC ︱=︱BC ︱,试求动点P 的轨迹方程. 19.(本题满分125,若累计摸到两个白球就停止摸球,否则直到将盒子里的球摸完才停止.规定:在球摸停止时,只有摸出红球才获得奖金,奖金数为摸出红球个数的1000倍(单位:元). (Ⅰ)求该幸运观众摸三次球就停止的概率;(Ⅱ)设ξ 为该幸运观众摸球停止时所得的奖金数(元),求ξ 的分布列和数学期望E ξ.本题满分12分)已知函数223)(ax x f =,g (x ) =-6x + ln x 3(a ≠0).(Ⅰ)若函数h (x ) = f (x )-g (x ) 有两个极值点,求实数a 的取值范围;(Ⅱ)是否存在实数a >0,使得方程g (x ) = x f ′(x )-3(2a + 1)x 无实数解?若存在,求出a 的取值范围?若不存在,请说明理由. 21.(本题满分12分)设椭圆C 的中心在坐标原点O ,焦点在x 轴上,短轴长为212,左焦点到左准线的距离为73.(Ⅰ)求椭圆C 的方程;(Ⅱ)设椭圆C 上有不同两点P 、Q ,且OP ⊥OQ ,过P 、Q 的直线为l ,求点O 到直线l 的距离.22.(本题满分14分)已知{ a n }是等差数列,{ b n }是等比数列,S n 是{ a n }的前n 项和,a 1 = b 1 = 1,2212b S =.(Ⅰ)若b 2是a 1,a 3的等差中项,求a n 与b n 的通项公式; (Ⅱ)若a n ∈N *,{n a b }是公比为9的等比数列,求证:351111321<++++n S S S S . 绵阳市高中第二次诊断性考试数学(理科)参考解答及评分标准一、选择题:本大题共12小题,每小题5分,共60分.ADCD BACD CBAB二、填空题:本大题共4小题,每小题4分,共16分.13.{ x ︱0<x <3 } 14.(34,3ππ)或 }343|{ππ<<x x 15.12 16.①④三、解答题:本大题共6小题,共74分.17.解 (Ⅰ)∵ )2,(b a =,)1,(sin A =,//,∴ a -2b sin A = 0,由正弦定理得 sin A -2sin B sin A = 0. ………… 3分 ∵ 0<A ,B ,C <π,∴ 21sin =B ,得 6π=B 或56B π=. …………………… 6分 (Ⅱ)∵ △ABC 是锐角三角形,∴ 6π=B ,)cos 33sin ,1(),23,(cos A A n A m -==, 于是 )cos 33(sin 23cos A A A n m -+=⋅=A A sin 23cos 21+=)6sin(π+A .9分由 65ππ=-=+B C A 及 0<C <2π,得 )65,3(65πππ∈-=C A . 结合0<A <2π,∴ 23ππ<<A ,得 3262πππ<+<A , ∴1)6sin(23<+<πA ,即 123<⋅<n m .… 12分 18.解 连结BP ,由已知得∠APB = 45︒.… 2分 设P (x ,y ),则 1+=x yk PA ,1-=x y k PB ,由PA 到PB 的角为45︒, 得1111145tan +⋅-++--=︒x y x y x y x y ,化简得 x 2 +(y -1)2= 2.… 10分由已知,y >0且1+=x y k PA >0,故点P 的轨迹方程为x 2 +(y -1)2= 2(x >-1,y >0). 12分法二 连结BP ,由已知可得∠APB = 45︒,∴ 点P 在以AB 为弦,所对圆周角为45︒的圆上.设该圆的圆心为D ,则点D 在弦AB 的中垂线上,即y 轴上,且∠ADB = 90︒,∴ D (0,1),︱DA ︱=2,圆D 的方程为x 2+(y -1)2= 2.由已知,当点C 趋近于点B 时,点P 趋近于点B ;当点C 趋近于点A 时,点P 趋近于点(-1,2),所以点P 的轨迹方程为x 2 +(y -1)2= 2(x >-1,y >0).19.解 (Ⅰ)记“该幸运观众摸球三次就停止”为事件A ,则112232351()5C C A P A A ==. …………………… 5分 (Ⅱ)ξ 的可能值为0,1000,.…… 7分21222223551(0)6A C A P A A ξ==+=,31)1000(4533121235221212=+==A A C C A A C C P ξ, 21331422332445551(2000)2C C A C C A P A A ξ==+=.…………… 10分所以 11140000100020006323E ξ=⨯+⨯+⨯=.…… 12分答:略.(Ⅰ)∵ h (x ) = f (x )-g (x ) =223ax + 6x -3 ln x (x >0),∴ xax x h 363)(-+='. ………………… 2分∵ 函数h (x ) 有两个极值点,∴ 方程0)12(3363)(2=-+=-+='xx ax x ax x h ,即ax 2+ 2x -1 = 0应有两个不同的正数根,于是 ⎪⎪⎪⎩⎪⎪⎪⎨⎧>-=>-=+>+=∆,01,02,04221212a x x a x x a⇒ -1<a <0.……………… 6分(Ⅱ)方程 g (x ) = x f ′(x )-3(2a + 1)x 即为 -6x + 3 ln x = 3ax 2-3(2a + 1)x ,等价于方程 ax 2+(1-2a )x -ln x = 0.设 H (x )= ax 2+(1-2a )x -ln x ,转化为关于函数H (x )在区间(0,+∞)内的零点问题(即函数H (x )图象与x 轴有无交点的问题). …………………… 8分∵ H ′(x ) = 2ax +(1-2a )-xx ax x x a ax x )1)(12(1)21(212-+=--+=, 且a >0,x >0,则当x ∈(0,1)时,H ′(x )<0,H (x )是减函数; 当x ∈(1,+∞)时,H ′(x )>0,H (x )是增函数.…… 10分 因为 x → 0(或者x →+∞)时,H (x )→ +∞, ∴ 要使H (x )图象与x 轴有无交点,只需H (x )min = H (1)= a +(1-2a )= 1-a >0,结合a >0得 0<a <1,为所求.12分21.解 (1)设椭圆C 的方程为12222=+bb a x (a >b >0),则 2122=b ,21=b .由 73)(2=---ca c ,即73222==-c b c c a ,得 7=c . 于是 a 2= b 2+ c 2= 21 + 7 = 28,椭圆C 的方程为1212822=+y x .…… 5分(2)若直线l 的斜率不存在,即l ⊥x 轴时,不妨设l 与x 正半轴交于点M ,将x = y 代入1212822=+y x 中,得32±==y x ,则点P (32,32),Q (32,32-),于是点O 到l 的距离为32.……… 7分若直线l 的斜率存在,设l 的方程为y = kx + m (k ,m ∈R ),则点P (x 1,y 1),Q (x 2,y 2)的坐标是方程组⎪⎩⎪⎨⎧=++=1212822y x mkx y 的两个实数解,消去y ,整理,得(3 + 4k 2)x 2 + 8kmx + 4m 2-84 = 0,∴ △ =(8km )2-4(3 + 4k 2)(4m 2-84)= 12(28k 2-m 2+ 21)>0, ①221438k kmx x +-=+,222143844k m x x +-=. ② 9分∵ OP ⊥OQ ,∴ k OP · k OQ =-1,即12211-=⋅x y x y ,x 1x 2 + y 1y 2 = 0. 于是 x 1x 2 +(kx 1 + m )(kx 2 + m )=(1 + k 2)x 1x 2 + km (x 1 + x 2)+ m 2= 0. ③将 x 1 + x 2,x 1x 2 代入上式,得 043843844)1(22222=++-+-⋅+m kkm km k m k , ∴(k 2 + 1)(4m 2-84)-8k 2m 2 + m 2(4k 2+ 3)= 0,化简,得 m 2 = 12(k 2+ 1). ④ ④代入①满足,因此原点O 到直线l 的距离 32121||2==+-=k m d .…… 12分22.解 设等差数列{ a n }的公差为d ,等比数列{ b n }公比为q . (Ⅰ)∵ 2212b S =,∴ qb d a a 11112=++,而 a 1 = b 1 = 1,则 q (2 + d )= 12.① 又 ∵ b 2是a 1,a 3的等差中项,∴ a 1 + a 3 = 2b 2,得1 + 1 + 2d = 2q ,即 1 + d = q . ②联立①,②,解得 ⎩⎨⎧==,3,2q d 或 ⎩⎨⎧-=-=.4,5q d …………………… 4分所以 a n = 1 +(n -1)· 2 = 2n -1,b n = 3n -1;或 a n = 1 +(n -1)·(-5)= 6-5n ,b n =(-4)n -1. …………………… 6分 (Ⅱ) ∵ a n ∈N *,d n d n a a q q q b b n n )1(1)1(111---+-===,∴9)1(1===-+d dn nd a a q qq b b nn ,即 q d = 32. ① … 8分由(Ⅰ)知 q ( 2 + d ) = 12,得 dq +=212. ② ∵ a 1 = 1,a n ∈N *,∴ d 为正整数,从而根据①②知q >1且q 也为正整数, ∴ d 可为1或2或4,但同时满足①②两个等式的只有d = 2,q = 3,∴ a n = 2n -1,22)121(n n n S n =-+=.…… 10分 ∴ )121121(2)5.0)(5.0(1112+--=-+<=n n n n n S n (n ≥2). 当n ≥2时,2222211312111111nS S S n ++++=+++ <)121121(2)7151(2)5131(21+--++-+-+n n =12135)]121121()7151()5131[(21+-=+--++-+-+n n n <35.显然,当n = 1时,不等式成立.故n ∈N *,3511121<+++n S S S .…… 14分思路2 或者和文科题的解法相同,前两项不变,从第三项213开始缩小: 当n ≥2时,21211111111111111()()()2224235211n S S S n n +++<++-+-++--+ 111111111[()()()]42243511n n =++-+-++--+1111111()42231n n =+++--+51131n n =--+53<.。
2015绵阳高三二诊理综试题及答案
2015绵阳高三二诊理综试题及答案以下2015绵阳高三二诊理综试题及答案由高考频道为您精心提供,希望对您有所帮助。
注意:文章底部有word版下载保密★ 启用前【考试时间:2015年1月23日上午9∶00~11∶30】绵阳市高中2012级第二次诊断性考试理科综合•物理理科综合考试时间共150分钟,满分300分。
其中,物理110分,化学100分,生物90分。
物理试题卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)。
第Ⅰ卷1至2页,第Ⅱ卷3至4页,共4页。
考生作答时,须将答案答在答题卡上,在本试题卷、草稿纸上答题无效。
考试结束后,将试卷交回。
第Ⅰ卷(选择题共42分)注意事项:必须用2B铅笔在答题卡上将所选答案对应的标号涂黑。
第Ⅰ卷共7题,每题6分。
在每题给出的四个选项中,有的只有一个选项、有的有多个选项符合题目要求,全部选对的得6分,选对但不全的得3分,有选错和不选的得0分。
1. 法拉第在同一软铁环上绕两个线圈,一个与电池相连,另一个与电流计相连,则A. 接通电池后,电流计指针一直保持偏转B. 接通电池时,电流计指针没有偏转C. 接通电池后再断开时,电流计指针没有偏转D. 接通电池时,电流计指针偏转,但不久又回复到零2. 如图所示,质量为m的小球(可视为质点)用长为L的细线悬挂于O点,自由静止在A位置。
现用水平力F缓慢地将小球从A拉到B位置而静止,细线与竖直方向夹角为θ=60°,此时细线的拉力为F1,然后放手让小球从静止返回,到A点时细线的拉力为F2,则A. F1=F2=2mgB. 从A到B,拉力F做功为F1LC. 从B到A的过程中,小球受到的合外力大小不变D. 从B到A的过程中,小球重力的瞬时功率一直增大3.如图所示,一个不计重力的带电粒子以v0沿各图的虚线射入场中。
A中I是两条垂直纸平面的长直导线中等大反向的电流,虚线是两条导线垂线的中垂线;B中+Q是两个位置固定的等量同种点电荷的电荷量,虚线是两位置连线的中垂线;C中I是圆环线圈中的电流,虚线过圆心且垂直圆环平面;D中是正交的匀强电场和匀强磁场,虚线垂直于电场和磁场方向,磁场方向垂直纸面向外。
绵阳市2015级数学二诊考试模拟试题二答案
2015级高三“二诊”模拟试题(二)理科数学1--5.B A C BA 6--10.CDD BA 11.C12.D 12.易知函数的零点为,设函数的一个零点为,若函数和互为“零点关联函数”,根据定义,得,即,作出函数的图象,因为,要使函数的一个零点在区间上,则,即,解得;故选D .13.14-14.215.2325y x = 16.-6≤b <0 16.函数()f x 的图象关于点(-2,0)中心对称,则()()40f f -=-,由此求得2a =-,∴()()()2322456310f x x x x x x x =++-=++-,()()()()''''0f x b f x f x b f x +<⇔+-<,即b 2+2bx +4b <0对()1,2x ∈恒成立.显然0b =不合题意.当0b >时,()()''024f x b f x b x +-<⇔<--,b ≤-8(舍);当0b<时,()()''024f x b f x b x +-⇔--,b ≥-6.综上,b 的取值范围是-6≤b <0.17.解:(1)从5天中任选2天,共有10个基本事件,选出的二天种子发芽数均不小于25共有3个基本事件: (13日,14日),(13日,15日),(14日,15日). ∴事件“,c d 均不小于25”的概率为310P =.(2)11131225302612,2733x y ++++====.313=i i i x y xy =-∑5.32213ii xx =-∑=2.∴55,272ˆ123ˆ2b a ==-⨯=-. ∴y 关于x 的线性回归方程为5=32ˆy x -+.(3)当=10x 时,5=310=22,2322122ˆy -+⨯-=<.当=8x 时,5=38=17,1716122ˆy-+⨯-=<. ∴回归方程5=32ˆy x -+是可靠的.18.解:(1)当1n =时,21111112a a S a +⎛⎫=== ⎪⎝⎭. 当2n ≥时,22111122n n n n n a a a S S +-++⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭化简得12n n a a --=,所以21n a n =-;(2)由(1)知,21n a n =-. 则()()()1111111122241n n n b a a n n n n +⎛⎫===- ⎪++++⎝⎭所以111111142231n T n n ⎛⎫=-+-++- ⎪+⎝⎭ ()1114141n n n ⎛⎫=-= ⎪++⎝⎭ ()()114241n n n n T T n n ++-=-++()()10412n n =>++,∴{}n T 单调递增,∴118n T T ≥=.∵()1414n n T n =<+,∴1184n T ≤<,使得245n m m T -<<恒成立,只需145 2148mm ⎧≤⎪⎪⎨-⎪<⎪⎩解之得5542m ≤<.19.解:1()2sin()cos sin 232f x x x x x π=+=+sin(2)3x π=+ ……………4分 5222,2321212k x k k x k k Z πππππππππ-+≤+≤+⇒-+≤≤+∈,[]π,0∈x()f x 的单调增区间为⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡πππ,127,12,0 .……6分 (2)由()2Af =得233sin =⎪⎭⎫ ⎝⎛+πA 解得3π=A ,……7分由题意可知:ABC ∆的内切圆半径为1……8分则b c a +-=9分由余弦定理可知:222a b c bc =+-222(b c b c bc +-=+-………10分4()12b c bc ⇒=+≥⇒≥或43bc ≤(舍)……11分1[6,)2AB AC bc ⋅=∈+∞ ,当且仅当b c =时,AB AC ⋅的最小值为6.……………12分20.解:(1(),0c ,依题意知,22222(2243c b b a c c ⎧⎪=⎪⎪=+⎨⎪⎪+=⎪⎩又1b >,解得2a =,b =1c =,所以椭圆C 的方程为22143x y +=.(2)设过椭圆C 的右焦点的直线l 的方程为()1y k x =-,将其代入22143x y +=,得()22223484120k x k x k +-+-=, 设()11,A x y ,()22,B x y ,则2122834k x x k +=+,212241234k x x k-=+,∴()121226234k y y k x x k k -+=+-=+, 因为P 为线段AB 的中点,故点P 的坐标为22243,3434k k k k ⎛⎫- ⎪++⎝⎭,又直线PD 的斜率为1k -, 直线PD 的方程为2223143434k k y x k k k ⎛⎫--=-- ⎪++⎝⎭,令0y =,得2234k x k =+, 由点D 的坐标为22,034k k ⎛⎫ ⎪+⎝⎭,则221347k k =+,解得1k =±. 21.解:(1)由()ln 10f x x +'==,可得1x e=, ∴①10t e<<时,函数在1,t e ⎛⎫ ⎪⎝⎭上单调递减,在1,2t e ⎛⎫+ ⎪⎝⎭上单调递增,∴函数在[],2(0)t t t +>上的最小值为11f e e⎛⎫=- ⎪⎝⎭,②当1t e≥时,f (x )在[],2t t +上单调递增,()()minln f x f t t t ∴==,()min1101,t e e f x tlnt t e ⎧-<<⎪⎪∴=⎨⎪≥⎪⎩,; (2)()()2ln 2y f x g x x x x ax =+=-+-,则ln 21y x x a =-++' 题意即为ln 210y x x a =-++='有两个不同的实1212,()x x x x <, 即ln 21a x x =-+-有两个不同的实根1212,()x x x x <,等价于直线y a =与函数()ln 21G x x x =-+-的图像有两个不同的交点,()12G x x =-'+ ,()G x ∴在10,2⎛⎫ ⎪⎝⎭上单调递减,在1,2⎛⎫+∞ ⎪⎝⎭上单调递增, 由图像知,当()min1ln22a G x G ⎛⎫>== ⎪⎝⎭时,12,x x 存在,且21x x -的值随着a 的增大而增大,而当21ln2x x -=时,由题意1122210210lnx x a lnx x a -++=⎧⎨-++=⎩,两式相减得()1122ln 22ln2xx x x =-=-214x x ∴=代入上述方程可得2144ln23x x ==,此时2ln2ln2ln 133a ⎛⎫=-- ⎪⎝⎭, 所以,实数a 的取值范围为2ln2ln2ln 133a ⎛⎫>-- ⎪⎝⎭; 23.解:(1)将1C 参数方程化为普通方程为()2213x y -+=,即22220x y x +--=,∴1C 的极坐标方程为22cos 20ρρθ--=.将2C 极坐标方程化为直角坐标方程为221x y +=.(2)将=3πθ代入1:C 22cos 20ρρθ--=整理得220ρρ--=,解得12ρ=,即12OA ρ==. ∵曲线2C 是圆心在原点,半径为1的圆,∴射线=3πθ()0ρ≥与2C 相交,即21ρ=,即21OB ρ==故12211AB ρρ=-=-=.23.解:(1)()()f x g x ≥,即24x x -++≥243x x ++, ①当4x <-时,原不等式等价于()()24x x ---+≥243x x ++,即2650x x ++≤,解得51x -≤≤-,54x ∴-≤<-;②当42x -≤≤时,原不等式等价于()()24x x --++≥243x x ++,即2430x x +-≤,解得22x -≤-42x ∴-≤≤-③当2x >时,原不等式等价于()()24x x -++≥243x x ++,即2210x x ++≤,解得1x =-,得x ∈∅.综上可知不等式()()f x g x ≥的解集是{|52x x -≤≤-.(2)因为24x x -++≥246x x ---=,且()15f x a ≥-恒成立, 所以615a ≥-,即6156a -≤-≤,所以715a -≤≤,所以a 的取值范围是71,5⎡⎤-⎢⎥⎣⎦.。
四川省绵阳市高中2016届高三上学期第二次诊断性考试数学(理)试题(扫描版)
绵阳市高2013级第二次诊断性考试数学(理工类)参考解答及评分标准一、选择题:本大题共10小题,每小题5分,共50分.BABDC ACDDB二、填空题:本大题共5小题,每小题5分,共25分.11.127 12.-10 13.5214.5545-15.(-3,-2)∪]78(-,-∪{1} 三、解答题:本大题共6小题,共75分.16.解 :(I )由图知,随机抽取的市民中年龄段在)4030[,的频率为 1-10⨯(0.020+0.025+0.015+0.010)=0.3,即随机抽取的市民中年龄段在)4030[,的人数为100⨯0.3=30人. ………3分 (II )由(I )知,年龄段在)5040[,,)6050[,的人数分别为100⨯0.15=15人,100⨯0.1=10人,即不小于40岁的人的频数是25人,∴ 在)6050[,年龄段抽取的人数为10⨯255=2人. …………………………6分 (III )由已知X =0,1,2,P (X =0)=1032523=C C ,P (X =1)=53251312=C C C ,P (X =2)=1012522=C C , ∴ X∴ EX =0×10+1×5+2×10=5. …………………………………………12分 17.解:(I )f (x )=(cos 2x -sin 2x )(cos 2x +sin 2x )-sin2x=cos2x -sin2x=-2sin(2x -4π), ……………………………………………3分 由-2sin(2x -4π)=-22,即sin(2x -4π)=21, ∴ 2x -4π=2k π+6π,k ∈Z ,或2x -4π=2k π+65π,k ∈Z , 解得x =k π+245π,k ∈Z ,或x =k π+2413π,k ∈Z ,…………………6分 ∵ 0<x <π, ∴ x =245π,或x =2413π. ……………………………………………………8分 (II )由(I )知f (x )=-2sin(2x -4π),∵ [0]2x π∈,, ∴ 2x -4π∈3[]44ππ-,, ∴ -2≤f (x )≤1,∴ 当且仅当2x -4π=2π,即x =83π时,f (x )取得最小值-2, 即f (x )的最小值为-2,此时x 的取值集合为{83π}.……………………12分18.解:(I )令x =0,得函数与y 轴的交点是(0,m ).令04)(2=++=m x x x f ,由题意0≠m 且0>∆,解的4<m 且0≠m .…………………………………4分(II )设所求的圆的一般方程为022=++++F Ey Dx y x ,令0=y 得02=++F Dx x ,这与042=++m x x 是同一个方程,故D =4,F =m ,…………………………………………………………………6分 令x =0得02=++F Ey y 方程有一个根为m ,代入得1--=m E .∴ 圆C 的方程为0)1(422=++-++m y m x y x . ……………………………9分 将圆C 的方程整理变形为0)1(422=---++y m y x y x ,此方程对所有满足4<m 且0≠m 都成立,须有⎩⎨⎧=-=-++,,010422y y x y x 解的⎩⎨⎧==,,10y x 或⎩⎨⎧=-=,,14y x 经检验知,(-4,1)和(0,1)均在圆C 上,因此圆C 过定点(-4,1)和(0,1).……………………12分19.解: (I )设等差数列{a n }的首项为a 1,公差为d ,由已知可得:⎪⎪⎩⎪⎪⎨⎧=⨯+=⨯+,,11029101030245511d a d a 解得⎩⎨⎧==,,221d a ∴ a n =2+(n -1)×2=2n ,S n =2)22(n n +=n 2+n .………………………………3分 对数列{b n },由已知有b 2-2T 1=1,即b 2=2b 1+1=3,∴ b 2=3b 1,(*)又由已知121n n b T +-=,可得b n -21-n T =1(n ≥2,n ∈N*),两式相减得b n +1-b n -2(T n -1-n T )=0,即b n +1-b n -2b n =0(n ≥2,n ∈N *),整理得b n +1=3b n (n ≥2,n ∈N *),结合(*)得31=+n n b b (常数),n ∈N *, ∴ 数列{b n }是以b 1=1为首项1,3为公比的等比数列,∴ b n =13-n .……………………………………………………………………7分 (II )2T n = b n +1-1=n 3-1,∴ n n S b =(n 2+n )·13-n ,2n n a T =2n ·(n 3-1),于是n n S b -2n n a T =(n 2+n )·13-n - 2n ·(n 3-1)=]2)5(3[1+--n n n ,………………9分显然当n ≤4(n ∈N *)时,n n S b -2n n a T <0,即n n S b <2n n a T ;当n ≥5(n ∈N *)时,n n S b -2n n a T >0,即n n S b >2n n a T ,∴ 当n ≤4(n ∈N *)时,n n S b <2n n a T ;当n ≥5(n ∈N *)时,n n S b >2n n a T .………………………………………………12分20.解:(I )设动点M (x ,y ),则由题意可得222)1(22=+++x y x , 化简整理得C 的方程为1222=+y x .……………3分 (II )假设存在Q (x 0,y 0)满足条件.设依题意可设直线m 为x =ky -1,于是⎪⎩⎪⎨⎧=+-=,,12122y x ky x 消去x ,可得(k 2+2) y 2-2ky -1=0, 令M (x 1,y 1),N (x 2,y 2),于是y 1+y 2=222+k k ,x 1+x 2=k (y 1+y 2)-2=242+-k ,……………………………7分 ∴ AB 的中点N 的坐标为(222+-k ,22+k k ). ∵ PQ ⊥l ,∴ 直线PQ 的方程为y -22+k k =-k (x +222+k ), 令y =0,解得x =212+-k ,即P (212+-k ,0).………………………………9分 ∵ P 、Q 关于N 点对称,∴ 222+-k =21( x 0212+-k ),22+k k =21( y 0+0), 解得x 0=232+-k ,y 0=222+k k ,即Q (232+-k ,222+k k ). ……………………11分 ∵ 点Q 在椭圆上, ∴ (232+-k )2+2(222+k k )2=2, 解得k 2=21,于是212=k,即421±=k , ∴ m 的方程为y =42x +42或y =-42x -42. ……………………………13分21.解:(I )xmx m x x f -=-='11)(,x >0. 当m >0时,由1-mx >0解得x <m 1,即当0<x <m1时,)(x f '>0,f (x )单调递增; 由1-mx <0解得x >m 1,即当x >m1时,)(x f '<0,f (x )单调递减. 当m =0时,)(x f '=x1>0,即f (x )在(0,+∞)上单调递增; 当m <0时,1-mx >0,故)(x f '>0,即f (x )在(0,+∞)上单调递增.∴当m >0时,f (x )的单调递增区间为(0,m 1),单调递减区间为(m1,+∞); 当m ≤0时,f (x ) 的单调递增区间为(0,+∞). …………………………5分(II )2()2()g x f x x =+=2ln x -2mx +x 2,则xmx x x g )1(2)(2+-=', ∴ )(x g '的两根x 1,x 2即为方程x 2-mx +1=0的两根.∵ m ≥223, ∴ ∆=m 2-4>0,x 1+x 2=m ,x 1x 2=1. …………………………………………7分 又∵ x 1,x 2为2()ln h x x cx bx =--的零点,∴ ln x 1-cx 12-bx 1=0,ln x 2-cx 22-bx 2=0,两式相减得 21ln x x -c (x 1-x 2)(x 1+x 2)-b (x 1-x 2)=0,得b =)(ln 212121x x c x x x x +--,而b cx xx h --='21)(, ∴ y =])(2)[(212121b x x c x x x x -+-+- =-+-+-)(2)[(212121x x c x x x x )(ln212121x x c x x x x ++-] =212121ln )(2x x x x x x -+-=212121ln 112x x x x x x -+-⋅,…………… ……………10分 令t x x =21(0<t <1), 由(x 1+x 2)2=m 2得x 12+x 22+2x 1x 2=m 2,因为x 1x 2=1,两边同时除以x 1x 2,得t +t1+2=m 2, ∵ m ≥223,故t +t1≥25,解得t ≤21或t ≥2,∴ 0<t ≤21.……………12分 设G (t )=t t t ln 112-+-⋅, ∴ )(t G '=0)1()1(2<+--t t t ,则y =G (t )在]210(,上是减函数, ∴ G (t )m in = G (21)=-32+ln2, 即1212()()2x x y x x h +'=-的最小值为-32+ln2. ……………………………14分。
四川省绵阳市高中2015届高三第二次诊断性考试数学理试题(扫描版)
四川省绵阳市高中2015届高三第二次诊断性考试绵阳市高2012级第二次诊断性考试数学(理工类)参考解答及评分标准一、选择题:本大题共10小题,每小题5分,共50分.CDADC BBADC10.提示:问题转化为1)(max ≤x f .由)00)((333)(22><+=+='b a b ax b ax x f ,,得abx x f a b x x f ->⇒<'-<<⇒>'0)(00)(,,即)(x f 在)0(a b -,递增,在)(∞+-,ab 递减, ①当1≥-ab,即a b -≥时,13)1()(0)0()(max min ≤+====b a f x f f x f ,, 即211313≤⇒+≤⇒⎩⎨⎧≤--≤b b b b a a b ,,.②当1<-ab即a b -<时, 233403)1(12)()(0)0(3max≤⇒⎩⎨⎧≤--≤⇒⎪⎪⎩⎪⎪⎨⎧≥+=≤-=-==b b a a b b a f a b b a b f x f f ,,,,,,此时233-=a . 将233-=a ,23=b 代入检验正确. 二、填空题:本大题共5小题,每小题5分,共25分.11.27 12.-160 13. 23- 14.65 15.①③ 15.提示:③ 法一:21)(x x f -=和)2()(>+-=b b x x g 是(-1,1)上的“接近函数”,结合图形,)11(,-∈∃x 使max 22)11(11++-≤⇔≤--+-x x b x b x , 令)11(11)(2<<-++-=x x x x h ,,22011)(2±=⇒=--='x x x x h , 即)2222(,-∈x 时,0)(>'x h ;)122(,∈x 时,0)(<'x h .所以12)22()(max +==h x h . 法二:数形结合求出直线和半圆相切时切点)2222(,P ,当直线和圆在)2222(,P 的“竖直距离”为1 时,12+=b .④若ex x xx f 2ln )(+=与22)(e a x x g ++=是)1[∞+,上的“远离函数”, 即)1[∞+∈∀,x , x x ex e a x e a x ex x x ln 22ln 2222--++=---+1ln )(2>-+-=xx a e x . 令a e x x P +-=21)()(,则)(1x P在)(e ,-∞递减,在)(∞+,e 递增, ∴ a e P x P ==)()(1min 1; 令xx x P ln )(2=,22ln 1)(x xx P -=',易得)(2x P 在)(e ,-∞递增,在)(∞+,e 递减,∴ e e P x P 1)()(2max 2==,∴ ea e a 1111+>⇒>-.三、解答题:本大题共6小题,共75分.16.解:(Ⅰ)设所选取的2人中至少有1人为“满意观众”的事件为A ,则A 为所选取的人中没有1人为“满意观众”,∴ P (A )=1-P (A )=1-21224C C =1-111=1110, 即至少有1人为“满意观众”的概率为1110. ………………………………4分 (Ⅱ) 由茎叶图可以得到抽样中“满意观众”的频率为32128=,即从观看此影片的“满意观众”的概率为32,同理,不是“满意观众”的概率为31.…6分 由题意有ξ=0,1,2,3,则P (ξ=0)=303)31(C =271,P (ξ=1)=213)31(32⨯⨯C =92,P (ξ=2)=31)32(223⨯⨯C =94,P (ξ=3)=333)32(C =278, ∴ ξ的分布列为ξ 0123P27192 94 278 ……………………………………………………………10分 ∴ ξ的数学期望E ξ=0×271+1×92+2×94+3×278=2.………………………12分17.解:(Ⅰ) 如图,连结AC 、BD 交于O ,连结OE .由ABCD 是正方形,易得O 为AC 的中点,从而OE 为△P AC 的中位线, ∴ EO //P A .∵ EO ⊂面EBD ,P A ⊄面EBD ,∴ P A //面EBD .………………………………………………………………4分(Ⅱ)由已知PD ⊥底面ABCD ,得PD ⊥AD ,PD ⊥CD .如图,以DA ,DC ,DP 所在直线为坐标轴,D 为原点建立空间直角坐标系.设AD =2,则D (0,0,0),A (2,0,0),P (0,0,2),E (0,1,1),B (2,2,0),PB =(2,2,-2),=DA (2,0,0).…………………………………6分设F (x 0,y 0,z 0),PB PF λ=,则由PF =(x 0,y 0,z 0-2),得(x 0,y 0,z 0-2)=λ(2,2,-2) ,即得⎪⎩⎪⎨⎧-===,,,λλλ2222000z y x于是F (2λ,2λ,2-2λ). ∴ EF =(2λ,2λ-1,1-2λ). 又EF ⊥PB ,∴ 0)2()21(2)12(22=-⨯-+⨯-+⨯λλλ,解得31=λ.∴ )343232(,,F ,)343232(,,=DF . ………………………………………8分设平面DAF 的法向量是n 1=(x ,y ,z ),则⎪⎩⎪⎨⎧=⋅=⋅,,0011n n DF DA 即⎩⎨⎧=++=,,0202z y x x 令z =1,得n 1=(0,-2,1).又平面P AD 的一个法向量为n 2=(0,1,0), ………………………………10分 设二面角P -AD -F 的平面角为θ, 则cos θ=2121n n n n ⋅55252==,即二面角P -AD -F 的余弦值为552. ………………………………………12分 18.解:(Ⅰ)由余弦定理得412212cos 222==-+=bc bcbc a c b A , 则415cos 1sin 2=-=A A . …………………………………………………4分 (Ⅱ)由A +B +C =π有C =π-(A +B ), 于是由已知sin B +sin C =210得210)(sin sin =++B A B ,即210sin cos cos sin sin =++B A B A B , 将415sin =A ,41cos =A 代入整理得210cos 415sin 45=+B B .①………7分根据1cos sin 22=+B B ,可得B B 2sin 1cos -±=. 代入①中,整理得8sin 2B -410sin B +5=0, 解得410sin =B . ……………………………………………………………10分 B AC P DEF Oxyz∴ 由正弦定理BbA a sin sin =有364154101sin sin =⨯==A B a b . ………………12分19.解:(Ⅰ) ∵二次函数x a x a x f n n n ⋅-+⋅=+-)2(21)(12的对称轴为x =21, ∴ a n ≠0,2121221=⨯--+-n n n a a ,整理得n n n a a 21211+=+,………………………2分左右两边同时乘以12+n ,得22211+=++n n n n a a ,即22211=-++n n n n a a (常数),∴ }2{n n a 是以2为首项,2为公差的等差数列, ∴ n n a n n 2)1(222=-+=,∴ 1222-==n n n nn a . ……………………………………………………………5分 (Ⅱ)∵ 12210221232221--+-+++=n n n nn S , ①n n n nn S 221232221211321+-+++=- , ②①-②得:n n n n S 2212121211211321-++++=- n nn 2211211---=, 整理得 1224-+-=n n n S .…………………………………………………………8分 ∵ )224(23411-++--+-=-n n n n n n S S =n n 21+>0,∴ 数列{S n }是单调递增数列.………………………………………………10分 ∴ 要使S n <3成立,即使1224-+-n n <3,整理得n +2>12-n , ∴ n =1,2,3.………………………………………………………………12分20.解:(Ⅰ)设椭圆的标准方程为12222=+by a x ,焦点坐标为(c ,0),由题知:⎪⎩⎪⎨⎧=+=,,53322b a a c 结合a 2=b 2+c 2,解得:a 2=3,b 2=2, ∴ 椭圆E 的标准方程为12322=+y x . ………………………………………4分 (Ⅱ) 设M (x 1,y 1),N (x 2,y 2),H (x 0,y 0), 由已知直线MN 的方程为y =kx +3k +4,联立方程⎩⎨⎧++==+,,)43(63222k kx y y x消去y ,得0)427227()43(6)32(222=++++++k k x k k x k ,于是x 1+x 2=232)43(6kk k ++-,x 1x 2=2232427227k k k +++.① ………………………7分 又P ,M ,H ,N 四点共线,将四点都投影到x 轴上, 则HNMH PNPM =可转化为2102133x x x x x x --=++, 整理得:)(6)(322121210x x x x x x x ++++=. …………………………………………10分将①代入可得=++-+++-⨯++++⨯=2222032)43(6632)43(63324272272kk k k k k k k k x k k 2176-+, …… 12分∴ kk k k k k k kx y 2142)43(2176)43(00-+=++-+=++=, 消去参数k 得01200=+-y x ,即H 点恒在直线012=+-y x 上. ………13分21.解:(Ⅰ) ∵ 11)(+-='xax x f ,x ∈(0,+∞), ………………………1分 ∴ a =2时,xx x x x x x f )1)(12(12)(2+-=-+='=0, ∴ 解得x =21,x =-1(舍). 即)(x f 的极值点为x 0=21. ……………………………………………………3分(Ⅱ) xx ax x ax x f 111)(2-+=+-='.(1)0=a 时,)(x f 在)1,0(上是减函数,在)1,0(上是增函数;0≠a 时, 对二次方程ax 2+x -1=0,Δ=1+4a ,(2)若1+4a ≤0,即41-≤a 时,ax 2+x -1<0,而x >0,故)(x f '<0, ∴ )(x f 在(0,+∞)上是减函数. (3)若1+4a >0,即a >41-时,ax 2+x -1=0的根为a a x 241121+±-=,, ①若<-41a <0,则 a a 2411+-->a a2411++->0,∴ 当x ∈(aa 2411++-,a a 2411+--)时,ax 2+x -1>0,即)(x f '>0,得)(x f 是增函数;当x ∈)2411,0(aa ++-, (a a2411+--,+∞)时,ax 2+x -1<0,即)(x f '<0,得)(x f 是减函数. ②若a >0,a a 2411+--<0<aa2411++-,∴ 当x ∈(0,aa2411++-)时,ax 2+x -1<0,即)(x f '<0, 得)(x f 是减函数;当x ∈(aa2411++-,+∞)时,ax 2+x -1>0,即)(x f '>0得)(x f 是增函数.∴ 综上所述,0=a 时,)(x f 在)1,0(上是减函数,在)1,0(上是增函数 当41-≤a 时,)(x f 在(0,+∞)上是减函数; 当41-<a <0时,)(x f 在(a a 2411++-,a a 2411+--)上是增函数,在)2411,0(aa ++-,(aa2411+--,+∞)上是减函数;当a >0时,)(x f 在(a a 2411++-,+∞)上是增函数,在(0,aa2411++-)上是减函数.…………………………………………………………………………7分 (Ⅲ)令)1(21)()()(+-++='-=a xa ae x f x g x h x ,x >0, 于是222)1(1)(x a x ae x a ae x h x x+-⋅=+-='.令)1()(2+-⋅=a x ae x p x ,则)2()(+⋅='x x ae x p x >0, 即p (x )在(0,+∞)上是增函数.∵ p (x )=-(a +1)<0,而当x →+∞时,p (x )→+∞, ∴ ∃x 0∈(0,+∞),使得p (x 0)=0.∴ 当x ∈(0,x 0)时,p (x )<0,即)(x h '<0,此时,h (x )单调递减; 当x ∈(x 0,+∞)时,p (x )>0,即)(x h '>0,此时,h (x )单调递增, ∴ )()(0min x h x h ==)1(210+-++a x a ae x .① 由p (x 0)=0可得0)1(200=+-⋅a x ae x ,整理得210x a ae x +=,②…………10分代入①中,得)(0x h =)1(21102+-+++a x a x a , 由∀x ∈(0,+∞),恒有)(x g ≥)(x f ',转化为)1(21102+-+++a x a x a ≥0,③ 因为a >0,③式可化为21102-+x x ≥0,整理得12020--x x ≤0, 解得21-≤x 0≤1. 再由x 0>0,于是0<x 0≤1.…………………………………………………12分 由②可得aa x e x 1200+=⋅. 令)(0x ϕ=200x e x ⋅ ,则根据p (x )的单调性易得)(0x ϕ在1]0(,是增函数, ∴ )0(ϕ<)(0x ϕ≤)1(ϕ, 即0<aa 1+≤e ,第页 11 解得a ≥11-e ,即a 的最小值为11-e .……………………………………14分。
2015绵阳二诊 四川省绵阳市2015届高三第二次诊断性考试 语文 扫描版含答案
绵阳市高中2012级第二次诊断性考试语文参考答案及评分标准二、(9分,每小题3分)5.B(A.“所有”扩大了范围; C.“浅沟”“能够排除水灾隐患”无中生有; D.“地面上”偷换概念,应为“机动车路面上”)6.D(A.浅沟不用芦苇过滤雨水; B.“处理量还可升至140万立方米”,可见“完全能应付”错;C.装“篦子”不能证明“下水系统相当先进”,且并非所有井盖下都装“篦子”)7.B(强加因果,推不出“难度更高”的结论)三、(6分,每小题3分)8.B(快:为……感到痛快)9.A(A.连词,因为; B.助词,定语后置的标志 / 代词,……的人。
C.介词,在 / 介词,被; D.介词,因<此> / 介词,为了)四、(31分)10.(10分)认为5分。
画线处各1分,大意1分)(2(5分。
画线处各1分,大意1分)11.(4分)为石昆玉伸冤,制裁杀人宦官,救忤旨御史,弹压登莱,声讨毛文龙,处理朝鲜政变。
(4分。
一点1分,答对四点即可)12.(3分)/ 以盖前衍 / 时以为得策/诏许之(3分。
每对两处1分)13.(8分)(1)久滞京师之愁,感时悲秋之叹,不被朝廷赏识之痛,知音难寻之悲。
(4分。
一点1分)(2)移情入景(融情入景),情景交融(4分。
画线处各1分)14.(6分)(1)靡室劳矣;夙兴夜寐(2)是使民养生丧死无憾也(3)环珮空归夜月魂(4)料峭春风吹酒醒(5)落霞与孤鹜齐飞(6)则素湍绿潭,回清倒影(7)沉舟侧畔千帆过(8)得之心而寓之酒也(6分。
每小题1分,有错别字该小题不得分)五、(22分)15.(4分)B、E(B.梵高丢弃画作是因为“他并不想从这等作品获得什么利益,已经描出了,就不顾它”,他追求的是作画的过程而非卖画的结果; E.“有力地抨击了当世之人的无知与愚昧”有误)(4分。
各2分)16.(6分)梵高是一个无心计、不媚俗,甘于清贫生活,体察人民疾苦、乐于救助他人,对绘画充满热情、坚持追求艺术纯粹性的画家。
绵阳市高中2015级第二次诊断性考试(数学理)
数学(理工类)答案第1页(共6页)一、选择题:本大题共12小题,每小题5分,共60分.DBBCA CDDCA BD二、填空题:本大题共4小题,每小题5分,共20分.13.93 14.-5 15.116.①③④ 16题提示:③设|BM |=|BO |=m ,|CN |=|CO |=n ,由①得|PM |=|PN |=9.由题知圆E 与x 轴相切,于是圆E :x 2+(y -2)2=4是△PBC 的内切圆, 根据公式S △PBC =)(21c b a r ++(其中r 为内切圆半径,a ,b ,c 为△PBC 的边长)得:21|BC |•y 0=21×2×2(|PM |+|BO |+|CO |),即21(m +n )×9=2(9+m +n ),解得536=+n m ,故S △PBC 5162953621=⨯⨯=. ④同③可得21(m +n )•y 0=2(y 0+m +n ), 解得4400-=+y y n m , 故S △PBC ]8)4(16)4[(24421)(21000200+-+-⋅=-⋅=+=y y y y y n m ≥32. 三、解答题:本大题共6小题,共70分.17.解:(Ⅰ)已知C B A t an 31t an 21t an ==, ∴ tan B =2tan A ,tan C =3tan A ,在△ABC 中,tan A =-tan(B +C )=AA A CBC B 2t an 61t an 3t an 2t an t an 1t an t an -+-=-+-,………3分 解得tan 2A =1,即tan A =-1,或tan A =1.……………………………………4分 若tan A =-1,可得tan B =-2,则A ,B 均为钝角,不合题意. ……………5分 故tan A =1,得A =4π.…………………………………………………………6分 (Ⅱ)由tan A =1,得tan B =2,tan C =3,数学(理工类)答案第2页(共6页)在△ABC 中,由B b A a sin sin =,得b =a a a A B 51022252sin sin ==, …………11分 于是S △ABC =21ab sin C =253103510221a a a =⨯⨯, ∴253a =15,解得a =5.………………………………………………………12分 18.解:(Ⅰ)根据题意得:a =40,b =15,c =20,d =25, ∴ 879.7249.845554060)20152540(10022>≈⨯⨯⨯⨯-⨯⨯=K , ……………………………4分 ∴ 在犯错误的概率不超过0.005的前提下可以认为网购与年龄有关.……5分 (Ⅱ)根据题意,抽取的9人中,年轻人有=⨯960406,中老年人=⨯960203人. 于是X =0,1,2,3,∴ 8420)0(3936===C C X P ,8445)1(391326===C C C X P , 8418)2(392316===C C C X P ,841)3(3933===C C X P , ∴ X 的分布列为:………………………………………………………10分 ∴ X 的数学期望18413841828445184200)(=⨯+⨯+⨯+⨯=X E .…………………12分 19.解:(Ⅰ)∵ b n+1)1(log 1))1(4[log )1(log 4414-+=-=-=+n n n a a a =1+b n , ∴ b n+1-b n =1(常数), …………………………………………………………3分数学(理工类)答案第3页(共6页)于是(-1)n kb n <2S n +n +4等价于(-1)n kn <n 2+2n +4,即等价于(-1)n 24++<nn k .……………………………………………………7分 ①当n 为偶数时,原式变为24++<nn k , ∵ 24++n n ≥242+⋅n n =6(当且仅当n =n4,即n =2时“=”成立) ∴ n =2时,24++nn 取最小值6, 故k <6. …………………………………………………………………………9分②当n 为奇数时,原式变为2)4(-+->nn k , 令函数f (x )=2)4(-+-x x ,x >0,则222)2)(2(4)(xx x x x x f +--=-=', 当x ∈(0,2)时,0)(>'x f ,当x ∈(2,+∞)时,0)(<'x f ,即f (x )在(0,2)上单调递增,在(2,+∞)上单调递减,由f (1)=-7<f (3)=319-,即f (n )≥319-(n 为奇数), ∴ k >319-. ……………………………………………………………………11分 综上所述,k 的取值范围为(319-,6). ……………………………………12分 20.解:(Ⅰ)设M (x ,y ),P (x 0,y 0), 则D (x 0,0),∴ =(0,y 0),DM =(x -x 0,y ),由=,得0=2(x -x 0),y 0=y 2,即y y x x 200==,, ………2分 又点P 在圆x 2+y 2=8上,代入得x 2+2y 2=8,∴ 曲线C 的方程为:14822=+y x . …………………………………………4分数学(理工类)答案第4页(共6页)②当直线AB 斜率存在时,假设存在满足题意的点Q (x Q ,0) .可设方程为y =k (x -2),A (x 1,y 1),B (x 2,y 2).联立方程组得:⎩⎨⎧=-+-=,,082)2(22y x x k y 整理得(2k 2+1)x 2-8k 2x +8k 2-8=0, ∴ x 1+x 2=12822+k k ,x 1x 2=128822+-k k , …………………………………………8分 ∵ ∠AQO=∠BQO ,∴ k QA +k Q B =0,即02211=-+-QQ x x y x x y , …………………………………10分 将y 1=k (x 1-2),y 2=k (x 2-2)代入整理得:2 x 1x 2-(x Q +2)(x 1+x 2)+x Q =0, 即12161622+-k k -(x Q +2)×12822+k k +4x Q =0, 化简得x Q =4,故此时存在点Q (4,0),使得∠AQO=∠BQO .……………………………12分21.解:(Ⅰ)由已知可得a e x f x -=')(.当a <0时,)(x f '>0,∴ )(x f 在R 上单调递增,且当+∞→-∞→)(x f x ,,不合题意.当a =0时,11)(->-=x e x f ,而-1<1-2ln2,不合题意.…………………3分 当a >0时,由0)(>'x f 解得a x ln >,由0)(<'x f 解得a x ln <,∴ )(x f 在(∞-,a ln )上单调递减,在(a ln ,+∞)上单调递增,∴ )(x f min =)(ln a f =1ln --a a a .要使)(x f ≥2ln 21-恒成立,则须使1ln --a a a ≥2ln 21-恒成立,令1ln )(--=a a a a g ,则a a g ln )(-=',显然当0<a <1时,)(a g '>0,当a >1时,)(a g '<0,于是函数)(a g 在(0,1)上单调递增,在(1,+∞)单调递减,∵ )1(g =0,)2(g =2ln 21-,∴ a 的最大值是2.……………………………………………………………6分 (Ⅱ)由(Ⅰ)知a =2,2)(-='x e x f ,数学(理工类)答案第5页(共6页) 存在x 0>1,使得h (x 0)<0成立,即h (x )min <0.………………………………8分 又x e k x x h )21(21)(-+=', 当k =1时,)(x h '>0,h (x )在(1,+∞)上单调递增, 而h (1)= 521+-e >0不合题意. 当k ≥2时,由)(x h '>0解得x >2k -1,由)(x h '<0解得1<x <2k -1,即h (x )在(2k -1,+∞)上单调递增,在(1,2k -1)上单调递减,∴ h (x )min =h (2k -1)=322112++--k e k . ……………………………………10分 令=)(k ϕ322112++--k e k , 则02)(12<+-='-k e k ϕ, ∴ )(k ϕ在)2[∞+,上单调递减,∵ )(k ϕ≤0721)2(3<+-=e ϕ, ∴ 正整数k 的最小值为2.……………………………………………………12分22.解:(Ⅰ)将直线l 的参数方程消去参数得31=+xy , 即l 的普通方程为013=--y x .将曲线C 的极坐标方程化为直角坐标方程为x 2+y 2-2x -2y +1=0. …………5分 (Ⅱ)将⎪⎪⎩⎪⎪⎨⎧+-==,,t y t x 23121代入C :x 2+y 2-2x -2y +1=0中, 整理得04)132(2=++-t t , 由韦达定理:41322121=⋅+=+t t t t ,, ……………………………………8分 16534)(2)(11112212122122212221222122+=-+=⋅+=+=+t t t t t t t t t t t t PB PA故165341122+=+PB PA . …………………………………………………10分数学(理工类)答案第6页(共6页) 当x >21时,f (x )=3x +1,由f (x )<6解得x <35,综合得21<x <35, 所以f (x )<6的解集是)353(,-. ………………………………………………5分 (Ⅱ)当x >21时,f (x )=(2+m )x +1. 当x ≤21时,f (x )=(m -2)x +3,要使得f (x )有最小值,则⎩⎨⎧≤-≥+,,0202m m 解得-2≤m ≤2,且由图像可得,f (x )在x =21时取得最小值21m +2. y =-x 2+x +1在x =21时取得最大值45,方程f (x )=-x 2+x +1有两个不等实根, 则21m +2<45,解得m <-23.综上所述,m 的取值范围为-2≤m <-23.……………………………………10分。
二模数学试题
(1)
(2)先化简,再求代数式的值: ,其中sin230°< <tan260°,请你取一个合适的整数作为 的值代入求值.
20.(本小题满分11分)
在一个不透明的盒子里,装有四个分别标有数字 , , , 的小球,它们的形状、大小、质地等完全相同.小强先从盒子里随机取出一个小球,记下数字为x;放回盒子摇匀后,再由小华随机取出一个小球,记下数字为y.
(2)设以AD为直径的半圆交AB于F,连结DF交AE于G,
已知CD=5,AE=8.
①求BC的长;②求 值.
24.(本小题满分12分)如图1,在矩形ABCD中,AB=4,AD=2,点P是边AB上的一个动点(不与点A、点B重合),点Q在边AD上,将△CBP和△QAP分别沿PC、PQ折叠,使B点与E点重合,A点与F点重合,且P、E、F三点共线.
注意事项:
1.答题前,考生务必将自己的姓名、考号清晰填写在答题卡密封线内规定的位置。
2.必须使用0.5毫米的黑色墨水签字笔书写;作图时,可用2B铅笔,笔迹要清晰。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写答案无效;在草稿纸、试卷上的答案无效。
4.保持答题纸清洁、完整、严禁折叠,严禁在答题纸上作任何标记,严禁使用涂改液和修正带。
16.如图,上下底面为全等的正六边形礼盒,其主视图与左视图均由矩形构成,主视图中大矩形边长如图所示,左视图中包含两全等的矩形,如果用彩色胶带如图包扎礼盒,所需胶带长度至少为__________cm.(不计接缝,结果保留准确值)
17.已知 ,
,
。
那么当点 是以坐标原点O为圆心,5为半径的圆周上的点,则由图可得如下关系式 ,现将圆心平移至 ,其它不变,则可得关系式为_________。
绵阳市高中 级第二次诊断性考试 理综
3
绵阳市高中 2015 级第二次诊断性考试 理科综合能力测试·化学参考答案和评分标准
选择题: 7. C 8. A 9. B 10. B 11. C 12. D 13. A
非选择题 (一)必考题 26.(15 分)
(1)冷凝管(或球形冷凝管)(1 分) 2Na2O2+2H2O==4NaOH+O2↑(或 2H2O2=M==nO==2 2H2O+O2↑) (2 分)
(1)赤霉素(1 分) (2)促进细胞伸长和分裂(答对一点给 1 分,共 2 分)
(3)相反(2 分) 4(2 分) BR 促进胚轴和主根的向性(弯曲)生长 (2 分)
32.(10 分)
(1)用纯合的截毛雌果蝇与刚毛雄果蝇杂交,观察并统计 F1 的表现型及比例。
如果子代雌雄果蝇都是刚毛,则 A、a 这对基因位于 X、Y 染色体的同源区段;
(2)压榨 (2 分)
水中蒸馏会导致原料焦糊和有效成分水解等问题
(2 分,答对一点给 1 分)
(3)具有较高的沸点、能够充分溶解胡萝卜素、不与水混溶 (3 分,答对一点给 1 分)
防止加热时有机溶剂挥发(2 分)
38.(15 分)
(1)B 淋巴 (2 分)
抗原 (2 分)
能产生抗体和无限增殖(2 分)
V2 V3 T2 T3
(2 分)
解得
h=22 cm
(2 分)
34.[物理选修 3—4](15 分) (1)(5 分)BCE(选对 1 个得 2 分,选对 2 个得 4 分,选对 3 个得 5 分。每选错 1 个
扣 3 分,最低得分为 0 分)。
(2)(10 分)解:
(i)光路如图所示,E 是光线在 AB 边的射出点,设光线通过棱镜的速度为 v,则