初一数学上册期中考试试卷及答案
北师大版七年级上册数学期中考试试题及答案
![北师大版七年级上册数学期中考试试题及答案](https://img.taocdn.com/s3/m/0b5cb772b5daa58da0116c175f0e7cd18425188c.png)
北师大版七年级上册数学期中考试试卷2022年一、单选题1.下图中哪个图形经过折叠后可以围成一个棱柱()A .B .C .D .2.如果收入80元记作+80元,那么支出20元记作()A .+20元B .-20元C .+100元D .-100元3.4月24日是中国航天日,1970年的这一天,我国自行设计、制造的第一颗人造地球卫星“东方红一号”成功发射,标志着中国从此进入了太空时代,它的运行轨道距地球最近点为439000米.将439000用科学记数法表示应为()A .60.43910⨯B .64.3910⨯C .54.3910⨯D .34.3910⨯4.用一个平面去截一个如图所示的正方体,截面形状不可能为()A .B .C .D .5.下面说法正确的是()A .13πx 2的系数是13B .13xy 2的次数是2C .﹣5x 2的系数是5D .3x 2的次数是26.下列运算正确的是()A .4a+3b=7abB .4xy-3xy=xyC .-2x+5x=7xD .2y-y=17.“五一”小长假期间,某公园的门票价格是:成人10元,学生5元.某旅行团有成人x 人,学生y 人,该团应付的门票为()A .(105)x y +元B .(105)y x +元C .(1515)x y +元D .15xy 元8.一天早晨的气温是﹣7℃,中午上升了11℃,晚上又下降了9℃,晚上的气温是()A .﹣5℃B .﹣6℃C .﹣7℃D .﹣8℃9.已知-5a 6b 2和7a 2nb 2是同类项,则代数式10n-2的值是()A .58B .18C .28D .3810.按如图所示的规律搭正方形:搭一个小正方形需要4根小棒,搭两个小正方形需要7根小棒,搭100个这样的小正方形需要小棒()根.A .300B .301C .302D .400二、填空题11.计算:-3+2=_____.12.从正面,左面,上面看到的几何体的形状图都一样的几何体是________(一种即可).13.数轴的单位长度为1,如果点A 表示的数是-2,那么点B 表示的数是_________.14.计算(﹣1)÷6×(﹣16)=_____.15.化简:2(a+1)-a=____16.若a-2b=3,则2a-4b-5=______.17.数a ,b 在数轴上的位置如图所示,化简a a b --的结果是__________.三、解答题18.计算:2108(2)(4)(3)-+÷---⨯-.19.化简:822(52)a b a b ++-.20.从正面、左面、上面观察如图所示的几何体,分别画出你所看到的平面图形.21.9月10日这一天下午,出租车司机小王在东西走向的幸福大道上运营,若规定向东为正,向西为负,出租车的行车里程如下:+15,-4,+13,-10,-12,+3,-13,-17(1)将最后一名乘客送到目的地,小王距离出车地点多少千米?(2)若汽车耗油量为0.2升/千米,这天下午汽车共耗油多少升?22.如图是分别从正面、左面、上面观察一个几何体得到的图形,请解答以下问题:(1)这个几何体的名称为;(2)若从正面看到的是长方形,其长为10cm ;从上面看到的是等边三角形,其边长为4cm ,求这个几何体的侧面积.23.有一道化简求值题:“当a=-2,b=-3时,求(3a 2b-2ab )-2(ab-4a 2)+(4ab-a 2b )的值.”小芳做题时,把“a=-2”错抄成了“a=2”,但她的计算结果却是正确的,小芳百思不得其解,请你先化简并求值,再帮助她解释一下原因.24.在数轴上把下列各数表示出来,并用“<”连接各数.0,|1|--,-3,112,-(-4)25.已知,一个点从数轴上的原点开始,先向左移动7个单位到达A 点,再从A 点向右移动12个单位到达B 点,把点A 到点B 的距离记为AB ,点C 是线段AB 的中点.(1)点C 表示的数是;(2)若点A以每秒2个单位的速度向左移动,同时C、B点分别以每秒1个单位、4个单位的速度向右移动,设移动时间为t秒,①点C表示的数是(用含有t的代数式表示);②当t=2秒时,求CB-AC的值;③试探索:CB-AC的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.26.先阅读下面文字,然后按要求解题.例:1+2+3+…+100=?如果一个一个顺次相加显然太麻烦,我们仔细分析这100个连续自然数的规律和特点,可以发现运用加法的运算律,是可以大大简化计算,提高计算速度的.因为1+100=2+99=3+98=…=50+51=101,所以将所给算式中各加数经过交换、结合以后,可以很快求出结果:1+2+3+4+5+…+100=(1+100)+(2+99)+(3+98)+…+(50+51)=101×=.(1)补全例题解题过程;(2)请猜想:1+2+3+4+5+6+…+(2n﹣2)+(2n﹣1)+2n=.(3)试计算:a+(a+b)+(a+2b)+(a+3b)+…+(a+99b).参考答案1.B【解析】【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.【详解】解:选项A、D缺少一个面,不能围成棱柱;选项C中折叠后底面重合,不能折成棱柱;只有B能围成三棱柱.所以B选项是正确的.【点睛】考查了展开图折叠成几何体,解题时勿忘记四棱柱的特征及正方体展开图的各种情形.2.B【解析】【详解】试题分析:具有相反意义的量是指意义相反,与值无关,收入为正,则支出为负.∵收入80元记作+80元,∴支出20元记作-20元.故选:B.考点:具有相反意义的量.3.C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【详解】解:439000=4.39×105.故选:C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.C【解析】【分析】正方体有六个面,用平面去截正方体时最多与六个面相交得六边形,最少与三个面相交得三角形,截面也不可能有弧度,因此截面形状不可能为圆.解:用一个平面无论如何去截,截面也不可能有弧度,因此截面形状不可能为圆.故选:C .【点睛】本题考查正方体的截面.正方体有六个面,截面与其六个面相交最多得六边形,不可能是七边形或多于七边的图形或其它的弧形.5.D 【解析】【分析】根据单项式的系数和次数的定义即可完成即可.【详解】解:A .13πx 2的系数是13π,故此选项错误;B .12xy 2的次数是3,故此选项错误;C .﹣5x 2的系数是﹣5,故此选项错误;D .3x 2的次数是2,正确.故答案为D .【点睛】本题考查了单项式的系数和次数,解题的关键在于掌握单项式的系数和次数的求法,即系数为单项式的数字部分,注意π为数字,这是解答本题的关键.6.B 【解析】【分析】根据整式加减法的运算法则进行计算判断即可.【详解】A 选项中,因为43a b +中两个项不是同类项,不能合并,所以A 中计算错误,不符合题意;B 选项中,因为43xy xy xy -=,所以B 中计算正确,符合题意;C 选项中,因为253x x x -+=,所以C 中计算错误,不符合题意;D 选项中,因为2y y y -=,所以D 中计算错误,不符合题意.故选B .熟记“整式加减法的运算法则”是正确解答本题的关键.7.A【解析】【分析】门票费=成人门票总价+学生门票总价.【详解】解:门票费为(10x+5y)元.故选A.【点睛】解决问题的关键是读懂题意,找到所求的量的等量关系.8.A【解析】【详解】=-+-=-℃晚上的气温71195故选A.9.C【解析】【分析】根据同类项定义,相同字母的指数相同,可得出n的值,继而可得出答案.【详解】解:∵-5a6b2和7a2nb2是同类项,∴2n=6,解得:n=3,∴10n-2=28.故选择:C.【点睛】本题考查了同类项,掌握同类项的定义是解题的关键.10.B【解析】【分析】通过归纳与总结得出规律:每增加1个正方形,火柴棒的数量增加3根,由此求出第n个图形时需要火柴的根数的代数式,然后代入求值即可.【详解】解:搭2个正方形需要4+3×1=7根火柴棒;搭3个正方形需要4+3×2=10根火柴棒;…,搭n个这样的正方形需要4+3(n﹣1)=3n+1根火柴棒;∴搭100个这样的正方形需要3×100+1=301根火柴棒;故选B.【点睛】本题考查了图形规律型:图形的变化.解题的关键是发现各个图形的联系,找出其中的规律,有一定难度,要细心观察总结.11.-1【解析】【分析】由绝对值不等的异号加减,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得0,即可求得答案.【详解】解:﹣3+2=﹣1.故答案为:﹣1.12.球(答案不唯一)【解析】【分析】根据主视图,左视图,俯视图的定义找出从正面,左面,上面看到的几何体的形状图都一样的几何体即可.【详解】解:球从正面,左面,上面看到的平面图形为全等的圆,故答案为球(答案不唯一).【点睛】本题考查三视图的有关知识,注意三视图都相同的常见的几何体有球、正方体.13.2【解析】由4,AB=点A表示的数是-2,把点A往右移动4个单位可得答案.【详解】解: 点A表示的数是-2,4,AB=∴把点A往右移动4个单位可得点B,B∴表示的数为:242,-+=故答案为:2.【点睛】本题考查的是数轴上两点之间的距离,及点的移动后对应的数的表示,掌握以上知识是解题的关键.14.1 36.【解析】【分析】由有理数的乘除法的运算法则进行计算,即可得到答案.【详解】解:原式=111()66-⨯⨯-=136;故答案为:1 36.【点睛】本题考查了有理数的乘除法混合运算,解题的关键是掌握运算法则进行解题.15.a+2##2+a【解析】【详解】解:原式=2a+2-a=a+2.故答案为:a+216.1【解析】【分析】把所求代数式转化为含有(a﹣2b)形式的代数式,然后将a﹣2b=3整体代入并求值即可.解:a-2b=3,∵2a ﹣4b ﹣5=2(a ﹣2b)-5=2×3-5=1.故答案为:1.17.-b 【解析】【分析】根据数轴可判断a <0,a−b <0,然后去绝对值即可.【详解】解:由数轴可知,a <0,a−b <0,∴()a a b a b a a b a b --=---=--+=-,故答案为-b .【点睛】本题考查了数轴与绝对值,解决此类题目的关键是判断绝对值里式子的符号,熟练运用去绝对值的法则,合并同类项的法则,是各地中考的常考点.18.-20【解析】【分析】根据有理数的运算顺序,先算乘方,再算乘除,最后算加减即得.【详解】解:原式=−10+8÷4−12=-10+2-12=-20【点睛】本题考查有理数的混合运算,按照有理数运算顺序计算是解题关键,按照乘法与除法运算法则确定符号是易错点.19.18a−2b 【解析】【分析】根据整式的运算法则,先去括号,再合并同类项即可求出答案.【详解】解:原式=8a+2b+10a−4b=18a−2b【点睛】本题考查整式的运算法则,解题的关键是熟练运用整式的运算法则,本题属于基础题型.20.见解析【解析】【分析】从正面看:共有3列,从左往右分别有1,2,1个小正方形;从左面看:共有2列,左面一列有2个,右边一列有1个小正方形;从上面看:共分3列,从左往右分别有2,1,1个小正方形.据此可画出图形.【详解】解:如图所示:【点睛】此题考查画三视图的知识;用到的知识点为:主视图,左视图,俯视图分别是从物体的正面,左面,上面看得到的图形.21.(1)小王距离出车地点西边25千米(2)这天下午汽车共耗油17.4升【解析】【详解】试题分析:(1)根据有理数的加法,直接可求解;(2)根据行车就要耗油,求其各段行驶过程的绝对值,乘以单位耗油量即可.试题解析:(1)+15-4+13-10-12+3-13-17=-25千米小王距离出车地点西边25千米(2)+15+4+13+10+12+3+13+17=87千米这天下午汽车共耗油87×0.2=17.4升22.(1)三棱柱;(2)这个几何体的侧面积为2120cm.【解析】【分析】(1)根据三视图的知识,主视图以及左视图都是长方形,俯视图为三角形,故可判断出该几何体是三棱柱;(2)侧面积为3个长方形,它的长和宽分别为10cm,4cm,计算出一个长方形的面积,乘3即可.【详解】解:(1)这个几何体是三棱柱;故答案为:三棱柱;(2)三棱柱的侧面展开图形是长方形,长方形的长是等边三角形的周长,宽是三棱柱的高,所以三棱柱侧面展开图形的面积为:()2S cm=⨯⨯=.3410120120cm.答:这个几何体的侧面积为2【点睛】本题主要考查由三视图确定几何体和求几何体的面积等相关知识,考查学生的空间想象能力.注意:棱柱的侧面都是长方形,上下底面是几边形就是几棱柱.23.2a2b+8a2,8,理由见解析【解析】【分析】先把(3a2b−2ab)−2(ab−4a2)+(4ab−a2b)去括号后合并同类项化为2a2b+8a2,再代入求值即可.无论a=−2,还是a=2,a2都等于4,代入后结果是一样的.【详解】解:(3a2b−2ab)−2(ab−4a2)+(4ab−a2b)=3a2b−2ab−2ab+8a2+4ab−a2b=2a2b+8a2当a=−2,b=−3时,原式=2×4×(−3)+8×4=8.原因:因为无论a=−2,还是a=2,a 2都等于4,代入后结果是一样的,所以计算结果是正确的.【点睛】本题考查了整式的加减-化简求值,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握法则是解本题的关键.24.见解析,-3<|1|--<0<112<-(-4).【解析】【分析】在数轴上表示出各数,从左到右用“<”连接起来即可.【详解】解:如图所示,,由图可知,-3<|1|--<0<112<-(-4).故答案为见解析,-3<|1|--<0<112<-(-4).【点睛】本题考查数轴,有理数的大小比较,熟知数轴上右边的数总比左边的大是解题的关键.25.(1)-1(2)①−1+t ;②0;③CB−AC 的值不随着时间t 的变化而改变,CB−AC 的值为0.【解析】【分析】(1)根据题意可以求得点C 表示的数;(2)①根据题意可以用代数式表示点C 运动时间t 时表示的数;②根据题意可以求得当t =2秒时,CB−AC 的值;③先判断是否变化,然后求出CB−AC 的值即可解答本题.(1)解:由题意可得,AC =12×12=6,∴点C 表示的数为:0−7+6=−1,故答案为:−1;(2)解:①由题意可得,点C移动t秒时表示的数为:−1+t,故答案为:−1+t;②当t=2时,CB−AC=[(0−7+12+4t)−(−1+t)]−[(−1+t)−(0−7−2t)]=(5+4t+1−t)−(−1+t+7+2t)=6+3t−6−3t=0;③CB−AC的值不随着时间t的变化而改变,∵CB−AC=[(0−7+12+4t)−(−1+t)]−[(−1+t)−(0−7−2t)]=(5+4t+1−t)−(−1+t+7+2t)=6+3t−6−3t=0,∴CB−AC的值不随着时间t的变化而改变,CB−AC的值为0.【点睛】点评:本题考查数轴,解答本题的关键是明确题意,找出所求问题需要的条件.26.(1)50;5050;(2)n(2n+1);(3)100a+4950b.【解析】【分析】(1)由题意可得从1到100共有100个数据,两个一组,则共有50组,由此即可补全例题的解题过程;(2)观察、分析所给式子可知,所给代数式中共包含了2n个式子,这样参照例题方法解答即可;(3)观察、分析所给式子可知,所给代数式中共包含了100个式子,再参照例题方法解答即可.【详解】解:(1)原式=1+2+3+4+5+…+100=(1+100)+(2+99)+(3+98)+…+(50+51)=101×50=5050;故答案为:50;5050;(2)原式=(1+2n)+(2+2n-1)+(3+2n-2)+…+(n+n+1)=(2n+1)+(2n+1)+(2n+1)+…+(2n+1)=(2n+1)×n=n(2n+1);故答案为:n(2n+1);(3)原式=[a+(a+99b)]+[(a+b)+(a+98b)]+…+[(a+49b)+(a+50b)]=(2a+99b)+(2a+99b)+…+(2a+99b)=50(2a+99b)=100a+4950b.【点睛】本题的解题要点是通过观察、分析得到本题的三个式子都有如下规律:(1)每个算式中都包含了偶数个式子;(2)每个算式中相邻两个式子的差是相等的;(3)每个算式中第1个和最后1个式子相加,第2个式子和倒数第2个式子相加,…,所得的和相等;这样根据上述特点即可按例题中的方法方便的计算出每个小题的结果了.。
数学七年级上册期中考试试卷【含答案】
![数学七年级上册期中考试试卷【含答案】](https://img.taocdn.com/s3/m/c904588485254b35eefdc8d376eeaeaad1f3160e.png)
数学七年级上册期中考试试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是质数?A. 21B. 23C. 27D. 302. 如果一个三角形的两边长分别是8厘米和15厘米,那么第三边的长度可能是多少?A. 3厘米B. 10厘米C. 23厘米D. 17厘米3. 有理数大小比较,-5____-7(大于、小于、等于)A. 大于B. 小于C. 等于4. 下列哪个数是立方数?A. 27B. 28C. 30D. 325. 一个等腰三角形的顶角是50°,那么它的一个底角是多少度?A. 65°B. 70°C. 75°D. 80°二、判断题(每题1分,共5分)1. 任何偶数都可以表示为2的倍数。
()2. 0是最小的自然数。
()3. 1的倒数是1。
()4. 等边三角形一定是锐角三角形。
()5. 对角线互相垂直的四边形一定是菱形。
()三、填空题(每题1分,共5分)1. 最大的负整数是____。
2. 一个正方形的边长是a,那么它的面积是____。
3. 如果一个数的平方是36,那么这个数可能是____或____。
4. 1千米等于____米。
5. 两个等腰直角三角形可以拼成一个正方形。
()四、简答题(每题2分,共10分)1. 请解释有理数的概念。
2. 什么是算术平方根?3. 简述平行线的性质。
4. 请说明等边三角形的性质。
5. 什么是比例线段?五、应用题(每题2分,共10分)1. 小明有5个苹果,小华有7个苹果,他们一共有多少个苹果?2. 一个长方形的长是10厘米,宽是5厘米,求这个长方形的面积。
3. 一个数的3倍加上10等于29,求这个数。
4. 一个等腰三角形的底边长是10厘米,腰长是13厘米,求这个三角形的周长。
5. 如果一辆汽车以60千米/小时的速度行驶,那么它行驶100千米需要多少时间?六、分析题(每题5分,共10分)1. 画出边长为3厘米的正方形,并标出它的对角线。
七年级上册数学期中考试试卷附答案
![七年级上册数学期中考试试卷附答案](https://img.taocdn.com/s3/m/1e99b2a8f71fb7360b4c2e3f5727a5e9856a27ed.png)
七年级上册数学期中考试试题2022年一、单选题1.据媒体报道,我国因环境污染造成的巨大经济损失,每年高达680000000元,这个数用科学记数法表示正确的是()A .6.8×109元B .6.8×108元C .6.8×107元D .6.8×106元2.如果向东为正,那么-50m 表示的意义是()A .向东行进50mB .向南行进50mC .向西行进50mD .向北行进50m 3.下列计算正确..的是()A .(3)21-+=B .(3)21--=-C .(2)(1)(2)-⨯-=-D .(6)23-÷=-4.2--的相反数是()A .12-B .2-C .12D .25.已知有理数a 、b 在数轴上对应的点如图所示,则下列式子正确的是()A .a•b >0B .a+b <0C .|a|<|b|D .a ﹣b >06.下列代数式3a ,﹣xy ,2x,10,x ﹣y ,b ,2x 2y 3中,单项式有()个.A .3B .4C .5D .67.下列各组是同类项的一组是()A .xy 2与﹣12x 2yB .3x 2y 与﹣3xyzC .﹣a 3b 与12ba 3D .a 3与b 38.一个多项式与x 2﹣2x+1的和是3x ﹣2,则这个多项式为()A .x 2﹣5x+3B .﹣x 2+x ﹣3C .﹣x 2+5x ﹣3D .x 2﹣5x ﹣139.对于有理数a ,b ,定义一种新运算,规定a※b =﹣a 2﹣b ,则(﹣2)※(﹣3)=()A .7B .1C .﹣7D .﹣110.某公园计划砌一个形状如图(1)的喷水池(图中长度单位:m ),后来有人建议改为图(2)的形状,且外圆的直径不变,请你比较两种方案,砌各圆形水池的周边需要的材料多的是()(提示:比较两种方案中各圆形水池周长的和)A .图(1)B .图(2)C .一样多D .无法确定二、填空题11.计算:4ab 2﹣5ab 2=_______,(﹣25)﹣(﹣35)=_______,10÷3×13=______.12.多项式1﹣3x ﹣2xy ﹣4xy 2是___次___项式,其中二次项是___.13.数轴上有一点A 对应的数为﹣2,在该数轴上有另一点B ,点B 与点A 相距3个单位长度,则点B 所对应的有理数是_______.14.列代数式表示:“a ,b 和的平方减去它们差的平方”为________________.15.若ab =﹣2,a+b =3,那么2a ﹣ab+2b 的值为___.16.单项式2332a b π的系数是__,次数是__.17.下列图案是晋商大院窗格的一部分,其中“○”代表窗纸上所贴的剪纸,则第n 个图中所贴剪纸“○”的个数为_____个.三、解答题18.计算题:(1)13﹣(﹣18)+(﹣7)﹣15;(2)﹣24+(﹣3)3﹣(﹣1)10;(3)12﹣6÷(﹣3)﹣22332⨯;(4)﹣|﹣23|﹣|﹣12÷32|﹣(1341-).19.整式的计算:(1)4x 2﹣5x+2+x 2+3x ﹣4;(2)(8a ﹣7b )﹣2(4a ﹣5b );(3)3x 2﹣[5x ﹣(12x ﹣3)+2x 2].20.有8筐白菜,以每筐25千克为准,超过的千克数记作正数,不足的千克数记作负数,称后的记录如下:2,﹣3,1.5,﹣0.5,1,﹣2,﹣1.5,﹣2.5.(1)这8筐白菜中,最重的一筐白菜比最轻的一筐白菜重了多少千克?(2)若白菜每千克售价3元,则出售这8筐白菜可卖多少元?21.已知多项式A =2x 2-xy ,B =x 2+xy -6,求:(1)4A -B ;(2)当x =1,y =-2时,求4A -B 的值.22.化简求值:4xy-(2x 2+5xy-y 2)+2(x 2+3xy),其中212(02x y ++-=..23.两船从同一港口同时出发反向而行,甲船顺水,乙船逆水,两船在静水中的速度都是40km/h ,水流速度是akm/h .(1)3h 后两船相距多远?(2)4h 后甲船比乙船多航行多少千米?24.阅读理解,并解答问题:观察下列各式:11112122==-⨯,111162323==-⨯,1111123434==-⨯,......,请利用上述规律计算(要求写出计算过程):(1)1111111261220304256++++++;(2)11111111335577991111131315++++++⨯⨯⨯⨯⨯⨯⨯.25.阅读下列材料:我们知道(0)0(0)(0)x x x x x x >⎧⎪==⎨⎪-<⎩现在我们可以用这个结论来化简含有绝对值的代数式,如化简代数式12x x ++-时,令10x +=,求得1x =-;令20x -=,求得2x =(称-1,2分别为1x +,2x -的零点值).在有理数范围内,零点值-1和2可将全体有理数分成不重复且不遗漏的如下3种情况:①当1x <-时,原式()()1221x x x =-+--=-+;②当12x -≤≤时,原式()123x x =+--=;③当2x >时,原式1221x x x =++-=-.综上所述,21(1)123(12)21(2)x x x x x x x -+<-⎧⎪++-=-≤≤⎨⎪->⎩通过以上阅读,请你解决以下问:(1)分别求出2x +和4x -的零点值;(2)化简代数式24x x ++-.26.探究性问题:在数学活动中,小明为了求23411112222++++……+12n 的值(结果用含n 的式子表示).设计了如图1所示的几何图形.(1)利用这个几何图形,求出23411112222++++ (12)的值为;(2)利用图2,再设计一个能求23411112222++++ (12)的值的几何图形.参考答案1.B 【解析】【详解】680000000元=6.8×108元.故选:B .【点睛】考点:科学记数法—表示较大的数.2.C 【解析】【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【详解】∵向东为正,∴-50m表示的意义为向西50m.故选C.【点睛】本题考查正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.3.D【解析】【分析】根据有理数加、减、乘、除运算法则计算出各项的结果,再进行判断即可.【详解】-+=--=-,选项A计算错误,故不符合题意;解:A.(3)2(32)1--=-+=-,选项B计算错误,故不符合题意;B.(3)2(32)5-⨯-=⨯=,选项C计算错误,故不符合题意;C.(2)(1)212-÷=-÷=-,计算正确,符合题意.D.(6)2(62)3故选:D.【点睛】本题考查了有理数的混合运算,解答本题的关键是有理数混合运算的计算方法.4.D【解析】【分析】|-2|去掉绝对值后为2,而-2的相反数为2.【详解】2--的相反数是2,故选:D.【点睛】本题考查了相反数和绝对值的概念,本题的关键是首先要对原题进行化简,然后在求这个数的相反数;其中,正数的相反数是负数,负数的相反数是正数,0的相反数是0.5.D【解析】【详解】试题解析:由数轴可知:10,1 2.b a -<<<<A.0,ab <故错误.B.0.a b +>故错误.C.,a b >故错误.D.0.a b ->正确.故选:D .6.C 【解析】【分析】单项式:数字与字母的积,单个的数或单个的字母也是单项式,根据定义逐一判断即可得到答案.【详解】解:代数式3a ,﹣xy ,2x,10,x ﹣y ,b ,2x 2y 3中,单项式有:23,,10,,2,3axy b x y -共5个,故选C 【点睛】本题考查的是单项式的定义,熟练的运用单项式的概念判断代数式是否是单项式是解本题的关键.7.C 【解析】【分析】根据同类项是字母相同,且相同的字母的指数也相同解答即可.【详解】解:A .字母相同,但相同的字母的指数不相同,不是同类项,故此选项不符合题意;B .所含字母不尽相同,不是同类项,故此选项不符合题;C .字母相同,且相同的字母的指数也相同,故此选项符合题意;D .字母不同,不是同类项,故此选项不符合题意;故选:C .【点睛】本题考查了同类项,关键是根据同类项是所含字母相同,并且相同字母的指数也相同解答.8.C 【解析】【分析】设这个多项式为A ,根据整式的加减即可求出答案.【详解】解:设这个多项式为A ,∴A+(x 2﹣2x+1)=3x ﹣2∴A =3x ﹣2﹣(x 2﹣2x+1)=3x ﹣2﹣x 2+2x ﹣1=﹣x 2+5x ﹣3故选C .【点睛】本题考查整式的加减,掌握去括号和合并同类项是关键.9.D 【解析】【分析】由新定义列式可得:()()223,----再先计算乘方,最后计算加减运算即可.【详解】解: a※b =﹣a 2﹣b ,(﹣2)※(﹣3)=()()223431,----=-+=-故选D 【点睛】本题考查的是新定义运算,含乘方的有理数的混合运算,理解新定义的运算法则是解本题的关键.10.C 【分析】利用圆的周长公式直接计算即可得到答案.11.2ab -15或者0.2109或者1110【解析】【分析】把同类项的系数相减,字母与字母的指数不变,可得第一空的答案;先把减法转化为加法,再计算加法可得第二空的答案;先把除法转化为乘法,再计算乘法运算即可得到第三空的答案.【详解】解:4ab 2﹣5ab 2=()2245,ab ab -=-(﹣25)﹣(﹣35)=231,555-+=10÷3×13=111010,339⨯⨯=故答案为:2110,,59ab -【点睛】本题考查的是合并同类项,有理数的减法运算,有理数的乘除混合运算,易错点是计算乘除同级运算时,不注意运算顺序.12.三四−2xy .【解析】【分析】直接利用几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.多项式中次数最高的项的次数叫做多项式的次数,进而得出答案.【详解】解:多项式1﹣3x ﹣2xy ﹣4xy 2是三次四项式,其中二次项是:−2xy .故答案为:三,四,−2xy .【点睛】此题主要考查了多项式,正确掌握多项式的相关次数确定方法是解题关键.13.1或5-##5-或1【解析】【分析】由数轴上有一点A 对应的数为﹣2,数轴上有另一点B ,点B 与点A 相距3个单位长度,则把表示2-的点向左边或右边移动3个单位即可得到答案.【详解】解: 数轴上有一点A 对应的数为﹣2,数轴上有另一点B ,点B 与点A 相距3个单位长度,231∴-+=或235,--=-B ∴对应的数为:1或5-故答案为:1或5-【点睛】本题考查的是数轴上两点之间的距离,有理数的加法与减法运算,掌握“数轴上两点之间的距离的含义”是解题的关键.14.(a +b )2−(a−b )2【解析】【分析】先列两个数和再平方,然后减去它们差的平方即可列出代数式.【详解】解:a ,b 和的平方减去它们差的平方,列出代数式为:(a +b )2−(a−b )2,故答案为:(a +b )2−(a−b )2.【点睛】本题考查了列代数式,解题的关键是理解题意准确列出代数式.15.8【解析】【分析】先把原式化为:()2,a b ab +-再整体代入代数式求值即可.【详解】解: ab =﹣2,a+b =3,∴2a ﹣ab+2b ()2a b ab=+-()=232628,´--=+=故答案为:8【点睛】本题考查的是代数式的值,掌握“整体代入法求解代数式的值”是解题的关键.16.32π5【解析】【分析】根据单项式的定义即可得【详解】因为单项式中的数字因数叫单项式的系数,所有字母的指数和叫单项式的次数,所以32πa2b3.的系数是32π,次数是5.【点睛】本题考查的知识点是单项式,解题的关键是熟练的掌握单项式. 17.3n+2【解析】【详解】解:第一个图案为3+2=5个窗花;第二个图案为2×3+2=8个窗花;第三个图案为3×3+2=11个窗花;…从而可以探究:第n个图案所贴窗花数为(3n+2)个.故答案为:3n+218.(1)9;(2)44-;(3)10;(4)11 12 -【解析】【分析】(1)先把运算统一为省略加号的和的形式,再计算即可;(2)先计算乘方运算,再计算减法运算即可;(3)先计算乘除运算,再计算加减运算即可;(4)先化简绝对值与计算括号内的运算,再计算减法运算即可.【详解】解:(1)13﹣(﹣18)+(﹣7)﹣151318715=+--31229=-=;(2)﹣24+(﹣3)3﹣(﹣1)10 1627144=---=-;(3)12﹣6÷(﹣3)﹣223 32⨯83 12232 =+-⨯14410 =-=;(4)﹣|﹣23|﹣|﹣12÷32|﹣(1341-)212132312=--⨯-2113312=---11111212=--=-【点睛】本题考查的是含乘方的有理数的混合运算,掌握“有理数的混合运算的运算顺序与运算法则”是解题的关键.19.(1)2522x x--;(2)3b;(3)293 2x x--【解析】【分析】(1)直接把同类项的系数相加减,字母与字母的指数不变,从而可得答案;(2)先去括号,再合并同类项即可;(3)先去小括号,再去中括号,再合并同类项即可得到答案.【详解】解:(1)4x2﹣5x+2+x2+3x﹣42522x x=--(2)(8a﹣7b)﹣2(4a﹣5b)87810a b a b=--+3b=(3)3x2﹣[5x﹣(12x﹣3)+2x2]22135322x x x x ⎛⎫=--++ ⎪⎝⎭22135322x x x x =-+--2932x x =--【点睛】本题考查的是整式的化简求值,熟练的运用去括号,合并同类项是解本题的关键.20.(1)4.5千克;(2)585元【解析】【分析】(1)由超过最多的一筐减去不足最多的一筐可得答案;(2)先求解这8筐白菜的总重量,再乘以单价即可得到答案.【详解】解:(1)8筐白菜中,最重的一筐白菜比最轻的一筐白菜重:()1.53 1.53 4.5--=+=千克.(2)()()()()()23 1.50.512 1.5 2.5+-++-++-+-+-Q 5,=-∴这8筐白菜的总重量为:8255195´-=千克,所以白菜每千克售价3元,出售这8筐白菜可卖:1953=585´元.【点睛】本题考查的是正负数的应用,有理数的加法与乘法的实际应用,理解题意,列出正确的运算式是解本题的关键.21.(1)7x 2-5xy +6;(2)23【解析】【分析】(1)本题考查了整式的加减,列式时注意加括号,然后去括号合并同类项;(2)本题考查了求代数式的值,把x=1,y=﹣2代入到(1)化简得结果中求值即可.【详解】解:(1)∵多项式A=2x 2﹣xy ,B=x 2+xy ﹣6,∴4A ﹣B=4(2x 2﹣xy )﹣(x 2+xy ﹣6)=8x 2﹣4xy ﹣x 2﹣xy+6=7x 2﹣5xy+6;(2)∵由(1)知,4A ﹣B=7x 2﹣5xy+6,∴当x=1,y=﹣2时,原式=7×12﹣5×1×(﹣2)+6=7+10+6=23.22.25xy y +,﹣434【解析】【分析】首先去括号合并同类项,再得出x ,y 的值代入即可.【详解】解:原式=22242523xy x xy y x xy -+-++()()22242526xy x xy y x xy =--+++25xy y =+,∵21202x y ++-=(,∴x=﹣2,y=12,故原式=5×(﹣2)×12+14=﹣434.23.(1)240km ;(2)8a km 【解析】【分析】(1)先表示顺水,逆水航行的速度,再求解两船航行3小时的路程和即可;(2)利用甲船航行4小时的路程减去乙船航行4小时的路程即可.【详解】解:(1) 船在顺水中的速度为:()40a +km/h ,船在逆水中的速度为:()40a -km/h ,∴3h 后两船相距:()()34034012031203240a a a a ++-=++-=km.(2)4h 后甲船比乙船多航行:()()440440*********a a a a a +--=+-+=km.本题考查的是列代数式,整式的加减运算,掌握“船在顺水中的速度为:()40a +km/h ,船在逆水中的速度为:()40a -km/h”是解本题的关键.24.(1)78;(2)715【解析】【分析】(1)运用题干中的裂项变形法计算即可;(2)仿照题目规律可得111=11323⎛⎫⨯- ⎪⨯⎝⎭,按照此方法裂项计算即可.【详解】(1)1111111261220304256++++++1111111111111=12233445566778-+-+-+-+-+-+-1=18-7=8(2)11111111335577991111131315++++++⨯⨯⨯⨯⨯⨯⨯11111111111111=12335577991111131315⎛⎫-+-+-+-+-+- ⎪⎝⎭11=1215⎛⎫- ⎪⎝⎭7=15【点睛】本题考查了有理数的运算,解题的关键是找到规律,运用裂项求和的方法.25.(1)2x +的零点值为-2, 4x -的零点值是4.(2)当2x <-时,原式22x =-+;当-2≤x≤4,原式6=;当4x >时,原式22x =-.【解析】【分析】(1)根据题中所给材料,求出零点值;(2)将全体实数分成不重复且不遗漏的三种情况解答;解:(1)令20x +=,解得2x =-,所以2x +的零点值为-2,令40x -=,解得4x =,所以4x -的零点值是4.(2)当2x <-时,原式()()242422x x x x x =-+--=---+=-+;当-2≤x≤4,原式()()24246x x x x =+--=+-+=;当4x >时,原式()()2422x x x =++-=-.综上所述:22(2)246(24)22(4)x x x x x x x -+<-⎧⎪++-=-≤≤⎨⎪->⎩。
七年级上册数学期中考试试卷含答案
![七年级上册数学期中考试试卷含答案](https://img.taocdn.com/s3/m/623916dd9fc3d5bbfd0a79563c1ec5da50e2d609.png)
七年级上册数学期中考试试题一、单选题1.一天早晨的气温是-3°C,中午上升到15°C,则这天中午比早晨的气温上升了( ) A .15℃ B .18°C C .-3℃ D .-18°C2.下列各个运算中,结果为负数的是( )A .2-B .()2--C .2(2)-D .22-3.下列说法正确的是( )A .一个数的绝对值一定比0大B .最小的正整数是1C .绝对值等于它本身的数一定是正数D .一个数的相反数一定比它本身小 4.下列各式12mn -,8,1a ,226x x ++,25x y-,1y ,a -中,整式有( )A .4个B .5个C .6个D .7个5.对于多项式2235x x -+,下列说法错误的是( )A .它是二次三项式B .最高次项的系数是2C .它的常数项是5D .它的项分别是22x ,3x ,56.若-2a 2b m+2与﹣a n -1b 4的和是单项式,则m ﹣n 的值为( )A .0B .-1C .1D .-27.已知一个多项式与239x x +的和等于2541x x +-,则这个多项式是( ) A .28131x x +- B .2251x x -++ C .2851x x -+ D .2251x x --8.若|2|2a a -=,则下列结论正确的是( )A .0a >B .0a <C .0a ≥D .0a ≤ 9.a,b,c 在数轴上的对应点的位置如图所示,化简|b -c|+|a+b|-|a|的结果是( )A .cB .c -2bC .2a+cD .-c10.下面每个表格中的四个数都是按相同规律填写的:根据此规律确定x 的值为( )A .135B .170C .209D .252二、填空题11.﹣13的相反数是_____. 12.中国航母辽宁舰是中国人民海军第一艘可以搭载固定翼飞机的航空母舰,满载排水量为67500吨,这个数据用科学记数法可表示为_____.13.(用“>”,“<”或“=”填空):13-________25-. 14.绝对值大于1.1而小于3.9的所有整数有________.15.已知233m m --的值为2,那么代数式2202126m m -+的值是________.16.数轴上有一动点A ,从原点出发沿着数轴移动,第一次点A 向左移动1个单位长度到达点1A ,第二次将点A 向右移动2个单位长度到达点2A ,第三次将点A 向左移动3个单位长度到达点3A ,按照这种移动规律移动下去,第n 次移动到点n A ,当2022n =时,点A 与原点的距离是________个单位.三、解答题17.计算:(1)()()()()10125+-++---;(2)()()3432⎛⎫+⨯+÷- ⎪⎝⎭; (3)()25124382⎛⎫-⨯-+ ⎪⎝⎭; (4)()()()24083218÷-+-⨯-+;(5)()()()20213116822⎛⎫-+-⨯--÷- ⎪⎝⎭; (6)()()222104132⎡⎤-+---⨯⎣⎦.18.化简:(1)232322343a a a a a --++;(2)2211218522a a a a ⎛⎫⎛⎫-+--+ ⎪ ⎪⎝⎭⎝⎭.19.先化简,后求值:()()32323224a ab b a ab b -+---+,其中1a =-,17b =.20.已知多项式2512A x my =+-与多项式21B nx y =++(m 、n 为常数),如果23A B +中不含x 和y ,求mn 的值.21.某同学绘制了如图所示的火箭模型截面图,图的下面是梯形,中间是长方形,上面是三角形.(1)用含有a 、b 的代数式表示该截面的面积S ;(2)当 2.8a cm =, 2.2b cm =时,求这个截面的面积.22.某登山队5名队员以大本营为基地,向海拔距离大本营500米的顶峰发起登顶冲击,假设向上走为正,向下走为负,行程记录如下(单位:米)+120,-30,-45,+205,-30,+25,-20,-5,+30,+105,-25,+90.(1)他们有没有登上顶峰?如果没有登上顶峰,他们距离顶峰多少米?(2)登山时,5名队员在进行中全程均使用了氧气,每人每100米消耗氧气0.5升,求共使用了多少升氧气?23.观察下面三行数:2-,4,8-,16,32-,64,…;℃0,6,6-,18,30-,66,…;℃1-,2,4-,8,16-,32,…;℃(1)第一行的第8个数是________,第二行的第8个数是________,第三行的第n 个数是________;(2)在第三行中,某三个连续数的和为96,求这三个数.24.结合数轴与绝对值的知识回答下列问题:(1)数轴上表示4和1的两点之间的距离是________,表示3-和2两点之间的距离是________.(2)一般地,数轴上表示数m 和数n 的两点之间的距离等于m n -.如果表示数a 和1-的两点之间的距离是3,那么=a ________.(3)若数轴上表示数a 的点位于4-与2之间,则42a a ++-的值为________;(4)利用数轴找出所有符合条件的整数点x ,使得|x +2|+|x -5|=7,这些点表示的数的和是 .(5)当=a ________时,314a a a ++-+-的值最小,最小值是________.25.如图,若点A 在数轴上对应的数为a ,点B 在数轴上对应的数为b ,且a ,b 满足2|1|(2)0a b -++=.(1)求线段AB 的长.(2)点C 在数轴上对应的数是c ,且c 是方程1232x x -=的解,在数轴上是否存在点P ,使得PA +PB =PC ?若存在,求出点P 对应的数;若不存在,请说明理由.(3)在(1)、(2)的条件下,点A 、B 、C 开始在数轴上运动,若点B 以每秒1个单位长度的速度向左运动,同时点A 和点C 分别以每秒4个单位长度和9个单位长度的速度向右运动,t 秒钟后,若点A 和点C 之间的距离表示为AC ,点A 和点B 之间的距离表示为AB ,那么AB -AC 的值是否随着时间的变化而变化?若变化,请说明理由;若不变,请求出AB -AC 的值.参考答案1.B【解析】【分析】利用有理数的减法运算,即可.【详解】--=,故选B.15(3)18【点睛】本题主要考查有理数的减法运算的实际运用,对题意的准确理解,列出算式,是解题的关键. 2.D【解析】【分析】先把各项分别化简,再根据负数的定义,即可解答.【详解】A、|-2|=2,不是负数;B、-(-2)=2,不是负数;C、(-2)2=4,不是负数;D、-22=-4,是负数.故选D.【点睛】本题考查了正数和负数,解决本题的关键是先进行化简.3.B【解析】【分析】根据绝对值的定义即可判断A和C,根据正整数的定义即可判断B,根据相反数的定义即可判断D.【详解】解:℃0的绝对值是0,℃A选项不合题意,℃由正整数的定义知最小的正整数是1,℃B选项符合题意,℃0的绝对值是0,但0不是正数,℃C选项不合题意,℃负数的相反数是正数,而正数大于负数,℃D选项不合题意,故选B.【点睛】本题主要考查了绝对值的定义,相反数的定义,整数的定义,解题的关键在于能够熟知定义:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0;如果两个数只有符号不同,数字相同,那么这两个数就叫做相反数,0的相反数是0.4.B【解析】【分析】根据整式的定义,结合题意即可得出答案.单项式和多项式都统称为整式.【详解】解:1a和1y的分母含有字母,是分式,不是整式;整式有12mn-,8,226x x++,25x y-,a-,共有5个,故选:B.【点睛】本题考查了整式的判断,理解整式的定义是解题的关键.5.D【解析】【分析】根据多项式的项以及单项式的次数、系数的定义即可作出判断.【详解】多项式2x2−3x+5 是二次三项式,它的项分别是2x2,-3x,5;最高次项的系数是2,它的常数项是5,故A、B、C、正确,只有D 错误.故选D.【点睛】此题考查的是多项式的定义,多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数.6.B【解析】【分析】两个单项式的和是单项式,说明这两个单项式是同类项,根据同类项的定义可知n -1=2,m+2=4,从而求出m 、n ,继而求出m -n 的值.【详解】解:由题意可知:n -1=2,m+2=4,解得:n=3,m=2,℃m -n=2-3=-1.故选B.【点睛】本题考查了同类项的定义.7.D【解析】【分析】由和减去一个加数等于另一个加数,列出关系式,去括号合并即可得到结果.【详解】解:根据题意列得:2541x x +--(239x x +)=2251x x --,故选D .【点睛】此题考查了整式的加减运算,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握法则是解本题的关键.8.C【解析】根据非正数的绝对值是它的相反数即可求解.【详解】℃|-2a|=2a,℃-2a≤0,解得a≥0.故选:C.【点睛】此题考查绝对值,解题关键在于掌握如果用字母a表示有理数,则数a 绝对值要由字母a 本身的取值来确定:℃当a是正有理数时,a的绝对值是它本身a;℃当a是负有理数时,a 的绝对值是它的相反数-a;℃当a是零时,a的绝对值是零.9.B【解析】【分析】根据数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简,去括号合并即可得到结果.【详解】根据题意得:a<b<0<c,℃b-c<0,a+b<0,则原式=c-b-a-b+a=c-2b.故选B.【点睛】此题考查整式的加减,熟练掌握运算法则是解本题的关键.10.C【解析】【分析】观察数字的变化设表格中左上角的数字为a,则左下角的数字为a+1,右上角的数字为2a+2,右下角的数字为(a+1)(2a+2)+a,进而可得结论.【详解】解:℃a+(a+2)=20,℃b=a+1,℃b=a+1=9+1=10,℃x=20b+a=20×10+9=200+9=209故选C.【点睛】本题考查了规律型:数字的变化类,解决本题的关键是观察数字的变化寻找规律,总结规律,运用规律.11.1 3【解析】【详解】解:根据相反数的定义可知1-3的相反数是13.故答案为:13.12.6.75×104【解析】【详解】解:67500=6.75×104.故答案为:6.75×104.13.>【解析】【分析】根据两个负数绝对值大的反而小进行比较即可.【详解】解:1153315-==,2265515-==,℃56 1515<,℃1235->-. 故答案为:>.【点睛】本题考查了有理数大小比较,要熟练掌握并正确运用有理数大小比较的法则:℃正数都大于0;℃负数都小于0;℃正数大于一切负数;℃两个负数比较大小,绝对值大的其值反而小. 14.2±,3±【解析】【分析】根据绝对值意义以及有理数的大小比较即可求得答案.【详解】解:绝对值大于1.1而小于3.9的所有整数有2±,3±.故答案为:2±,3±.【点睛】本题考查了绝对值的意义,有理数的大小比较,理解绝对值的意义是解题的关键. 15.2011【解析】【分析】将所求代数式适当变形,利用整体代入的思想方法解答即可得出结论.【详解】解:℃233m m --的值为2,℃2332m m --=,℃235m m -=.℃()222021262021232021252021102011m m m m -+=--=-⨯=-=. 故答案为:2011.【点睛】此题考查了代数式求值,解题的关键是掌握整体代入的求解方法.16.1011【解析】【分析】由点的运动方式,可得到规律运动次数是奇数时,A 点在数轴上表示的数为1-,2-,3-,…运动次数是偶数时,A 点在数轴上表示的数为1,2,3,…,由于2022n =是偶数,则可求解.【详解】解:第一次A 点在数轴上表示的数为1-,第二次A 在数轴上表示的数为1,第三次A 在数轴上表示的数为到2-,第四次A 在数轴上表示的数为2,第五次A 在数轴上表示的数为3-,第六次A 在数轴上表示的数为3,⋯由此发现,运动次数是奇数时,A 点在数轴上表示的数为1-,2-,3-,⋯运动次数是偶数时,A 点在数轴上表示的数为1,2,3,⋯当2022n =时,A 点在数轴上表示的数为1011,∴点A 与原点的距离是1011个单位,故答案为:1011.【点睛】本题考查数字的变化规律;能够理解题意,并能由点运动后在数轴上表示的数总结出规律是解题的关键.17.(1)12;(2)-8;(3)-13;(4)1;(5)3;(6)-68【解析】【分析】(1)先把减法转化为加法,然后根据有理数加法的计算方法计算即可;(2)根据有理数的乘除法计算即可;(3)根据乘法分配律计算即可;(4)(5)先算乘方、再算乘除法、最后算加减法即可;(6)先算乘方和括号内的式子,然后算括号外的加法即可.【详解】解:(1)()()()()()()101251012512+-++---=+-+-+=;(2)()()324343823⎛⎫+⨯+÷-=-⨯⨯=- ⎪⎝⎭; (3)()25124382⎛⎫-⨯-+ ⎪⎝⎭()()()251242424382=-⨯--⨯+-⨯ ()()161512=-++-(4)()()()()()()()2408321853418512181÷-+-⨯-+=-+-⨯+=-+-+=; (5)()()()()()()2021311682138813132⎛⎫-+-⨯--÷-=-+-÷-=-++= ⎪⎝⎭;(6)()()222104132⎡⎤-+---⨯⎣⎦()10016192=-+--⨯⎡⎤⎣⎦()1001682=-+--⨯⎡⎤⎣⎦()1001616=-++10032=-+68=-.【点睛】本题考查了有理数的混合运算,正确的计算是解题的关键.18.(1)2a -;(2)2734a a +-【解析】【分析】(1)根据合并同类项法则求解即可求出答案.(2)先去括号,然后合并同类项即可求出答案.【详解】解:(1)232322343a a a a a --++222332433a a a a a =-++-2a =-.(2)2211218522a a a a ⎛⎫⎛⎫-+--+ ⎪ ⎪⎝⎭⎝⎭2235285522a a a a =-+-+-2235258522a a a a =++---2734a a =+-本题考查整式的加减,熟练运用整式的加减运算法则是解题的关键.19.3257a b -,157- 【解析】【分析】去括号,合并同类项,再把1a =-,17b =,代入化简后的多项式计算. 【详解】解:()()32323224a ab b a ab b -+---+323232228a ab b a ab b ++=-+-3257a b =-,当1a =-,17b =, 原式()2311517577⎛⎫=⨯--⨯=- ⎪⎝⎭. 【点睛】本题考查了整式的加减—化简求值,熟练掌握整式的加减—化简求值的步骤:先化简,再把给定字母的值代入计算,得出整式的值,合并同类项是解题关键.20.5【解析】【分析】先根据整式的加减计算法则求出()()2231032321A B n x m y +=+++-,然后;令含x 和含y的项的系数为0,即可得到m 、n 的值,然后代值计算即可【详解】解:℃2512A x my =+-,21B nx y =++,℃()()2223251231A B x my nx y +=+-+++ 2210224333x my nx y =+-+++()()21032321n x m y =+++-,℃23A B +中不含x 和y ,℃1030 230nm+=⎧⎨+=⎩,℃32103mn⎧=-⎪⎪⎨⎪=-⎪⎩,℃310523mn⎛⎫=-⨯-=⎪⎝⎭.【点睛】本题主要考查了整式的加减计算,代数式求值,解题的关键在于熟知如果一个多项式中不含某个字母,则含有这个字母的项的系数为0.21.(1)S=2a2+2ab;(2)28cm2.【解析】【分析】(1)根据题意和图形中的数据可以用代数式表示出截面的面积S;(2)将a、b的值代入(1)中的代数式即可解答本题.【详解】解:(1)由题意可得,该截面的面积S=12ab+a•2a+12(a+2a)•b=12ab+2a2+12ab+ab=2a2+2ab,即该截面的面积S是2a2+2ab;(2)当a=2.8cm,b=2.2cm时,S=2×2.82+2×2.8×2.2=15.68+12.32=28cm2,答:这个截面的面积是28cm2.【点睛】本题考查代数式求值、列代数式,解答本题的关键是明确题意,列出相应的代数式,求出代数式的值,利用数形结合的思想解答.22.(1)他们没有登上顶峰,他们距离顶峰80米;(2)18.25【解析】【分析】(1)将行程的数据相加,与500比较,进而判断是否登上顶峰,再计算距离顶峰多少米;(2)将行程的数据的绝对值相加,根据每人每100米消耗氧气0.5升,计算即可【详解】(1)12030452053025205301052590--+-+--++-+420=(米).50042080-=(米),答:他们没有登上顶峰,他们距离顶峰80米.(2)12030452053025205301052590730+++++++++++=(米),每人每100米消耗氧气0.5升,∴73051000.518.25⨯÷⨯=(升),答:他们共消耗18.25升氧气.【点睛】本题考查了有理数加减法的应用,有理数的混合运算,理解题意正确的计算是解题的关键.23.(1)256,258,()22n -÷;(2)32,64-,128【解析】【分析】(1)观察每一行数的规律即可写出每一行的第n 个数;(2)根据(1)中得到的规律得第三行的第n 个数为()12n --,根据条件建立方程,就可解决问题.【详解】解:(1)观察三行数的规律可知:第1行第1个数为:()122-=-,第1行第2个数为:()224-=,第1行第3个数为:()328-=-,第1行第4个数为:()4216-=,℃第1行数的第n 个数为:()2n -;第2行数的第1个数为:()122220-+=-+=,第2行数的第2个数为:()222426-+=+=,第2行数的第3个数为:()322826-+=-+=-,第2行数的第4个数为:()42216218-+=+=,℃第2行数的第n 个数为:()22n -+;第3行数的第1个数为:()122221-÷=-÷=-,第3行数的第2个数为:()222422-÷=÷=,第3行数的第3个数为:()322824-÷=-÷=-,第3行数的第4个数为:()4221628-÷=÷=,℃第3行数的第n 个数为:()22n -÷. ℃第一行的第8个数是()82256-=,第二行的第8个数是()8222562258-+=+=,第三行的第n 个数是()22n -÷,故答案为:256,258,()22n -÷;(2)第三行的第n 个数为()22n -÷,若第三行的第n 个数、第()1n +个数、第()1n -个数的和为96,则有()()()1122222296n n n -+-÷+-÷+-÷=, ℃()()()11222192n n n -+-+-+-=, ℃()()()()()()111222222192n n n ----+-⨯-+-⨯-⨯-= ℃()()12124192n --⨯-+=,℃()162642n --==,℃16n -=,℃7n =,℃()712232--÷=,()72264-÷=-,()7122128+-÷=,℃这三个数为32,64-,128.【点睛】本题主要考查了含乘方的有理数混合计算,数字类的规律问题,解题的关键在于能够根据题意准确得到规律.24.(1)3,5;(2)2或-4;(3)6;(4)12;(5)1;7【解析】【分析】(1)根据数轴上两点之间的距离等于两点所表示数的绝对值进行解答即可;(2)根据数轴上两点之间的距离等于两点所表示数的绝对值得到13a +=,解得即可; (3)先根据表示数a 的点位于5-与2之间可知52a -<<,再根据绝对值的性质把原式去掉绝对值符号求出a 的值即可;(4)根据线段上的点到线段两端点的距离的和最小,可得答案.(5)根据分类讨论的数学思想可以解答本题.【详解】解:(1)由数轴上两点之间的距离公式可知:数轴上表示4和1的两点之间的距离是413-=;表示3-和2两点之间的距离是325--=;故答案为:3,5;(2)若表示数a 和1-的两点之间的距离是3,则13a +=,解得2a =或4a =-, 故答案为:2或4-;(3)℃42a -<<, ℃42426a a a a ++-=++-=;故答案为:6;(4)当5x >时,7252523x x x x x ++-=++=->-,当25x -≤≤时,25257x x x x ++-=++-=,当2x <-时,2525237x x x x x ++-=--+-=-+>,℃使得257x x ++-=的所有整数为:2-,1-,0,1,2,3,4,5,℃()2101234512-+-++++++=,故答案为:12;(5)当4a >时,3143143210a a a a a a a ++-+-=++-+-=->,当14a <≤时,3143146a a a a a a a ++-+-=++-+-=+,则7610a <+≤, 当31a -<≤时,3143148a a a a a a a ++-+-=++-+-=-,则7181a ≤-<, 当3x ≤-时,3143143211a a a a a a a ++-+-=--+-+-=-+≥,由上可得,当1a =时,314a a a ++-+-的值最小,最小值是7,故答案为:1,7.【点睛】本题考查数轴、绝对值等知识点,明确题意,利用数轴的特点和分类讨论的数学思想解答是解答本题的关键.25.(1)3;(2)存在,3-或1-;(3)2,理由见解析【解析】【分析】(1)根据非负数的性质可确定,a b 的值,进而求得AB 的长度;(2)先解方程求得x 的值,再根据PA PB PC +=,求得点P 对应的数;(3)根据,,A B C 的运动情况,即可确定,AB AC 的变化情况,进而确定AB BC -的值.【详解】(1)2|1|(2)0a b -++=,10,20a b ∴-=+=,解得1,2a b ==-,∴线段AB 的长为:1(2)3--=;(2)解1232x x -=,解得2x =,C ∴点对应的数是2,如图,设P 对应的数为y ,PA PB PC +=,由图可知P 在A 的右侧时不存在,℃当P 在B 点的左侧时,122y y y ---=-,解得3y =-,℃当P 点在A ,B 之间时,32y =-,解得1y =-,∴存在点P 使得PA PB PC +=,P 对应的数是3-或1-;(3)AB AC -的值不随着时间t 的变化而变化,理由如下:t 秒钟后,A 点的位置为:14t +,B 点的位置为2t --,C点的位置为29t+,=+---=+,14(2)53AB t t t=+-+=+,AC t t t29(14)51-=+-+=,AB AC t t53(51)2∴AB AC-的值不随着时间t的变化而变化,值为2.。
七年级上册数学期中考试试卷(含答案)
![七年级上册数学期中考试试卷(含答案)](https://img.taocdn.com/s3/m/d3233f32443610661ed9ad51f01dc281e53a564c.png)
七年级上册数学期中考试试卷(含答案)七年级上册数学期中考试试卷(含答案)以下是为您推荐的七年级上册数学期中考试试卷(含答案),希望本篇文章对您学习有所帮助。
七年级上册数学期中考试试卷(含答案)一、填得圆圆满满(每小题3分,共30分)1.-1-(-3)=。
2.-0.5的绝对值是,相反数是,倒数是。
3.单项式的系数是,次数是。
4.若逆时针旋转90o记作+1,则-2表示。
5.如果a、b互为相反数,x、y互为倒数,那么(a+b)-xy+a2-b2=。
6.在数轴上,点A表示数-1,距A点2.5个单位长度的点表示的数是。
7.灾难无情人有情!某次在抗震救灾文艺汇演中,各界艺人和人士为地震灾区人民捐款捐物达349.8万元。
将这个数字用科学计数法表示并保留三个有效数字为元。
8.长方形的长是a米,宽比长的2倍少b米,则宽为米。
9.若m、n满足=0,则10.某厂10月份的产值是125万元,比3月份的产值的3倍少13万元,若设3月份的产值为x万元,则可列出的方程为二、做出你的选择(每小题3分,共30分)11.如果向东走2km记作+2km,那么-3km表示( ).A.向东走3kmB.向南走3kmC.向西走3kmD.向北走3km12.下列说法正确的是(C)A.x的系数为0B.是一项式C.1是单项式D.-4x系数是413.下列各组数中是同类项的是()A.4x和4yB.4xy2和4xyC.4xy2和-8x2yD.-4xy2和4y2x14.下列各组数中,互为相反数的有()①②③④A.④B.①②C.①②③D.①②④15.若a+b<0,ab<0,则下列说法正确的是()A.a、b同号B.a、b异号且负数的绝对值较大C.a、b异号且正数的绝对值较大D.以上均有可能16.下列计算正确的是()A.4x-9x+6x=-xB.xy-2xy=3xyC.x3-x2=xD.a-a=017.数轴上的点M对应的数是-2,那么将点M向右移动4个单位长度,此时点M表示的数是()A.-6B.2C.-6或2D.都不正确18.若的相反数是3,,则x+y的值为().A.-8B.2C.8或-2D.-8或219.若3x=6,2y=4则5x+4y的值为()A.18B.15C.9D.620.若-3xy2m与5x2n-3y8的和是单项式,则m、n的值分别是()A.m=2,n=2B.m=4,n=1C.m=4,n=2D.m=2,n=3三、用心解答(共60分)21.(16分)计算(1)-26-(-15)(2)(+7)+(-4)-(-3)-14(3)(-3)×÷(-2)×(-)(4)-(3-5)+32×(-3)22.解方程(本题8分)(1)x+3x=-12(2)3x+7=32-2x23.(6分)将下列各数在数轴上表示出来,并用“<”连接:-22,-(-1),0,,-2.524.(6分)若a是绝对值最小的数,b是最大的负整数。
湘教版七年级上册数学期中考试试题及答案
![湘教版七年级上册数学期中考试试题及答案](https://img.taocdn.com/s3/m/08a83a271611cc7931b765ce050876323012744d.png)
湘教版七年级上册数学期中考试试卷一、单选题1.下列说法正确的是()A .整数和小数统称为有理数B .a 是正数,a -是负数C .最大的负整数是-1D .相反数等于它本身的数是0,±12.|5|-的相反数是()A .5-B .5C .15D .15-3.下列各对单项式中,属于同类项的是()A .ab -与4abcB .213x y 与212xy C .0与3-D .3与a4.数据690000000用科学记数法表示为()A .6.9×107B .6.9×108C .6.9×109D .6.9×10105.下列各组有理数的大小比较中,正确的是()A .()()12--<-+B .()32-->--C . 3.14π-<-D .()10.33--<--6.如果a+b <0,并且ab >0,那么()A .a <0,b <0B .a >0,b >0C .a <0,b >0D .a >0,b <07.下列去括号正确的是()A .221135135122x y x x y y ⎛⎫--+=-++ ⎪⎝⎭B .()8347831221a ab b a ab b --+=---C .()()222353261063x y x x y x +--=+-+D .()()223423422x y x x y x --+=--+8.在2x 2,1-2x =0,ab ,a >0,0,1a ,π中,是代数式的有()A .5个B .4个C .3个D .2个9.单项式63225x y -的系数和次数分别是()A .2,55-B .3,115-C .62,115-D .62,55-10.下列化简正确的是()A .2325a a a +=B .33a a -=C .325a b ab+=D .2222a a a -+=11.若A 与B 均是三次多项式,则A+B 一定是()A .六次多项式B .次数低于三次的多项式C .三次多项式D .次数不高于三次的多项式或单项式12.观察下列算式:122=,224=,328=,4216=,5232=,6264=,72128=,82256=.用你发现的规律得出2020202122+的末位数字是()A .2B .4C .8D .6二、填空题13.如果整式352n x x --+是关于x 的二次三项式,那么n 等于______.14.已知23x y =+,则代数式489x y -+的值是_____.15.若单项式-x 6y 3m 与2x 2ny 3是同类项,则常数m+n 的值是______.16.一个两位数的十位上的数字为x ,个位上的数字为y ,则这个两位数表示为__________.17.下列各式:-(-2)、-|-2|、-22、-(-2)2、2(1)3-,则计算结果为负数的有____个.18.观察如图所示图形构成的规律,根据此规律,第42个图中小圆点的个数为_____.三、解答题19.计算下列各式:(1)()11124364⎛⎫-+⨯- ⎪⎝⎭(2)22128(2)2-⨯+÷-20.先化简,再求值:()()22225333a b ab ab a b ---+,其中()21102a b ++-=.21.在数轴上表示下列各数:0,–4.2,132,–2,+7,113,并用“<”号连接22.老师在黑板上写了一个正确的演算过程,然后用手掌捂住了一个多项式,形式如下:(1)求被捂住的多项式;(2)当1,1a b ==-时,求被捂住的多项式的值.23.阅读材料:对于任何数,我们规定符号a b c d 的意义是a b ad bc c d=-.例如:121423234=⨯-⨯=-.(1)按照这个规定,请你计算1231--的值;(2)按照这个规定,请你计算()221205x y ⎛⎫-++= ⎪⎝⎭时,22332x y x y -+-+值.24.已知多项式()22133212x mx y x y nx +-+--+-的值与字母x 的取值无关.(1)求,m n 的值;(2)求多项式()()233m n m n +--的值.25.某学校准备组织部分教师到杭州旅游,现联系了甲、乙两家旅行社,两家旅行社报价均为500元/人,同时两家旅行社都对10人以上的团体推出了优惠举措:甲旅行社对每位游客八折优惠;而乙旅行社是免去一位带队老师的费用,其余老师八五折优惠.(1)如果设参加旅游的老师共有()10x x >人,则甲旅行社的费用为___________元,乙旅行社的费用为___________元;(要求用含x 的代数式表示,并化简.)(2)假如某校组织18名教师到杭州旅游,该校选择哪一家旅行社比较优惠?请说明理由.26.如图,在数轴上点A 表示数a ,点B 表示数b ,点C 表示数c ,其中b 是最小的正整数,且多项式()323492a x x x ++++是关于x 的二次多项式,一次项系数为c .(1)=a ______,b =______,c =______;(2)若将数轴折叠,使得点A 与点C 重合,则点B 与某数表示的点重合,求出此数;(3)若点A 、点B 和点C 分别以每秒2个单位长度、1个单位长度和4个单位长度的速度在数轴上同时向左运动时,小明同学发现:当点C 在点B 右侧时,3m BC AB ⋅+的值是个定值,求此时m 的值.参考答案1.C【解析】【分析】根据有理数的性质即可依次判断.【详解】A.整数和分数统称为有理数,故A 错误;B.a 是非负数,a -是可以是正数、零或负数,故B 错误;C.最大的负整数是-1,正确;D.相反数等于它本身的数是0,故D 错误;故选C .【点睛】此题主要考查有理数的性质判断,解题的关键是熟知绝对值、相反数的性质特点.2.A【解析】【分析】先化简|5|=5-,再求5的相反数即可.【详解】解:|5|=5---故选:A .【点睛】此题主要考查求一个式子的相反数,关键是化简式子.3.C【解析】【分析】根据同类项的定义逐个判断即可.【详解】A .﹣ab 与4abc 所含字母不相同,不是同类项;B .213x y 与12x y 2所含相同字母的指数不相同,不是同类项;C .0与﹣3是同类项;D .3与a 不是同类项.故选C .【点睛】本题考查了同类项,能熟记同类项的定义是解答本题的关键.4.B【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:690000000=6.9×108,故选:B .【点睛】本题考查了科学记数法表示较大的数,正确移动小数点位数是解题的关键.5.C【解析】【分析】先将多重符号和绝对值化简,然后根据有理数的比较大小方法逐一判断即可.【详解】解:A .()()1=12=2---+-,,而1>-2,所以()()12-->-+,故错误;B .()33,22--=---=,而-3<2,所以()32--<--,故错误;C ., 3.14 3.14ππ-=-=,而 3.14π>,所以 3.14π-<-,故正确;D .()110.30.3,33--=--=-,而10.33>-,所以()10.33-->--,故错误.故选C .【点睛】此题考查的是有理数的比较大小,解题关键是先将多重符号和绝对值化简.6.A【解析】【分析】根据0ab >,利用同号得正,异号得负可得a 与b 同号,再根据0a b +<即可得.【详解】∵0ab >,∴a 与b 同号,又∵0a b +<,0,0a b ∴<<,故选:A .【点睛】本题考查了有理数的乘法与加法,熟练掌握运算法则是解题关键.7.C【解析】【分析】依据去括号法则计算即可判断正误.【详解】A.221135135122x y x x y x ⎛⎫--+=-+- ⎪⎝⎭,故此选项错误;B.()8347831221a ab b a ab b --+=-+-,故此选项错误;C.()()222353261063x y x x y x +--=+-+,此选项正确;D.()()223423422x y x x y x --+=---,故此选项错误;故选:C.【点睛】此题考查整式的化简,注意去括号法则.8.A【解析】【分析】代数式是有数和字母组成,表示加、减、乘、除、乘方、开方等运算的式子,或含有字母的数学表达式,注意不能含有=、<、>、≤、≥、≈、≠等符号.【详解】∵1-2x=0,a >0,含有=和>,所以不是代数式,∴代数式的有2x 2,ab ,0,1a,π,共5个.故选A .【点睛】考查了代数式的定义,掌握代数式的定义是本题的关键,注意含有=、<、>、≤、≥、≈、≠等符号的不是代数式.9.D【解析】【详解】单项式63225x y -的系数和次数分别是625-,5.故选D.【点睛】本题主要考查单项式与多项式的基本概念.根据定义,表示数或字母的积的式子叫做单项式.单项式中的数字因数叫做这个单项式的系数,一个单项式中,所有字母的指数的和叫做这个单项式的次数.10.D【解析】【分析】根据整式的加减运算法则即可求解.【详解】A.325a a a +=,故错误;B.32a a a -=,故错误;C.32a b +不能合并,故错误;D.2222a a a -+=,正确故选D.【点睛】此题主要考查整式的加减,解题的关键是熟知合并同类项的方法.11.D【解析】【分析】根据多项式的次数和合并同类项法则进行判断即可.【详解】∵A ,B 都是三次多项式,∴A +B 一定是3次或比次数3小的多项式或单项式,故选D .本题考查的是整式的加减,熟知整式的加减实质上是合并同类项是解答此题的关键.12.C【解析】【分析】观察发现此列数的末尾数是2,4,8,6的循环,据此规律可推断2020202122+的尾数.【详解】解:观察122=,224=,328=,4216=,5232=,6264=,72128=,82256=,⋯发现尾数是2,4,8,6的循环,20204505,20214505...1÷=÷= ,20202∴是循环中的最后一个,20212∴是循环中的第一个,20202∴的尾数是6,20212∴的尾数是2,2020202122∴+的末位数字是:628+=,故选:C .【点睛】本题主要考查数字找规律,解题的关键是要能发现尾数是2,4,8,6的循环.13.5【解析】【分析】根据多项式的特点即可求解.【详解】∵整式352n x x --+是关于x 的二次三项式,∴n-3=2∴n=5故答案为:5.【点睛】此题主要考查多项式的次数与项数,解题的关键是熟知多项式的次数的判断方法.14.21【分析】由已知可得x-2y=3,继而对所求的式子进行变形后,利用整体代入思想即可求得答案.【详解】∵x=2y+3,∴x-2y=3,∴4x-8y+9=4(x-2y)+9=4×3+9=21,故答案为21.【点睛】本题考查了代数式求值,正确的进行变形是解题的关键.15.4【解析】【分析】直接利用同类项的定义分析得出答案.【详解】解:∵单项式-x6y3m与2x2ny3是同类项,∴6=2n,3m=3,解得:n=3,m=1则常数m+n的值是4.故答案为4【点睛】本题考查了利用同类项的定义求字母的值,熟练掌握同类项的定义是解答本题的关键,所含字母相同,并且相同字母的指数也相同的项,叫做同类项,根据相同字母的指数相同列方程求解即可.16.10x y【解析】【分析】十位上的数字表示几个十,十位上的数字是x,就是x个十,即10x,个位上的数字表示几个一,个位上的数字是y,把十位和个位加起来就是这个两位数.【详解】解:十位上的数字是x ,就是x 个十,即x ×10=10x ,个位上的数字是y ,这两位数是10x y +.故答案为:10x y +.【点睛】本题考查列代数式,属于基础题型.17.3【解析】【分析】分别把各数进行化简,判断即可求解.【详解】解:-(-2)=2,是正数;-|-2|=-2,是负数;-22=-4,是负数;-(-2)2=-4,是负数;2(1)1=33-,是正数.所以计算结果为负数的有3个.故答案为:3【点睛】本题考查了正负数、相反数、绝对值、乘方等知识,理解正负数、相反数、绝对值、乘方的意义是解题关键.18.1805.【解析】【分析】观察图形的变化并寻找规律,最后按规律解答即可.【详解】解:观察图形可知:第1个图中小圆点的个数为1个,即1=0+12;第2个图中小圆点的个数为5个,即5=1+22;第3个图中小圆点的个数为11个,即11=2+32;第4个图中小圆点的个数为19个,即19=3+42;…第n 个图中小圆点的个数为(n ﹣1)+n 2;所以第42个图中小圆点的个数为41+422=1805.故答案为1805.【点睛】本题考查了图形的规律问题,解答的关键在于根据图形找到排布规律.19.(1)-10;(2)0【解析】【分析】(1)根据乘法分配律简便计算;(2)先算乘方,再算乘法,最后算加减;同级运算,应按从左到右的顺序进行计算.【详解】解:(1)111()(24)364-+⨯-,111(24)(24)(24)364=⨯--⨯-+⨯-,846=-+-,10=-;(2)22128(2)2-⨯+÷-,22=-+0=.【点睛】考查了有理数的混合运算,解题的关键是掌握有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.20.2262a b ab -,132【解析】【分析】去括号,合并同类项得2262a b ab -,根据21(1)02a b ++-=得1a =-,12b =,将1a =-,12b =代入2262a b ab -中,进行计算即可得.【详解】原式=2222222215539(159)(35)62a b ab ab a b a b ab a b ab -+-=-+-=-∵21(1)02a b ++-=,∴10a +=,102b -=解得:1a =-,12b =当1a =-,12b =时,原式=221116(1)2(1)(3222⨯-⨯-⨯-⨯=【点睛】本题考查了整式的化简求值,绝对值的非负性,解题的关键是掌握整式加减的运算法则,绝对值的非负性.21.-4.2<-2<0<113<312<+7【解析】【分析】首先在数轴上确定表示各数的点的位置,再根据在数轴上表示的两个有理数,右边的数总比左边的数大用“<”连接.【详解】如图所示,-4.2<-2<0<113<312<+722.(1)8b 2+4ab ;(2)4【解析】【分析】(1)根据减式=被减式-差的关系进行解答即可;(2)将1,1a b ==-代入(1)求出的多项式即可.【详解】(1)所捂的多项式为:(a 2+4ab +4b 2)-(a 2-4b 2)=a 2+4ab +4b 2-a 2+4b 2=8b 2+4ab.(2)当a =1,b =-1时,原式=8×(-1)2+4×1×(-1)=8-4=4【点睛】本题考查了整式的加减,解答的关键在于理解减式、被减式和差之间的关系以及精确的计算能力.23.(1)5;(2)13【解析】【分析】(1)根据定义即可求出答案.(2)首先根据非负数的和为0得到x y ,的值,然后根据定义以及整式的运算法则进行化简求值,即可求出答案.【详解】解:(1)由题意可知:121(1)(2)316531-=⨯---⨯=-+=-;(2)∵()221205x y ⎛⎫-++= ⎪⎝⎭,∴2x =,15y =-,∴()()2222323332x y x y x y x y -++=--+-+-226233x y x y=---235x y=-13455⎛⎫=⨯-⨯- ⎪⎝⎭12113=+=.【点睛】此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.24.(1)3m =,1n =-;(2)-10.【解析】【分析】(1)先化简代数式,再根据多项式的值与字母x 的取值无关,即可得到含x 项的系数等于0,即可得出m ,n 的值;(2)化简多项式,再把3m =,1n =-代入计算即可.【详解】解:(1)()22133212x mx y x y nx +-+--+-22133212x mx y x y nx =+-+-+-+()()233122n x m x y =++-++,∴当多项式的值与字母x 的取值无关时,10n +=,30m -=,∴3m =,1n =-;(2)()()233m n m n +--263m n m n=+-+7m n=-+当3m =,1n =-时,原式()371=-+⨯-10=-【点睛】本题主要考查了整式的加减,给出整式中字母的值,求整式的值的问题,一般要先化简,再把给定字母的值代入计算,得出整式的值,不能把数值直接代入整式中计算.25.(1)400x ,(425x -425);(2)甲旅行社比较优惠,理由见解析.【解析】【分析】(1)根据题意可得甲旅行社的费用=500×80%×人数,乙旅行社的费用=500×85%×(总人数-1),列出代数式化简即可;(2)将x=18分别代入两个代数式求出代数式的值,然后比较大小进行选择即可.【详解】解:(1)由题意得,甲旅行社的费用=500×80%x=400x元;乙旅行社的费用=500×85%(x-1)=(425x-425)元;故答案为:400x;(425x-425);(2)甲旅行社比较优惠,理由如下:将x=18代入得,甲旅行社的费用=400×18=7200(元);乙旅行社的费用=425×18-425=7225(元);∵7200<7225,∴甲旅行社比较优惠.【点睛】本题考查了整式的实际应用,弄清题意,正确列出代数式是解题的关键.26.(1)-3,1,9;(2)此数为5;(3)m=1.【解析】【分析】(1)根据多项式与单项式的概念即可求出答案;(2)求出AC的中点对应的数值,由于点B关于这个中点对称,利用这一性质即可得出结论;(3)设三点运动的时间为t秒,依据图形分别表示出线段BC,AB的长度,代入m•BC+3AB 中,整理后利用m•BC+3AB的值是个定值可令t的系数为0即可求出答案.【详解】解:(1)∵b是最小的正整数,∴b=1.∵多项式(a+3)x3+4x2+9x+2是关于x的二次多项式,∴a+3=0,∴a=-3.∴多项式为:4x2+9x+2.∵它的一次项系数为c,∴c=9.∴a=-3,b=1,c=9,故答案为:-3,1,9;(2)线段AC的中点对应的数为:392-+=3,∵点B到3的距离为2,∴与点B重合的数是:3+2=5;(3)当点C在点B右侧时:设三点运动的时间为t秒,则m•BC+3AB=m(9-4t-1+t)+3(1-t+3+2t)=8m+12+3t(1-m),∵m•BC+3AB的值是个定值,∴1-m=0,∴m=1.即当m=1时,m•BC+3AB为定值20.。
七年级上册数学期中考试试卷含答案
![七年级上册数学期中考试试卷含答案](https://img.taocdn.com/s3/m/f2ba56e505a1b0717fd5360cba1aa81144318f20.png)
七年级上册数学期中考试试题2022年一、单选题1.﹣2的绝对值等于( )A .2B .﹣2C .12D .± 22.在数2(3),|3|,3,|3|-----+-中,负数有( )A .0个B .1个C .2个D .3个 3.下列计算正确的是( )A .339=B .2416-=-C .880--=D .523--=-4.据旅游研究院最新数据显示,今年中秋节国庆节假期,全国实现旅游收入210500000000元,将旅游收入210500000000元用科学记数法表示为( )A .112.10510⨯元B .122.10510⨯元C .102.10510⨯元D .82.10510⨯元 5.对数字1.8045进行四舍五入取近似数,精确到0.01的结果为( ) A .1.8 B .1.80 C .1.81 D .1.805 6.下列各题正确的是( )A .336x y xy +=B .0x x --=C .222396y y y -=D .22990a b a b -= 7.多项式x 2y ﹣xy 2+3xy ﹣1的次数与常数项分别是( )A .2,﹣1B .3,1C .3,﹣1D .2,1 8.下列各式去括号正确的是( )A .(2)2-+=-+x y x yB .3(2)32-+=--x y z x y zC .()--=-x y x yD .2()2-=-x y x y9.对于任意有理数x ,经过以下运算过程,当6x =-时,运算结果是( )A .1B .2C .3D .4 10.若xy 2<0,且|x|=3,则x+2的值是( )A .﹣1B .0C .1D .211.a的平方的5倍减去3的差,应写成()A.5a2–3 B.5(a2–3)C.(5a)2–3 D.a2(5–3)12.小王利用计算机设计了一个程序,输入和输出的数据如下表:那么,当输入数据8时,输出的数据是()A.861B.863C.865D.867二、填空题13.10.0658≈______.(精确到百分位)14.“一个数a的3倍与2的和”用代数式可表示为________.15.比大小:﹣17___﹣0.14,|5|--_______(4)--.16.若3xm+1y与x3y是同类项,则有m=___.17.若规定2*1a b a b=-,则()2*3-的值为________________.18.已知2a-3b=-3,则4a-6b+5=_____19.观察下列等式:31=3,32=9,33=27,34=81,35=243,36=729,37=2187,38=6561,39=19683,…,它们的个位数字有什么规律,用你发现的规律直接写出31+32+33+34+…+3366的个位数字是___.三、解答题20.计算(1)20(7)|2|----,(2)23233(2)4(2)-⨯-+÷-21.化简:222(4)2(2)ab b a ab b--+-22.为体现社会对老师的尊重,教师节这一天上午,出租车司机小王在东西向的公路上免费接送老师,如果规定向东为正,向西为负,出租车的行程如下(单位:千米):+5,﹣4,+3,﹣10,+3,﹣9.(1)最后一名老师送到目的时,小王距出租车出发点的距离是多少千米; (2)若汽车耗油量为0.4升/千米,则这天上午小王的汽车共耗油多少升?23.已知a ,b 互为相反数,c ,d 互为倒数,x 的绝对值为3,求323a bcd x +-+的值.24.先化简,再求值:3ab 2﹣2(2a 2b ﹣3ab 2)+3(2a 2b ﹣3ab ),其中a =﹣2,b =12.25.如图,一个直角三角形ABC 的直角边BC =a ,AC =b ,三角形内部圆的半径为r .(1)用含a ,b ,r 的式子表示阴影部分面积(结果保留π);(2)当a =10,b =6,r =2时,计算阴影部分的面积.(结果保留π).26.已知,有理数a ,b ,c 在数轴上所对应的点分别是A ,B ,C 三点,且a ,b ,c 满足:①(b ﹣1)2+|c ﹣5|=0;①多项式12x |a |+(a ﹣2)x +7是关于x 的二次三项式.(1)a ,b ,c 的值分别是 (直接写出答案);(2)若数轴上点B 、C 之间有一动点P ,且点P 对应的数为y ,化简|y|﹣2|y ﹣5|+|y +2|27.观察下列程式,并回答下列问题:21131222-=⨯,21241333-=⨯,21351444-=⨯,21461555-=⨯,21571666-=⨯,… (1)填空2117-= ,2112021-= . (2)根据上面的规律写出第n 个式子211(1)n -=+ . (3)计算下列式子的值22221111(1)(1)(1)(1)2342021-⨯-⨯-⨯⋯⨯-参考答案1.A 【解析】 【详解】解:根据数轴上某个数与原点的距离叫做这个数的绝对值的定义, 在数轴上,点﹣2到原点的距离是2, 所以﹣2的绝对值是2, 故选A . 2.C 【解析】 【分析】根据有理数的性质、绝对值的性质及乘方的运算即可求解判断. 【详解】①(3)--=3>0,|3|--=-3<0,23-=-9<0,|3|+-=3>0 ①负数有2个 故选C . 【点睛】此题主要考查有理数的大小判断,解题的关键是熟知有理数的运算、绝对值、乘方的运算法则. 3.B 【解析】 【分析】根据有理数的乘方和减法运算法则逐项判断即可. 【详解】解:A 、3327=,故错误,不符合题意; B 、2416-=-,故正确,符合题意; C 、8816--=-,故错误,不符合题意; D 、527--=-,故错误,不符合题意; 故选B . 【点睛】本题考查了有理数的乘方和减法,掌握运算法则是解题的关键. 4.A 【解析】 【分析】用科学记数法表示较大的数时,一般形式为10n a ⨯,其中1||10a ≤<,n 为整数,据此判断即可. 【详解】11210500000000 2.10510⨯=.故选A . 【点睛】本题考查了科学记数法,科学记数法的表示形式为10n a ⨯的形式,其中1||10a ≤<,n 为整数.确定n 的值时,要看把原来的数,变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10≥时,n 是正数;当原数的绝对值1<时,n 是负数,确定a 与n 的值是解题的关键. 5.B 【解析】 【分析】把千分位上的数字进行四舍五入即可.解:1.8045精确到0.01的结果为1.80. 故选B . 【点睛】本题考查了近似数和有效数字:“精确到第几位”和“有几个有效数字”是精确度的两种常用的表示形式,它们实际意义是不一样的,前者可以体现出误差值绝对数的大小,而后者往往可以比较几个近似数中哪个相对更精确一些. 6.D 【解析】 【分析】根据合并同类项法则分别判断. 【详解】解:A 、3x 和3y 不是同类项,不能合并,不符合题意; B 、2x x x --=-,故错误,不符合题意; C 、222396y y y -=-,故错误,不符合题意; D 、22990a b a b -=,故正确,符合题意; 故选D . 【点睛】本题考查了合并同类项法则,解题的关键是掌握运算法则. 7.C 【解析】 【分析】根据最高的项的次数叫做多项式的次数,不含字母的项叫常数项可得答案. 【详解】多项式2231x y xy xy -+-的次数与常数项分别是3和1-, 故选:C . 【点睛】此题考查了多项式,关键是掌握多项式的相关定义是解题的关键. 8.B【分析】根据去括号的法则逐一判断即可.【详解】A、括号前为“-”号,去括号时括号里的第二项没有变号,故错误;B、正确;C、括号前为“-”号,去括号时括号里的项没有变号,故错误;D、括号里的第二项没有乘2,出现了漏乘的现象,故错误.故选:B.【点睛】本题考查了去括号法则,当括号前是“-”时,去年“-”号及括号,括号里的各项都要变号;当括号前是“+”时,去年“+”号及括号,括号里的各项都不变号;另外运用乘法分配律时,不要出现漏乘.9.C【解析】【分析】首先认真分析找出规律,然后再代入数值计算,看明白图示所表示的运算顺序.【详解】-+=-,解:(6)332-=,3)(91⨯=,933故选:C.【点睛】本题考查了有理数的运算,解题的关键是看明白图示所表示的运算顺序.10.A【解析】【分析】注意xy2<0中的隐含条件x<0,根据绝对值的定义可求得答案.【详解】解:①xy 2<0,y 2>0, ①x <0, ①|x|=3,x =±3, ①x =﹣3①x+2=﹣3+2=﹣1. 故选A . 【点睛】本题考查绝对值的化简,正数的绝对值是其本身,负数的绝对值是它的相反数,0的绝对值是0. 11.A 【解析】 【分析】先表示a 的平方,再表示5倍,最后减3可得. 【详解】根据题意可得:5a 2−3; 故答案选A. 【点睛】本题考查的知识点是列代数式,解题的关键是熟练的掌握列代数式. 12.C 【解析】 【分析】根据图表找出输出数字的规律:输出的数字中,分子就是输入的数,分母是输入的数字的平方加1,直接将输入数据代入即可求解. 【详解】解:根据表中数据可得:输出数据的规律为2+1nn , 当输入数据为8时,输出的数据为288+1=865. 故答案选:C. 【点睛】本题考查的知识点是有理数的混合运算及列代数式,解题的关键是找到规律列出相应代数式.13.10.07【解析】【分析】把千分位上的数字5进行四舍五入即可.【详解】解:10.0658精确到百分位约等于10.07,故答案为:10.07.【点睛】本题主要考查近似数,近似数与精确数的接近程度,可以用精确度表示.理解近似数的求法是解题关键.14.3a+2 或者2+3a【解析】【分析】根据题意,列代数式即可.【详解】解:“一个数a的3倍与2的和”用代数式可表示为3a+2,故答案为:3a+2.【点睛】此题考查了列代数式,解题的关键是理解题意,正确列出代数式.15.<<【解析】【分析】根据两个负数比较大小,其绝对值大的反而小比较即可;先化简符号,再比较即可.【详解】解:﹣17=15049,0.147350350-=-=,①5049 350350>,①﹣17<﹣0.14;①|5|--=-5<0,(4)--=4,①|5|--<(4)--,故答案为:<,<.【点睛】本题考查了绝对值,有理数的大小比较,能熟记有理数的大小比较法则和绝对值的意义是解此题的关键.16.2【解析】【分析】同类项指的是所含字母相同,并且相同字母的指数也相同,几个常数也叫同类项.根据定义解题即可.【详解】解:①3xm+1y与x3y是同类项,①m+1=3,解得m=2.故答案为:2.【点睛】本题考查同类项的定义,牢记定义是解题关键.17.11【解析】【分析】先根据规定的新运算列出运算式子,再计算有理数的乘方、乘法与减法即可得.【详解】解:由规定的新运算得:()2*3-()2231=-⨯-=⨯-431=-121=11故答案为:11.【点睛】本题考查了含乘方的有理数混合运算,理解新运算的定义是解题关键.18.-1【解析】【分析】首先根据题目入手,要求解4a-6b,所以将等式的两边同时乘以2可得4a-6b,代入即可.【详解】根据等式的性质可得4a-6b=-6所以4a-6b+5=-6+5=-1.【点睛】本题主要考查等式的性质,关键在于构造计算的式子.19.2【解析】【分析】根据题目中的数字和数字,可以写出前几个式子的值,从而可以发现这些式子结果的个位数字的变化特点,从而可以得到所求式子的个位数字.【详解】解:由题意可得,31=3,31+32=12,31+32+33=39,31+32+33+34=120,31+32+33+34+35=363,31+32+33+34+35+36=1092,…,由上可得,这列式子的结果的个位数字依次以3,2,9,0循环出现,①366÷4=91…2,①31+32+33+34+…+3366的个位数字是2,故答案为:2.【点睛】本题考查数字的变化类、尾数特征,解答本题的关键是明确题意,发现式子的结果个位数字的变化特点,求出所求式子的结果的个位数字.20.(1)25;(2)70【解析】【详解】解:(1)原式2072=+-,272=-,25=;(2)原式9(8)16(8)=-⨯-+÷-,722=-,70=.【点睛】本题考查了含乘方的有理数的混合运算、绝对值,解题的关键是掌握其运算顺序为:先乘方,再乘除,最后加减,有括号先算括号里边的,同级运算从左到右依次进行.21.222a b -+【解析】【分析】去括号,合并同类项即可.【详解】解:222(4)2(2)ab b a ab b --+-,=222424+2ab b a ab b ---,22=2+a b -.【点睛】本题考查整式加减混合运算,掌握整式加减混合运算的法则,关键是括号前面带有数字的处理.22.(1)12;(2)13.6.【解析】【分析】(1)把记录的数字相加得到结果,即可做出判断;(2)求出各数绝对值之和,乘以0.4即可得到结果.【详解】解:(1)根据题意得:+5﹣4+3﹣10+3﹣9=﹣12(千米)则后一名老师送到目的时,小王距出租车出发点的距离是12千米;(2)根据题意得:0.4×(5+4+3+10+3+9)=13.6(升)则这天上午小王的汽车共耗油13.6升.【点睛】本题考查了正数与负数,弄清题意是解答本题的关键.23.3或9-【解析】【分析】根据a 、b 互为相反数,c 、d 互为倒数,x 的绝对值是3,可以得到0a b +=,1cd =,3x =±,然后利用分类讨论的方法即可求得所求式子的值.【详解】①a 、b 互为相反数,c 、d 互为倒数,x 的绝对值为3,0a b ∴+=,1cd =,3x =±,当3x =时,0323123333a b cd x +-+=-⨯+⨯=, 当3x =-时,032312(3)933a b cd x +-+=-⨯+⨯-=-, 323a b cd x +∴-+的值为3或9-. 【点睛】本题考查有理数的混合运算,绝对值的意义,相反数和倒数的定义,解答本题的关键是求出0a b +=,1cd =,3x =±.24.9ab 2+2a 2b -9ab ;172【解析】【分析】原式去括号合并得到最简结果,把a 与b 的值代入计算即可求出值.【详解】解:原式=3ab 2―2(2a 2b―3ab 2)+3(2a 2b -3ab)=3ab 2―4a 2b +6ab 2+6a 2b -9ab=(3+6)ab 2+(―4+6)a 2b -9ab=9ab 2+2a 2b -9ab当a =﹣2,b =12时,原式=1119(2)249(2)422⨯-⨯+⨯⨯-⨯-⨯=172. 【点睛】本题考查了整式的加减-化简求值,熟练掌握运算法则是解题的关键.25.(1)212ab r π-;(2)30-4π 【解析】【分析】(1)根据题意列代数式即可;(2)把字母的值代入代数式即可得到结论.【详解】解:解:(1)S 阴影 =212ab r π-; (2)当a =10,b =6,r =2时,S 阴影 =12ab -πr 2=12×10×6-π×22=30-4π.【点睛】本题考查了根据图形列代数式,解决问题的关键是读懂题意,结合图形,利用面积的和差直接列代数式即可.26.(1)﹣2,1,5;(2)4y ﹣8【解析】【分析】(1)由非负性和二次三项式的定义可求a ,b ,c 的值;(2)由y 的取值范围,化简可求解;【详解】解:(1)①(b ﹣1)2+|c ﹣5|=0,①b =1,c =5,①多项式12x |a |+(a ﹣2)x+7是关于x 的二次三项式, ①a =﹣2,故答案为:﹣2,1,5;(2)①数轴上点B 、C 之间有一动点P ,①1<y <5;①|y|﹣2|y ﹣5|+|y+2|=y ﹣2(5﹣y )+y+2=4y ﹣8;【点睛】本题考查了多项式以及数轴,列出正确的方程是本题的关键. 27.(1)6877⨯,2020202220212021⨯;(2)211n n n n +⋅++;(3)10112021【解析】【分析】(1)观察等式中变化的数字与等式的序号之间的关系,不变的数字以及运算符号的规律即可得出结论;(2)利用(1)中得到的规律解答即可;(3)利用(2)中的规律将括号中的数据表示成两数的乘积后化简即可得出结论.【详解】解:(1)观察六个等式可以看到:等式左边第一个数字都是1,第二个数字的分子都是1,分母为等式的序号加1的平方;等式的右边为两个分数的乘积,两个分数的分母均为等式的序号加1,分子分别为等式的序号和等式的序号加2.由此规律可得第6个等式为:21681777-=⨯, 第2020个等式为21202020221202120212021-=⨯. 故答案为:6877⨯,2020202220212021⨯;(2)由(1)中的规律得第n 个等式为:2121(1)11n n n n n +-=⋅+++. 故答案为:211n n n n +⋅++.(3)22221111(1)(1)(1)(1)2342021-⨯-⨯-⨯⋯⨯-, 132420202022()()()()2233202120344152=⨯⨯⨯⨯⨯⨯⨯⨯,3544132420202022223320212021=⨯⨯⨯⨯⨯⨯⨯⨯,1202222021=⨯,10112021=.。
沪科版七年级上册数学期中考试试题及答案
![沪科版七年级上册数学期中考试试题及答案](https://img.taocdn.com/s3/m/e270457c182e453610661ed9ad51f01dc28157e4.png)
沪科版七年级上册数学期中考试试卷一、单选题1.25的倒数是()A .0.4B .4C .52D .-252.下列计算正确的是()A .5x +2y =7xyB .3x 2y -4yx =-x 2yC .x 2+x 5=x 7D .3x -2x =13.将390000用科学记数法表示为()A .3.9×104B .3.95C .3.9×105D .39×1064.下列各组数中,数值相等的是()A .-(-2)和-∣-2∣B .-22和(-2)2C .(-13)3和-313D .∣-8∣2和-(-4)5.若|a +2|+(b -1)2=0,则a +b 的值为()A .-3B .-1C .1D .36.小丽同学在做作业时,不小心将方程2(x -3)-■=x +1中的一个常数污染了,在询问老师后,老师告诉她方程的解是x =9,请问这个被污染的常数■是()A .4B .3C .2D .17.已知(m -3)x ∣m-2∣+6=0是关于x 的一元一次方程,则m 的值为()A .1B .2C .3D .1或38.如果代数式2x -y 的值是2,那么代数式1-6x +3y 的值为()A .5B .-5C .7D .-79.按下列规律排成一列数:11、12、21、13、22、31、14、23、32、41、15、……,则第()个数是2101A .5051B .5052C .5152D .515310.若代数式2x 2+3x +7的值为8,则代数式4x 2+6x -9的值是()A .13B .2C .17D .-7二、填空题11.代数式ab 2c 3-3ac +1是__________次__________项式;12.用括号把多项式22442a a b b --+分成两组,使其中所有二次项相结合,所有一次项相结合,两个括号之间用“-”连接,其结果为__________________.13.若∣a|=7、b 2=4,且∣a -b ∣=∣a ∣+∣b|,则a +b 的值为__________14.定义一种新的运算:当a≤b 时,a*b =a 2+b ;当a >b 时,a*b =2a -b ;例如:1*4=12+4=5,那么:①计算:(-3*2)*(-1)=__________;②若(3*x )*3=23,则x =__________15.实数a 、b 在数轴上的对应点的位置如图所示,且满足0a b +>,0ab <,则原点所在的位置有可能是点______.三、解答题16.在数轴上表示下列各数,并把它们用“<”连接起来:3.5、-(+4)、1、+(-12)17.计算:(1)314(1)1[12(3)]49--⨯÷+⨯-(2)375()(36)4126-+-⨯-18.解方程:(1)2(x +1)=-5(x -2)(2)5178124x x +--=19.我们把整数和分数统称为“有理数”,那为什么叫有理数呢?有理数在英语中是“rational number”,而“rational”通常的意思是“理性的”,中国近代译著者在翻译时参考了这种方法,而“rational”这个词的词根“ratio”源于古希腊,是“比率”的意思,这个词的意思就是整数的“比”,所谓有理数,就是可以写成两个整数之比的形式的数.(1)对于0.3∙是不是有理数呢?我们不妨设0.3∙=x,则10×0.3∙=10x,即3.3∙=10x,故3+0.3∙=10x,即3+x=10x,解得x=13,由此得:无限循环小数_________有理数(填“是”或“不是”),请仿照(1)的做法,将0.4·写成分数的形式(写出过程);(2)在{-3,16.2,,0,4,-9.8,0.51∙∙}中,属于非负有理数的是_________20.先化简,再求值:-2a2b+2(3ab2-a2b)-3(2ab2-a2b),其中a=2,b=-321.我们常用以下的方法判断一个数字能否被三整除:例如一个三位数M,百位数字、十位数字、个位数字依次是a、b、c,如果a、b、c的和可以被三整除,那么就可以判断M可以被三整除.小明同学在学习过代数式的相关知识后,解释了这样判断的依据,请完成下面的说理过程:(1)这个三位数M可以表示为_________;(2)设k表示任意一个整数,则a+b+c=_________(用含k的代数式表示);(3)完成说理过程:因为M=a+b+c+(_________)=(_________)+3(_________)=3(_________),而a、b、k都是整数,所以M可以被三整除.22.一种长方形餐桌的四周可坐6人用餐,现把若干张这样的餐桌按如图方式进行拼接.(1)若把4张、8张这样的餐桌拼接起来,四周分别可坐多少人?(2)若用餐的人数有90人,则这样的餐桌需要多少张?23.今年“十一”黄金周期间,某风景区在8天假期中每天旅游的人次数变化如下表(正数表示比前一天多的人次数,负数表示比前一天少的人次数);(单位:万人),若9月30日的游客人次数记为0.5万日期1日2日3日4日5日6日7日8日人次数变化+1.6+0.8+0.4-0.4-0.8+0.2-1.2-0.1(1)10月1日的游客人次数是多少?(2)请判断8天内游客人次数最多的是哪天?最少的是哪天?他们相差多少万人?(3)求今年黄金周期间游客在该地的总人次数.24.将一个面积为1的等腰直角三角形进行1次划分后得到三个等腰直角三角形,再进行第2次划分可得到五个等腰直角三角形,依次进行下去.(1)完成下面表格:划分的次数123…──n 等腰直角三角形总个数35──…63──(2)观察图形,完成下面表格:第n 次划分后1234…阴影部分面积1211+24111++248───…阴影部分面积还可以表示为11-211-411-8───…根据表格所呈现的规律,可得234202111111+++++22222L =_________(结果用幂的形式表示)(3)请利用右图面积的分割,直接写出101112132011111+++++44444L =_________参考答案1.C【解析】【分析】根据倒数的定义求一个数的倒数即可.【详解】解:∵251 52⋅=,∴25的倒数是52.故选C.【点睛】本题考查倒数的定义,解题的关键是掌握倒数的定义:如果两个数的乘积为1,那么这两个数互为倒数.2.B【解析】【分析】根据合并同类项的计算法则进行求解判断即可.【详解】解:A 、5x 与2y 不是同类项,不能合并,故不符合题意;B 、3x 2y -4yx 2=-x 2y 计算正确,故符合题意;C 、x 2与x 5不是同类项,不能合并,故不符合题意;D 、3x -2x =x ,计算错误,故不符合题意;故选B .【点睛】本题主要考查了合并同类项,解题的关键在于能够熟练掌握合并同类项的法则.3.C 【解析】【分析】科学记数法的表现形式为10n a ⨯的形式,其中110a ≤<,n 为整数,确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同,当原数绝对值大于等于10时,n 是正数,当原数绝对值小于1时n 是负数;由此进行求解即可得到答案.【详解】解:5390000 3.910=⨯.故选C .【点睛】本题主要考查了科学记数法,解题的关键在于能够熟练掌握科学记数法的定义.4.D 【解析】【分析】根据有理数的乘方和化简多重符号的计算法则进行求解判断即可.【详解】解:A 、∵()22--=,22--=-,∴()22--≠--,故A 不符合题意;B 、∵224-=-,()224-=,∴()2222-≠-,故B 不符合题意;C 、∵311327⎛⎫-=- ⎪⎝⎭,31133-=-,∴331133⎛⎫-≠- ⎪⎝⎭,故C 不符合题意;D 、∵2864-=,()()344466=--=--,∴()2384-=--,故D 符合题意;故选D .【点睛】本题主要考查了有理数的乘方计算,化简多重符合,解题的关键在于能够熟练掌握相关计算法则.5.B 【解析】【分析】先根据偶次方的非负性、绝对值的非负性可得a 、b 的值,再代入代数式计算即可得.【详解】解:|a +2|+(b -1)2=0,|a +2|≥0(b -1)2≥0,由偶次方的非负性、绝对值的非负性得:20a +=,10b -=,解得2a =-,1b =,∴211a b +=-+=-,故选:B .【点睛】本题考查了代数式求值、偶次方的非负性、绝对值的非负性,熟练掌握偶次方和绝对值的非负性是解题关键.6.C 【解析】【分析】把x =9代入原方程即可求解.【详解】把x =9代入方程2(x -3)-■=x +1得2×6-■=10∴■=12-10=2故选C .【点睛】此题主要考查方程的解,解题的关键是把方程的根代入原方程.7.A 【解析】【分析】根据一元一次方程的定义:只含有一个未知数、未知数的最高次数为1且两边都为整式的等式,解答即可.【详解】解:∵(m -3)x ∣m -2∣+6=0是关于x 的一元一次方程,∴21m -=,解得:1m =或3m =,∵30m -≠,∴3m ≠,∴m 的值为1,故选:A .【点睛】本题考查了一元一次方程的定义,熟记定义是解题的关键.8.B 【解析】【分析】首先将163x y -+变形为()132x y --,然后将22x y -=代入求解即可.【详解】解:∵()163132x y x y -+=--,∴将22x y -=代入,原式1325=-⨯=-,故选:B .【点睛】此题考查了代数式求值问题,解题的关键是正确将163x y -+变形为()132x y --.9.D 【解析】【分析】由题意得:11、12、21、13、22、31、14、23、32、41、15、……可写成11、(12、21)、(13、22、31)、(14、23、32、41)……再根据2101是第102组中的第二个数可得答案;【详解】解:由题意得:11、12、21、13、22、31、14、23、32、41、15、……可写成11、(12、21)、(13、22、31)、(14、23、32、41)……所以2101是第102组中的第二个数前101组共有(1+2+3+4+……+99+100+101)=5151个数所以2101是第5153个数;故答案选D 【点睛】本题考查了规律型-数字的变化,解决本题的关键是观察数字的变化,寻找规律.10.D 【解析】【分析】由代数式2x 2+3x+7的值是8可得到2x 2+3x=1,把2x 2+3x 看作一个整体,代入求出代数式4x 2+6x ﹣9-的值即可.【详解】解:∵2x 2+3x+7=8,∴2x 2+3x=1,∴4x 2+6x ﹣9=2(2x 2+3x )﹣9=2×1﹣9=﹣7.故选D .11.六三【解析】【分析】根据该多项式次数最高项的次数是3,共包含3项可得此题结果.【详解】解:∵该多项式共包含ab 2c 3、−3ac 、1三项,且各项次数各为6、2、0,∴该多项式是六次三项式,故答案为:六,三.【点睛】此题考查了多项式的次数与项数的确定能力,关键是能准确理解多项式的概念与性质.12.()()22442a b a b ---【解析】【分析】按照加法交换律,添括号法则,合并同类项,分成两组即可.【详解】解:4a 2−4a−b 2+2b ,=4a 2−b 2−4a+2b ,=(4a 2−b 2)−(4a−2b),故答案为:(4a 2−b 2)−(4a−2b).【点睛】本题考查了添括号法则,加法交换律,按要求合并同类项分组,解题的关键是熟悉添括号法则.13.5±【解析】【分析】根据绝对值的性质求出a 与b 的值,然后代入原式即可求出答案.【详解】解:∵|a|=7,b 2=4,∴a =±7,b =±2,当a =7,b =2时,∴|a−b|=5,|a|+|b|=9,不符合题意,舍去.当a =7,b =−2时,∴|a−b|=9,|a|+|b|=9,符合题意,∴a +b =5.当a =−7,b =2时,∴|a−b|=9,|a|+|b|=9,符合题意.∴a +b =−5,当a =−7,b =−2时,∴|a−b|=5,|a|+|b|=9,不符合题意,舍去.故答案为:±5.【点睛】本题考查有理数的运算,解题的关键是求出a 与b 的值后,分类讨论各种情况,本题属于基础题型.14.234或7-【解析】【分析】根据题意定义的新运算,根据有理数混合运算法则计算即可.【详解】解:根据题意运算:①(-3*2)*(-1)=2(3)2⎡⎤-+⎣⎦*(-1)=11*(-1)=211(1)⨯--=22+1=23;②当3x ≥时,(3*x )*3=23,即22(3)323x ⨯+-=,解得:4x =,当3x <时,(3*x )*3=23,即2(23)323x ⨯⨯--=,解得:7x =-,综上:4x =或7-,故答案为:23;4或7-.【点睛】本题考查了定义新运算,有理数的混合运算,读懂题意,熟练掌握有理数混合运算法则是解本题的关键.15.B【解析】【分析】根据数轴,以及题意可以确定0b >,0a <,b a >,再把数和形结合起来,即可求解.【详解】根据点在数轴上的位置,∵满足0a b +>,0a b ⋅<,∴a ,b 异号,∴原点在B ,C 中间,且0b >,0a <,b a >,∴B 离原点更远,故原点的位置可能在B 处,故答案为:B .【点睛】本题主要考查数轴上点表示的数,有理数的加减运算,解题的关键是要把数和点对应起来,利用数形结合思想解决问题.16.见解析,1(4)1 3.52⎛⎫-+<+-<< ⎪⎝⎭【解析】【分析】先化简多重符合,然后在数轴上表示出各数,根据数轴的特点从左到右用“<”把他们连接起来即可.【详解】解:()44-+=-,1122⎛⎫+-=- ⎪⎝⎭,数轴表示如下所示:∴()141 3.52⎛⎫-+<+-<< ⎪⎝⎭【点睛】本题考查的是利用数轴表示有理数和有理数的大小比较,把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.17.(1)89-;(2)36【解析】【分析】(1)根据有理数的四则运算法则求解即可;(2)利用有理数乘法的运算律求解即可.【详解】(1)原式51(5)9=--÷-119=-+89=-(2)原式27213036=-+=【点睛】此题考查了有理数的乘方以及四则运算,解题的关键是掌握有理数的有关运算法则.18.(1)87x =;(2)2x =-【解析】【分析】(1)先去括号,然后移项,合并同类项,化系数为1进行求解即可;(2)先去分母,然后去括号,然后移项,合并同类项,化系数为1进行求解即可.【详解】解:(1)()()2152x x +=--去括号得:22510x x +=-+,移项得:25102x x +=-,合并得:78x =,化系数为1得:87x =(2)5178124x x +--=去分母得:2(51)(78)4x x +--=,去括号得:102784x x +-+=,移项得:107428x x -=--合并得:36x =-,化系数为1得:2x =-.【点睛】本题主要考查了解一元一次方程,解题的关键在于能够熟练掌握解一元一次方程的方法.19.(1)是,49x =;(2)16.2,67,0,4,0.51 【解析】【分析】(1)根据题目中给出的运算方法和有理数的概念求解即可;(2)根据有理数的概念求解即可.【详解】(1)∵无限循环小数可以写成分数的形式,∴无限循环小数是有理数;故答案为:是.设0.4x = ,则100.410x ⨯= ,即4.410x = ,故40.410x += ,即410x x +=,解得49x =;(2)根据非负有理数的概念可得,属于非负有理数的是:16.2,67,0,4,0.51 .故答案是:16.2,67,0,4,0.51 .【点睛】此题考查了有理数的概念,无限循环小数转化为分数等知识,解题的关键是熟练掌握有理数的概念.20.2a b -,12【解析】【分析】根据整式的加减运算法则先化简,去括号合并同类项,然后将字母的值代入计算即可.【详解】解:()()2222222332a b ab a b ab a b -+---,2222226263a b ab a b ab a b =-+--+,2a b =-;当2,3a b ==-,原式22(3)12=-⨯-=.【点睛】本题主要考查了整式的化简求值,解题的关键在于能够熟练掌握相关知识进行求解.21.(1)10010a b c ++;(2)3k ;(3)999,3,333,333a b k a b k a b ++++【解析】【分析】(1)用百位数字×100+十位数字×10+个位数字即可;(2)根据a 、b 、c 的和可以被三整除,可得a +b +c =3k ,写成3的倍数形式即可;(3)先将三位数拆分为a +b +c +(99a +9b)两部分,第一部分用3k 表示,第二部分不动,然后乘法分配律写成3(k+33a+3b)即可.【详解】解:(1)M=100a+10b+c ,故答案为100a+10b+c ;(2)设k 表示任意一个整数,a 、b 、c 的和可以被三整除,∴a +b +c =3k ,故答案为:3k;(3)M=100a+10b+c,=a+b+c+(99a+9b),=3k+3(33a+3b),=3(k+33a+3b),∵而a、b、k都是整数,∴M可以被三整除,故答案为99a+9b;3k,33a+3b;k+33a+3b.【点睛】本题考查三位数能被3整除的特征,三个数位上的数字之和能能被3整除,可判断三位数能被3整除,掌握被3整除的代数式表示方法是解题关键.22.(1)4张长方形餐桌的四周可坐18人,8张长方形餐桌的四周可坐34人;(2)这样的餐桌需要22张.【详解】试题分析:解:(1)根据图中的规律可得:当n=4时,4n+2=4×4+2=18(人);当n=8时,4n+2=4×8+2=34(人),答:当4张餐桌拼在一起时,可以坐18人;当8张餐桌拼在一起时,可以坐标34人;(2)因为用餐的人数是90人,根据题意可得:4n+2=90,解得:n=22,答:需要22张餐桌.考点:探索数字与图形的规律、一元一次方程的应用点评:解决本题的关键是根据图形中的规律找到桌子的数量与人数之间的关系,然后列出一元一次方程,解一元一次方程求出餐桌的数量.23.(1)2.1万人;(2)游客人数最多是10月3号,最少的是10月8号,相差2.3万人;(3)17.7万人【解析】【分析】(1)根据表格数据知道,10月1日比9月30日多1.6万人次,然后得到10月1日的游客人次数;(2)分别计算出7天的游客人次数,比较即可;(3)将7天的总人次数进行相加即可.【详解】(1)∵9月30日的游客人数记为0.5万,∴10月1日的游客人数为0.5 1.6 2.1+=(万人);(2)根据图表,七天的游客人数分别为:0.5 1.6 2.1,2.10.8 2.9,2.90.4 3.3,3.30.4 2.9+=+=+=-=,2.90.8 2.1,2.10.2 2.3,2.3 1.2 1.1,1.10.11-=+=-=-=,所以,游客人数最多是10月3号,最少的是10月8号,相差:3.31 2.3-=(万人);(3)这一次黄金周期间游客在该地总人数为:2.1 2.9 3.3 2.9 2.1 2.3 1.1117.7+++++++=(万人);24.(1)7;31;21n +;(2)111124816+++;1116-;2021112-;(3)920111344⎛⎫⨯- ⎪⎝⎭【解析】【分析】(1)观察图形可知,每次划分,都在前一次的基础上增加两个等腰直角三角形,即可得到第3次的等腰直角三角形的个数,然后找出规律进行求解即可;(2)根据表格给的数据,找出所呈现的规律即可求解;(3)第1次划分的阴影部分面积31144==-,第2次划分的阴影部分面积2213111314444443⎛⎫=+⋅=+=- ⎪⎝⎭,第3次划分的阴影部分面积2331111111314444444434334⎛⎫=+⋅+⋅=++=- ⎪⎝⎭,则第n 次划分的阴影部分面积23111113144444n n ⎛⎫=++++=- ⎪⎝⎭K ,再由10111213201111144444+++++K 1234201234911111111114444444444⎛⎫=+++++-+++++ ⎪⎝⎭K K 进行求解即可【详解】解:(1)观察图形可知,每次划分,都在前一次的基础上增加两个等腰直角三角形,∴第3次划分等腰直角三角形的个数为5+2=7个,∵第1次划分有2×1+1=3个,第2次划分有2×2+1个,第三次划分有3×2+1=7个,∴第n 次划分有2121n n ⋅+=+个,设第x 次划分有63个等腰直角三角形,∴2163x +=,解得31x =,故答案为:7;31;21n +(2)根据题意可得:第4次划分的阴影部分面积1111112481616=+++=-,∵第1次划分,阴影部分面积11122==-,第2次划分,阴影部分面积1111244=+=-,第3次划分,阴影部分面积111112481=++=-,第4次划分的阴影部分面积1111112481616=+++=-,∴第n 次划分,阴影部分面积11111124822n n =++++=-K ,∴234202120211111111222222++++⋅⋅⋅+=-,故答案为:111124816+++,1116-,2021112-;(3)由图可知,第1次划分的阴影部分面积31144==-,第2次划分的阴影部分面积2213111314444443⎛⎫=+⋅=+=- ⎪⎝⎭,第3次划分的阴影部分面积2331111111314444444434334⎛⎫=+⋅+⋅=++=- ⎪⎝⎭,∴第n 次划分的阴影部分面积23111113144444n n ⎛⎫=++++=- ⎪⎝⎭K ∴10111213201111144444+++++K 1234201234911111111114444444444⎛⎫=+++++-+++++ ⎪⎝⎭K K 2091111113434⎛⎫⎛⎫=--- ⎪ ⎪⎝⎭⎝⎭920111344⎛⎫=- ⎪⎝⎭.。
初一数学上册期中考试试卷及答案
![初一数学上册期中考试试卷及答案](https://img.taocdn.com/s3/m/256a9fa12dc58bd63186bceb19e8b8f67c1cef39.png)
初一数学上册期中考试试卷及答案一、选择题(每题3分,共30分)1. 下列哪个选项是正数?A. -3B. 0C. 5D. -1答案:C2. 以下哪个表达式的结果为负数?A. 2 + 3B. -2 - 3C. 2 × 3D. -2 × 3答案:B3. 哪个分数等于1/2?A. 2/4B. 3/6C. 4/8D. 5/10答案:A4. 如果a = 5,b = 3,那么a + b的值是多少?A. 2B. 8C. 10D. 15答案:B5. 哪个图形不是轴对称图形?A. 圆形B. 正方形C. 等边三角形D. 不规则四边形答案:D6. 下列哪个选项是质数?A. 4B. 6C. 7D. 8答案:C7. 一个数的相反数是-5,这个数是多少?A. 5B. -5C. 0D. 10答案:A8. 一个数的绝对值是5,这个数可能是?A. 5B. -5C. 5或-5D. 0答案:C9. 哪个选项表示的是不等式?A. 3 + 4 = 7B. 2 × 5 = 10C. 9 > 3D. 6 = 6答案:C10. 下列哪个选项是正确的比例?A. 2:3 = 4:6B. 3:4 = 6:8C. 5:7 = 10:14D. 1:2 = 3:6答案:D二、填空题(每题2分,共20分)11. 一个数的平方是16,这个数是______。
答案:4或-412. 如果一个数除以3余1,这个数可能是______。
答案:413. 一个数的立方是-8,这个数是______。
答案:-214. 一个数的倒数是1/3,这个数是______。
答案:315. 一个数的绝对值是它本身,这个数是非负数,包括______。
答案:0和正数16. 如果一个三角形的两边长分别是3和4,那么第三边的长度应该在______范围内。
答案:1和7之间17. 一个数的平方根是2,这个数是______。
答案:418. 如果一个数的相反数是它本身,这个数是______。
2023-2024学年河北省石家庄市栾城区初一第一学期期中数学试卷及参考答案
![2023-2024学年河北省石家庄市栾城区初一第一学期期中数学试卷及参考答案](https://img.taocdn.com/s3/m/771f6fa8c9d376eeaeaad1f34693daef5ef7132e.png)
2023—2024学年度第一学期石家庄市栾城区期中教学质量检测七年级数学一.选择题(本大题共12个小题,每小题2分,共24分,把每小题的正确选项填涂在答题纸上)1.如果气温升高时气温变化记作2+℃,那么气温下降4℃时气温变化记作( ) A .4+℃B .4−℃C .6+℃D .6−℃2.计算(1)5−−的结果是( ) A .4−B .4C .6−D .53.2023的相反数为( ) A .2023−B .2023C .12023−D .120234.下列绘制的数轴正确的是( ) A . B . C .D .5.单项式223x y−的系数和次数分别是( )A .2−,3B .-2,2C .23−,3 D .23−,2 6.下列各式中,计算正确的是( ) A .( 5.8)( 5.8)11.6−−−=− B .2144164−÷⨯=− C .322(3)72−⨯−=D .22(5)4(5)(3)45⎡⎤−+⨯−⨯−=⎣⎦7.计算2( 1.8)−的结果是( ) A .32.4B .32.4−C .3.24D .32.48.下列说法错误的是( ) A .直线l 经过点AB .点C 在线段上C .射线与线段有公共点D .直线a ,b 相交于点A9.某服装店新开张,第一天销售服装m 件,第二天比第一天少销售8件,第三天的销售量是第二天的2倍多3件,则这三天的销售量一共为( ) A .(421)m +件B .(421)m −件C .(331)m +件D .(331)m −件10.如图,用量角器度量AOB ∠和AOC ∠的度数下列说法中,正确的是( )A .110AOB ∠=︒B .AOB AOC ∠=∠ C .90AOB AOC ︒∠+∠=D .180AOB AOC ︒∠+∠=11.当1x =时,代数式37ax bx ++的值为4,则当1x =−时,代数式37ax bx ++的值为( ) A .4B .4−C .10D .1112.观察下列一组数:23−,45,67−,89,1011−,…,它们是按一定规律排列的,那么这一组数的第n 个数是( )A .221n n + B .2(1)21n n n −− C .2(1)21nn n −+ D .12n n ++ 二、填空题(本大题共8个小题,每小题3分,共24分,将正确答案填写在答题纸上)13.中国古代的算筹计数法可追溯到公元前5世纪.摆法有纵式和横式两种(如图所示),以算筹计数的方法是摆个位为纵,十位为横,百位为纵,千位为横……这样纵横依次交纵式表示752−,表示2369,则表示________.14.单项式3ax y −与46b x y 是同类项,则a b +=________.15.已知a 、b 互为相反数,c 、d 互为倒数,则代数式2()3a b cd +−的值为________. 16.如图,点O 在直线AB 上,581728AOC '''∠=︒.则BOC ∠的度数是________.17.图中几何体的截面(图中阴影部分)依次是________、________、________、________.18.121536︒'"=________°.(将度分秒转化成度)19.如图,在75⨯方格纸中,格点三角形甲经过旋转后得到格点三角形乙,则其旋转中心是点________.20.如图是一组有规律的图案,它们是由边长相等的正三角形组合而成的,第1个图案有4个三角形,第2个图案有7个三角形,第3个图案有10个三角形,,按此规律摆下去,第n 个图案有________个三角形(用含n 的式子表示).三、解答题:(本大题共5个小题,共52分)21.计算(共10分)已知下列各有理数: 2.5−,3,4−,12−,32(1)在数轴上标出这些数表示的点:(2)用“<”号把这些数连接起来:________; (3)请将以上各数填到相应的横线上: 正有理数:________;负有理数:________. 22.计算(共10分)某校七年级1至4班计划每班购买数量相同的图书布置班级读书角,但是由于种种原因,实际购书量与计划有出入,如表是实际购书情况:(1)直接写出a =________,b =________; (2)根据记录的数据可知4个班实际购书共本;(3)书店给出一种优惠方案:一次购买达到15本,其中2本书免费.若每本书售价为30元,求这4个班团体购书的最低费用. 23.(共10分)读句子画图:如图A 、B 、C 、D 在同一平面内(1)过点A 、D 画直线; (2)画射线CD ; (3)连结AB ;(4)连接AC 和BD 相交于点E ;(5)连结BC 并延长BC 到F ,使CF BC =. 24.(本题满分10分). 已知如图所示.(1)写出表示阴影部分面积的代数式;(两个四边形均为正方形) (2)求4cm a =,6cm b =时,阴影部分的面积. 25.(本题满分12分)已知120AOB ∠=︒,40COD ∠=︒,OE 平分AOC ∠,OF 平分BOD ∠.(1)如图1,当OB ,OC 重合时,求AOE BOF ∠−∠的值;(2)如图2,当COD ∠从图1所示的位置开始绕点O 以每秒2°的速度顺时针旋转t 秒(010t <<).在旋转过程中,AOE BOF ∠−∠的值是否会因t 的变化而变化?若不变化,请求出该定值;若变化,请说明理由; (3)在(2)的条件下,求当COD ∠旋转多少秒时,12COF ∠=︒.2023—2024学年度第一学期石家庄市栾城区期中考试七年级数学答案一.选择题(本大题共12个小题,每小题2分,共24分,把每小题的正确选项填涂在答题纸上)1-5 BCABC6-10 DCBBD 11 C12 C二、填空题(本大题共8个小题,每小题3分,共24分,将正确答案填写在答题纸上)13.7416−14.715.3−16.1214232︒'''.17.圆形,三角形,六边形,圆形.18.12.2619.M20.31n+三、解答题:(本大题共5个小题,共52分)21.解(1)数轴上表示各点如下:………………………….5分(2)用“<”号把这些数连接起来:134 2.5322−<−<<<,…………………..8分(3)正有理数有:3,32;负有理数有:4−, 2.5−,12−……………….10分22.解(1)∵由于4班实际购入22本,且实际购买数量与计划购买数量的差值为8−,即可得计划购书量为30本,∴一班实际购入301545a=+=本,二班实际购入数量与计划购入数量的差值32302b=−=本,故答案依次为:45,2.……………….4分(2)4个班一共购入数量为:45322322122+++=本,故答案为:122………………..6分(3)∵1221582÷=,……………7分∴如果每次购买15本,则可以购买8次,且最后还剩2本书需单独购买,……………8分∴最低总花费为:30(152)83023180⨯−⨯+⨯=元.……………………10分23.解(1)如图,直线AD即为所求;…………………2分(2)如图,射线CD即为所求;…………………4分(3)如图,线段AB 即为所求;…………………6分 (4)如图,点E 即为所求;…………………8分 (5)如图,线段CF 即为所求.…………………10分 24.解:(1)CDB BGF ECGF S S S S =−+△△正阴.........................2分2211()22a b b a b =+−⨯+…………………4分 ()2212a b ab =+−; 答:阴影部分面积为()2212a b ab +−;…………………..6分(2)当4cm a =,6cm b =时,()2212S a b ab =+−阴()22146462=⨯+−⨯……………………8分 ()214cm =,答:阴影部分的面积为214cm .…………………..10分 25.(1)解:因为OE 平分AOC ∠,OF 平分BOD ∠,所以1602AOE AOC ∠=∠=︒,11402022BOF BOD ∠=∠=⨯︒=︒.…………..2分所以602040AOE BOF ∠−∠=︒−︒=︒;…………………4分(2)解:AOE BOF ∠−∠的值是定值.…………………..5分根据题意,得:2BOC t ∠=︒,则21202AOC AOB t t ∠=∠+︒=︒+︒,2402BOD COD t t ∠=∠+︒=︒+︒.………………………7分因为OE 平分AOC ∠,OF 平分BOD ∠,所以1602AOE AOC t ∠=∠=︒+︒,1202BOF BOD t ∠=∠=︒+︒,……………..8分所以40AOE BOF ∠−∠=︒;…………………9分(3)解:根据题意,得()212BOF t ∠=+︒,…………………10分 所以21220t t +=+,………………….11分 解得8t =,所以当COD ∠旋转8s 时,12COF ∠=︒.………………………….12分。
七年级上册数学期中考试试卷及答案
![七年级上册数学期中考试试卷及答案](https://img.taocdn.com/s3/m/63b687dc70fe910ef12d2af90242a8956aecaa6c.png)
七年级上册数学期中考试试题一、单选题1.下面四个数中比﹣5小的数是()A .1B .0C .﹣4D .﹣62.如果a 与2020-互为倒数,那么a 的值是()A .2020B .2020-C .12020D .12020-3.下列各式计算结果为负数的是()A .﹣(﹣1)B .|﹣(+1)|C .﹣|﹣1|D .|1﹣2|4.由中国南车制造的CTT500型高铁,它的实验速度高达605公里/小时,打破了法国高速列车574.8公里/小时的世界纪录.若保持这样的速度,用科学记数法写出行驶10小时的路程为()A .46.0510⨯公里B .36.0510⨯公里C .56.0510⨯公里D .30.60510⨯公里5.下列去括号正确的是()A .﹣(a+b ﹣c )=a+b ﹣cB .﹣2(a+b ﹣3c )=﹣2a ﹣2b+6cC .﹣(﹣a ﹣b ﹣c )=﹣a+b+cD .﹣(a ﹣b ﹣c )=﹣a+b ﹣c 6.下列判断中正确的是()A .23a bc 与2b ca 是同类项B .25m n 不是整式C .单项式32x y -的系数是1-D .2235x y xy -+是二次三项式7.有理数a ,b ,c 在数轴上的位置如图所示,则a b b c +--的值为()A .2a b c --B .a c +C .2a b c--+D .a c--8.已知21a b -+的值是1-,则()3224a b a b --+的值是()A .4-B .10-C .0D .2-9.如图,A 、B 、C 、D 是数轴上的四个整数所对应的点,且1B A C B D C -=-=-=,而数m 在A 与B 之间,数n 在C 与D 之间,若3m n +-=,且A 、B 、C 、D 中有一个是原点,则此原点可能是()A .A 点或D 点B .B 点或D 点C .A 点D .D 点10.已知a ,b 互为相反数,c ,d 互为倒数,x 的绝对值等于2,求422a bx cdx ++-的值是()A .10B .-10C .20D .-20二、填空题11.用四舍五入法按照要求对0.43295取近似值,精确到千分位是________.12.若25-m x y 与n x y 是同类项,则m n +=__________.13.某超市销售的一种水果原价为m 元,因为销量不好,降价10%进行销售,一段时间后销量良好,决定提价20%,提价20%后这种水果的价格为________.14.若式子()333394mx x x nx -+--的值与x 无关,则mn 的值是________.15.对于有理数a ,b 定义一种新运算:*24a b a b =-+-.则()3*4*2-⎡⎤⎣⎦的值是________.16.如图是用大小相等的小正方形拼成的一组图案:…(1)(2)(3)(4)…观察并探索:第(100)个图案中有小正方形的个数是________.17.如果水库水位上升2m 记作+2m ,那么水库水位下降6m 记作_____.三、解答题18.计算:(1)()()1536---+.(2)()948149-÷⨯.(3)()157362612⎛⎫--⨯- ⎪⎝⎭.(4)()2411133162⎛⎫⎡⎤--⨯+-÷- ⎪⎣⎦⎝⎭.19.化简:(1)()()223222a a a a ++-+.(2)()2243324y y y y ⎡⎤---+⎣⎦.20.先化简,再求值:()()225214382a a a a+---+,其中3a =-.21.已知a 、b 互为相反数,x 、y 互为倒数,m 到原点距离2个单位.(1)根据题意,m =________.(2)求()202022a b mxy +++-的值.22.某公园中一块草坪的形状如图中的阴影部分.()1用整式表示草坪的面积;()2若2a =米,5b =米,求草坪的面积.23.已知一个三角形的第一条边长为3a b +,第二条边比第一条边短2a b -,第三条边比第二条边长2a b +.(1)则第二边的边长为________,第三条的边长为________.(2)用含a ,b 的式子表示这个三角形的周长,并化简.(3)若a ,b 满足()2870a b -+-=,求这个三角形的周长.24.小丽暑假期间参加社会实践活动,从某批发市场以每个a 元的价格购进50个手机充电宝,然后每个加价b 元到市场出售.(以下结果用含a ,b 的式子表示)(1)全部售出50个手机充电宝的总销售额为多少元?(2)由于开学临近,小丽在成功售出30充电宝后,决定将剩余充电宝按售价8折出售,并很快全部售完.①她的总销售额是多少元?②如果不采取降价销售,并且全部售出这50个充电宝,小丽将比实际销售多盈利多少元?25.“幸福是奋斗出来的”,在数轴上,若C 到A 的距离刚好是3,则C 点叫做A 的“幸福点”;若C 到A 、B 的距离之和为6,则C 叫做A 和B 的“幸福中心”.(1)如图1,点A 表示的数为1-,则A 的幸福点C 所表示的数应该是________.(2)如图2,M 、N 为数轴上两点,点M 所表示的数为4,点N 所表示的数为2-,若点C 就是M 和N 的幸福中心,则C 所表示的所有数中,整数之和为________.(3)如图3,A 、B 、C 为数轴上三点,点A 所表示的数为1-,点B 所表示的数为4,点C 所表示的数为8,点P 从点C 出发,以每秒2个单位的速度向左运动,同时,点M ,N 分别从点A ,B 以每秒1个单位的速度向右运动,经过多少秒时,点P 是M 和N 的幸福中心?26.已知A 点的初始位置位于数轴上表示1的点,现对点A 做如下移动:第1次向左移动3个单位长度至1A 点,第2次从1A 点向右移动6个单位长度至2A 点,第3次从2A 点向左移动9个单位长度至3A 点,第4次从3A 点向右移动12个单位长度至4A 点,…,依此类推.设点i A (1,2,3,i =⋅⋅⋅)对应的数为i a (1,2,3,i =⋅⋅⋅).(1)点5A 对应的数5a =________,点6A 对应的数6a =________.(2)第n 次移动到点n A ,求n a 的表达式(用含n 的式子表示).(3)是否存在第m 次移动到的点m A 到原点的距离为2020?如果存在,请求出m 的值,若不存在,请说明理由.参考答案1.D【解析】【详解】解:根据有理数比较大小的方法,可得﹣5<1,﹣5<0,﹣5<﹣4,﹣5>﹣6,∴四个数中比﹣5小的数是﹣6.故选:D.2.D【解析】【分析】根据倒数的概念求解可得.【详解】解:∵1()(2020)1 2020-⨯-=,∴-2020的倒数是1 2020 -,故选:D.【点睛】本题主要考查了倒数,解题的关键是掌握乘积是1的两数互为倒数.3.C【解析】【分析】将各式的结果计算出来,再根据小于零的数是负数,可得答案.【详解】A.﹣(﹣1)=1,1是正数,故A错误;B.|﹣(+1)|=1,1是正数,故B错误;C.﹣|﹣1|=﹣1,﹣1是负数,故C正确;D.|1﹣2|=|-1|=1,1是正数,故D错误.故选:C.【点睛】本题考查了正数和负数.掌握正数和负数的分辨,明确小于零的数是负数,能够正确化简各数是解题的关键.4.B【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【详解】解:605×10=6.05×103(公里),故选:B.【点睛】本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.B【解析】【分析】若括号前是“+”,去括号后,括号里的各项都不改变符号;若括号前是“﹣”,去括号后,括号里的各项符号发生改变,“﹣”遇“+”变“﹣”号,“﹣”遇“﹣”变“+”;据此判断.【详解】解:A、﹣(a+b﹣c)=﹣a﹣b+c,所以A不符合题意;B、﹣2(a+b﹣3c)=﹣2a﹣2b+6c,正确;C、﹣(﹣a﹣b﹣c)=a+b+c,所以C不符合题意;D、﹣(a﹣b﹣c)=﹣a+b+c,所以D不符合题意;故选:B.【点睛】本题考查去括号的知识,若括号前是“+”,去括号后,括号里的各项都不改变符号;若括号前是“﹣”,去括号后,括号里的各项符号发生改变.6.C【解析】【分析】分别根据同类项的定义,整式的定义,单项式的定义以及多项式的定义逐一判断即可.【详解】解:A 、23a bc 与2b ca ,所含字母相同,但是相同字母的指数不相同,故本选项不合题意;B 、25m n 属于整式,故本选项不合题意;C 、单项式32x y -的系数是1-,故本选项符合题意;D 、2235x y xy -+是三次三项式,故本选项不合题意;故选:C .【点睛】本题主要考查了同类项,整式,单项式与多项式的定义,熟记相关定义是解答本题的关键.7.D 【解析】【分析】先根据数轴判断出a 、b 、c 的正负情况以及绝对值的大小,然后判断出a+b ,b-c 的正负情况,再根据绝对值的性质去掉绝对值号,合并同类项即可.【详解】解:根据图形可知,b <c <0<a ,且|b|>|a|>|c|,∴a+b <0,b-c <0,∴|a+b|−|b−c|=-(a+b )+(b-c )=-a-b+b-c =-a-c .故选:D .【点睛】本题考查了整式的加减,数轴与绝对值的性质,根据数轴判断出a 、b 、c 的大小关系以及a+b ,b-c 的正负情况是解题的关键,也是难点.8.D 【解析】【分析】先化简多项式,再变形已知条件,最后整体代入求值.【详解】解:3(2)24a b a b --+3624a b a b=--+2a b =-,21a b -+ 的值是1-,211a b ∴-+=-.即22a b -=-.∴原式2=-.故选:D .【点睛】本题考查了整式的加减,掌握整式加减的运算法则是解决本题的关键.9.A 【解析】【分析】先根据图形和已知条件找出各线段长度,然后由3m n +-=推测原点位置.【详解】解:由“B-A=C-B=D-C=1且数m 在A 与B 之间,数n 在C 与D 之间”可以得出:1AB BC CD ===3AD ∴=①当原点是B 点或C 点时,3m n +-<与已知3m n +-=相矛盾,故原点不可能是B 点或C 点;②当原点在A 点或D 点且A m D n -=-时,3m n m n +-=+=,综上可知:数轴原点可能是A 点或D 点.故选A .【点睛】本题主要考查了数轴和绝对值,解决本题的关键在于理解绝对值的几何意义.10.C 【解析】【分析】根据相反数的定义,倒数的定义,绝对值的定义求出a+b=0,cd=1,2x =±,分两种情况代入数值计算即可.【详解】解:∵a ,b 互为相反数,c ,d 互为倒数,x 的绝对值等于2,∴a+b=0,cd=1,2x =±,当x=2时,422a bx cdx ++-=16+4-0=20,当x=-2时,422a b x cdx ++-=16+4-0=20,故选:C .【点睛】此题考查已知式子的值求代数式的值,正确掌握相反数的定义,倒数的定义,绝对值的定义是解题的关键.11.0.433【解析】【分析】把万分位上的数字9进行四舍五入即可.【详解】解:0.43295≈0.433(精确到千分位).故答案是:0.433.【点睛】本题考查了近似数和有效数字:经过四舍五入得到的数为近似数;从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.近似数与精确数的接近程度,可以用精确度表示.一般有精确到哪一位,保留几个有效数字等说法.12.3.【解析】【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程等式,求出n ,m 的值,再相加即可.【详解】∵-5x 2y m 和x n y 是同类项,∴n=2,m=1,∴m+n=2+1=3.13.1.08m 【解析】【分析】直接利用降价与提价的变化得出变化后实际价格.【详解】解:由题意可得:m (1-10%)(1+20%)=1.08m (元).故答案为:1.08m .【点睛】本题主要考查了列代数式,正确表示出变化后价格是解题关键.14.4【解析】【分析】先将原式化简为()()33439m x n x -+-+,,再根据多项式的值与x 无关,可得340m -=,30n -=,由此即可求得mn 的值.【详解】解:33339(4)mx x x nx -+--333394mx x x nx =-+-+()()33439m x n x =-+-+,式子33339(4)mx x x nx -+--的值与x 无关,340m ∴-=,30n -=,43m ∴=,3n =.4343mn ∴=⨯=.故答案为:4.【点睛】本题考查了整式的加减运算,重点是根据题中条件得到340m -=,30n -=,同学们应灵活掌握.15.-7【解析】【分析】先计算(-3)*4得出其结果,再代入[(-3)*4]*2列式计算即可.【详解】解:∵(-3)*4=-(-3)+2×4-4=3+8-4=7,∴[(-3)*4]*2=7*2=-7+2×2-4=-7+4-4=-7,故答案为:-7.【点睛】本题主要考查了有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则.16.397【解析】【分析】观察图形可知后面一个图形比前面一个图形多4个小正方形,所以可得规律为:第n 个图形中共有4(1)1n -+个小正方形.【详解】解:由图片可知:第(1)个图案中有4011⨯+=个小正方形,第(2)个图案中有4115⨯+=个小正方形,第(3)个图案中有4219⨯+=个小正方形,⋯∴规律为小正方形的个数4(1)143n n =-+=-.当100n =时,小正方形的个数41003397=⨯-=.故答案为:397.【点睛】此题考查了规律型:图形的变化,是找规律题,目的是培养同学们观察、分析问题的能力.注意由特殊到一般的分析方法,此题的规律为:第n 个图形中共有4(1)1n -+个小正方形.17.﹣6m .【解析】【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【详解】解:∵“正”和“负”相对,水位上升2m ,记作+2m ,∴水位下降6m ,记作﹣6m .故答案为﹣6m .【点睛】本题主要考查了理解“正”和“负”的相对性,确定一对具有相反意义的量,比较简单.18.(1)6-;(2)16-;(3)33;(4)13【解析】【分析】(1)根据有理数的加减运算法则计算即可;(2)根据有理数的乘除运算法则计算即可;(3)根据乘法的分配律计算即可;(4)根据有理数的乘方以及混合运算,计算即可;【详解】解:(1)()()()153615366---+=-++=-(2)()94448181164999-÷⨯=-⨯⨯=-(3)()15715736(36)(36)(36)1830213326122612⎛⎫--⨯-=⨯--⨯--⨯-=-++= ⎪⎝⎭(4)()2411133162⎛⎫⎡⎤--⨯+-÷- ⎪⎣⎦⎝⎭121(39)(63=--⨯+⨯-12112(63=--⨯⨯-413=-+13=【点睛】此题考查了有理数的运算,涉及了加减、乘除以及乘方,熟练掌握有理数的运算法则是解题的关键.19.(1)254a +;(2)35y -.【解析】【分析】(1)先去括号,然后合并同类项即可求出答案;(2)先去小括号,再去中括号,然后合并同类项即可求出答案.【详解】解:(1)原式2232224a a a a =++-+254a =+;(2)原式224(3324)y y y y =--++2243324y y y y =-+--35y =-.【点睛】本题考查整式的加减运算,解题的关键是熟练运用整式的加减运算法则,本题属于基础题型.20.233413a a -+-,142-【解析】【分析】先将原式去括号合并同类项得到最简结果,再将a 的值代入计算即可求出值.【详解】解:原式2252112328a a a a =+--+-,233413a a =-+-,当3a =-时,原式23(3)34(3)13=-⨯-+⨯--2710213=---142=-.【点睛】此题考查了整式的加减-化简求值,涉及的知识有:去括号法则以及合并同类项法则,熟练掌握运算法则是解本题的关键.21.(1)2或-2;(2)5.【解析】【分析】(1)根据绝对值的定义可得答案;(2)先根据相反数的性质、倒数的定义得出a+b=0,xy=1,再结合m 的值分别代入计算即可.【详解】解:(1)∵m 到原点距离2个单位,∴m=2或-2,故答案为:2或-2;(2)根据题意知a+b=0,xy=1,m=2或-2,当m=2时,()202022a b m xy +++-=22+0+(-1)2020=4+1=5;当m=-2时,()202022a b m xy +++-=(-2)2+0+(-1)2020=4+1=5;综上,()202022a b m xy +++-的值为5.【点睛】本题主要考查了有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则.22.(1)草坪的面积为18ab 平方米;()2草坪的面积是180平方米.【解析】【分析】(1)草坪的面积=大长方形的面积-两个空白长方形的面积,应该根据图中数据逐一进行计算,然后求差;(2)将a 2=米,b 5=米代入求值即可.【详解】(1)(1.5b+2.5b )(a+2a+a+2a+a )-2.5b×2a×2=18ab ,即草坪的面积为18ab 平方米;(2)当a 2=米,b 5=米时,18ab 1825180=⨯⨯=(平方米),答:草坪的面积是180平方米.【点睛】本题考查了列代数式和代数式求值,解决这类问题首先要从简单图形入手,认清各图形的关系,然后求解.23.(1)23a b +,44a b +;(2)98a b +;(3)128【解析】【分析】(1)根据题意列出算式即可求出答案;(2)列出算式后,根据整式的运算法则即可求出答案;(3)先求出a 与b 的值,然后代入原式即可求出答案.【详解】解:(1)第二条边为(3)(2)3223a b a b a b a b a b +--=+-+=+,第三条边为:(23)(2)23244a b a b a b a b a b +++=+++=+,故答案为:23a b +,44a b +;(2)该三角形的周长为:(3)(23)(44)a b a b a b +++++32344a b a b a b=+++++98a b =+;(3)∵()2870a b -+-=,且80a -≥,()270b -≥,∴80a -=,70b -=,∴8a =,7b =,∴该三角形的周长为:9887128⨯+⨯=.【点睛】本题考查整式加减的应用,解题的关键是熟练运用整式加减的运算法则,本题属于基础题型,也考查了绝对值和平方的非负性.24.(1)全部售出50个手机充电宝的总销售额为50(a+b )元(2)①她的总销售额是(46a+46b )元;②小丽将比实际销售多盈利(4a+4b )元.【解析】【分析】(1)根据总销售额=销售单价×数量列出式子即可.(2)①总销售额等于未打折的30个充电宝的销售额+(50-30)个打8折的充电宝的销售额,列出算式并化简即可;②用(1)中的销售额减去(2)①中的销售额,计算即可.【详解】解:(1)由题意可知,每个手机充电宝的售价为(a+b )元,∴全部售出50个手机充电宝的总销售额为:50(a+b )元.(2)①由题意得:30(a+b )+(50-30)(a+b )×0.8=30a+30b+16a+16b=(46a+46b )元,∴她的总销售额是(46a+46b )元;②由题意得:50(a+b )-46(a+b )=(4a+4b )元,∴小丽将比实际销售多盈利(4a+4b )元.【点睛】本题考查了列代数式在成本利润问题中的应用,明确成本利润问题的基本数量关系是解题的关键.25.(1)2或4-;(2)7;(3)76秒或196秒【解析】【分析】(1)根据幸福点的定义即可求解,注意分类讨论;(2)先根据题意可求得6MN =,由此再结合幸福中心的定义即可求解;(3)分两种情况讨论:①P 在N 的右边;②P 在M 的左边,由此可以得出结论.【详解】解:(1)132-+= ,134--=-,A ∴的幸福点C 所表示的数应该是2或4-,故答案为:2或4-;(2)4(2)6MN =--= ,M ∴,N 之间的所有数都是M ,N 的幸福中心,故C 所表示的整数可以是2-或1-或0或1或2或3或4,21012347∴--+++++=,故答案为:7;(3)设经过x 秒时,点P 是M 和N 的幸福中心,由题意可得:点P 表示的数为82x -,点M 表示的数为1x -+,点N 表示的数为4x +,∴4(1)56MN x x =+--+=<,又∵点P 是M 和N 的幸福中心,∴点P 在点M 的左边或者在点N 的右边,①当点P 在N 的右边时,有82(4)82(1)6x x x x --++---+=,解得:76x =;②当点P 在M 的左边时,有4(82)(1)(82)6x x x x +--+-+--=,解得:196x =.答:当经过76秒或196秒时,点P 是M 和N 的幸福中心.【点睛】本题考查了一元一次方程的应用、数轴及数轴上两点的距离、动点问题,熟练掌握动点中三个量的数量关系式:路程=时间⨯速度,认真理解新定义,学会运用分类讨论思想是解决本题的关键.该类题型主要考查学生对新知识的接受和应用能力.26.(1)8-;10;(2)()()312322n n n a n n +⎧-⎪⎪=⎨+⎪⎪⎩为奇数时为偶数时;(3)1346【解析】【分析】(1)按照题目,找出已知规律,推算即可;(2)根据数轴上点所对应的数的变化和平移规律(左减右加),分别求出点所对应的数,进而求出点到原点的距离;然后对第奇数个以及第偶数个分别探究,找出其中的规律(相邻两数都相差3),进而写出表达式就可解决问题;(3)利用(2)中的结论,代入求值.【详解】解:(1)第1次点A 向左移动3个单位长度至点1A ,则1A 表示的数,132-=-;第2次从点1A 向右移动6个单位长度至点2A ,则2A 表示的数为264-+=;第3次从点2A 向左移动9个单位长度至点3A ,则3A 表示的数为495-=-;第4次从点3A 向右移动12个单位长度至点4A ,则4A 表示的数为5127-+=;第5次从点4A 向左移动15个单位长度至点5A ,则5A 表示的数为7158-=-;第6次从点5A 向右移动18个单位长度至点6A ,则6A 表示的数为81810-+=;故答案是:8-;10;(2)由(1)可知,当移动次数n 为奇数时,点n A 在原点的左侧,1369123n a n-+-+--=…1(36)(912)[3(2)3(1)]3n n n=+-++-+++--+--…11332n n-=+⨯-312n +=-,当移动次数n 为偶数时,点n A 在原点的右侧,1369123(1)3n a n n-+-+---+=...1(36)(912)[3(1)3]n n =+-++-+++--+ (13)2n=+⨯322n +=,综上所述,()()312322n n n a n n +⎧-⎪⎪=⎨+⎪⎪⎩为奇数时为偶数时;(3)根据题意,得当移动次数n 为奇数时,3120202m +-=-,解得:40393m =(不符合题意,舍去),当移动次数n 为偶数时,3220202m +=,解得:1346m =,∴存在第m 次移动到的点m A 到原点的距离为2020,此时m 的值为1346.。
初一数学上册期中考试试卷及答案
![初一数学上册期中考试试卷及答案](https://img.taocdn.com/s3/m/1ebbd844cd7931b765ce0508763231126fdb7746.png)
专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是质数?A. 21B. 23C. 27D. 302. 下列哪个是等边三角形的特点?A. 有两个角相等B. 有三条边相等C. 有一个角是直角D. 所有角都小于90度3. 下列哪个是负数?A. 5B. 0C. 3D. 84. 下列哪个是最小的合数?A. 4B. 6C. 8D. 95. 下列哪个是平行四边形的性质?A. 对角线互相垂直B. 对角线互相平分C. 对边平行且相等D. 所有角都是直角二、判断题(每题1分,共5分)1. 0是最小的自然数。
()2. 等腰三角形的两个底角相等。
()3. 1是质数。
()4. 平行四边形的对角线互相平分。
()5. 两个负数相乘的结果是正数。
()三、填空题(每题1分,共5分)1. 最大的两位数是______。
2. 3的平方是______。
3. 1千米等于______米。
4. 等边三角形的每个角都是______度。
5. 5的立方是______。
四、简答题(每题2分,共10分)1. 解释什么是质数。
2. 简述平行四边形的性质。
3. 解释负数和正数的区别。
4. 什么是等腰三角形?5. 解释乘法的分配律。
五、应用题(每题2分,共10分)1. 一个长方形的长是10厘米,宽是5厘米,求这个长方形的面积。
2. 一个数加上它的5倍等于30,求这个数。
3. 一个等边三角形的周长是18厘米,求它的边长。
4. 一个数减去7等于10,求这个数。
5. 一个数的平方是64,求这个数。
六、分析题(每题5分,共10分)1. 小明有5个苹果,他吃掉了2个,然后又得到了3个,现在小明有多少个苹果?2. 一个长方形的长是15厘米,宽是10厘米,如果长方形的长增加5厘米,宽减少2厘米,求新长方形的面积。
七、实践操作题(每题5分,共10分)1. 画出一个等边三角形,并标出它的三个角。
2. 画出一个长方形,并标出它的长和宽。
八、专业设计题(每题2分,共10分)1. 设计一个实验,验证物体在水平面上受到的摩擦力与物体重量之间的关系。
七年级数学上册期中考试试卷带答案
![七年级数学上册期中考试试卷带答案](https://img.taocdn.com/s3/m/46d9f44cb5daa58da0116c175f0e7cd18525180f.png)
七年级数学上册期中考试试卷带答案(试卷满分:150分;考试时间:120分钟)一.选择题:本题共12小题,每小题4分,共48分。
1.下列各组数中,数值相等的是( )A.32和23B.-23和(-2)3C.-32和(﹣3)2D.-(3×2)2和﹣3×22 2.当代数式x+3x+1的值为2022时,代数式2x+6x -3的值为( ) A.2022 B.4037 C.4039 D.20193.一个数a 精确到十分位的结果是3.6,那么这个数a 的范围满足( )A.3.55≤a ≤5.3B.3.55<a ≤3.65C.3.55<a<3.65D.3.55≤a<3.65 4.观察下列各式:x ,ab3,﹣1,x 2﹣1,﹣x2+y ,S=πr 2,其中整式有( )A.3个B.4个C.5个D.6个 5.下列结论中正确的是( ) A.单项式πr 24的系数14,次数是4 B.单项式﹣xy 2z 的系数是﹣1,次数是4C.多项式2x 2+xy 2+3是再次三项式D.单项式m 的次数是1,没有系数 6.有理数a 、b 在数轴上的位置如图所示,则下列选项正确的是( )A.a+b<0B.b -a>0C.ab>0D.|a |>|b |7.计算=( )A.3n+2mB.n 3+2mC.3n +2mD.3n+m 2 8.请仔细分析下列赋予4a 实际意义的例子中错误的是( ) A.若葡萄的价格是4元/kg ,则4a 表示买akg 葡萄的金额 B.若a 表示一个正方形的边长,则4a 表示这个正方形的周长C.若4和a 分别表示一个两位数中的十位数字和个位数字,则4a 表示这个两位数D.某款凉鞋进价为a 元,销售这款凉鞋盈利100%,则销售两双的销售额为4a 元9.近几年智能手机已成为人们生活中不可缺少的一部分,智能手机价格也不断地降低.某品牌智能手机原售价为m 元,现打九折,再让利n 元,那么该手机现在的售价为( ) A.(109m ﹣n )元 B.(910m -n )元 C.(9m -11)元 D.(9n -m )元10.如图,从边长为(a+3)的正方形纸片中剪去一个边长为3的正方形,剩余部分沿虚线又剪拼成一个如图所示的长方形(不重叠,无缝隙),则拼成的长方形的面积是( )A.a 2+3aB.2a 2+6aC.2a 2+3aD.a 2+6a11.用你发现的规律解答下列问题:11×2=1﹣12,12×3=12﹣13,13×4=13﹣14...,探究11×2+12×3+13×4+...+1n (n+1)=( ),A.1+1nB.1-1n+1C.1-1nD.1+1n+112.在多项式:a -b+c -d -e 中,任选两个字母,在两侧加括号,称为第一轮"加括号操作".例如:选择b ,d 进行"加括号操作",得到a -(b+c -d)-e=a -b -c+d -e .在第一轮"加括号操作"后的式子中进行同样的操作,称为第二轮"加括号操作",按此方法,进行第n(n ≥1)轮"加括号操作".下列相关说法正确的个数是:①存在某种第一轮"加括号操作"的结果与原多项式相等;②不存在第k(k ≥1)轮"加括号操作",使得结果与原多项式的和为0;③对原多项式进行第一轮"加括号操作"后,共有4种不同结果.其中正确的个数为( )A.0个B.1个C.2个D.3个二.填空题:本题共6小题,每题4分共24分13.已知:a 、b 互为倒数,c 、d 互为相反数,且都不为零,|m |=2,n 是最大的负整数,求式子2ab ﹣c+d2024+m+n+cd 的值 .14.已知x=12,y=﹣5,求代数式x 2-2xy+y 2的值为 .15.如图,某学校的操场形状是由一个长方形和两个半圆组成.整个操场的面积用代数式表示为 (用含π代数式表示)16.如果对于任何有理数a 、b 定义运算"△"如下:a △b=1a ÷(﹣b2),如2△3=12÷(﹣32)=﹣13,求(﹣2△7)△4的值 .17.甲、乙两人各买一本相同的书(都按原价),甲用去了他所带钱的60%,乙用去了他所带钱的25,则甲、乙两人所带钱的比是 .18.如图,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第23个图形需要黑色棋子的个数为 .三.解答题 19.计算题:(每题4分,共12分)(1)-24+9÷(34)2+3×(﹣1)5 (2)﹣|﹣23|﹣|﹣12×23|﹣|13﹣14| (3)(﹣22)÷49×(﹣23)220.先化简,再求值:(6分)已知A=x 2-xy+y 2,B=x 2+xy+3y 2,其中x=23,y=32.求A+(B -2A)的值.21.(12分)当今社会,随着生活水平的提高,人们越来越重视自己的身心健康,注重锻炼身体.某公司计划购买50个羽毛球拍和x 个羽毛球,某体育用品商店每个羽毛球拍定价80元,每个羽毛球定价5元,经协商拟定了两种优惠方案如下(两个优惠方案不可混用): 方案一:每买一个羽毛球拍就赠送2个羽毛球; 方案二:羽毛球拍和羽毛球都按定价的90%付款, (1)若x=100,请计算哪种方案划算;(2)若x>100,请用含x 的代数式分别把两种方案的费用表示出来.22.(12分)某养鱼专业户准备挖一个面积为2000m 2的长方形鱼塘.(1)用式子表示鱼塘的长y(m)与宽x(m)的关系;长y(m)与宽x(m)成什么比例关系?(2)由于受场地的限制,鱼塘的宽最多只能挖20m ,当鱼塘的宽是20m 时,鱼塘的长为多少米?23.(12分)分类讨论是一种重要的数学方法,如在化简|a|时,可以这样分类:当a>0时,|a|=a :当a=0时,|a|=0:当a<0时,|a|=-a .用这种方法解决下列问题: (1)当a=5时,求|a |a 的值. (2)当a=-2时,求a |a |的值.(3)已知a ,b 是有理数,当ab>0时,试求a|a |+|b |b 的值.24.(12分)学习了整式的加减运算后,老师给同学们布置了一个任务:已知a=2,自行给b 取一个喜欢的数.先化简下列式子,再代入求值. (5a 2b -2ab 2+6a)-3(2a 2b -3a)+2(ab 2+12a 2b)﹣1(1)小杜、小康、小磊三人经过化简计算,后来交流结果时发现,虽然三人给b 取的值都不同,但计算结果却完全一样.请解释出现这种情况的原因,并求这个计算结果. (2)已知代数式A=2x 2+5xy -7y -3,B=x 2-xy+2. ①当x=-1,y=2时,求A -3B 的值;②若A -2B 的值与y 的取值无关,求x 的值.25.(12分)已知二项式﹣x 2y 2-2中,含字母的项的系数为a ,多项式的次数为b ,且a 、b 在数轴上对应的点分别为A 、B ,点C 为数轴上任意一点,对应的数为C.(1)a= ,b= 。
七年级数学上册期中考试试卷及答案
![七年级数学上册期中考试试卷及答案](https://img.taocdn.com/s3/m/ca737c86970590c69ec3d5bbfd0a79563c1ed4cb.png)
七年级数学上册期中考试试卷及答案七年级数学上册期中考试试卷及答案一、选择题1、在数轴上,点A表示的数是-2,那么在数轴上到点A的距离为3的点表示的数是() A. -5 B. -1和5 C. -2.5 D. -5和12、下列说法正确的是() A. 不是负数的数一定是正数 B. 不是正数的数一定是负数 C. 0既不是正数也不是负数 D. 正数和负数互为相反数二、填空题3、火车在车站上东西方向沿直线行驶。
面向火车站站台,乘客若正对站台,火车从左往右依次有四节车厢,则火车往右行驶时,乘客看到的车厢数目依次是________、、、________。
31、当时钟表示12点45分时,时针与分针的夹角是________度。
三、解答题5、计算:(1)(-2)÷(- )×5 (2)÷2-(- )×8+(- )÷(-2)51、化简:(1)(-3)-(-7)-(+9)+(+3)(2) 4 +[(-2)-(-8)]-(+3)-(+7)511、某班学生利用节假日参加夏令营活动,到山区走了峡谷A和B 两地,其中峡谷A收门票15元/人,峡谷B收门票20元/人,购买峡谷A和峡谷B门票的总人数为100人,且购买峡谷A门票共花费1500元,购买峡谷B门票共花费2000元。
(1)请问购买峡谷A门票和峡谷B门票的人数各是多少?(2)如果峡谷A和峡谷B门票的价格分别上涨了m%,其中m>0,在人数不变的情况下,峡谷A和峡谷B 门票的价格分别上涨了多少元?四、应用题8、甲、乙两车同时从A、B两地出发相向而行,在距B地50千米处相遇,两车各自到达对方出发地后立即返回,第一次相遇后第二相遇地点距离A地40千米,求A、B两地相距多少千米?81、一项工程,甲队单独做需12天完成,乙队单独做需15天完成。
如果甲、乙两队合作3天后,再由乙队单独完成剩余工程,那么乙队还需要多少天才能完成全部工程?五、附加题10、已知方程组,求x和y的值。
人教版七年级上册期中考试数学试卷及详细答案解析(共5套)
![人教版七年级上册期中考试数学试卷及详细答案解析(共5套)](https://img.taocdn.com/s3/m/4bc45b1fc850ad02de8041bf.png)
人教版七年级上册期中考试数学试卷(一)一、填空题(简洁的结果,表达的是你敏锐的思维,需要的是细心!每小题3分,共30分)1.水位上升30cm记作+30cm,那么﹣16cm表示.2.在月球表面,白天,阳光垂直照射的地方温度高达+127℃;夜晚,温度可降至﹣183℃.则月球表面昼夜的温差为℃.3.用“<”“=”或“>”填空:﹣(﹣1)﹣|﹣1|.4.据测试,拧不紧的水龙头每秒会滴下2滴水,每滴水约0.05毫升,小明同学在洗手后,没有把水龙头拧紧,当小明离开4小时后水龙头滴下的水用科学记数法表示为毫升.5.近似数2.30万精确到位.6.如果一个负数的平方等于它的相反数,那么这个数是.7.如图所示的日历中,任意圈出一竖列相邻的三个数,设中间一个数为a,则这三个数之和为(用含a的式子表示)日一二三四五六1 2 3 45 6 7 8 9 10 1112 13 14 15 16 17 1819 20 21 22 23 24 2526 27 28 29 30 318.若x p+4x3﹣qx2﹣2x+5是关于x的五次五项式,则﹣p= .9.m、n互为相反数,x、y互为负倒数(乘积为﹣1的两个数),则(m+n)﹣2010﹣2010xy= .10.计算(a+3a+5a+…+2009a)﹣(2a+4a+6a+…+2010a)= .二、精心选一选,慧眼识金!(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中只有一项是正确的)11.下列各组数中,互为相反数的有()①﹣(﹣2)和﹣|﹣2|;②(﹣1)2和﹣12;③23和32;④(﹣2)3和﹣23.A.④B.①②C.①②③D.①②④12.如果a2=(﹣3)2,那么a等于()A.3 B.﹣3 C.±3 D.913.下列各式a2b2,,﹣25,,a2﹣2ab+b2中单项式的个数有()A.4个B.3个C.2个D.1个14.下列说法正确的是()①最大的负整数是﹣1;②数轴上表示数2和﹣2的点到原点的距离相等;③当a≤0时,|a|=﹣a成立;④a+5一定比a大.A.1个B.2个C.3个D.4个15.下列各式中,是二次三项式的是()A.B.32+3+1 C.32+a+ab D.x2+y2+x﹣y16.若﹣3xy2m与5x2n﹣3y8的和是单项式,则m、n的值分别是()A.m=2,n=2 B.m=4,n=1 C.m=4,n=2 D.m=2,n=317.计算(﹣1)2n+(﹣1)2n+1的值是()A.2 B.﹣2 C.±2 D.018.近似数4.50所表示的准确值a的取值范围是()A.4.495≤a<4.505 B.4040≤a<4.60C.4.495≤a≤4.505 D.4.500≤a<4.505619.下面用数学语言叙述﹣b,其中表达不正确的是()A.比a的倒数小b的数B.1除以a的商与b的绝对值的差C.1除以a的商与b的相反数的和D.b与a的倒数的差的相反数20.若a+b<0,ab<0,则下列说法正确的是()A.a、b同号B.a、b异号且负数的绝对值较大C.a、b异号且正数的绝对值较大D.以上均有可能三、解答题(耐心计算,认真推理,表露你萌动的智慧!共60分)21.计算(1)(+3.5)﹣(1.4)﹣(2.5)+(﹣4.6)(2)﹣22÷(﹣4)3+|0.8﹣1|×(2)2;(3)[2﹣(+﹣)×24]÷5×(﹣1)2009(4)x﹣2( x+1 )+3x;(5)3x2+2xy﹣4y2﹣(3xy﹣4y2+3x2);(6)4(x2﹣5x)﹣5(2x2+3x)22.在数轴上表示下列各数,并按从小到大的顺序用“<”将这些数连接起来:2.5,﹣2.5,,0,.23.根据如图所示的数轴,解答下面问题(1)分别写出A、B两点所表示的有理数;(2)请问A、B两点之间的距离是多少?(3)在数轴上画出与A点距离为2的点(用不同于A、B的其它字母表).24.化简求值:已知|a﹣4|+(b+1)2=0,求5ab2﹣[2a2b﹣(4ab2﹣2a2b)]+4a2b 的值.25.如图,梯形的上底为a2+2a﹣10,下底为3a2﹣5a﹣80,高为40.(π取3)(1)用式子表示图中阴影部分的面积;(2)当a=10时,求阴影部分面积的值.26.振子从一点A开始左右来回振动8次,如果规定向右为正,向左为负,这8次振动记录为(单位:毫米):+10,﹣9,+8,﹣6,+7.5,﹣6,+8,﹣7.(1)求振子停止时所在位置距A点有多远?(2)如果每毫米需时间0.02秒,则共用时间多少秒?参考答案与试题解析一、填空题(简洁的结果,表达的是你敏锐的思维,需要的是细心!每小题3分,共30分)1.水位上升30cm记作+30cm,那么﹣16cm表示水位下降了16cm .【考点】正数和负数.【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【解答】解:“正”和“负”相对,所以若水位上升30cm记作+30cm,那么﹣16cm表示水位下降了16cm.故答案为:水位下降了16cm.2.在月球表面,白天,阳光垂直照射的地方温度高达+127℃;夜晚,温度可降至﹣183℃.则月球表面昼夜的温差为310 ℃.【考点】正数和负数.【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【解答】解:白天,阳光垂直照射的地方温度高达+127℃,夜晚,温度可降至﹣183℃,所以月球表面昼夜的温差为:127℃﹣(﹣183℃)=310℃.故答案为:310℃.3.用“<”“=”或“>”填空:﹣(﹣1)>﹣|﹣1|.【考点】有理数大小比较.【分析】先依据相反数和绝对值的性质化简各数,然后进行比较即可.【解答】解:﹣(﹣1)=1,﹣|﹣1|=﹣1.∵1>﹣1,∴﹣(﹣1)>﹣|﹣1|.故答案为:>.4.据测试,拧不紧的水龙头每秒会滴下2滴水,每滴水约0.05毫升,小明同学在洗手后,没有把水龙头拧紧,当小明离开4小时后水龙头滴下的水用科学记数法表示为 1.44×103毫升.【考点】科学记数法—表示较大的数.【分析】首先把4小时化为秒,再用时间×0.05×2计算可得答案.【解答】解:0.05×2×4×3600=1440=1.44×103,故答案为:1.44×103.5.近似数2.30万精确到百位.【考点】近似数和有效数字.【分析】近似数2.30万精确到0.01万位,即百位.【解答】解:近似数2.30万精确到百位.故答案为百.6.如果一个负数的平方等于它的相反数,那么这个数是﹣1 .【考点】有理数的乘方;相反数.【分析】设这个数为x(x<0),由于一个负数的平方等于它的相反数得到x2=﹣x,解得x=0或x=﹣1,因此这个数只能为﹣1.【解答】解:设这个数为x(x<0),根据题意得x2=﹣x,x(x+1)=0,∴x=0或x=﹣1,∴这个数为﹣1.故答案为﹣1.7.如图所示的日历中,任意圈出一竖列相邻的三个数,设中间一个数为a,则这三个数之和为3a (用含a的式子表示)日一二三四五六1 2 3 45 6 7 8 9 10 1112 13 14 15 16 17 1819 20 21 22 23 24 2526 27 28 29 30 31【考点】列代数式.【分析】认真观察日历中,竖列相邻的三个数之间的规律,问题即可解决.【解答】解:任意圈出一竖列相邻的三个数,设中间一个数为a,则另外两个数为:a﹣7,a+7,∴这三个数之和=a+a﹣7+a+7=3a.故答案为3a.8.若x p+4x3﹣qx2﹣2x+5是关于x的五次五项式,则﹣p= ﹣5 .【考点】多项式.【分析】根据单项式的系数和次数的定义,多项式的定义求解.【解答】解:∵x p+4x3﹣qx2﹣2x+5是关于x的五次五项式,∴﹣p=﹣5.9.m、n互为相反数,x、y互为负倒数(乘积为﹣1的两个数),则(m+n)﹣2010﹣2010xy= 0 .【考点】有理数的混合运算;相反数;倒数.【分析】利用相反数,负倒数的定义求出m+n,xy与的值,代入原式计算即可求出值.【解答】解:根据题意得:m+n=0,xy=﹣1,即=﹣1,则原式=0﹣2010+2010=0.故答案为:010.计算(a+3a+5a+…+2009a)﹣(2a+4a+6a+…+2010a)= ﹣1005a .【考点】整式的加减.【分析】首先去括号,然后再把化成(a﹣2a)+(3a﹣4a)+(5a﹣6a)+…+,再合并即可.【解答】解:原式=a+3a+5a+…+2009a﹣2a﹣4a﹣6a﹣…﹣2010a,=(a﹣2a)+(3a﹣4a)+(5a﹣6a)+…+,=﹣a+(﹣a)+(﹣a)+(﹣a)+…+(﹣a),=﹣1005a,故答案为:﹣1005a.二、精心选一选,慧眼识金!(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中只有一项是正确的)11.下列各组数中,互为相反数的有()①﹣(﹣2)和﹣|﹣2|;②(﹣1)2和﹣12;③23和32;④(﹣2)3和﹣23.A.④B.①②C.①②③D.①②④【考点】有理数的乘方;相反数;绝对值.【分析】根据a n表示n个a相乘,而﹣an表示an的相反数,而(﹣a)2n=a2n,(﹣a)2n+1=﹣a2n+1(n是整数)即可对各个选项中的式子进行化简,然后根据相反数的定义即可作出判断.【解答】解:①﹣(﹣2)=2,﹣|﹣2|=﹣2,故互为相反数;②(﹣1)2=1,﹣12=﹣1,故互为相反数;③23=8,32=9不互为相反数;④(﹣2)3=﹣8,﹣23=﹣8,相等,不是互为相反数.故选B.12.如果a2=(﹣3)2,那么a等于()A.3 B.﹣3 C.±3 D.9【考点】有理数的乘方.【分析】先求出(﹣3)2的值,∵32=9,(﹣3)2=9,可求出a的值.【解答】解:∵a2=(﹣3)2=9,且(±3)2=9,∴a=±3.故选C.13.下列各式a2b2,,﹣25,,a2﹣2ab+b2中单项式的个数有()A.4个B.3个C.2个D.1个【考点】单项式.【分析】根据单项式的定义进行解答即可.【解答】解: a2b2,是数与字母的积,故是单项式;,,a2﹣2ab+b2中是单项式的和,故是多项式;﹣25是单独的一个数,故是单项式.故共有2个.故选C.14.下列说法正确的是()①最大的负整数是﹣1;②数轴上表示数2和﹣2的点到原点的距离相等;③当a≤0时,|a|=﹣a成立;④a+5一定比a大.A.1个B.2个C.3个D.4个【考点】有理数大小比较;数轴.【分析】根据实数的分类以及绝对值的性质即可作出判断.【解答】解:①最大的负整数是﹣1,正确;②数轴上表示数2和﹣2的点到原点的距离相等,正确;③当a≤0时,|a|=﹣a成立,正确;④a+5一定比a大,正确.故选D15.下列各式中,是二次三项式的是()A.B.32+3+1 C.32+a+ab D.x2+y2+x﹣y【考点】多项式.【分析】由于多项式次数是多项式中次数最高的项的次数,项数是多项式中所有单项式的个数,由此可确定所有答案的项数和次数,然后即可作出选择.【解答】解:A、a2+﹣3是分式,故选项错误;B、32+3+1是常数项,可以合并,故选项错误;C、32+a+ab是二次三项式,故选项正确;D、x2+y2+x﹣y是二次四项式,故选项错误.故选C.16.若﹣3xy2m与5x2n﹣3y8的和是单项式,则m、n的值分别是()A.m=2,n=2 B.m=4,n=1 C.m=4,n=2 D.m=2,n=3【考点】解二元一次方程组;同类项.【分析】两个单项式的和为单项式,则这两个单项式是同类项再根据同类项的定义列出方程组,即可求出m、n的值.【解答】解:由题意,得,解得.故选C.17.计算(﹣1)2n+(﹣1)2n+1的值是()A.2 B.﹣2 C.±2 D.0【考点】有理数的乘方.【分析】根据有理数乘方的含义,得(﹣1)2n+1=﹣1,(﹣1)2n=1,再计算求和即可.【解答】解:(﹣1)2n+(﹣1)2n+1=1+(﹣1)=0.故选D.18.近似数4.50所表示的准确值a的取值范围是()A.4.495≤a<4.505 B.4040≤a<4.60C.4.495≤a≤4.505 D.4.500≤a<4.5056【考点】近似数和有效数字.【分析】根据近似数的精确度求解.【解答】解:近似数4.50所表示的准确值a的取值范围是4.495≤a<4.505.故选A.19.下面用数学语言叙述﹣b,其中表达不正确的是()A.比a的倒数小b的数B.1除以a的商与b的绝对值的差C.1除以a的商与b的相反数的和D.b与a的倒数的差的相反数【考点】代数式.【分析】根据代数式,可得代数式的表达意义.【解答】解:用数学语言叙述﹣bA、比a的倒数小b的数,故A正确;B、1除以a的商与b的绝对值的差,故B错误;C、1除以a的商与b的相反数的和,故C正确;D、b与a的倒数的差的相反数,故D正确;故选:B.20.若a+b<0,ab<0,则下列说法正确的是()A.a、b同号B.a、b异号且负数的绝对值较大C.a、b异号且正数的绝对值较大D.以上均有可能【考点】有理数的乘法;有理数的加法.【分析】根据有理数的加法和有理数的乘法运算法则进行判断即可.【解答】解:∵ab<0,∴a、b异号,∵a+b<0,∴负数的绝对值较大,综上所述,a、b异号且负数的绝对值较大.故选B.三、解答题(耐心计算,认真推理,表露你萌动的智慧!共60分)21.计算(1)(+3.5)﹣(1.4)﹣(2.5)+(﹣4.6)(2)﹣22÷(﹣4)3+|0.8﹣1|×(2)2;(3)[2﹣(+﹣)×24]÷5×(﹣1)2009(4)x﹣2( x+1 )+3x;(5)3x2+2xy﹣4y2﹣(3xy﹣4y2+3x2);(6)4(x2﹣5x)﹣5(2x2+3x)【考点】整式的加减;有理数的混合运算.【分析】利用实数的运算法则和整式的运算法则即可求出答案.【解答】解:(1)原式=3.5﹣2.5﹣1.4﹣4.6=1﹣6=﹣5;(2)原式=﹣4÷(﹣64)+0.2×=+=;(3)原式=[﹣(9+4﹣18)]÷5×(﹣1)=÷5×(﹣1)=﹣;(4)原式=x﹣2x﹣2+3x=2x﹣2;(5)原式=3x2+2xy﹣4y2﹣3xy+4y2﹣3x2=﹣xy;(6)原式=4x2﹣20x﹣10x2﹣15x=﹣6x2﹣35x;22.在数轴上表示下列各数,并按从小到大的顺序用“<”将这些数连接起来:2.5,﹣2.5,,0,.【考点】有理数大小比较;数轴.【分析】先在数轴上表示出各数,再按照从左到右的顺序用“<”连接起来即可.【解答】解:各点在数轴上的位置如图所示:故﹣2.5<﹣<0<1<2.5.23.根据如图所示的数轴,解答下面问题(1)分别写出A、B两点所表示的有理数;(2)请问A、B两点之间的距离是多少?(3)在数轴上画出与A点距离为2的点(用不同于A、B的其它字母表).【考点】数轴.【分析】(1)读出数轴上的点表示的数值即可;(2)根据两点的距离公式,即可求出A、B两点之间的距离;(3)与点A的距离为2的点有两个,一个向左,一个向右.【解答】解:(1)根据所给图形可知A:1,B:﹣2;(2)依题意得:AB之间的距离为:1+2=3;(3)设这两点为C、D,则这两点为C:1+2=3,D:1﹣2=﹣1.如图所示:24.化简求值:已知|a﹣4|+(b+1)2=0,求5ab2﹣[2a2b﹣(4ab2﹣2a2b)]+4a2b 的值.【考点】整式的加减—化简求值;非负数的性质:绝对值;非负数的性质:偶次方.【分析】根据非负数的性质,可求出a、b的值,然后再去括号、合并同类项,对原代数式进行化简,最后把a,b的值代入计算即可.【解答】解:∵|a﹣4|+(b+1)2=0,∴a=4,b=﹣1;原式=5ab2﹣(2a2b﹣4ab2+2a2b)+4a2b=5ab2﹣4a2b+4ab2+4a2b=9ab2=36.25.如图,梯形的上底为a2+2a﹣10,下底为3a2﹣5a﹣80,高为40.(π取3)(1)用式子表示图中阴影部分的面积;(2)当a=10时,求阴影部分面积的值.【考点】列代数式;代数式求值.【分析】(1)根据梯形的面积=(上底+下底)×高,阴影部分的面积等于梯形的面积减去半圆的面积,列式进行计算即可得解;(2)把a=10代入(1)中的代数式进行计算即可得解.【解答】解:(1)∵梯形的上底为a2+2a﹣10,下底为3a2﹣5a﹣80,高为40,半圆的直径为4a,∴阴影部分的面积=(a2+2a﹣10+3a2﹣5a﹣80)×40﹣π()2,=80a2﹣60a﹣1800﹣2a2π,=80a2﹣60a﹣1800﹣2a2×3,=74a2﹣60a﹣1800;(2)当a=10时,74a2﹣60a﹣1800=74×102﹣60×10﹣1800=5000.26.振子从一点A开始左右来回振动8次,如果规定向右为正,向左为负,这8次振动记录为(单位:毫米):+10,﹣9,+8,﹣6,+7.5,﹣6,+8,﹣7.(1)求振子停止时所在位置距A点有多远?(2)如果每毫米需时间0.02秒,则共用时间多少秒?【考点】正数和负数.【分析】(1)根据有理数的加法,可得答案;(2)根据一次用的时间乘以次数,可得答案.【解答】解:(1)+10+(﹣9)+8+(﹣6)+7.5+(﹣6)+8+(﹣7)=5.5毫米,答:振子停止时所在位置距A点5.5毫米;(2)0.02×(10+|﹣9|+8+|﹣6|+7.5+|﹣6|+8+|﹣7|)=0.02×61.5=1.23秒.答:共用时间1.23秒.人教版七年级上册期中考试数学试卷(二)一.精心选一选(本大题共l0小题,每题3分,共30分.在每题所给出的四个选项中,只有一项是符合题意的,把所选项前的字母代号填在卷Il的答题栏内.相信你一定能选对!)1.的绝对值是()A.B.﹣C.D.﹣2.一只蜗牛从深度为10米的井底向上爬3米,然后向下爬1米,接着又向上爬3米,然后又向下爬I米,则此时蜗牛离井口的距离为()A.4米B.5米C.6米D.7米3.下列说法中正确的是()A.整数都是非负数B.带有负号的数一定是负数C.分数都是有理数D.相反数是它本身的数是0和14.2016年10月10日,山东移动4G用户突破3000万,3000万用科学记数法可表示为()A.0.3×108B.3×107C.3×106D.3×1035.若有理数a,b满足a+b<0,ab<0,则()A.a,b都是正数B.a,b都是负数C.a,b中一个正数,一个负数,且正数的绝对值大于负数的绝对值D.a,b中一个正数,一个负数,且负数的绝对值大于正数的绝对值6.下列说法中正确的个数是()①1是单项式;②单项式﹣的系数是﹣1,次数是2;③多项式x2+x﹣1的常数项是1;④多项式x2+2xy+y2的次数是2.A.1个B.2个C.3个D.4个7.与﹣a2b是同类项的是()A.2ab2B.﹣3a2C.ab D.8.多项式x+2y与2x﹣y的差是()A.﹣x+3y B.3x+y C.﹣x+y D.﹣x﹣y9.已知a﹣2b+1的值是﹣l,则(a﹣2b)2+2a﹣4b的值是()A.﹣4 B.﹣l C.0 D.210.如图是用大小相等的小正方形拼成的一组图案,观察并探索:第100个图案中有小正方形的个数是()A.393 B.397 C.401 D.405二、细心填一填(本大题共有5小题,每题3分,共15分.请把结果直接填在题中的横线上.只要你仔细运算,积极思考,相信你一定能填对!)11.一个数的倒数是它本身,这个数是.12.由四舍五入法得到的近似数10.560精确到位.13.若|x﹣1|+(y+2)2=0,则(x+y)2017= .14.请写出一个只含有想x,y两个字母的三次四项式.15.如图,半圆的半径为r,直角三角形的两条直角边分别为a,b,则图中阴影部分的面积是.三、认真答一答(本大题共7题,满分55分.只要你认真审题,细心运算,一定能解答正确!解答应写出文字说明、证明过程或推演过程)16.计算题(1)(﹣2)×(﹣5)+|﹣3|÷(2)﹣23×÷(﹣)2(3)(2﹣1﹣)÷(﹣)17.如图是一个梯形硬纸板,上底为a,下底为2a,一腰为a,另一腰为b(其中b>a),如图所示,用两张同样的梯形纸板可以拼成一个大的梯形,也可以拼成一个长方形.(1)请在方框中画出你拼出的大梯形和长方形.(2)计算拼成的大梯形和长方形的周长.18.化简:5x+(2x+y)﹣(x﹣4y).(2)先化简,再求值:(2x2﹣1+x)﹣2(x﹣x2﹣3),其中x=﹣.19.已知:M=x3﹣3xy+2x+1,N=﹣3x+xy,求多项式3M+2N,并计算当x=﹣1,y=时,3M+2N的值.20.一辆货车从仓库0出发在东西街道上运送水果,规定向东为正方向,依次到达的5个销售地点分别为A,B,C,D,E,最后回到仓库0.货车行驶的记录(单位:千米)如下:+1,+3,﹣6,﹣l,﹣2,+5.请问:(1)请以仓库0为原点,向东为正方向,选择适当的单位长度,画出数轴,并标出A,B,C,D,E的位置;(2)试求出该货车共行驶了多少千米?(3)如果货车运送的水果以l00千克为标准重量,超过的千克数记为正数,不足的千克数记为负数,则运往A,B,C,D,E五个地点的水果重量可记为:+50,﹣l5,+25,﹣l0,﹣15,则该货车运送的水果总重量是多少千克?21.小明和小红在一起玩数学小游戏,他们规定:a*b=a2﹣2ab+b2;=a+b﹣c; =ad﹣bc.请你和他们一起按规定计算:(1)2*(﹣5)的值;(2)(3).22.我国出租车的收费标准因地而异,济宁市规定:起步价为6元,3千米之后每千米1.4元;济南市规定:起步价8元,3千米之后每千米1.2元.(1)求济宁的李先生乘出租车2千米,5千米应付的车费;(2)写出在济宁乘出租车行x千米时应付的车费;(3)当行驶路程超过3千米,不超过l3千米时,求在济南、济宁两地坐出租车的车费相差多少?(4)如果李先生在济南和济宁乘出租车所付的车费相等,试估算出李先生乘出租车多少千米(直接写出答案,不必写过程).参考答案与试题解析一.精心选一选(本大题共l0小题,每题3分,共30分.在每题所给出的四个选项中,只有一项是符合题意的,把所选项前的字母代号填在卷Il的答题栏内.相信你一定能选对!)1.的绝对值是()A.B.﹣C.D.﹣【考点】绝对值.【分析】根据正数的绝对值等于它本身即可求解.【解答】解:的绝对值是.故选A.【点评】本题主要考查绝对值的定义,规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.一只蜗牛从深度为10米的井底向上爬3米,然后向下爬1米,接着又向上爬3米,然后又向下爬I米,则此时蜗牛离井口的距离为()A.4米B.5米C.6米D.7米【考点】有理数的减法;有理数的加法.【专题】常规题型.【分析】先定义向上爬为正,向下爬为负,用井深减去各个数就得到此时蜗牛离井口的距离.【解答】解:向上爬记作“+”,往下爬记作“﹣”蜗牛离井口的距离为10﹣3﹣(﹣1)﹣3﹣(﹣1)=10﹣3+1﹣3+1=6(米)故选C.【点评】本题考查了有理数的加减运算.计算有理数的加减,先把减法转化为加法,可以运用加法的交换律和结合律.3.下列说法中正确的是()A.整数都是非负数B.带有负号的数一定是负数C.分数都是有理数D.相反数是它本身的数是0和1【考点】相反数;有理数.【分析】根据相反数的概念解答即可.【解答】解:A、整数有负整数、0、正整数,故A错误;B、小于零的数是负数,故B错误;C、分数都是有理数,故C正确;D、相反数是它本身的数是非负数,故D错误;故选:C.【点评】本题考查了相反数的意义:只有符号不同的两个数互为相反数,0的相反数是0.4.2016年10月10日,山东移动4G用户突破3000万,3000万用科学记数法可表示为()A.0.3×108B.3×107C.3×106D.3×103【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:3000万用科学记数法可表示为3×107,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.若有理数a,b满足a+b<0,ab<0,则()A.a,b都是正数B.a,b都是负数C.a,b中一个正数,一个负数,且正数的绝对值大于负数的绝对值D.a,b中一个正数,一个负数,且负数的绝对值大于正数的绝对值【考点】有理数的乘法;正数和负数;绝对值;有理数的加法.【分析】两有理数相乘,同号得正,异号得负,因为ab<0,所以a、b异号,再根据a+b<0进一步判定负数的绝对值大于正数的绝对值.【解答】解:∵ab<0,∴a、b异号,∵a+b<0,∴负数的绝对值大于正数的绝对值.故选:D.【点评】考查了有理数的乘法,有理数的加法,本题主要利用两有理数相乘,同号得正,异号得负.6.下列说法中正确的个数是()①1是单项式;②单项式﹣的系数是﹣1,次数是2;③多项式x2+x﹣1的常数项是1;④多项式x2+2xy+y2的次数是2.A.1个B.2个C.3个D.4个【考点】多项式;单项式.【分析】根据单项式和多项式的系数、次数、项数的定义可得.【解答】解:①单独的数字或字母是单项式,正确;②单项式﹣的系数是﹣,次数是2,错误;③多项式x2+x﹣1的常数项是﹣1,错误;④多项式x2+2xy+y2的次数是2,正确;故选:B.【点评】本题主要考查单项式和多项式,熟练掌握单项式的系数、次数和多项式的项数、次数、常数项等概念是关键.7.与﹣a2b是同类项的是()A.2ab2B.﹣3a2C.ab D.【考点】同类项.【分析】根据同类项的定义:所含字母相同,并且相同字母的指数也相同,结合选项进行判断.【解答】解:A、相同字母的指数不同不是同类项,故A错误;B、字母不同不是同类项,故B错误;C、相同字母的指数不同不是同类项,故C错误;D、字母相同,相同字母的指数相同,故D正确;故选:D.【点评】本题考查了同类项的定义,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.8.多项式x+2y与2x﹣y的差是()A.﹣x+3y B.3x+y C.﹣x+y D.﹣x﹣y【考点】整式的加减.【分析】根据题意对两个多项式作差即可.【解答】解:(x+2y)﹣(2x﹣y)=x+2y﹣2x+y=﹣x+3y故选(A)【点评】本题考查多项式运算,要注意多项式参与运算时,需要对该多项式添加括号.9.已知a﹣2b+1的值是﹣l,则(a﹣2b)2+2a﹣4b的值是()A.﹣4 B.﹣l C.0 D.2【考点】代数式求值.【分析】先化简条件得a﹣2b=﹣2,再将(a﹣2b)2+2a﹣4b整理,代值即可得出结论.【解答】解:∵a﹣2b+1的值是﹣l,∴a﹣2b+1=﹣1,∴a﹣2b=﹣2,∴(a﹣2b)2+2a﹣4b=(a﹣2b)2+2(a﹣2b)=4+2×(﹣2)=0,故选C.【点评】此题是代数式求值,主要考查了整式的加减、整体思想,整体代入是解本题的关键.10.如图是用大小相等的小正方形拼成的一组图案,观察并探索:第100个图案中有小正方形的个数是()A.393 B.397 C.401 D.405【考点】规律型:图形的变化类.【分析】观察图形可知后面一个图形比前面一个图形多4个小正方形,所以可得规律为:第n个图形中共有4(n﹣1)+1个小正方形.【解答】解:由图片可知:规律为小正方形的个数=4(n﹣1)+1=4n﹣3.n=100时,小正方形的个数=4n﹣3=397.故选B.【点评】此题考查了规律型:图形的变化,是找规律题,目的是培养同学们观察、分析问题的能力.注意由特殊到一般的分析方法,此题的规律为:第n个图形中共有4(n﹣1)+1个小正方形.二、细心填一填(本大题共有5小题,每题3分,共15分.请把结果直接填在题中的横线上.只要你仔细运算,积极思考,相信你一定能填对!)11.一个数的倒数是它本身,这个数是1或﹣1 .【考点】倒数.【专题】计算题.【分析】根据倒数的定义得倒数等于它本身只有1和﹣1.【解答】解:1或﹣1的倒数等于它本身.故答案为1或﹣1.【点评】本题考查了倒数:a的倒数为.12.由四舍五入法得到的近似数10.560精确到千分位.【考点】近似数和有效数字.【分析】根据近似数的精确度求解.【解答】解:近似数10.560精确到千分位.故答案为千分位.【点评】本题考查了近似数和有效数字:从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.13.若|x﹣1|+(y+2)2=0,则(x+y)2017= ﹣1 .【考点】非负数的性质:偶次方;非负数的性质:绝对值.【分析】首先根据非负数的性质:几个非负数的和等于0,则每个数等于0,从而列方程求得x和y的值,进而求解.【解答】解:根据题意得:x﹣1=0,y+2=0,解得:x=1,y=﹣2,则原式=(1﹣2)2017=﹣1.故答案是:﹣1.【点评】本题考查了非负数的性质:几个非负数的和等于0,则每个数等于0,理解性质是关键.14.请写出一个只含有想x,y两个字母的三次四项式x3+xy+y+1(答案不唯一).【考点】多项式.【分析】由多项式的定义即可求出答案.【解答】解:故答案为:x3+xy+y+1(答案不唯一)【点评】本题考查多项式的概念,属于基础题型.15.如图,半圆的半径为r,直角三角形的两条直角边分别为a,b,则图中阴影部分的面积是πr2﹣ab .【考点】列代数式.【分析】利用大图形面积减去小图形面积即可求出答案.【解答】解:阴影部分面积=πr2﹣ab故答案为:πr2﹣ab【点评】本题考查列代数式,涉及圆面积公式,三角形面积公式.三、认真答一答(本大题共7题,满分55分.只要你认真审题,细心运算,一定能解答正确!解答应写出文字说明、证明过程或推演过程)16.计算题(1)(﹣2)×(﹣5)+|﹣3|÷(2)﹣23×÷(﹣)2(3)(2﹣1﹣)÷(﹣)【考点】有理数的混合运算.【专题】常规题型;实数.【分析】(1)原式先计算乘除运算,再计算加减运算即可得到结果;(2)原式先计算乘方运算,再计算乘除运算即可得到结果;(3)原式利用除法法则变形,再利用乘法分配律计算即可得到结果.【解答】解:(1)原式=10+5=15;(2)原式=﹣8××=﹣8;(3)原式=(﹣+)×(﹣)=﹣3+2﹣=﹣1.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.17.如图是一个梯形硬纸板,上底为a,下底为2a,一腰为a,另一腰为b(其中b>a),如图所示,用两张同样的梯形纸板可以拼成一个大的梯形,也可以拼成一个长方形.(1)请在方框中画出你拼出的大梯形和长方形.(2)计算拼成的大梯形和长方形的周长.【考点】图形的剪拼;矩形的判定与性质;梯形.【分析】(1)直接利用已知图形进而拼凑出梯形与长方形;(2)直接利用已知图形得出其周长.【解答】解:(1)如图所示:;(2)大梯形的周长为:2a+4a+2b=6a+2b(cm),长方形的周长为:2(3a+a)=8a(cm).【点评】此题主要考查了图形的剪拼,正确得出符合题意的图形是解题关键.18.(1)化简:5x+(2x+y)﹣(x﹣4y).(2)先化简,再求值:(2x2﹣1+x)﹣2(x﹣x2﹣3),其中x=﹣.【考点】整式的加减—化简求值.【专题】计算题;整式.【分析】(1)原式去括号合并即可得到结果;(2)原式去括号合并得到最简结果,把x的值代入计算即可求出值.【解答】解:(1)原式=5x+2x+y﹣x+4y=6x+5y;(2)原式=2x2﹣1+x﹣2x+2x2+6=4x2﹣x+5,当x=﹣时,原式=1++5=6.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.19.已知:M=x3﹣3xy+2x+1,N=﹣3x+xy,求多项式3M+2N,并计算当x=﹣1,y=时,3M+2N的值.【考点】整式的加减—化简求值.【专题】计算题;整式.【分析】把M与N代入3M+2N中,去括号合并得到最简结果,将x与y的值代入计算即可求出值.【解答】解:∵M=x3﹣3xy+2x+1,N=﹣3x+xy,∴3M+2N=3(x3﹣3xy+2x+1)+2(﹣3x+xy)=3x3﹣9xy+6x+3﹣6x+2xy=3x3﹣7xy+3,当x=﹣1,y=时,原式=﹣3++3=.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.20.一辆货车从仓库0出发在东西街道上运送水果,规定向东为正方向,依次到达的5个销售地点分别为A,B,C,D,E,最后回到仓库0.货车行驶的记录(单位:千米)如下:+1,+3,﹣6,﹣l,﹣2,+5.请问:(1)请以仓库0为原点,向东为正方向,选择适当的单位长度,画出数轴,并标出A,B,C,D,E的位置;(2)试求出该货车共行驶了多少千米?(3)如果货车运送的水果以l00千克为标准重量,超过的千克数记为正数,不足的千克数记为负数,则运往A,B,C,D,E五个地点的水果重量可记为:+50,﹣l5,+25,﹣l0,﹣15,则该货车运送的水果总重量是多少千克?【考点】数轴;正数和负数.【分析】(1)根据数轴的三要素画出数轴,并根据题意在数轴上表示出A、B、C、D、E的位置;(2)求出行驶记录的数据的绝对值的和即可;(3)根据有理数的加法进行计算即可.【解答】解:(1如图所示:取1个单位长度表示1千米,;。
七年级数学上册期中试卷及答案
![七年级数学上册期中试卷及答案](https://img.taocdn.com/s3/m/90a4df6d00f69e3143323968011ca300a6c3f6ee.png)
七年级数学上册期中试卷及答案知识的宽度、厚度和精度决定人的成熟度。
每一个人比别人成功,只不过是多学了一点知识,多用了一点心而已。
下面给大家分享一些关于七年级数学上册期中试卷及答案,希望对大家有所帮助。
一、选择题(共10小题,每小题2分,满分20分)1.在下列数:﹣(﹣ ),﹣42,﹣|﹣9|,,(﹣1)2004,0中,正数有( )A. 1个B. 2个C. 3个D. 4个考点:正数和负数.分析:根据相反数的定义,绝对值的性质和有理数的乘方化简,再根据正、负数的定义进行判断即可.解答:解:﹣(﹣ )= 是正数,﹣42是负数,﹣|﹣9|=﹣9是负数,是正数,(﹣1)2004=1是正数,0既不是正数也不是负数,综上所述,正数有3个.故选C.点评:本题考查了正数和负数,主要利用了相反数的定义,绝对值的性质和有理数的乘方,熟记概念是解题的关键.2.下列各式计算正确的是( )A. ﹣32=﹣6B. (﹣3)2=﹣9C. ﹣32=﹣9D. ﹣(﹣3)2=9考点:有理数的乘方.分析:根据负数的奇数次幂是负数,负数的偶数次幂是正数进行判断.解答:解:因为﹣32=﹣9;(﹣3)2=9;﹣32=﹣9;﹣(﹣3)2=﹣9,所以A、B、D都错误,正确的是C.故选C.点评:主要考查了乘方里平方的意义.乘方是乘法的特例,乘方的运算可以利用乘法的运算来进行.负数的奇数次幂是负数,负数的偶数次幂是正数;解题还要掌握乘方的运算法则.3.数a、b在数轴上的位置如图所示,则下列判断中,正确的是( )A.a>1B. b>1C. a<﹣1D. b<0考点:有理数大小比较;数轴.分析:首先根据数轴上的数左边的数总是小于右边的数,即可确定各个数的大小关系,即可判断.解答:解:根据数轴可以得到:a<﹣1<0<b<1,< p="">A、a>1,选项错误;B、b>1,选项错误;C、a<﹣1,故选项正确;D、b<0,故选项错误.故选:C.点评:此题考查数轴上点的坐标特点,注意数形结合思想的渗透.4.在,π,0,﹣0.010010001…四个数中,有理数的个数为( )A. 1B. 2C. 3D. 4考点:实数.分析:先根据整数和分数统称有理数,找出有理数,再计算个数.解答:解:根据题意,﹣,0,是有理数,共2个.故选B.点评:本题考查有理数的概念. 如果一个数是小数,它是否属于有理数,就看它是否能化成分数的形式,所有的有限小数和无限循环小数都可以化成分数的形式,因而属于有理数,而无限不循环小数,不能化成分数形式,因而不属于有理数.本题中π是无限不循环小数,故不是有理数.5.若(m﹣2)x|m|﹣1=5是一元一次方程,则m的值为( )A. ±2B. ﹣2C. 2D. 4考点:一元一次方程的定义.分析:若一个整式方程经过化简变形后,只含有一个未知数,并且未知数的次数是1,系数不为0,则这个方程是一元一次方程.据此可得出关于m的方程,继而可求出m的值.解答:解:根据题意,得,解得:m=﹣2.故选B.点评:本题主要考查了一元一次方程的定义.解题的关键是根据一元一次方程的未知数x的次数是1这个条件,此类题目应严格按照定义解答.6.如果关于x的方程6n+4x=7x﹣3m的解是x=1,则m和n满足的关系式是( )A. m+2n=﹣1B. m+2n=1C. m﹣2n=1D. 3m+6n=11考点:一元一次方程的解.专题:计算题.分析:虽然是关于x的方程,但是含有三个未知数,主要把x的值代进去,化出m,n的关系即可.解答:解:把x=1代入方程6n+4x=7x﹣3m中移项、合并同类项得:m+2n=1.故选B.点评:本题考查式子的变形,知道一个未知数的值,然后代入化出另外两数的关系.7.下列关于单项式一的说法中,正确的是( )A. 系数是﹣,次数是4B. 系数是﹣,次数是3C. 系数是﹣5,次数是4D. 系数是﹣5,次数是3考点:单项式.专题:推理填空题.分析:根据单项式系数及次数的定义进行解答即可.解答:解:∵单项式﹣中的数字因数是﹣,所以其系数是﹣ ;∵未知数x、y的系数分别是1,3,所以其次数是1+3=4.故选A.点评:本题考查的是单项式系数及次数的定义,即单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数.8.下列每组中的两个代数式,属于同类项的是( )A. B. 0.5a2b与0.5a2cC. 3abc与3abD.考点:同类项;单项式.专题:探究型.分析:根据同类项的定义对四个选项进行逐一解答即可.解答:解:A、中,所含字母相同,相同字母的指数不相等,∴这两个单项式不是同类项,故本选项错误;B、∵0.5a2b与0.5a2c中,所含字母不相同,∴这两个单项式不是同类项,故本选项错误;C、∵3abc与3ab中,所含字母不相同,∴这两个单项式不是同类项,故本选项错误;D、∵ 中所含字母相同,相同字母的指数相等,∴这两个单项式是同类项,故本选项正确.故选D.点评:本题考查的是同类项的定义,即所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.9.一批电脑进价为a元,加上25%的利润后优惠10%出售,则售价为( )A. a(1+25%)B. a(1+25%)10%C. a(1+25%)(1﹣10%)D. 10%a考点:列代数式.分析:用进价乘以加上利润后的百分比,再乘以优惠后的百分比列式即可.解答:解:售价为:a(1+25%)(1﹣10%).故选C.点评:本题考查了列代数式,比较简单,理解售价与进价之间的百分比的关系是解题的关键.10.如图,边长为(m+3)的正方形纸片,剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为3,则另一边长是( )A. m+3B. m+6C. 2m+3D. 2m+6考点:平方差公式的几何背景.分析:由于边长为(m+3)的正方形纸片剪出一个边长为m的正方形之后,剩余部分又剪拼成一个矩形(不重叠无缝隙),那么根据正方形的面积公式,可以求出剩余部分的面积,而矩形一边长为3,利用矩形的面积公式即可求出另一边长.解答:解:依题意得剩余部分为(m+3)2﹣m2=(m+3+m)(m+3﹣m)=3(2m+3)=6m+9,而拼成的矩形一边长为3,∴另一边长是 =2m+3.故选:C.点评:本题主要考查了多项式除以单项式,解题关键是熟悉除法法则.二、填空题(共8小题,每小题2分,满分16分)11.﹣5的相反数是 5 ,的倒数为﹣.考点:倒数;相反数.分析:根据相反数及倒数的定义,即可得出答案.解答:解:﹣5的相反数是5,﹣的倒数是﹣ .故答案为:5,﹣ .点评:本题考查了倒数及相反数的知识,熟练倒数及相反数的定义是关键.12.太阳光的速度是300 000 000米/秒,用科学记数法表示为3×108米/秒.考点:科学记数法—表示较大的数.专题:常规题型.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将300 000 000用科学记数法表示为3×108.故答案为:3×108.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a 的值以及n的值.13.比较大小:﹣5 < 2,﹣> ﹣ .考点:有理数大小比较.分析:根据正数大于一切负数,两个负数中绝对值大的反而小,即可得出答案.解答:解:﹣5<2,∵ < ,∴﹣ >﹣ .故答案为:<,>.点评:此题考查了有理数的大小比较,用到的知识点是:正数>0,负数<0,正数>负数;两个负数中绝对值大的反而小.14.若3a2﹣a﹣2=0,则5+2a﹣6a2= 1 .考点:代数式求值.专题:整体思想.分析:先观察3a2﹣a﹣2=0,找出与代数式5+2a﹣6a2之间的内在联系后,代入求值.解答:解;∵3a2﹣a﹣2=0,∴3a2﹣a=2,∴5+2a﹣6a2=5﹣2(3a2﹣a)=5﹣2×2=1.故答案为:1.点评:主要考查了代数式求值问题.代数式中的字母表示的数没有明确告知,而是隐含在题设中,把所求的代数式变形整理出题设中的形式,利用“整体代入法”求代数式的值.15.若|a|=8,|b|=5,且a+b>0,那么a﹣b= 3或13 .考点:有理数的减法;绝对值.分析:先根据绝对值的性质,判断出a、b的大致取值,然后根据a+b>0,进一步确定a、b的值,再代入求解即可.解答:解:∵|a|=8,|b|=5,∴a=±8,b=±5;∵a+b>0,∴a=8,b=±5.当a=8,b=5时,a﹣b=3;当a=8,b=﹣5时,a﹣b=13;故a﹣b的值为3或13.点评:此题主要考查了绝对值的性质,能够根据已知条件正确地判断出a、b的值是解答此题的关键.16.如果把每千克x元的糖果3千克和每千克y元的糖果5千克混合在一起,那么混合后糖果的售价是每千克元.考点:列代数式;加权平均数.分析:根据加权平均数的计算方法:先求出所有糖果的总钱数,再除以糖果的总质量.解答:解:依题意,得= .故答案是: .点评:本题考查的是加权平均数的求法.本题易出现的错误是对加权平均数的理解不正确,而求x、y这两个数的平均数.17.规定图形表示运算a﹣b+c,图形表示运算x+z﹣y﹣w.则+ = 0 (直接写出答案).考点:有理数的加减混合运算.专题:新定义.分析:根据题中的新定义化简,计算即可得到结果.解答:解:根据题意得:1﹣2+3+4+6﹣5﹣7=0.故答案为:0.点评:此题考查了有理数的加减混合运算,弄清题中的新定义是解本题的关键.18.在数轴上,若点A与表示﹣2的点的距离为3,则点A表示的数为1或﹣5 .考点:数轴.分析:根据数轴上到一点距离相等的点有两个,可得答案.解答:解:|1﹣(﹣2)|=3|﹣5﹣(﹣2)|=3,故答案为:1或﹣5.点评:本题考查了数轴,数轴上到一点距离相等的点有两个,以防漏掉.三、解答题(共9小题,满分64分)19.计算题:(1)﹣3﹣(﹣9)+5(2)(1﹣+ )×(﹣48)(3)16÷(﹣2)3﹣(﹣)×(﹣4)(4)﹣12﹣(﹣10)÷ ×2+(﹣4)2.考点:有理数的混合运算.分析: (1)先把减法改为加法,再计算;(2)利用乘法分配律简算;(3)先算乘方和和乘法,再算除法,最后算减法;(4)先算乘方和乘除,再算加减.解答:解:(1)原式=﹣3+9+5=11;(2)原式=1×(﹣48)﹣×(﹣48)+ ×(﹣48)=﹣48+8﹣36=﹣76;(3)原式=16÷(﹣8)﹣=﹣2﹣=﹣2 ;(4)原式=﹣1﹣(﹣40)+16=﹣1+40+16=55.点评:此题考查有理数的混合运算,掌握运算顺序,正确判定运算符号计算即可.20.计算:(1)3b+5a﹣(2a﹣4b);(2)4a3﹣(7ab﹣1)+2(3ab﹣2a3).考点:整式的加减.专题:计算题.分析:各式去括号合并即可得到结果.解答:解:(1)原式=3b+5a﹣2a+4b=3a+7b;(2)原式=4a3﹣7ab+1+6ab﹣4a3=1﹣ab.点评:此题考查了整式的加减,熟练掌握运算法则是解本题的关键.21.先化简,再求值:(3x2﹣xy+y)﹣2(5xy﹣4x2+y),其中x=﹣2,y= .考点:整式的加减—化简求值.专题:计算题.分析:原式去括号合并得到最简结果,将x与y的值代入计算即可求出值.解答:解:原式=3x2﹣xy+y﹣10xy+8x2﹣2y=3x2+8x2﹣xy﹣10xy+y﹣2y=11x2﹣11xy﹣y,当x=﹣2,y= 时,原式=51.点评:此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.22.解方程:(1)3x﹣4(2x+5)=x+4(2)2﹣ =x﹣ .考点:解一元一次方程.专题:计算题.分析: (1)方程去括号,移项合并,将x系数化为1 ,即可求出解;(2)方程去分母,去括号,移项合并,将x系数化为1,即可求出解.解答:解:(1)方程去括号得:3x﹣8x﹣20=x+4,移项合并得:﹣6x=24,解得:x=﹣4;(2)方程去分母得:12﹣(x+5)=6x﹣2(x﹣1),去括号得:12﹣x﹣5=6x﹣2x+2,移项合并得:5x=5,解得:x=1.点评:此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解.23.用黑白两种颜色的正六边形地砖按如下所示的规律拼成若干图案:(1)当黑砖n=1时,白砖有 6 块,当黑砖n=2时,白砖有10 块,当黑砖n=3时,白砖有14 块.(2)第n个图案中,白色地砖共4n+2 块.考点:规律型:图形的变化类.专题:应用题.分析: (1)第1个图里有白色地砖6+4(1﹣1)=6,第2个图里有白色地砖6+4(2﹣1)=10,第3个图里有白色地砖6+4(3﹣1)=14;(2)第n个图里有白色地砖6+4(n﹣1)=4n+2.解答:解:(1)观察图形得:当黑砖n=1时,白砖有6块,当黑砖n=2时,白砖有10块,当黑砖n=3时,白砖有14块;(2)根据题意得:∵每个图形都比其前一个图形多4个白色地砖,∴可得规律为:第n个图形中有白色地砖6+4(n﹣1)=4n+2块.故答案为6,10,14,4n+2.点评:本题主要考查了学生通过特例分析从而归纳总结出一般结论的能力,难度适中.24.便民超市原有(5x2﹣10x)桶食用油,上午卖出(7x﹣5)桶,中午休息时又购进同样的食用油(x2﹣x)桶,下午清仓时发现该食用油只剩下5桶,请问:(1)便民超市中午过后一共卖出多少桶食用油?(用含有x的式子表达)(2)当x=5时,便民超市中午过后一共卖出多少桶食用油?考点:整式的加减.专题:计算题.分析:(1)便民超市中午过后一共卖出的食用油=原有的食用油﹣上午卖出的+中午休息时又购进的食用油﹣剩下的5桶,据此列式化简计算即可;(2)把x=5代入(1)化简计算后的整式即可.解答:解:5x2﹣10x﹣(7x﹣5)+(x2﹣x)﹣5=5x2﹣10x﹣7x+5+x2﹣x﹣5=6x2﹣18x(桶),答:便民超市中午过后一共卖出(6x2﹣18x)桶食用油;(2)当x=5时,6x2﹣18x=6×52﹣18×5=150﹣90=60(桶),答:当x=5时,便民超市中午过后一共卖出60桶食用油.点评:此题考查的知识点是正式的加减,关键是正确列出算式并正确运算.25.在抗洪抢险中,人民解放军的冲锋舟沿东西方向的河流抢救灾民,早晨从A地出发,晚上最后到达B地,约定向东为正方向,当天航行依次记录如下(单位:千米) 14,﹣9,18,﹣7,13,﹣6,10,﹣5,问:(1)B地在A地的东面,还是西面?与A地相距多少千米?(2)这一天冲锋舟离A最远多少千米?(3)若冲锋舟每千米耗油2升,油箱容量为100升,求途中至少需要补充多少升油?考点:正数和负数.分析: (1)根据有理数的加法,分别进行相加即可;(2)根据有理数的加法运算,可得每次的距离,再根据有理数的大小比较,可得答案;(3)根据题意先算出航行的距离,再乘以冲锋舟每千米耗油2升,即可得出答案.解答:解:(1)14﹣9+18﹣7+13﹣6+10﹣5=28,即B在A东28千米.(2)累计和分别为5,23,16,29,23,33,28,因此冲锋舟离A最远33千米.(3)各数绝对值和为14+9+18+7+13+6+10+5=82,因此冲锋舟共航行82千米,则应耗油82×2=164升,则途中至少应补充64升油.点评:本题考查了正数和负数,掌握有理数的加法运算是解题关键,注意不论向哪行驶都耗油.26.如图,在5×5的方格(每小格边长为1)内有4只甲虫A、B、C、D,它们爬行规律总是先左右,再上下.规定:向右与向上为正,向左与向下为负.从A到B的爬行路线记为:A→B(+1,+4),从B到A 的爬行路线为:B→A(﹣1,﹣4),其中第一个数表示左右爬行信息,第二个数表示上下爬行信息,那么图中(1)A→C(+3 ,+4 ),B→D(+3 ,﹣2 ),C→ D (+1,﹣2 );(2)若甲虫A的爬行路线为A→B→C→D,请计算甲虫A爬行的路程;(3)若甲虫A的爬行路线依次为(+2,+2),(+1,﹣1),(﹣2,+3),(﹣1,﹣2),最终到达甲虫P处,请在图中标出甲虫A的爬行路线示意图及最终甲虫P的位置.考点:有理数的加减混合运算;正数和负数;坐标确定位置.分析:(1)根据第一个数表示左右方向,第二个数表示上下方向结合图形写出即可;(2)根据行走路线列出算式计算即可得解;(3)根据方格和标记方法作出线路图即可得解.解答:解:(1)A→C(+3,+4);B→D(+3,﹣2);C→D(+1,﹣2)故答案为:+3,+4;+3,﹣2;D,﹣2;(2)据已知条件可知:A→B表示为:(1,4),B→C记为(2,0)C→D记为(1,﹣2);则该甲虫走过的路线长为1+4+2+0+1+2=10.答:甲虫A爬行的路程为10;(3)甲虫A爬行示意图与点P的位置如图所示:点评:本题主要考查了利用坐标确定点的位置的方法.解题的关键是正确的理解从一个点到另一个点移动时,如何用坐标表示.27.将长为1,宽为a的长方形纸片( <a<1)如图那样折一下,剪下一个边长等于长方形宽度的正方形(称为第一次操作);再把剩下的长方形如图那样折一下,剪下一个边长等于此时矩形宽度的正方形(称为第二次操作);如此反复操作下去,若在第n次操作后剩下的矩形为正方形,则操作终止.< p="">(1)第一次操作后,剩下的矩形两边长分别为a与1﹣a ;(用含a 的代数式表示)(2)若第二次操作后,剩下的长方形恰好是正方形,则a= ;(3)若第三次操作后,剩下的长方形恰好是正方形,试求a的值.考点:一元一次方程的应用;列代数式;整式的加减.分析:(1)根据所给的图形可以看出每一次操作时所得正方形的边长都等于原矩形的宽,再根据长为1,宽为a的长方形即可得出剩下的长方形的长和宽;(2)再根据(1)所得出的原理,得出第二次操作时正方形的边长为1﹣a,即可求出第二次操作以后剩下的矩形的两边的长分别是1﹣a和2a﹣1,并且剩下的长方形恰好是正方形,即可求出a的值;(3)根据(2)所得出的长方形两边长分别是1﹣a和2a﹣1,分两种情况进行讨论:①当1﹣a>2a﹣1时,第三次操作后,剩下的长方形两边长分别是(1﹣a)﹣(2a﹣1)和2a﹣1;②当1﹣a<2a﹣1时,第三次操作后,剩下的长方形两边长分别是(2a﹣1)﹣(1﹣a)和1﹣a,并且剩下的长方形恰好是正方形,即可求出a的值.解答:解:(1)∵长为1,宽为a的长方形纸片( <a<1),< p=""> ∴第一次操作后剩下的矩形的长为a,宽为1﹣a;(2)∵第二次操作时正方形的边长为1﹣a,第二次操作以后剩下的矩形的两边分别为1﹣a,2a﹣1,此时矩形恰好是正方形,∴1﹣a=2a﹣1,解得a= ;(3)第二次操作后,剩下矩形的两边长分别为:1﹣a与2a﹣1.①当1﹣a>2a﹣1时,由题意得:(1﹣a)﹣(2a﹣1)=2a﹣1,解得: .当时,1﹣a>2a﹣1.所以,是所求的一个值;②当1﹣a<2a﹣1时,由题意得:(2a﹣1)﹣(1﹣a)=1﹣a,解得: .当时,1﹣a<2a﹣1.所以,是所求的一个值;所以,所求a的值为或 ;故答案为(1)a与1﹣a;(2) .点评:本题考查了一元一次方程的应用,解题的关键是分别求出每次操作后剩下的矩形的两边的长度,有一定难度.。
初一上册数学期中试题及答案【四篇】
![初一上册数学期中试题及答案【四篇】](https://img.taocdn.com/s3/m/02cc3ca464ce0508763231126edb6f1aff007199.png)
【导语】上学期期中考试马上到了,想要测试⼀下⾃⼰数学半个学期的学习⽔平吗?下⾯是为您整理的初⼀上册数学期中试题及答案【四篇】,仅供⼤家参考。
【篇⼀】初⼀上册数学期中试题及答案 ⼀、精⼼选⼀选(每题3分,共计24分) 1.在2、0、﹣3、﹣2四个数中,最⼩的是()A.2B.0C.﹣3D.﹣2 【考点】有理数⼤⼩⽐较. 【分析】在数轴上表⽰出各数,利⽤数轴的特点即可得出结论. 【解答】解:如图所⽰, , 由图可知,最⼩的数是﹣3. 故选C. 【点评】本题考查的是有理数的⼤⼩⽐较,熟知数轴上右边的数总⽐左边的⼤是解答此题的关键. 2.下列式⼦,符合代数式书写格式的是()A.a÷3B.2xC.a×3D. 【考点】代数式. 【分析】利⽤代数式书写格式判定即可 【解答】解: A、a÷3应写为, B、2a应写为a, C、a×3应写为3a, D、正确, 故选:D. 【点评】本题主要考查了代数式,解题的关键是熟记代数式书写格式. 3.在﹣,3.1415,0,﹣0.333…,﹣,﹣0.,2.010010001…中,⽆理数有()A.1个B.2个C.3个D.4个 【考点】⽆理数. 【分析】⽆理数是指⽆限不循环⼩数,根据定义逐个判断即可. 【解答】解:⽆理数有﹣,2.010010001…,共2个, 故选B. 【点评】本题考查了对⽆理数定义的应⽤,能理解⽆理数的定义是解此题的关键,注意:⽆理数包括三⽅⾯的数:①含π的,②开⽅开不尽的根式,③⼀些有规律的数. 4.若|m﹣3|+(n+2)2=0,则m+2n的值为()A.﹣1B.1C.4D.7 【考点】⾮负数的性质:偶次⽅;⾮负数的性质:绝对值. 【分析】先根据⾮负数的性质求出m、n的值,再代⼊代数式进⾏计算即可. 【解答】解:∵|m﹣3|+(n+2)2=0, ∴m﹣3=0,n+2=0,解得m=3,n=﹣2, ∴m+2n=3﹣4=﹣1. 故选A. 【点评】本题考查的是⾮负数的性质,熟知⼏个⾮负数的和为0时,其中每⼀项必为0是解答此题的关键. 5.下列计算的结果正确的是()A.a+a=2a2B.a5﹣a2=a3C.3a+b=3abD.a2﹣3a2=﹣2a2 【考点】合并同类项. 【专题】常规题型. 【分析】根据合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变,判断各选项即可. 【解答】解:A、a+a=2a,故本选项错误; B、a5与a2不是同类项,⽆法合并,故本选项错误; C、3a与b不是同类项,⽆法合并,故本选项错误; D、a2﹣3a2=﹣2a2,本选项正确. 故选D. 【点评】本题考查合并同类项的知识,要求掌握同类项的概念,会辨别同类项,并准确地掌握判断同类项的两条标准:带有相同系数的代数项;字母和字母指数. 6.⽤代数式表⽰“m的3倍与n的差的平⽅”,正确的是()A.(3m﹣n)2B.3(m﹣n)2C.3m﹣n2D.(m﹣3n)2 【考点】列代数式. 【分析】认真读题,表⽰出m的3倍为3m,与n的差,再减去n为3m﹣n,最后是平⽅,于是答案可得. 【解答】解:∵m的3倍与n的差为3m﹣n, ∴m的3倍与n的差的平⽅为(3m﹣n)2. 故选A. 【点评】本题考查了列代数式的知识;认真读题,充分理解题意是列代数式的关键,本题应注意的是理解差的平⽅与平⽅差的区别,做题时注意体会. 7.下列各对数中,数值相等的是()A.(2)3和(﹣3)2B.﹣32和(﹣3)2C.﹣33和(﹣3)3D.﹣3×23和(﹣3×2)3 【考点】有理数的乘⽅. 【分析】分别利⽤有理数的乘⽅运算法则化简各数,进⽽判断得出答案. 【解答】解:A、∵(﹣3)2=9,23=8, ∴(﹣3)2和23,不相等,故此选项错误; B、∵﹣32=﹣9,(﹣3)2=9, ∴﹣23和(﹣2)3,不相等,故此选项错误; C、∵﹣33=﹣27,(﹣33)=﹣27, ∴﹣33和(﹣3)3,相等,故此选项正确; D、∵﹣3×23=﹣24,(﹣3×2)3=,﹣216, ∴﹣3×23和(﹣3×2)3不相等,故此选项错误. 故选:C. 【点评】此题主要考查了有理数的乘⽅运算,正确掌握运算法则是解题关键. 8.等边△ABC在数轴上的位置如图所⽰,点A、C对应的数分别为0和﹣1.若△ABC绕顶点沿顺时针⽅向在数轴上连续翻转,翻转1次后,点B所对应的数为1,则连续翻转2015次后,点B()A.不对应任何数B.对应的数是2013C.对应的数是2014D.对应的数是2015 【考点】数轴. 【专题】规律型. 【分析】结合数轴根据翻折的次数,发现对应的数字依次是:1,1,2.5;4,4,5.5;7,7,8.5…即第1次和第⼆次对应的都是1,第四次和第五次对应的都是4,第7次和第8次对应的都是7.根据这⼀规律:因为2015=671×3+2=2013+2,所以翻转2015次后,点B所对应的数2014. 【解答】解:因为2015=671×3+2=2013+2, 所以翻转2015次后,点B所对应的数是2014. 故选:C. 【点评】考查了数轴,本题是⼀道找规律的题⽬,要求学⽣通过观察,分析、归纳发现其中的规律,并应⽤发现的规律解决问题.注意翻折的时候,点B对应的数字的规律:只要是3n+1和3n+2次翻折的对应的数字是3n+1. ⼆、细⼼填⼀填(每空2分,共计30分) 9.﹣5的相反数是5,的倒数为﹣. 【考点】倒数;相反数. 【分析】根据相反数及倒数的定义,即可得出答案. 【解答】解:﹣5的相反数是5,﹣的倒数是﹣. 故答案为:5,﹣. 【点评】本题考查了倒数及相反数的知识,熟练倒数及相反数的定义是关键. 10.⽕星和地球的距离约为34000000千⽶,这个数⽤科学记数法可表⽰为3.4×107千⽶. 【考点】科学记数法—表⽰较⼤的数. 【分析】科学记数法的表⽰形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,⼩数点移动了多少位,n的绝对值与⼩数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数. 【解答】解:34000000=3.4×107, 故答案为:3.4×107. 【点评】此题考查科学记数法的表⽰⽅法.科学记数法的表⽰形式为a×10n的形式,其中1≤|a|<10,n为整数,表⽰时关键要正确确定a的值以及n的值. 11.⽐较⼤⼩:﹣(+9)=﹣|﹣9|;﹣>﹣(填“>”、“ 【考点】有理数⼤⼩⽐较. 【分析】先去括号及绝对值符号,再根据负数⽐较⼤⼩的法则进⾏⽐较即可. 【解答】解:∵﹣(+9)=﹣9,﹣|﹣9|=﹣9, ∴﹣(+9)=﹣|﹣9|; ∵|﹣|==,|﹣|==, ∴﹣>﹣. 故答案为:=,>. 【点评】本题考查的是有理数的⼤⼩⽐较,熟知负数⽐较⼤⼩的法则是解答此题的关键. 12.单项﹣的系数是﹣,次数是4次;多项式xy2﹣xy+24是三次三项式. 【考点】多项式;单项式. 【分析】根据单项式的系数及次数的定义,多项式的次数及项数的概念解答. 【解答】解:单项﹣的系数是﹣,次数是4次,多项式xy2﹣xy+24是三次三项式. 【点评】根据单项式的单项式的系数是单项式前⾯的数字因数,次数是单项式所有字母指数的和; 多项式是由单项式组成的,常数项也是⼀项,多项式的次数是“多项式中次数的项的次数”. 13.若﹣7xyn+1与3xmy4是同类项,则m+n=4. 【考点】同类项. 【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出⽅程,求出n,m的值,再代⼊代数式计算即可. 【解答】解:根据题意,得:m=1,n+1=4, 解得:n=3, 则m+n=1+3=4. 故答案是:4. 【点评】本题考查了同类项的定义,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点. 14.⼀个多项式加上﹣3+x﹣2x2得到x2﹣1,这个多项式是3x2﹣x+2. 【考点】整式的加减. 【分析】本题涉及整式的加减运算、合并同类项两个考点,解答时根据整式的加减运算法则求得结果即可. 【解答】解:设这个整式为M, 则M=x2﹣1﹣(﹣3+x﹣2x2), =x2﹣1+3﹣x+2x2, =(1+2)x2﹣x+(﹣1+3), =3x2﹣x+2. 故答案为:3x2﹣x+2. 【点评】解决此类题⽬的关键是熟练掌握同类项的概念和整式的加减运算.整式的加减实际上就是合并同类项,这是各地中考的常考点,最后结果要化简. 15.按照如图所⽰的操作步骤,若输⼊x的值为﹣3,则输出的值为22. 【考点】有理数的混合运算. 【专题】图表型. 【分析】根据程序框图列出代数式,把x=﹣3代⼊计算即可求出值. 【解答】解:根据题意得:3x2﹣5=3×(﹣3)2﹣5=27﹣5=22, 故答案为:22 【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键. 16.⼀只蚂蚁从数轴上⼀点A出发,沿着同⼀⽅向在数轴上爬了7个单位长度到了B点,若B点表⽰的数为﹣3,则点A所表⽰的数是4或﹣10. 【考点】数轴. 【分析】“从数轴上A点出发爬了7个单位长度”,这个⽅向是不确定的,可以是向左爬,也可以是向右爬. 【解答】解:分两种情况: 从数轴上A点出发向左爬了7个单位长度,则A点表⽰的数是4; 从数轴上A点出发向右爬了7个单位长度,则A点表⽰的数是﹣10, 故答案为:4或﹣10. 【点评】考查了数轴,由于引进了数轴,我们把数和点对应起来,也就是把“数”和“形”结合起来,在学习中要注意培养数形结合的数学思想以及分类的思想. 17.若3a2﹣a﹣2=0,则5+2a﹣6a2=1. 【考点】代数式求值. 【专题】整体思想. 【分析】先观察3a2﹣a﹣2=0,找出与代数式5+2a﹣6a2之间的内在联系后,代⼊求值. 【解答】解;∵3a2﹣a﹣2=0,∴3a2﹣a=2, ∴5+2a﹣6a2=5﹣2(3a2﹣a)=5﹣2×2=1. 故答案为:1. 【点评】主要考查了代数式求值问题.代数式中的字母表⽰的数没有明确告知,⽽是隐含在题设中,把所求的代数式变形整理出题设中的形式,利⽤“整体代⼊法”求代数式的值. 18.已知f(x)=1+,其中f(a)表⽰当x=a时代数式的值,如f(1)=1+,f(2)=1+,f(a)=1+,则f(1)•f(2)•f(3)…•f(100)=101. 【考点】代数式求值. 【专题】新定义. 【分析】把数值代⼊,计算后交错约分得出答案即可. 【解答】解:∵f(1)=1+=2,f(2)=1+=,…f(a)=1+=, ∴f(1)•f(2)•f(3)…•f(100) =2×××…×× =101. 故答案为:101. 【点评】此题考查代数式求值,理解题意,计算出每⼀个式⼦的数值,代⼊求得答案即可. 三、认真答⼀答(共计46分) 19.画⼀条数轴,然后在数轴上表⽰下列各数:﹣(﹣3),﹣|﹣2|,1,并⽤“ 【考点】有理数⼤⼩⽐较;数轴. 【分析】根据数轴是⽤点表⽰数的⼀条直线,可⽤数轴上得点表⽰数,根据数轴上的点表⽰的数右边的总⽐左边的⼤,可得答案. 【解答】解:在数轴上表⽰各数: ⽤“ 【点评】本题考查了有理数⽐较⼤⼩,数轴上的点表⽰的数右边的总⽐左边的⼤. 20.计算: (1)﹣20+(﹣5)﹣(﹣18); (2)(﹣81)÷×÷(﹣16) (3)(﹣+﹣)÷(﹣) (4)(﹣1)100﹣×[3﹣(﹣3)2]. 【考点】有理数的混合运算. 【专题】计算题. 【分析】(1)原式利⽤减法法则变形,计算即可得到结果; (2)原式从左到右依次计算即可得到结果; (3)原式利⽤除法法则变形,再利⽤乘法分配律计算即可得到结果; (4)原式先计算乘⽅运算,再计算乘法运算,最后算加减运算即可得到结果. 【解答】解:(1)原式=﹣20﹣5+18=﹣25+18=﹣7; (2)原式=81×××=1; (3)原式=(﹣+﹣)×(﹣24)=6﹣4+3=5; (4)原式=1﹣×(﹣6)=1+1=2. 【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键. 21.化简 (1)3b+5a﹣(2a﹣4b) (2)5(3a2b﹣ab2)﹣4(﹣ab2+3a2b); (3)先化简,再求值:4(x﹣1)﹣2(x2+1)+(4x2﹣2x),其中x=﹣3. 【考点】整式的加减—化简求值;整式的加减. 【专题】计算题. 【分析】(1)原式去括号合并即可得到结果; (2)原式去括号合并即可得到结果; (3)原式去括号合并得到最简结果,把x的值代⼊计算即可求出值. 【解答】解:(1)原式=3b+5a﹣2a+4b=3a+7b; (2)原式=15a2b﹣5ab2+4ab2﹣12a2b=3a2b﹣ab2; (3)原式=4x﹣4﹣2x2﹣2+2x2﹣x=3x﹣6, 当x=﹣3时,原式=﹣15. 【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键. 22.有这样⼀道题⽬:“当a=3,b=﹣4时,求多项式3(2a3b﹣a2b﹣a3)﹣(6a3b﹣3a2b+3)+3a3的值”.⼩敏指出,题中给出的条件a=3,b=﹣4是多余的,她的说法有道理吗?为什么? 【考点】整式的加减—化简求值. 【专题】计算题. 【分析】原式去括号合并得到结果为常数,故⼩敏说法有道理. 【解答】解:原式=6a3b﹣3a2b﹣3a3﹣6a3b+3a2b﹣3+3a3=﹣3, 多项式的值为常数,与a,b的取值⽆关, 则⼩敏说法有道理. 【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键. 23.定义⼀种新运算:观察下列式: 1⊙3=1×4+3=7; 3⊙(﹣1)=3×4﹣1=11; 5⊙4=5×4+4=24; 4⊙(﹣3)=4×4﹣3=13;… (1)根据上⾯的规律,请你想⼀想:a⊙b=4a+b; (2)若a⊙(﹣2b)=6,请计算(a﹣b)⊙(2a+b)的值. 【考点】有理数的混合运算. 【专题】新定义. 【分析】(1)利⽤已知新定义化简即可得到结果; (2)已知等式利⽤已知新定义化简求出2a﹣b的值,原式利⽤新定义化简后代⼊计算即可求出值. 【解答】解:(1)根据题中新定义得:a⊙b=4a+b; 故答案为:4a+b; (2)∵a⊙(﹣2b)=4a﹣2b=6,∴2a﹣b=3, 则(a﹣b)⊙(2a+b)=4(a﹣b)+(2a+b)=4a﹣4b+2a+b,=6a﹣3b=3(2a﹣b)=3×3=9. 【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键. 24.某⼯艺⼚计划⼀周⽣产⼯艺品2100个,平均每天⽣产300个,但实际每天⽣产量与计划相⽐有出⼊.表是某周的⽣产情况(超产记为正、减产记为负): 星期⼀⼆三四五六⽇ 增减(单位:个)+5﹣2﹣5+15﹣10﹣6﹣9 (1)写出该⼚星期三⽣产⼯艺品的数量; (2)本周产量中最多的⼀天⽐最少的⼀天多⽣产多少个⼯艺品? (3)请求出该⼯艺⼚在本周实际⽣产⼯艺品的数量; (4)已知该⼚实⾏每周计件⼯资制,每⽣产⼀个⼯艺品可得60元,若超额完成任务,则超过部分每个另奖50元,少⽣产⼀个扣80元.试求该⼯艺⼚在这⼀周应付出的⼯资总额. 【考点】正数和负数. 【分析】(1)根据每天平均300辆,超产记为正、减产记为负,即可解题; (2)⽤15﹣(﹣10)即可解答; (3)把正负数相加计算出结果,再与2100相加即可; (3)计算出本周⼀共⽣产电车数量,根据⼀辆车可得60元即可求得该⼚⼯⼈这⼀周的⼯资总额. 【解答】解:(1)300﹣5=295(个). 答:该⼚星期三⽣产⼯艺品的数量是295个; (2)15﹣(﹣10)=25(个). 答:最多⽐最少多25个; (3)5﹣2﹣5+15﹣10﹣6﹣9=﹣12, 2100﹣12=2088(个). 答:该⼯艺⼚在本周实际⽣产⼯艺品的数量为2088个; (4)2088×60﹣12×80=124320(元). 答:该⼯艺⼚在这⼀周应付出的⼯资总额为124320元. 【点评】本题考查了正数和负数的定义,明确超产记为正、减产记为负是解题的关键. 25.先看数列:1,2,4,8,…,263.从第⼆项起,每⼀项与它的前⼀项的⽐都等于2,象这样,⼀个数列:a1,a2,a3,…,an﹣1,an;从它的第⼆项起,每⼀项与它的前⼀项的⽐都等于⼀个常数q,那么这个数列就叫等⽐数列,q 叫做等⽐数列的公⽐. 根据你的阅读,回答下列问题: (1)请你写出⼀个等⽐数列,并说明公⽐是多少? (2)请你判断下列数列是否是等⽐数列,并说明理由;,﹣,,﹣,…; (3)有⼀个等⽐数列a1,a2,a3,…,an﹣1,an;已知a1=5,q=﹣3;请求出它的第25项a25.(结果不需化简,可以保留乘⽅的形式) 【考点】规律型:数字的变化类. 【专题】新定义. 【分析】(1)根据定义举⼀个例⼦即可; (2)根据定义,即每⼀项与它的前⼀项的⽐都等于⼀个常数q(q≠0),那么这个数列就叫做等⽐数列,进⾏分析判断; (3)根据定义,知a25=5×224. 【解答】解:(1)1,3,9,27,81.公⽐为3; (2)等⽐数列的公⽐q为恒值, ﹣÷=﹣,÷(﹣)=﹣,﹣÷=﹣, 该数列的⽐数不是恒定的,所以不是等⽐数例; (3)由等⽐数列公式得an=a1qn﹣1=5×(﹣3)24, 它的第25项a25=5×(﹣3)24. 【点评】此题考查数字的变化规律,理解等⽐数列的意义,抓住计算的⽅法是解决问题的关键. 【篇⼆】初⼀上册数学期中试题及答案 ⼀、选择题(每题3分,共30分) 1-的相反数是().A.-2016B.2016C.D.- 2.甲⼄两地的海拔⾼度分别为300⽶,-50⽶,那么甲地⽐⼄地⾼出().A.350⽶B.50⽶C.300⽶D.200⽶ 3.下⾯计算正确的是()A.5x2-x2=5B.4a2+3a2=7a2C.5+y=5yD.-0.25mn+mn=0 4.学校、家、书店依次坐落在⼀条南北⾛向的⼤街上,学校在家的南边20⽶,书店在家北边100⽶,李明同学从家⾥出发,向北⾛了50⽶,接着⼜向北⾛了-70⽶,此时李明的位置()A.在家B.在书店C.在学校D.不在上述地⽅ 5.下列去括号正确的是()A.-(3x+7)=-3x+7B.-(6x-3)=-2x+3C.(3m-5n)=m+nD.-(m-2a)=-m+2a 6.下列⽅程中,是⼀元⼀次⽅程的为()A.5x-y=3B.C.D. 7.已知代数式x+2y+1的值是5,则代数式2x+4y+1的值是()A.1B.5C.9D.不能确定 8.已知有理数,所对应的点在数轴上如图所⽰,化简得()A.a+bB.b-aC.a-bD.-a-b 9.列说法错误的是().A.若,则x=y;B.若x2=y2,则-4x2=-4y2;C.若-x=6,则x=-;D.若6=-x,则x=-6. 10.某区中学⽣⾜球赛共赛8轮(即每队均参赛8场),胜⼀场得3分,平⼀场得1分,输 ⼀场得0分,在这次⾜球联赛中,猛虎⾜球队踢平的场数是所负场数的2倍,共得17 分,则该队胜了()场.A.6B.5C.4D.3 ⼆、填空题(每题3分,共24分) 11.地球绕太阳每⼩时转动经过的路程约为110000千⽶,⽤科学记数法记为⽶ 12.若,,且,则的值可能是:. 13.当时,代数式的值为2015.则当时,代数式的 值为。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初一数学上册期中考试试卷及答案
A b 1
0-a B 起航教育七年级数学期中试卷
一、单选(本大题共12小题,每小题4分,共48分,)
1.的绝对值是( ). (A) (B) (C)2 (D) -22.武汉长江二桥是世界上第一座弧线形钢塔斜拉桥,该桥全长16800m ,用科学记数法表示这个数为( ).
(A)1.68×104m (B)16.8×103 m (C)0.168×104m (D)1.68×103m
3.如果收入15元记作+15元,那么支出20元记作( )元.
(A)+5 (B)+20 (C)-5 (D)-20
4.有理数,,, ,-(-1),中,其中等于1的个数是( ).(A)3个 (B)4个 (C)5个 (D)6个
5.已知p 与q 互为相反数,且p ≠0,那么下列关系式正确的是( ).(A) (B)
(C) (D) 6.在代数式中,单项式有( )(A )3个 ( B )4个 ( C )5个 ( D )6个
7.下列变形中, 不正确的是( ).
(A) a +(b +c -d)=a +b +c -d (B) a -(b -c +d)=a -b +c -d
(C) a -b -(c -d)=a -b -c -d (D) a +b -(-c -d)=a +b +c +d
8.如图,若数轴上的两点A 、B 表示的数分别为a 、b ,则下列结论正确的是( ).
(A) b -a>0(B) a -b>0(C) ab >0(D) a +b>0
9.下列说法正确的是( )(A )单项式是整式,整式也是单项式; (B )25与x 5是同类项
(C )单项式的系数是,次数是4; ( D )是一次二项式10.一个多项式加上得,则这个多项式为( )
(A ) (B ) ( C )( D )11.化简x-y-(x+y)的最后结果是( )
(A )0 ( B )2x ( C )-2y ( D )2x-2y
12.已知、互为相反数,、互为倒数,等于-4的2次方,则式子的值为( ).
(A)2 (B)4 (C)-8 (D)8
二、填一填(本大题共4小题, 每小题4分, 共16分, 请将你的答案写在“_______”处)
13.写出一个比小的整数: .14.已知甲地的海拔高度是300m ,乙地的海拔高度是-50m ,那么甲地比乙地高____________m
15. 若和
是同类项,则 16.小方利用计算机设计了一个计算程序,输入和输出的数据如下表:
输入…12345…
12-1212
-2(1)-3(1)-21-1-11
--.1p q =1q p =0p q +=0p q -=221,,0,5,,,33ab abc x y x π
---312x y π12
π12x +3452--x x x x 32--3742--x x 362--x x 362++-x x 3
762---x x a b c d x 1()2
cd a b x x ---12
-123m a bc -3222n a b c --m n +=
输出……
那么,当输入数据为8时,输出的数据为 .
三、 解答题(本大题共7小题,共86分)
17.(本题20分)计算
(1) (2)
(4) 18.(本题10分) (1)化简 (2) 合并同类项
19.(1)先化简再求值(5分),其中
(2)先化简,再求值(5分)20.( 7分)若 和 是同类项,
1225310417
52613(1)(48)64
-+⨯-4)2(2)1(310÷-+⨯-()2411(10.5)233⎡⎤---⨯⨯--⎣⎦()41)4(24053(5[31322⨯-÷--⨯-⨯--()()b a b a 4392222--++2535232222+---+ab b a ab b a
22223])5.1(22[3xy xy y x xy xy y x ++---2,3-=-=y x .
2,3),23(4)32(=-=---+y x y x y y x 其中23m a bc 322n a b c -22223[22(2)]m n mn m n mn --+求的值.
21.(本题10分)某工厂一周计划每日生产自行车100辆,由于工人实行轮休,每日上班人数不一定相等,实
际每日生产量与计划量相比情况如下表(以计划量为标准,增加的车辆数记为正数,减少的车辆数记为负数):星期一二三四五六日
增减/辆-1+3-2+4+7-5-10
(1)生产量最多的一天比生产量最少的一天多生产多少辆?(3分)
(2)本周总的生产量是多少辆?(3分)
解:
22.(10分)某市出租车收费标准是:起步价10元,可乘3千米;3千米到5千米,每千米1.3元;超
过5千米,每千米2.4元。
(1)若某人乘坐了()千米的路程,则他应支付的费用是多少?
(2)若某人乘坐的路程为6千米,那么他应支付的费用是多少?
23.(14分)某商场购进一批西服,进价为每套250元,原定每套以290元的价格销售,这样每天可销售200
套。
如果每套比原销售价降低10元销售,则每天可多销售100套。
该商场为了确定销售价格,作了如下测算,请你参加测算,并由此归纳得出结论(每套西服的利润=每套西服的销售价-每套西服的进价)。
1、按原销售价销售,每天可获利润 元。
2、若每套降低10元销售,每天可获利润 元。
3、如果每套销售价降低10元,每天就多销售100套,每套销售价降低20元,每天就多销售200套。
按这种方式:
(1)、若每套降低10x 元,则每套的销售价格为_____________元;(用代数式表示)
(2)、若每套降低10x 元,则每天可销售_____________套西服。
(用代数式表示)
(3)若每套降低10x 元,则每天共可以获利润 元。
(用代数式表示)
x 5 x
2012-2013学年度上学期
七年级数学期中考试参考答案与评分标准
一、选一选,比比谁细心
1.A
2.A
3.D
4.B
5.C
6.C
7.C
8.A
9.C 10.C 11.C 12.D
二、填一填,看看谁仔细
13.-1等 14. 350 15.7 16. 三、解一解,试试谁更棒
17.(1)解: = -48+8-36
=-76
(2)解:
=1×2 +(-8)÷4
=2-2=0
865
13
(1(48)
64-+⨯-4)2(2)1(310÷-+⨯-[]
11
129231
1761
6
=--⨯⨯-=--⨯-=解:原式()
7
=-1+6
[]
11
129231
1761
6
=--⨯⨯-=--⨯-=解:原式()
7=-1+6
18.(1)
(2)
19.(1) 解: , 当时 原式= (2) 20.
21.
22.
23.解:1、8000
2、 9000
3、(1)、(40-10x )
(2)、100x
(3)(40-10x)(200+100x) ()()
b
a b
a b a b a b a 14431844392222222+=--+=--++233
5ab =--解:原式(分)
xy
xy xy
xy y x xy xy y x xy xy y x xy xy y x xy xy y x +=++-+-=+--+-=++---2222
2222222)32()33(332233])5.1(22[32,3-=-=y x 6
)2()3()2(322-=-⨯-+-⨯-=+xy xy 2344232x y y x y
x y
x y =+--+=-+=-=解:原式当,时,
原式 = -(-3)+2
=3+2
=5
2222222
23224523,153********
456
51
m n m n mn m n mn m n mn m n -++=+===⨯⨯+⨯⨯=⨯+⨯=+=2、解:依题意得,=3,=1
原式=3当时
原式元)(6.04.21+x 元
)(152。