吡啶类化合物的合成及应用研究进展
吡啶的发展历程
吡啶的发展历程
吡啶是一种重要的有机化合物,具有广泛的应用。
以下是吡啶的发展历程。
在19世纪初,吡啶并未被人们广泛认识和应用。
直到1876年,德国化学家沃勒合成了吡啶,并首次确定了其化学结构。
这一发现使得人们对吡啶产生了新的兴趣。
20世纪初,吡啶的合成方法得到了进一步的改进。
德国化学
家斯科夫发现了通过脱氧吡啶酸盐与丙酮进行气相反应制得吡啶的方法,这使得吡啶的合成变得更加高效和简便。
随着合成方法的改进,吡啶的研究也进一步深入。
人们发现吡啶具有许多重要的药理活性,例如抗菌、抗病毒、抗癌等。
这些发现极大地推动了吡啶在药物领域的应用,并成为了研究人员们的热点。
到了20世纪中叶,吡啶已经成为了有机合成和药物化学领域
中的重要骨架。
人们进一步研究和改进了吡啶的合成方法,使其合成变得更加多样化和高效。
随着化学技术的不断发展,吡啶的应用领域也在不断扩大。
如今,吡啶已经成为了农药、染料、橡胶添加剂、防腐剂等领域中不可或缺的重要原料。
总的来说,吡啶经历了从未被人们熟知到逐渐被广泛应用的发展历程。
通过不断的研究和改进,吡啶的合成方法得到了改善,
应用领域也得到了拓宽。
吡啶的发展不仅推动了有机合成和药物化学领域的进步,也为其他领域的发展提供了有力的支持。
吡啶类化合物氧化制备吡啶N-氧化物研究进展
吡啶 Ⅳ_ 氧 化物 是一类 重要 的吡 啶衍生 物【 ” 。这 些 Ⅳ_ 氧 化物不 仅存在 于 天然产 物 中 , 如 吕子 明等 已
从 陵水 暗 罗枝 、 叶 中提取 分离 得 到吡 啶一 Ⅳ_ 氧化 物 、 2 一 巯基 吡 啶一 Ⅳ 一 氧化物 、 2 一 巯 基 吡啶一 Ⅳ 一 氧化 物一 2 一
( 衢 州学院化 学与材 料 工程 学院 , 浙江 衢 州 3 2 4 0 0 0 )
摘 要 介 绍 了吡 啶 Ⅳ _ 氧 化 物 类化 合 物 作 为反 应 产 物 和 中 间体 等 的 应 用 , 综 述 了吡 啶 类 化 合 物 经 氧 化 反 应 制备 吡啶 Ⅳ _ 氧 化 物 的研 究进 展 , 总 结 了反 应 所 用 的 氧化 剂 、 催 化 剂 等 反
脱 去 氧 原子 ㈣; 与 芳 烃 在醋 酸 钯 、 碳 酸银 、 三 叔 丁基
膦、 氟硼 酸 催 化下 直 接 2 一 位偶联 , 与烯 烃 在 类 似 条
件 下 发 生 位 置选 择 性 偶 联 , 与格 氏试 剂 反 应再 以
醋 酸酐 处 理 得 到 2 一 烷基化 、 炔基 化 和 芳 基 化 的 吡
2 0 1 5年第 2 2卷 第 3期
化 工生 产与技 术
C h e m i c a l P r o d u c t i o n a n d T e c h n o l o g y
・ 3 3・
- 氧 化 物研 究进 展
章 梦 帅 黄 湛媛 郑 土 才 吕 亮 金 伟 珍
吡 啶 Ⅳ一 氧 化 物具 有 许多 特 殊 的性 质 和化 学反
应【 l , 3 1 。 例如, 硝化 反应 相 当容易 , 并 且发 生在 对位 ; 与 三 氯 氧磷 等 氯 化 剂作 用 发 生 2 一 位或 4 一 位氯化 . 同 时 脱去 氧 原子 ; 如果 2 一 位 为 甲基 , 与 醋 酸 酐反 应 发 生 甲基 的氧化 生成 乙酰氧 甲基 , 同时脱 去氧 原子 : 与 硫 酸二 甲酯 反应 , 再 与氰化 钠 反应 , 发生 2 一 位氰 化 , 同时脱去 氧原 子 ; 2 一 位或 4 一 位 的氯 或硝 基容 易被 其 他 亲核试 剂置换 等 。此外 , 吡啶 Ⅳ - 氧化 物 的氧 原子 也很 容易 与 3价磷 试剂等 作用 而除去 . 因此 吡 啶 Ⅳ一 氧化物也 是许 多吡 啶类杂 环化合 物合 成和转 化 的重
三联吡啶的合成及其金属配合物研究进展
三联吡啶的合成及其金属配合物研究进展1 前言配位化学早期是在无机化学基础上发展起来的一门边沿学科,如今,配位化学在有机化学与无机化学的交叉领域受到化学家门广泛的关注。
有机-金属配合物在气体分离、选择性催化、药物运输和生物成像等方面都有潜在的应用前景,因此日益成为化学研究的热点领域[1-4]。
多联吡啶金属配合物在现代配位化学中占据着不可或缺的位置,常见的多联吡啶配体包括2,2'-二联吡啶(bpy)和2,2':6',2''-三联吡啶(tpy)(Fig. 1),Hosseini就把bpy 称为“最广泛应用的配体”[5],与其类似的具有三配位点的tpy的合成及其金属配合物的研究同样是化学家们研究的热点[6-8]。
Fig 1.三联吡啶的三个吡啶环形成一个大的共轭体系,具有很强的σ给电子能力,配合物中存在金属到配体的d一π*反馈成键作用,因而能与大多数金属离子均形成稳定结构的配合物。
然而,三联吡啶金属络合物的特殊的氧化还原和光物理性质受其取代基电子效应的影响。
因此,通过引入不同的取代基,三联吡啶金属络合物可用于荧光发光装置以及光电开关等光化学领域[9-10]。
在临床医学和生物化学领域中,不管是有色金属的测定还是作为DNA的螯合试剂,三联吡啶衍生物都具有非常广泛的应用前景[11-12]。
2 三联吡啶的合成研究进展正因为三联吡啶在许多领域都具有潜在的应用价值,所以对其合成方法的研究十分重要。
三联吡啶的合成由来已久,早在1932年,Morgan就首次用吡啶在FeCl3存在下反应合成分离出了三联吡啶,并发现了三联吡啶与Fe(Ⅱ)的配合物[13]。
目前,合成三联吡啶的方法主要有成环法和交叉偶联法两种。
2.1 成环法成环法中最常用的反应是Kröhnke缩合反应(Scheme 1)[14],首先2-乙酰基吡啶溴化得到化合物2,2与吡啶反应生成吡啶溴盐3,3与α,β-不饱和酮4进行Michael加成反应得到二酮5,在醋酸铵存在下进而关环得到三联吡啶。
吡啶偶氮类化合物
吡啶偶氮类化合物:特性、合成与应用吡啶偶氮类化合物是一类含有吡啶环和偶氮基团的有机化合物。
这类化合物具有独特的结构和性质,在染料、指示剂、光敏材料等领域具有广泛的应用价值。
本文将详细介绍吡啶偶氮类化合物的特性、合成方法以及应用领域,以期为读者提供全面的了解。
一、吡啶偶氮类化合物的特性吡啶偶氮类化合物具有显著的结构特点,其分子中包含吡啶环和偶氮基团。
吡啶环是一种六元杂环,具有较高的电子密度和芳香性,使得这类化合物具有较好的稳定性和化学活性。
偶氮基团则是一种具有双键性质的官能团,能够吸收特定波长的光,赋予吡啶偶氮类化合物独特的光学性质。
在物理性质方面,吡啶偶氮类化合物通常具有良好的溶解性,可溶于多种有机溶剂。
此外,这类化合物还具有较高的摩尔吸光系数和较好的光稳定性,使得它们在染料和光敏材料等领域具有广泛的应用潜力。
二、吡啶偶氮类化合物的合成方法吡啶偶氮类化合物的合成方法主要包括重氮化偶合法和直接偶合法。
重氮化偶合法是先将含有氨基的吡啶化合物进行重氮化反应,生成重氮盐,再与另一分子含有活性氢的化合物进行偶合反应,生成吡啶偶氮类化合物。
直接偶合法则是将含有氨基的吡啶化合物与亚硝酸钠等氧化剂在酸性条件下直接进行偶合反应,生成目标产物。
在合成过程中,反应条件的控制至关重要。
例如,反应温度、反应时间、溶剂种类以及催化剂的选择等因素都会对产物的收率和纯度产生影响。
因此,在实际操作中,需要根据具体反应的特点进行优化,以获得最佳的反应条件。
三、吡啶偶氮类化合物的应用领域吡啶偶氮类化合物在染料领域具有广泛的应用。
由于其具有较好的溶解性、较高的摩尔吸光系数和较好的光稳定性,使得这类化合物能够作为优良的染料用于纺织品的染色。
此外,吡啶偶氮类化合物还可用于制备具有特殊功能的染料,如荧光染料、温敏染料等,以满足不同领域的需求。
在指示剂领域,吡啶偶氮类化合物也具有重要的应用价值。
这类化合物能够与金属离子形成络合物,从而改变其颜色,因此可用作金属离子的指示剂。
基于非共价相互作用构筑的吡啶类荧光探针的设计合成及其应用研究
基于非共价相互作用构筑的吡啶类荧光探针的设计合成及其应用研究基于非共价相互作用构筑的吡啶类荧光探针的设计合成及其应用研究随着化学领域的发展,设计和合成荧光探针已成为现代生命科学和医学研究中的重要工具。
在这个研究领域中,荧光探针的设计和合成是至关重要的,因为它们可以有效地检测和监测生物分子和细胞的活动。
吡啶类化合物因其优异的荧光性能和广泛的化学修饰性而备受研究者的关注。
本文介绍了基于非共价相互作用构筑的吡啶类荧光探针的设计合成及其应用研究的最新进展。
首先,本文介绍了吡啶类化合物的结构和荧光特性。
吡啶类化合物是一类含氮杂环化合物,具有良好的稳定性和荧光性能。
吡啶类荧光探针的设计和合成通常涉及到选择合适的荧光团和生物靶标结合的靶向配体。
其中,非共价相互作用是设计和构筑吡啶类荧光探针的关键。
其次,本文介绍了几种常见的非共价相互作用,如氢键、金属离子配位、π-π堆积和离子对相互作用等。
这些非共价相互作用可以通过调整化合物的结构和修饰方式来实现。
以氢键为例,将含有氢键受体的配体连接到吡啶类荧光团上,可以实现与靶标分子之间的稳定结合。
通过使用不同的非共价相互作用模式,研究者可以有效地构筑各种吡啶类荧光探针。
接着,本文介绍了基于非共价相互作用构筑的吡啶类荧光探针在生物医学领域的应用。
这些荧光探针可以应用于细胞成像、生物传感和药物传递等研究领域。
例如,将荧光标记的吡啶类探针引入到细胞中,可以通过荧光显微镜观察细胞的生物活性分子的运动和交互作用。
另外,针对特定的生物靶标,研究者还可以设计和合成具有高选择性和灵敏度的吡啶类荧光探针,用于分析和检测生物靶标的表达和活性。
最后,本文总结了基于非共价相互作用构筑的吡啶类荧光探针的优势和挑战。
吡啶类荧光探针因其结构多样性和较好的荧光性能而受到广泛关注。
非共价相互作用作为构筑吡啶类荧光探针的方法之一,具有灵活性和可调性,可以实现对生物靶标的高选择性和灵敏度。
然而,使用非共价相互作用构筑荧光探针仍面临着一些挑战,如控制非共价相互作用的强度和选择性,以及提高荧光探针的稳定性和生物相容性。
吡啶化合物的合成及应用研究
吡啶化合物的合成及应用研究引言:吡啶是一种重要的芳香化合物,具有广泛的应用领域。
本文将介绍吡啶化合物的合成方法以及其在药物合成、农药生产等方面的应用研究。
一、吡啶化合物的合成方法1. 吡啶的传统合成方法:传统的吡啶合成方法主要有湿法和干法两种。
其中,湿法是利用醛或酮与亚硝酸盐反应生成吡啶,该方法操作简单,但产率较低。
而干法则是利用α,β-不饱和酮与氨反应生成吡啶,产率较高,适用于工业生产。
2. 高效合成方法:随着有机合成化学的发展,吡啶合成的高效方法相继出现。
例如,金属催化合成是一种常用的方法,通过金属催化剂的参与,可以提高产率和选择性,同时缩短反应时间。
此外,还有采用微波辐射、超声波辐射等非常规反应条件进行吡啶合成的方法。
二、吡啶化合物在药物合成中的应用1. 抗肿瘤药物:吡啶化合物在抗肿瘤药物的研发中扮演着重要角色。
通过合成不同结构的吡啶衍生物,可以调控药物的溶解度、活性和药代动力学等性质。
举例来说,含有吡啶结构的多巴胺受体拮抗剂对乳腺癌等恶性肿瘤有一定的抑制作用。
2. 抗炎药物:吡啶化合物在抗炎药物的研究中也有广泛应用。
例如,一些含有吡啶结构的抗感染药物可以干扰微生物DNA复制,从而达到杀菌的效果。
此外,吡啶化合物还可以通过抑制炎性介质的生成来缓解炎症反应。
3. 抗抑郁药物:吡啶结构的化合物在抗抑郁药物的合成中有着独特的作用。
一些吡啶类化合物通过调节神经递质的平衡,减轻抑郁症状。
这些抗抑郁药物的应用对改善人们的心理健康具有重要的意义。
三、吡啶化合物在农药生产中的应用1. 杀虫剂:吡啶化合物在农药杀虫剂的研发中有着广泛的应用。
其中,以氨基苯并吡啶类农药最为常见,具有较强的杀虫活性,并且对多种害虫有较高的选择性。
这些化合物可以通过作用于害虫神经系统,抑制其正常运作,从而实现杀虫的效果。
2. 除草剂:吡啶化合物也可以用来制备除草剂。
这些除草剂通过作用于植物的生理代谢,抑制其生长和发育。
与传统的除草剂相比,吡啶类化合物通常具有更高的效果和更好的环境友好性。
吡啶的合成方法范文
吡啶的合成方法范文吡啶是一种含有1个氮原子的环状芳香化合物,具有广泛的应用领域。
吡啶的合成方法有多种,可以通过不同的反应途径来合成。
1. Delepine反应Delepine反应是一种常用的合成吡啶的方法。
该反应利用二酮与胺在碱性条件下发生缩合反应,经过氧化、羰基还原、环化等步骤,最终生成吡啶。
2. Hantzsch合成Hantzsch合成是一种高效的合成吡啶的方法。
该方法通过α,β-不饱和酮与胺和醛反应,生成吡啶酮中间体,然后通过还原、羰基还原等步骤生成吡啶。
3. Bischler-Napieralski反应Bischler-Napieralski反应是一种合成杂环的常用方法,也可以用于合成吡啶。
该反应是通过酰胺与酸性条件下的酮进行缩合反应,生成稳定的中间体,然后通过脱水、环化等步骤生成吡啶。
4.化学气相沉积法(CVD)化学气相沉积法是一种合成吡啶薄膜的方法。
该方法通过将合适的前驱体气体经过加热分解,使其沉积在基底上形成吡啶薄膜。
5.溶剂热法溶剂热法是一种在高温高压溶剂中进行的合成吡啶的方法。
该方法通过将适当的反应物和溶剂一起放入高温高压反应器中,在适当的反应条件下进行反应,生成吡啶。
6. Sonogashira偶联反应Sonogashira偶联反应是一种通过氨基化合物和乙炔基化合物之间的反应合成吡啶的方法。
该反应通过钯催化剂的催化作用,使氨基化合物和乙炔基化合物发生反应生成吡啶。
综上所述,合成吡啶的方法有很多种,可以根据具体的反应条件和需要选择适合的方法。
这些方法能够提供不同合成途径,为吡啶的合成和研究提供了强大的工具。
吡啶合成人名反应
吡啶合成人名反应
摘要:
一、吡啶合成人名反应简介
1.定义与特点
2.发现历程
二、反应机理
1.反应条件
2.反应过程
三、应用领域
1.在有机合成中的应用
2.在药物合成中的应用
四、前景与展望
1.研究进展
2.发展趋势
正文:
吡啶合成人名反应是一种经典的有机合成反应,以德国化学家奥古斯特·威廉·尼采(August Wilhelm von Zanth)和英国化学家罗伯特·伯纳-桑德(Robert B.Woodward)的名字命名。
该反应通过加热吡啶与醛、酮等亲电试剂发生反应,生成新的化合物。
吡啶合成人名反应的发现历程可以追溯到19世纪末。
当时,尼采在研究吡啶与丙酮的反应时,发现生成了一个新的化合物。
此后,桑德对这一反应进
行了深入研究,并将其应用于多种有机化合物的合成。
反应机理方面,吡啶合成人名反应一般在高温下进行,通常需要酸催化。
在反应过程中,吡啶与亲电试剂发生亲核加成反应,生成一个新的化合物。
此外,反应过程中还涉及质子转移和重排等过程。
吡啶合成人名反应在有机合成领域具有广泛的应用。
例如,可用于合成吡啶类化合物、稠环化合物以及杂环化合物等。
此外,该反应在药物合成领域也具有重要意义,例如合成抗病毒药物阿昔洛韦等。
近年来,吡啶合成人名反应的研究取得了一系列进展。
研究人员通过改进反应条件、发展新的催化剂等方法,进一步拓宽了该反应的应用范围。
吡啶生产工艺及市场研究报告
吡啶生产工艺及市场研究报告吡啶是一种重要的有机化合物,广泛应用于医药、农药、染料、橡胶、塑料等领域。
本报告将介绍吡啶的生产工艺及市场研究。
一、吡啶的生产工艺吡啶的生产工艺主要有三种:1、煤焦化气的合成法;2、氨气和丙烯腈的合成法;3、吡啶酮的还原法。
1、煤焦化气的合成法该法是吡啶工业化生产的主要方法,其主要原料是煤焦化气,经过氢化、脱氢、脱氮等反应,生成吡啶。
该法具有原料来源广泛、工艺成熟、产品质量稳定等优点,但存在能耗高、环境污染等问题。
2、氨气和丙烯腈的合成法该法是一种新型的吡啶生产工艺,其主要原料是氨气和丙烯腈,经过氢化、脱氢、脱氮等反应,生成吡啶。
该法具有原料来源便利、环保、能耗低等优点,但存在工艺复杂、产品质量不稳定等问题。
3、吡啶酮的还原法该法是一种间接合成吡啶的方法,其主要原料是吡啶酮,经过还原反应,生成吡啶。
该法具有原料来源便利、工艺简单等优点,但存在产品质量不稳定、产量低等问题。
二、吡啶市场研究吡啶是一种重要的有机化合物,在医药、农药、染料、橡胶、塑料等领域有广泛应用。
目前,全球吡啶市场规模约为30万吨/年,其中亚洲市场占据了主导地位,占据了全球市场的60%以上。
1、医药领域吡啶在医药领域中应用广泛,主要用于合成抗生素、抗癌药物、镇痛药物等。
随着人们对健康的重视和医疗技术的不断提高,医药领域对吡啶的需求将不断增加。
2、农药领域吡啶在农药领域中也有广泛应用,主要用于合成杀虫剂、杀菌剂等。
随着全球农业的发展和人口的增加,农药领域对吡啶的需求也将不断增加。
3、其他领域吡啶在染料、橡胶、塑料等领域也有应用,主要用于合成染料、橡胶助剂、塑料助剂等。
随着这些领域的不断发展,对吡啶的需求也将不断增加。
三、结论吡啶是一种重要的有机化合物,其生产工艺主要有煤焦化气的合成法、氨气和丙烯腈的合成法、吡啶酮的还原法。
吡啶在医药、农药、染料、橡胶、塑料等领域有广泛应用,随着这些领域的不断发展,对吡啶的需求也将不断增加。
吡啶 结构
吡啶结构引言:吡啶结构的重要性和应用领域介绍吡啶是一种含氮杂环化合物,由于其稳定性和广泛的化学反应性质,在化学、医学、材料科学等领域中有广泛的应用。
吡啶结构的探究和研究对于人类文明的进步和科学研究的发展有着十分重要的意义。
接下来将从吡啶结构的含义、结构特点、应用领域等几个方面来详细分析。
第一部分:吡啶结构的含义和结构特点吡啶结构是指由一个含氮的芳香环和一个烷基结构组成的化合物。
其分子式为C5H5N,分子量为79.1g/mol。
吡啶结构的特点是其具有一个含有五个碳原子的芳香环和一个相邻的硝基原子组成的烷基结构,因此其结构不仅具有柔韧性和稳定性,还具有强烈的活性基团和反应性能力。
第二部分:吡啶结构的应用领域1. 医学领域吡啶类化合物广泛应用于药物合成中,具有强效抗菌、消炎、抗癌、治疗心血管疾病等功效。
如磺胺类药物、喹诺酮类药物、非类固醇类抗炎药等均含有吡啶结构。
2. 材料科学领域吡啶类化合物作为高分子制备中的功能性单体,其聚合物具有良好的电子传输、半导体特性和荧光性能,在太阳能电池、有机发光二极管等领域有着广泛的应用。
3. 化学领域吡啶结构的化学反应活性可以进行多种官能团的取代,合成出多种求电子性、亲核性、碱性和酸性的有机化合物。
因此,吡啶及其衍生物是制备高效催化剂、高性能涂料、高能指示剂等化学品的重要中间体。
第三部分:吡啶结构中的研究进展1. 吡啶结构的合成方法研究目前,吡啶类化合物的制备方法较多,如使用过渡金属催化剂的环合成、亲核取代反应、氧化反应、还原反应等,部分反应已经得到了大量的研究和发展,如Suzuki偶联反应、Sonogashira偶联反应等。
2. 吡啶结构的功能研究吡啶类化合物的应用领域相对较广,但研究并不充分,很多研究还有待深入进行。
例如针对药物用途的吡啶酮类化合物,在治疗癌症中的具体作用机制、药效等方面还需要更多的研究;利用吡啶结构作为多种官能团的催化剂,其反应机制、催化性能也需要进一步研究。
吡啶的合成方法范文
吡啶的合成方法范文吡啶(Pyridine)是具有含氮杂环的一种有机化合物,化学式为C5H5N。
吡啶广泛应用于有机合成、药物和农药的研发以及金属离子的提取等领域。
以下将介绍几种常见的吡啶合成方法。
1.胺和醛的合成法吡啶可以通过胺和醛的缩合反应来合成。
该反应常用的反应物是γ-酮酸酯和叔胺。
首先,γ-酮酸酯和四甲基乙酸盐反应形成五元环,然后通过叔胺的参与,生成吡啶。
反应机理中,γ-酮酸酯首先发生亲电加成反应生成五元环中间体,然后脱羧生成亚胺,最后受到叔胺的亲电亲核反应形成吡啶。
2.α,β-不饱和化合物和氨气的合成法该方法是通过α,β-不饱和化合物和氨气在Pd/C(钯/活性炭催化剂)的存在下,进行氢化反应来合成吡啶。
反应机理是首先通过氢化加成的方法生成一个金属氨基化合物,然后通过金属氨基和通气反应生成吡啶。
3.芳香化合物环化的合成法该方法是通过芳香化合物的环化反应来合成吡啶。
常用的芳香化合物有吡啶-2-醇、萘酮等。
该反应是由强酸催化的,酸能够将羟基质子化生成良好的离去基团,然后通过亲电亲核反应形成吡啶环。
4.螺环化合物断裂的合成法螺环化合物是由多个共轭环组成的化合物。
吡啶可以通过螺环化合物的断裂反应来合成。
该反应需要使用强酸、络合剂和高温条件。
反应机理是首先发生共轭重排反应断开螺环,然后通过亲电亲核反应生成吡啶。
5.吡啶芳烃化的合成法吡啶也可以通过芳烃的氧代化反应来合成。
常用的芳烃有苯和硝基苯。
首先,芳烃被硝酸和硫酸混合物氧代化为对应的硝基化合物,然后通过亲电亲核反应形成吡啶。
除上述所述的合成方法外,还有其他吡啶合成方法,如:环合反应、金属卤化物的催化合成等。
各种吡啶合成方法各有优缺点,可以根据具体需求选择合适的方法进行合成。
吡啶类化合物合成氯代吡啶的研究进展
甲基 吡啶 是抗 艾滋 病药 奈维 拉平 的 中间体 等等 [ 5 - 2 ” 。
氯 的非环 状原 料或 不含 氯 的非 环状原 料 在氯 化剂 存 在下 环合 得 到 .或 由非 氯代 的 吡啶 经各 种氯代 反 应 得到。 本 文仅 对后 一类 方法 , 包 括 吡啶环 上 的取代 氯
量 1 . 1 9 k g / h , 通 氯 质量 流量 2 1 0 g / h , 反 应 停 留时 间 8 . 1 s , 2 一 氯 吡 啶收率 2 3 . 0 %t 矧。
化如 自由基氯 化 、亲 电氯化 ,吡啶环 上 的置换 氯 化
( 如环 上 的羟 基 、 硝基 、 氨基 等转 化为 氯 ) , 和Ⅳ 一 氧 化 吡 啶 的转 位 氯 化 ( 在 氮 的邻 位 和, 或对位发生. 尤其 较 少 考 虑 绿 色化 学理 念 ; 建议加 强这些氯化反 应的研 究, 并 积
极开发新反应方法、 新 型氯 化 剂 , 以及 采 用 无溶 剂反 应 、 微 波 加 热 等 新 型 反 应 方 式等 , 并 加
强 氯 代 吡 啶 类 化 合 物 的 应 用 研 究
高 温氯 化 .延 长反 应 时 间可 以提 高 收率 ,反应 1 6 0
m i n , 产 率达 6 3 . 3 % ̄ 2 2 1 。
Y o s h i k a w a等报 道 ,质量 分 数 3 8 %P  ̄ 啶水 溶 液 与氯气在 2 2 0 o C 和 高 压 汞灯 照 射 下 管道 式 氯化 . 吡 啶、 氯 气 与水 的摩 尔 比 1 : 0 . 5 : 7 . 0 、 吡啶 水溶 液 质量 流
除草剂 吡 氟禾 草灵 、 吡氟 氯禾 灵 、 杀菌 剂氟 啶胺 和氟 啶酰 菌胺 等 , 3 , 5 , 6 一 三氯 一 2 一 羟 基 吡 啶则 是低 毒 有 机 磷 杀 虫剂 毒死 蜱 的 中间体 。 3 , 6 一 二 氯 吡啶一 2 一 甲酸 是
吡啶羧酸类配体配位聚合物的合成、结构及性能研究
吡啶羧酸类配体配位聚合物的合成、结构及性能研究吡啶羧酸类配体配位聚合物的合成、结构及性能研究摘要:吡啶羧酸类配体配位聚合物具有广泛的应用前景,已经成为材料化学领域的研究热点。
本文综述了吡啶羧酸类配体配位聚合物的合成方法、结构特点及其性能研究的最新进展。
分别就吡啶羧酸类配体的选择、配位聚合反应条件优化和物理性质的研究进行了详细的讨论。
文章的研究结果表明,吡啶羧酸类配体配位聚合物在光催化、吸附和电化学等方面展现出了良好的应用潜力,为其进一步研究和应用提供了重要的参考。
1. 引言近年来,吡啶羧酸类配体配位聚合物由于其特殊的结构和性质,被广泛应用于催化、吸附和电化学等领域。
吡啶羧酸类配体作为有机骨架材料,具有丰富的官能团,可通过调整配体结构来控制聚合物的性质。
目前,吡啶羧酸类配体配位聚合物的合成方法和性能研究已经取得了一系列重要进展。
2. 吡啶羧酸类配体的选择吡啶羧酸类配体的选择对于聚合物的性能具有重要影响。
一般而言,吡啶羧酸的选择应考虑其共轭体系、官能团和稳定性等因素。
常用的吡啶羧酸类配体包括吡啶-2,6-二羧酸、吡啶-3,5-二羧酸和吡啶-4,4'-二羧酸等。
通过选择合适的吡啶羧酸类配体,可以调控聚合物的光电性能、结构稳定性和热稳定性。
3. 吡啶羧酸类配位聚合物的合成方法吡啶羧酸类配位聚合物的合成一般采用配位聚合反应。
常见的反应方法有溶剂热法、溶剂反应法和微波辅助合成法等。
在溶剂热法中,通常通过水热或有机热溶剂反应合成聚合物。
溶剂反应法则通过溶剂中的配体和金属离子进行配位反应合成聚合物。
微波辅助合成法则通过微波加热来提高反应速度和产物收率。
4. 配位聚合反应条件优化为了合成高质量的吡啶羧酸类配位聚合物,需要优化配位聚合反应条件。
反应温度和时间是影响聚合物合成的关键因素。
一般而言,较高的反应温度和延长的反应时间会有利于配位反应的进行。
此外,选择合适的溶剂和配体的摩尔比也对聚合物合成具有重要影响。
卤代吡啶类化合物的合成及应用
徐杰教授中科院大连化学物理研究所精细化工研究室主任1958年10月生。
博士,教授,博士研究生导师,《催化学报》编委。
1981 年12月大学毕业获学士学位,1988年6月获硕士学位,1998年11月大连化学物理研究所毕业获博士学位。
1991年11月破格晋副教授;1994年2月~1995 年3月应邀赴美国Tr uman University作访问学者;1995年11月破格晋教授;2000年11月评为博士研究生导师,2003年起担任。
近年来主要从事烃类选择氧化、催化加氢和催化氟氯化等领域的基础与应用研究,先后主持和承担中石化“环己烷催化氧化合成环己酮新技术研究”(已结题)、中石化“苯加氢合成环己烯”(已结题)、国家863-2“空间飞行器阻燃防火材料探究”(已验收)、国家高技术发展计划(863)项目“用于清法生产的烃类选择氧化催化新材料”(在研)、自然科学基金重点项目“环境友好选控催化氧化生产己内酰胺中间体新方法” (在研)等项目,已发表、交流研究论文140余篇;发明专利44件;合著1部:鉴定成果5项;多次获得科研奖励。
Prof.Xu JieDir ec tor,Fine C hem istry Office of Dalian Institute of C hemistry and P hysic s,theChinese Acade myofSciencesMr.Xu was born in O c tober 1958.He is a doc tor,pr ofes s or,tutor ofdoc tor al stud ents and m ember of th e Editorial B oard of“Catalysis Journal”.He gr aduat ed fr o m u ni v er si ty with a bac helor's degree in Dec ember1981 a n d wo n a mas ter‟s degree in J une 1988 and a doctor‟s degr ee in Dalian Institute and Phys i c s in Nov ember1998.He was promoted to associated pr ofes s or i n November ofChemis try1991。
吡啶化合物的合成技术与应用进展_徐兆瑜
一般而言,含 N、O 等杂原子的刚性芳香环分子 结构具有优异的热稳定性、化学稳定性;有的还具有 良好的极性和介电性能。它与苯环结构相类似,苯环 上卤素取代化合物的合成方法, 基本上都可以应用 于吡啶环上卤化物的合成上。 但由于吡啶环上含有 氮原子, 故吡啶环上卤素取代化合物的合成和特性 与苯环上的卤素化合物相比,存在较大的差异,难度 大。 一般情况下,4 位的反应活性较高,弱的亲核试 剂在温和的条件下就可以取代;其次是 2、6 位;最难 取代是 3,5 位, 需要像甲氧基这样强的亲核试剂方 能取代。
2-氯-3-氟-吡 啶 是 一 种 重 要 的 医 药 中 间 体 , 是 治疗细菌感染性疾病药物依诺沙星的合成原料,又 可用来合成治疗心血管疾病的药物 N-(Pyri-2-yl) thiazolamines。 另外,用 2-氯-3-氟吡啶制备羟基化 2,2-联吡啶,在生物工程上有着广泛的用途。
如 : 在 500mL 四 口 园 底 烧 瓶 中 , 加 入 175mL
40%(1.05mol)的氟硼酸,在搅拌下分多批加入 38.6g (0.3mol)2-氯-3-氨 基 吡 啶 , 冰 盐 浴 冷 却 至-10~5℃,滴 加 21.6g 亚 硝 酸 钠 (0.315mol)配 成 饱 和 水 溶 液, 控制温度在-10~-5℃,继续反应搅拌 1h, 有大量 白色固体析出。将重氮盐反应液置于冰箱中过夜,使 重氮盐充分沉淀。真空抽滤,所得沉淀依次用无水乙 醚、无水乙醇洗至几乎无色,置真空烘箱中烘干即得 重氮盐。
合成方法一般有两种,一是从煤焦油中提取,二 是从氨和甲醛、乙醛合成。 过去我国一直采用前者, 产量仅数百吨, 市场需求主要依靠进口, 最大的进
-4-
专家论坛 精细化工原料及中间体
吡啶配体的发展历程
吡啶配体的发展历程
吡啶配体是一类广泛应用于配位化学和有机合成中的重要化合物。
它具有高度稳定性和良好的配位能力,可用于合成各种金属配合物。
以下是吡啶配体发展的历程:
早期研究发现了一系列吡啶配体的合成方法和结构特点。
早期的吡啶配体主要是通过加入吡啶环的化学反应制备的。
但是这种方法在产率和操作性方面存在一定的限制。
随着有机合成方法学的发展,人们开始寻找更高效、更可控的吡啶配体合成方法。
研究人员发现,将苯环中的氢原子替换为氨基基团可以有效提高吡啶配体的合成效果。
这种方法被广泛应用于实验室和工业生产中。
随后,研究人员提出了多种改进的吡啶配体合成方法,如用吡啶胺和醛缩合反应合成吡啶酮,再通过还原反应得到吡啶配体。
此外,还有人提出了通过氨基化反应来实现吡啶配体的合成。
近年来,随着先进合成方法和催化技术的不断发展,吡啶配体的合成方法也不断更新。
例如,使用转氨化试剂和氧化剂可以便捷地合成吡啶配体。
此外,一些金属催化反应也被应用于吡啶配体的合成中。
总的来说,吡啶配体的发展经历了从最初的合成方法到现代高效、可控合成方法的演变。
这些不断完善的合成方法为吡啶配体的研究和应用提供了更广阔的空间。
吡啶并嘧啶类化合物的合成研究进展_任青云
2005年第25卷有机化学V ol. 25, 2005第12期, 1530~1541 Chinese Journal of Organic Chemistry No. 12, 1530~1541*E-mail:he1208@Received November 16, 2004; revised March 3, 2005; accepted April 20, 2005. 吡啶并[2,3-d]嘧啶类化合物的合成吡啶并[2,3-d]嘧啶及其氧代衍生物具有潜在的生物学和药理学活性, 该类化合物是人们合成和研究得最多No. 12任青云等:吡啶并嘧啶类化合物的合成研究进展1531的一类吡啶并嘧啶类衍生物. 综合近二十年来各类文献, 其合成方法主要分为两大类: (1)从吡啶环出发关环; (2)从嘧啶环出发关环. 本文即依此作为此类化合物合成的主要分类依据. 1.1 从吡啶环出发.1.1.1 含α,ω-二腈的吡啶环在卤化氢作用下关环在有机合成反应中α,ω-二腈在卤化氢作用下环化反应历来是制备杂环化合物的一条有效途径[20](Eq. 1).1995年, Victory 等[21]利用该反应成功合成了一系列吡啶并[2,3-d ]嘧啶化合物, 并发现随卤化氢酸性不同而生成不同的化合物. 如Scheme 1, 当HX 为氯化氢时生成化合物1, 当HX 为溴化氢或碘化氢时则同时生成两种异构体1和2. 后来, 发现不同溶剂对反应的选择性也有很大影响, 如采用甲苯作溶剂, 加热或室温条件下分别与氯化氢或溴化氢反应, 结果都只得到一种关环产物1, 且收率也有明显的提高, 当HX 为溴化氢时1的收率大于75%.Scheme 11.1.2 由氨基烟碱腈在酸或碱作用下关环1988年, Hosmane 等[22]报道由2-氨基烟碱腈与原甲酸三甲酯在催化剂三氟乙酸作用下生成N -(3-氰基吡啶基-2)-甲脒(3), 再与稍过量的甲基肼反应, 关环生成4-β-甲基肼基吡啶并[2,3-d ]嘧啶(4), 收率为46%. 后来发现在适当的条件下, 氨和肼一样能使甲脒关环(Eq. 2). 采用原甲酸三甲酯生成脒中间体再与各种亲核小分子关环, 这是制备杂环化合物的一条重要途径, 该方法经过改进后在合成步骤与收率等方面均有很大的提高, 在烟碱腈亦可与盐酸胍在丁醇钠催化下发生Michael 加成关环, 生成吡啶并[2,3-d ]嘧啶化合物5, 收率为61%[23] (Eq. 3).1997年, Quintela 等[24]合成了具有抗组胺活性的吡啶并[2,3-d ]嘧啶类化合物8, 采用氨基吡啶6与富电碳原子合成子N ,N -二甲基二氯亚甲基亚胺氯(7)反应, 经分子内关环得到目标产物, 收率为80%~90% (Scheme 2). 该方法的特点是反应活性高、收率好, 反应中提到的富电合成子亦可以应用到其他相关合成反应当中.Scheme 22001年, Kumar 等[25]采用硫脲与氨基烟碱腈加热反应, 得到4-氨基-5,7-二取代吡啶并[2,3-d ]嘧啶-2-(1H )-硫酮(9) (Eq. 4), 该系列化合物均具有一定的杀菌活性.1532有 机 化 学 V ol. 25, 20052003年, Wang 等[26,27]从取代2-氨基烟碱腈制备膦亚胺10, 10与异氰酸酯作用后生成碳二亚胺11, 后者在 极温和的条件下与氨气关环得到化合物12, 收率普遍在80%以上. 该方法具有反应条件温和、步骤少而高效的特点(Scheme 3).Scheme 31.1.3 由氨基吡啶甲酸酯关环.1962年, Bernetti 等[28]报道氨基吡啶甲酸酯与胍反应一步制得吡啶并嘧啶类化合物13, 收率为42% (Eq.5).2004年, Ding 等[29,30]发现氮杂Wittig 反应是制备杂环化合物的一种简易高效的方法, 其步骤如下: 由氨基吡啶酯14出发制得膦亚胺15, 然后与异氰酸酯反应得碳二亚胺16, 后者于室温条件在催化剂作用下即可与各种胺及酚发生成环反应, 从而制备出吡啶并[2,3-d ]嘧啶化合物17 (Scheme 4), 用该方法可在较短的时间内获得大量的化合物, 收率一般为60%~90%, 从而为筛选具有新型生物活性的化合物提供了前提条件.Scheme 41.2 从嘧啶环出发嘧啶环上C-5位具有亲核性, 它能进攻许多亲电试剂如α,β-不饱和酮(醛)中的亲电碳原子, 亦可与活泼的亚甲基化合物及其前体, 富电子烯胺和亚苄基Meldrum 物. 此外, C-5位被取代的化合物亦多有报道能与相应化合物生成目标产物. 本小节主要以嘧啶环上C-5位是否被取代为划分依据来叙述一下该类化合物的合成. 1.2.1 C-5位未被取代的嘧啶环出发 1.2.1.1 与α,β-不饱和烯酮(醛)化合物反应.1976年, Wawzonek 等[31]研究了酸或碱催化下的6-氨基-1,3-二甲基嘧啶(18)与α,β-不饱和烯酮(醛)化合物的反应, 发现在碱如NaOEt 的催化下能得到收率较高(5%~53%)且副产物较少的关环产物19, 而酸催化则收率较低(Eq. 6).Quiroga 等[32]在1992年亦报道过此类反应如(Scheme 5)所示, 氩气保护下, 氨基嘧啶与α,β-不饱和酮形成的中间体20在沸腾的DMF 中反应, 生成不饱和关环产物21, 经进一步氧化得到饱和关环产物22, 收率在58%~70%之间. 同时, 若无氩气保护反应, 则先生成21与22的混合产物, 经长时间反应后21能转化得到纯的产物22, 收率大于80%.Scheme 51996年, Gordeev [33]应用组合化学的方法, 在Wang 或Saarin 树脂固相中, 采用SPS [34] (split and pool pro-tecol for combinatorial synthesis)方法, 将6-氨基尿嘧啶(23)与13C 标记的苯亚甲基β-酮酯树脂24进行环缩合反No. 12任青云等:吡啶并嘧啶类化合物的合成研究进展1533应, 得到产物25 (Scheme 6), 通过HPLC 定量检测发现其纯度为70%~100%, 大部分粗产物纯度均大于90%. 这是首次报道运用组合化学方法制备吡啶并嘧啶类化合物, 该方法为制备大量吡啶并嘧啶类化合物并进而筛选具有优良生物活性的先导体提供了先例和基础.Scheme 62000年, Srivastava 等[35]采用取代吡喃酮26在KOH 催化下, 与6-氨基-1,3-二甲基嘧啶(27)成环生成7-芳 基-5-氰甲基-1,3-二甲基-2,4-二氧代吡啶并[2,3-d ]嘧啶 (28) (Scheme 7). 该反应的特点是具有很好的选择性, 反应条件温和, 原料易得, 收率在65%~80%之间.Scheme 72002年, Quiroga 等[36]研究了在无水乙醇中6-氨基-嘧啶-4-酮(29)与α,β-不饱和烯酮化合物的前体Mannich 碱3-二甲基氨基丙酰苯盐酸盐(30)的环缩合反应, 得到收率中等、区位选择性较高的7-芳基吡啶并[2,3-d ]嘧啶31 (Scheme 8).Scheme 82002年, Kuwada 等[37]通过6-氨基尿嘧啶与β-甲磺酰丙烯醛在酸性条件下亦合成得到了吡啶并[2,3-d ]嘧啶类化合物32, 这是迄今唯一的用不饱和醛为原料制备吡啶并嘧啶类化合物的报道, 并且预示着醛类化合物在制备类似目标分子中有极大的应用前途(Eq. 7).2003年, Mont [38]采用微波法将α,β-不饱和酯, 脒33和丙二腈或氰乙酸甲酯三组份一并反应, 采用对微波吸收率最强的甲醇作溶剂, 得到高收率的吡啶并[2,3-d ]嘧啶衍生物34 (Eq. 8). 与此对照, 经典的用乙醇作溶剂的加热反应收率则较低甚至得不到产物、或者产物难于分离且反应时间太长. 该方法突出的反应了微波反应制备此类化合物的良好应用前景.1534有 机 化 学 V ol. 25, 20051.2.1.2 与炔酮反应2001年, Bagles [39]报道了2,6-二氨基嘧啶-4-酮(35)与丁炔酮在室温或60 ℃时经Michael 加成再环化脱水, 通过一步或两步反应能合成吡啶并[2,3-d ]嘧啶(36), 产品不需进一步纯化, 而且步骤少, 区域选择性好(Scheme 9), 收率可达到96%以上, 纯度大于95%, 该方法是一种新的合成吡啶并[2,3-d ]嘧啶类化合物极为有效的方法.Scheme 91.2.1.3 与苄基Meldrum 酸反应1996年, Martin 等[40]报道氨基嘧啶酮37与取代芳亚 甲基Meldrum 酸38在乙酸中回流反应一步制得吡啶并[2,3-d ]嘧啶化合物39, 产率中等且易于提纯(Scheme10).Scheme 101997年, Quiroga 等[41]采用6-氨基-嘧啶-4-酮(40)与苯亚甲基Meldrum 酸41在硝基苯中回流数小时, 经开环、关环, 合成了一系列5-芳基-3,4,5,6,7,8-六氢吡啶并[2,3-d ]嘧啶-4,7-二酮(52) (Scheme 11). 它的作用机理是: 化合物加成后脱去一分子CO 2与一分子丙酮而关环. 以上两种方法报道的类似文献较多, 亦多有可取之处, 但所需条件大都比较苛刻或者步骤繁多, 在此仅作为一类合成方法提出.Scheme 111.2.1.4 与苄基丙二腈反应1996年, Bhuyan 等[42]采用强的亲电试剂芳亚甲基丙二腈(43)与尿嘧啶发生Michael 加成反应, 一步生成吡啶并[2,3-d ]嘧啶衍生物44 (Eq. 9).此类反应亦是制备吡啶并嘧啶类化合物的常用方法. 1998年, Quiroga 等[43]也曾采用尿嘧啶与α,β-不饱和芳亚甲基丙二腈衍生物发生Michael 加成反应, 再进行关环得到相似产物45, 收率普遍在70%以上(Scheme 12).2002年, Nasr 等[44]报道从6-氨基-1,2,3,4-四氢-2,4-嘧啶二酮(46)、芳香醛、丙二腈三组分反应获得重要的吡啶并嘧啶中间体47, 再与甲酸或异氰酸酯反应而得到三原稠杂环化合物48, 49. 该反应实际上也是氨基嘧No. 12任青云等:吡啶并嘧啶类化合物的合成研究进展1535Scheme 12啶酮与苄基丙二腈反应的另一种形式(Scheme 13).Scheme 131.2.1.5 与β-二醛反应2003年, Rosowsky[45]报道了一类新的2,4-二氨基吡啶并[2,3-d ]嘧啶化合物50, 对刚地弓形虫[Toxoplasma gondii 简称T. g)等HIV 致病细菌的二氢叶酸还原酶具有抑制作用, 可用于治疗或预防艾滋病感染者. 制备方法是: 由2,4,6-三氨基嘧啶(51)为起始原料, 与溴丙二醛反应关环, 再与新戊酸酐(Pivalic anhydride, Piv 2O)反应得到中间体52保护氨基, 最后在催化剂作用下与芳甲基氯化锌(arylmethylzinc chloride)偶合, 水解去保护基得到产物50 (Scheme 14). 该方法的特点是总收率不高, 但所需原料均可商业提供, 从原料到产物只有四步, 易于通过平行反应形成化合物库.Scheme 14该方法早期也有大量报道, 如1983年, Taylor 等[46]采用2,4-二氨基-1H -嘧啶-6-酮(53)与三甲醛基甲烷制备类似产物54, 收率77% (Eq. 10).1996年, Gangjee [47]曾采用该方法制备出一种对二氢叶酸还原酶(DHFR)具有良好抑制活性的化合物55 (Eq. 11).1.2.2 从C-5位取代的嘧啶环出发.1988年, Prajapati 等[48]在研究尿嘧啶的成环反应时, 发现1,3-二甲基尿嘧啶(56)的噻吩基团与相邻的腈氧化物或亚硝氮羰基能发生分子内关环反应, 形成吡啶并[2,3-d ]嘧啶化合物57收率在75%~80%之间(Scheme 15).1997年, Connolly 等[49]发现氨基嘧啶醛与取代苯乙腈在碱性条件下能缩合成环, 并发现该类物质能有效抑制酪氨酸蛋白激酶及其受体, 通过高通量筛选得到的化合物58被认为是治疗癌症等增生性疾病的良好先导体(Scheme 16).1998年, Ojea 等[50]采用分子内热异构化将4-二烷基氨基-5-(2,2-二氰基烯基)嘧啶(59)在DMSO 中通过[1,5] 氢质子转移得到稠合的吡啶并[2,3-d ]嘧啶化合物60,1536有 机 化 学 V ol. 25, 2005Scheme 15Scheme 16收率为57%~95% (Scheme 17), 该方法由于采用热异构化而具有一定的新颖性, 但应用于实际反应却较难操作或可控性不太好.Scheme 172003年, Kasparec 等[51]以嘧啶醛61为起始原料, 经与乙酸酐反应后, 氧化成砜, 再与胺反应制得三取代吡啶并[2,3-d ]嘧啶-7-酮(62), 从原料出发得到产物的总收率为40%, 该方法亦是制备该类化合物较为传统的方法之一(Scheme 18).Scheme 181997年, 日本的Hirota 等[52]用6-氨基-5-硫醛基尿嘧啶(63)与富电子的烯胺64在温和条件下即可得到收率较高的吡啶并[2,3-d ]嘧啶化合物65 (Scheme 19), 反应活性随烯胺的取代基增加而降低, 例如, 当R 1, R 2为 (CH 2)3时, 收率可达93%; 若R 1, R 2为位阻较大的Ph 时, 则无产物生成.Scheme 192000年, Bae 等[53]采用钯催化的带甲脒或乙脒的碘尿嘧啶66与取代烯烃或乙炔类化合物在DMF 中加热反应, 能有效的关环形成吡啶并[2,3-d ]嘧啶化合物67 (Scheme 20). 在碘尿嘧啶与取代乙炔类化合物反应中, 氯化锂的存在对于反应选择性起着关键性作用, 例如, 当LiCl 存在时, 67的收率为93%, 而产物68则几乎没有; 反之, 没有LiCl 时, 67与68的收率分别为67%与27%. 该方法首次将金属催化剂引入吡啶并嘧啶化合物No. 12 任青云等:吡啶并嘧啶类化合物的合成研究进展1537Scheme 20的合成当中, 对于研究该类反应的选择性机理及实际应用方面均具有重要的参考价值.2003年, Bhuyan等[54]采用异唑并[3,4-d]嘧啶(69)与不饱和腈类化合物在催化剂三乙胺作用下, 一步生成具有生物活性的吡啶并[2,3-d]嘧啶氧化物70, 收率大于80% (Eq. 12).2 吡啶并[1,2-a]嘧啶类化合物的合成据文献[55]报道, N-取代-2-氨基苯并-γ-吡喃酮类化合物具有抑制人体内血小板聚集的作用. 吡啶并[1,2-a]嘧啶类化合物作为N-取代-2-氨基苯并-γ-吡喃酮的结构类似物, 其优越的生物活性近年来也引起了研究者们的兴趣, 许多化合物被开发成了商品. 纵观文献报道的合成方法, 主要是以取代-2-氨基吡啶作为基本原料通过环化反应制得.2.1 邻氯苯甲酸和2-氨基吡啶在超声波照射下的Ulmann-Goldberg缩合邻氯苯甲酸和2-氨基吡啶在超声波照射下的Ulmann-Goldberg缩合[56]见Eq. 13, 该反应由于其条件难以控制导致其应用受到很大局限.2.2 2-氨基吡啶和亚烷基丙二酸酯热缩合2-氨基吡啶和亚烷基丙二酸酯热缩合[57]形成吡啶并嘧啶环的方法的应用十分广泛, 其通式见Eq. 14.1989年, Ye等[58]由化合物71作为合成子与相应的2-氨基吡啶反应生成吡啶氨基亚甲基丙二酸酯(72), 当加热至熔点后, 二噁烷环开环, 失去一分子丙酮, 再经脱羧, 成环, 得到吡啶并[1,2-a]嘧啶类化合物73 (Scheme 21).Scheme 211997年, Selic[59]利用从乙酰丙酮得到的活泼烯胺化合物2-[2,2-双(乙酰基)乙烯基]丁氨基-3-二甲基氨基-丙烯酸酯(74)作为合成子, 再与2-氨基取代吡啶环缩合, 也可顺利地得到一系列吡啶并[1,2-a]嘧啶化合物75 (Eq. 15).1538有机化学V ol. 25, 20052.3 2-氨基吡啶与取代乙酸乙酯缩合成环在早期的一些专利中[60], 大多是以2-氨基吡啶(76)与2-取代乙酰乙酸乙酯(77)在高温下反应成环得到相应的吡啶并[1,2-a]嘧啶化合物, 但产率均不高, 约42%左右. 1980年, Bernath沿用这一方法, 并作了适当改进, 以聚磷酸为溶剂, 以三氯氧磷为催化剂加热关环得到产物78, 收率也有适当提高(Eq. 16).1987年, Roma等[61]报道利用Vilsmerier-Hack试剂79与2-氨基吡啶环化制备目标分子80, 但同时得到了相当的副产物81. 1990年, 亦有报道2-氨基吡啶与氰乙酸乙酯在高温高压条件下缩合成环[62], 得到化合物82 (Scheme 22).Scheme 22上述两反应虽能成功地得到目标分子, 但反应条件苛刻(高温高压)或者反应的区域选择性不强, 收率也不高. 2003年, Harriman等[62]提出了一个更为温和的反应方法. 该方法采用乙醇作溶剂, 室温反应即可得到吡啶并[1,2-a]嘧啶类化合物83 (Eq. 17). 在这个反应中, 吡啶环上的N先发生Michael加成, 然后在2-位氨基作用下形成内酰胺而得到目标产物, 吡啶环上无取代时收率可达98%以上, 而取代基越大则收率越低, 此外, 当R2为吸电子基如三氟甲基时能大大提高反应收率, 而R2为甲基或酯基时收率下降到小于5%. 2.4 2-氨基吡啶与邻位取代炔基苯异氰酸酯缩合成环利用异氰酸酯84与膦亚胺或胺类化合物反应, 生成碳二亚胺85或脲86, 经加热与邻位取代炔基反应而关环得化合物87[63] (Scheme 23).Scheme 233 吡啶并[4,3-d]嘧啶类化合物的合成和前两类吡啶并嘧啶衍生物相比, 有关吡啶并[4,3-d]嘧啶类化合物的合成报道相对较少, 其生物活性主要表现为药理学活性. 由于这类化合物人们研究较少, 其合成方法也有一定的局限性, 从该类化合物的合成原料出发, 主要分为如下几种.3.1 由4-氨基-5-氰基嘧啶化合物88进行分子内环化反应4-氨基-5-氰基嘧啶化合物88进行分子内环化反应[64]见Scheme 24.Scheme 24No. 12 任青云等:吡啶并嘧啶类化合物的合成研究进展15393.2 由4-氨基-3-氰基吡啶化合物关环1995年, Thompson[65]报道用原甲酸三乙酯对4-氨基-3-氰基吡啶化合物89关环, 制得吡啶并[4,3-d]嘧啶类化合物90. 该化合物对于离体的EGFR(表皮生长因子受体)酪氨酸激酶具有显著的抑制活性(IC50=0.008 nmol/L) (Scheme 25).Scheme 25与上类似, 4-氨基-3-酰胺基吡啶亦可与原甲酸三乙酯反应得到吡啶并[4,3-d]嘧啶衍生物91[66] (Eq. 18).此外, 4-氨基-3-氰基吡啶类化合物92亦可与脲类化合物关环制得产物93, 该物质是一种新的GABA (γ-氨基丁酸)脑受体的选择性抑制剂[67](Scheme 26).Scheme 263.3 由四氢吡啶酮出发反应关环1992年, Bernath等[68]报道用四氢吡啶酮酯94与取代甲脒反应制得吡啶并[4,3-d]嘧啶衍生物95 (Scheme 27).Pauline[69]等用硫脲96与α-溴代酮97作用, 再用四氢吡啶酮98缩合, 得到取代噻唑基四氢吡啶并[4,3-d]嘧啶衍生物99, 可用于治疗白血病症, 抑制血小板聚集等(Scheme 28).Scheme 27Scheme 283.4 由4-甲氧基喹啉-3-甲醛与乙酰胺反应关环1975年, Hull等[70]用醇钠催化下的4-甲氧基喹啉-3-甲醛(100)在热乙醇中与乙酰胺101反应, 经一系列转变, 制得稠合的吡啶并[4,3-d]嘧啶类化合物102 (Scheme 29).Scheme 293.5 由氨基或取代氨基吡啶甲酸酯关环1967年, Ismail等[71]报道由乙酰胺吡啶甲酸乙酯(103)在氨水或羟氨作用下顺利关环制得吡啶并[4,3-d]1540有 机 化 学 V ol. 25, 2005鲜有报道.目前, 有关吡啶并[4,3-d ]嘧啶类化合物的农药活性的研究报道很少, 为了对此类新型化合物的农药活性进行探索性的研究, 我们研究组对此类新型化合物的合成方法进行了研究. 2003年, 我们由氨基吡啶甲酸酯(105)经膦亚胺106制备碳二亚胺107, 后者在温和条件下在催化剂如醇钠或碳酸钾作用下与酚、胺等发生关环反应, 得到一系列新型的吡啶并[4,3-d ]嘧啶衍生物108, 该反应具有条件温和(室温下即可反应)、反应迅速、易于提纯、收率高等优点, 每步反应的收率均可达90%以上(Scheme 30).Scheme 303.6 由4-氨基-5-乙酰基关环2004年, 在对吡啶并[4,3-d ]嘧啶衍生物的合成研究中, 我们发现含乙酰基的氰基吡啶胺109与原甲酸三乙酯作用生成脒110后, 再加入胺, 并不是如前所述(Eq. 2)与氰基关环而是与乙酰基关环, 进而得到一类结构新颖的吡啶并[4,3-d ]嘧啶衍生物111, 该反应最后一步的收率很高, 条件亦十分温和, 室温下即可反应(Scheme 31).4 结束语吡啶并嘧啶类化合物的合成方法众多, 在研究过程中, 新反应不断被发现, 许多具有高活性、高选择性的可作为医药或农药开发的新型化合物也不断被发现. 目前, 吡啶并嘧啶类化合物的合成与研究在国内外化学界均方兴未艾, 这是一个非常有意义且具有良好应用前景的课题. 相信在不久的将来, 吡啶并嘧啶类化合物将在Scheme 31我国有机合成研究领域以及相关的应用领域占有十分重要的地位.References1 Paul, B.; Lee, E. E. WO 0153273, 2001 [Chem . Abstr . 2001,135, 122511].2 Nakayama, K.; Kawato, H.; Watanabe, J.; Ohtsuka, M. Bio-org . Med . Chem . Lett . 2004, 14, 475.3 Veach, D. R.; Bornmann, W.; Clarkson, B. D.; Nikolas, V .B.; Justus, D. WO 2004063195, 2004 [Chem . Abstr . 2004, 141, 157126].4 Elder, J. T.; Varani, J. NZ 516873, 2003 [Chem . Abstr . 2002,137, 163829].5 Kraker, A. J.; Hartl, B. G.; Amar, A. M.; Barvian, M. R.Biochem . Pharmacol . 2000, 60, 885.6 Morris, J.; Bhattacharya, S. K. US 2003045535, 2003[Chem . Abstr . 2002, 137, 294972].7 Guo, Z. Z.; Yue, M.; Lee, C. H. Bioorg . Med . Chem . Lett .2003, 13, 3041.8 Jarvis, M. F.; Yu, H.; Wismer, C. T.; Zhu, C. Pain 2002, 96,107.9 Gregory, A. G.; Erol, K. B.; Marlon, C. E . J . Med . Chem .2003, 38, 245.10 Palanki, M. S. S.; Suto, M. J. US 6150372, 2000 [Chem .Abstr . 1999, 130, 35032].11 Roberton, A. D.; Jackson, S. WO 0153266, 2001 [Chem .Abstr . 2001, 135, 122509].12 Heckler, R. E.; Jourdan, G. P. EP 414386, 1991 [Chem .Abstr . 1991, 115, 71630].13 Shih, C.; Grindley, G. B.; Gossett, L. S.; Moran, R. G.Chem . Biol . Pteridines , 1989 Proc . Int . Symp . Pterdines Fo-lic Acid Deriv ., 9th , Eds.: Curtius, H. C.; Ghisla, S.; Blau, N., de Gruyter, Berlin, 1989, pp. 1035~1038.14 Anders, H.; Malin, G. N.; Arne, B.; Elisabeth, S. WO2004020418, 2004 [Chem . Abstr . 2004, 140, 235753].15 Helena, S.; Ladowska; A.; Sabiniarz, B. F. Farmaco 2003,58, 25.16 Graham, C. J.; Park, M. A. WO 0056738, 2000 [Chem .Abstr . 2000, 133, 252455].No. 12 任青云等:吡啶并嘧啶类化合物的合成研究进展154117 Harriman, G. C. B.; Chi, S.; Zhang, M.; Crowe, A.; Bennett,R. A.; Parsons, I. Tetrahedron Lett. 2003, 44, 3659.18 Gangjee, A.; Adair, O.; Queener, S. F. Bioorg. Med. Chem.2001, 9, 2929.19 Wu, Y. J.; Hu, S.; Huang, Y.; Paul, M. S.; Katharine, A. G. Y.US 2004019064, 2004 [Chem. Abstr. 2004, 140, 146152].20 Victory, P.; Garriga, M. Heterocycles1986, 24, 3053.21 Victory, P.; Cirujeda, J.; Vidal-Ferran, A. Tetrahedron1995,51, 10253.22 Hosmane, R. S.; Lim, B. B.; Summers, M. F. J. Org. Chem.1988, 53, 5309.23 Troschuetz, R.; Karger, A. J. Heterocycl. Chem. 1996, 33,1815.24 Quintela, J. M.; Peinador, C. Bioorg. Med. Chem. 1997, 5,1543.25 Kumar, N.; Singh, G.; Yadav, A. K. Heteroat. Chem. 2001,12(11), 52.26 Wang, H. Q.; Liu, Z. J.; Yang, L. M.; Ding, M. W. J. Het-erocycl. Chem. 2004, 41, 393.27 Wang, H. Q.; Liu, H.; Liu, Z. J. Chin. J. Org. Chem. 2004,24, 1563 (in Chinese).(王宏青, 刘惠, 刘钊杰, 有机化学, 2004, 24, 1563. )28 Bernetti, R.; Mancini, F.; Price, C. C. J. Org. Chem. 1962,27, 2863.29 Ding, M. W.; Yang, S. J.; Zhu, J. Synthesis2004, 75.30 Ding, M. W.; Yang, S. J.; Chen, Y. F. Chin. J. Org. Chem.2004, 24, 923 (in Chinese).(丁明武, 杨尚君, 陈云峰, 有机化学, 2004, 24, 923.)31 Wawzonek, S. J. Org. Chem. 1976, 41, 3149.32 Quiroga, J.; Insuasty, B.; Sanchez, A.; Nogueras, M.; Meier,H. J. Heterocycl. Chem. 1992, 29, 1045.33 Gordeev, M. F.; Patel, D. V.; Wu, J.; Gorden, E. M. Tetra-hedron Lett. 1996, 37, 4643.34 Sebestyen, F.; Dibo, G.; Kovacs, A.; Furka, A. Bioorg. Med.Chem. Lett. 1993, 3, 413.35 Srivastava, P.; Saxena, A. S.; Ram, V. J. Synthesis2000,541.36 Quiroga, J.; Insuasty, B.; Insuasty, H.; Abonia, R.; Cobo, J.;Sanchez, A. Tetrahedron2002, 58, 4873.37 Kuwada, T.; Harada, K.; Nobuhiro, J. Heterocycles2002,57, 2081.38 Mont, N.; Teixido, J.; Borrell, J. I.; Kappe, C. O. Tetrahe-dron Lett. 2003, 44, 5385.39 Bagley, M. C.; Hughes, D. D.; Lioyd, R.; Powers, V. E. C.Tetrahedron. Lett. 2001, 42, 6585.40 Martin, N.; Quinteiro, M.; Seoane, C.; Soto, J. L. J. Hetero-cycl. Chem. 1996, 33, 45.41 Quiroga, J.; Hormaza, A.; Insuasty, B. J. Heterocycl. Chem.1997, 34, 521.42 Bhuyan, P.; Boruah, R. C.; Sandhu, J. S. J. Org. Chem.1990, 55, 568.43 Quiroga, I.; Alvarado, M.; Insuasty, B. J. Heterocycl. Chem.1998, 35, 1309.44 Nasr, M. N.; Gineinah, M. M. Arch. Pharm. Pharm. Med.Chem. 2002, 6, 289.45 Rosowsky, A.; Chen, H.; Fu, H. N.; Queener, S. F. Bioorg.Med. Chem. 2003, 11, 59.46 Taylor, E. C.; Palmer, D. C.; George, T. J.; Fletcher, S. R.;Tseng, C. P.; Harrington, P. J. J. Org. Chem. 1983, 48, 4852.47 Gangjee, A.; Vasudevan, A.; Queener, S. F.; Kisikliuk, R. L.J. Med. Chem. 1996, 39, 1438.48 Prajapati, D.; Sandhu, J. S. Synthesis1988, 342.49 Connolly, C. J. C.; Hamby, J. M.; Schroeder, M. C.; Bar-vian, M. Bioorg. Med. Chem. Lett. 1997, 7(18), 2415.50 Ojea, V.; Muinelo, I.; Quintela, J. M. Tetrahedron1998, 54,927.51 Kasparec, J.; Adams, J. L.; Sisko, J.; Silva, D. J. Tetrahe-dron Lett. 2003, 44, 4567.52 Hirota, K.; Kubo, K.; Sajiki, H.; Kitade, Y.; Sako, M.; Maki,Y. J. Org. Chem. 1997, 62, 2999.53 Bae, J. W.; Lee. S. H.; Cho. Y. J.; Jung, J. J.; Hwang, H. J.;Yoon, C. M. Tetrahedron Lett. 2000, 41, 5899.54 Bhuyan, P. J.; Borah, H. N.; Boruah, R. C. Tetrahedron Lett.2003, 44, 1847.55 Mazze, M.; Balbi, A.; Roma, G.; Di Braccio, M. Eur. J.Med. Chem. 1990, 25, 617.56 Docampopalacios, M. L.; PellonComdom, R. F. Synth.Commun. 2003, 33, 1777.57 Gullu, M.; Uzun, S.; Yalcin, S. Tetrahedron Lett. 2003, 44,1939.58 Ye, F. C.; Chen, B. C.; Huang, X. Synthesis1989, 317.59 Selic, L.; Stanounik, B. J. Heterocycl. Chem. 1997, 34, 813.60 Bernath. G.; Fulop, F. US 4219649, 1980 [Chem. Abstr.1979, 91, 5243].61 Roma, G.; Braccio, M. D.; Balbi, A.; Mazzei, M.; Ermili, A.J. Heterocycl. Chem. 1987, 24, 329.62 Harriman, G. C. B.; Chi, S.; Zhang, M.; Crowe, A.; Bennett,R. A.; Parsons, I. Tetrahedron Lett. 2003, 44, 3659.63 Lu, X.; Petersen, J. L.; Wang, K. K. J. Org. Chem. 2002, 67,7797.64 Brown, T. B.; Stevens, M. F. J. Chem. Soc., Perkin Trans. 11975, 1023.65 Thompson, A. M.; Bridges, A. J.; Fry. D. W.; Kraker, A. J.;Denny, W. A. J. Med. Chem. 1995, 38, 3780.66 Rewcastle, G. W.; Palmer, B. D.; Thompson, A. M.; Bridges,A. J.; Denny, W. A. J. Med. Chem. 1996, 39(9), 1823.67 Thurkauf, A.; Hutchison, A.; Albaugh, P. US 5212310, 1993[Chem. Abstr. 1993, 119, 180811].68 Bernath, G.; Toth, G. J. Chem. Soc., Perkin Trans. 11992,157.69 Sanfilippo, P. J.; Bonner, M. P.; Mcnally, J. J. US 5405848,1995 [Chem. Abstr. 1995, 123, 55912].70 Hull, R.; Van, D. P. J.; Swain, M. L. J. Chem. Soc., PerkinTrans. 11975, 2271.71 Ismail, A. G.; Wibberley, D. G. J. Chem. Soc. (C) 1967,2613.(Y0411165 QIN, X. Q.)CHINESE JOURNAL OFORGANIC CHEMISTRY V olume 25, Number 12 (YOUJI HUAXUE) December 2005CONTENTSAdvances of Glaser Coupling Reaction TANG, Jin-Yu; JING, Huan-Feng*; DENG, Guo-Hua; ZHOU, LeiChin. J. Org. Chem. 2005, 25(12), 1503This paper reviews the recent advances of Glaser coupling reaction and its applications to the synthesis of conjugated polymers. The reaction mechanism is also discussed.Ni-catalyzed C(sp2)-carbon and C(sp2)- heteroatom Cross-coupling ReactionsLI, Zhe; FU, Yao; LIU, Lei; GUO, Qing- Xiang*Chin. J. Org. Chem. 2005, 25(12), 1508The reactions include Heck reaction, Kumada-Corriu reaction, Negishi reaction, Stille reaction, Suzuki reaction, Ullmann reaction, C—N coupling, C—O coupling, C—P coupling, and C—S coupling.Progress in Synthesis of Pyridopyri-midine AnaloguesREN Qing-Yun; WANG, Tao; LIU, Jian- Chao; HE, Hong-Wu*Chin. J. Org. Chem. 2005, 25(12), 1530Recent advances in the synthesis of pyridopyrimidine analogues are reviewed in this article including pyrido[2,3-d]pyrimidine, pyrido[1,2-a]pyrimidine and pyrido[4,3-d]-pyrimidine analogues with 71 references.Chiral Sulfoxides by Biooxidation of Sul-fidesJIANG, Biao; HUANG, Hao; LUO, Jun; LI, Zu-Yi*Chin. J. Org. Chem. 2005, 25(12), 1542This review is mainly focused on the catalytic asymmetric biooxidation of sulfides to chiral sulfoxides. Two enzymatic approaches in the oxidation of organic sulfides to optically active sulfoxides are described based on the use of chloroperoxidase and cyclohexanone monooxygenase.Effect of Metal Chlorides on the Reduc-tion of α-Chloroacetophenones with So-dium BorohydrideWANG, Ming-Hui; WU, Jian-Ping; YANG, Li-Rong*; CHEN, Xin-ZhiChin. J. Org. Chem. 2005, 25(12), 1548Metal chlorides such as calcium, lanthanum, magnesium, manganese and zinc chloride can efficiently improve specificity of the reduction of α-chloroacetophenone derivatives with sodium borohydride in methanol solution.。
吡啶的合成
吡啶的合成吡啶是一种重要的含氮杂环化合物,具有广泛的应用价值,如药物、染料、农药等。
其合成方法多种多样,下面将介绍几种常用的合成方法。
1. 马氏合成法马氏合成法是最早用于合成吡啶的方法之一。
该方法的反应原料是α-氨基酸酯和羧酸,反应条件是高温下进行。
反应机理是首先将α-氨基酸酯水解生成相应的酸,然后酸与α-氨基酸酯在高温下发生酰基转移反应,生成相应的离子型中间体,最后通过脱水、还原等步骤得到吡啶。
2. 阿贝尔合成法阿贝尔合成法是一种经典的吡啶合成方法。
该方法以醛和胺为原料,通过催化剂的存在,进行氧化氢加氢反应得到相应的酮化合物,然后酮在碱性条件下发生环化反应,生成吡啶。
这种方法的优点是反应条件温和,反应产率高,但需要合适的催化剂的存在。
3. 泰勒合成法泰勒合成法是一种重要的吡啶合成方法。
该方法以α,β-不饱和羰基化合物和胺为原料,通过过氧化氢的氧化作用进行合成。
具体步骤为:首先将α,β-不饱和羰基化合物和胺在氢氧化钠的存在下进行缩合反应,再加入过氧化氢进行氧化反应,生成相应的亚磷酸酯中间体,最后通过酸性条件进行脱保护还原得到吡啶。
4. 格列酮合成法格列酮合成法是一种高效的吡啶合成方法。
该方法以α-羰基化合物和胺为原料,通过酮的还原和环化反应得到吡啶。
这个方法的特点是反应条件温和,产率高,适用于合成不同的吡啶衍生物。
5. 环化反应法环化反应法是一种重要的吡啶合成方法。
该方法以二元芳香化合物和亚硝酸盐为原料,通过环化反应得到吡啶。
具体步骤为:首先将二元芳香化合物与亚硝酸钠在浓氢氧化钠存在下反应生成α-氧化亚硝基化合物,然后通过酸性条件进行脱保护还原得到吡啶。
吡啶合成方法众多,上述仅是其中几种常用的方法。
不同的方法适用于不同的反应物,可以根据具体的需求选择合适的合成方法。
此外,也可以通过一些新型的合成方法,如催化反应、微波辐射等进行吡啶的合成。
总的来说,随着化学合成技术的不断发展,吡啶合成方法的研究也在不断深入,相信在未来会有更多更高效的吡啶合成方法被开发出来。
固定床催化法合成吡啶及其衍生物的研究与应用的开题报告
固定床催化法合成吡啶及其衍生物的研究与应用的开题报告【背景和意义】吡啶及其衍生物是重要的有机化合物,广泛应用于医药、染料、农药、香料等领域。
目前,合成吡啶及其衍生物的方法主要包括拉马克法、育托法、Pomeranz-Fritsch 反应等,但这些方法存在着化学反应步骤多、反应时间长、催化剂选择狭窄等问题。
相比之下,固定床催化法合成吡啶及其衍生物具有反应步骤少、反应时间短、催化剂可选择性大等优点,因此受到越来越多的研究者的关注。
【研究目标】本研究旨在利用固定床催化法合成吡啶及其衍生物,探究该方法的反应条件以及催化剂的选择和优化。
同时,将所合成的吡啶及其衍生物进行表征,并研究其在医药、染料、农药等领域的应用。
【研究内容】1. 固定床催化法合成吡啶及其衍生物的反应条件优化;2. 不同催化剂对合成吡啶及其衍生物的影响;3. 合成吡啶及其衍生物的表征;4. 合成吡啶及其衍生物的应用研究。
【研究方法】1. 合成吡啶及其衍生物的反应条件优化:在反应装置中加入不同催化剂,通过控制不同反应条件(如反应温度、反应时间等)来优化反应条件;2. 不同催化剂对合成吡啶及其衍生物的影响:选用不同催化剂(如Ni-Raney、Ru/C等)进行比较实验,分析其对反应结果的影响;3. 合成吡啶及其衍生物的表征:采用氢气NMR、质谱等表征方法对所合成的产物进行表征;4. 合成吡啶及其衍生物的应用研究:将所合成的产物应用于医药、染料、农药等领域,分析其应用效果;【预期结果】本研究的预期结果为成功利用固定床催化法合成吡啶及其衍生物,并探究最佳反应条件和最优催化剂,表征所合成产物的结构和性质。
进一步地,将所合成产物应用于医药、染料、农药等领域,探究其应用价值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
的第 1 苯并 咪 唑类 胃酸质子 泵抑 制剂 ( P ) 代 P I, 18 98年首次 上市 , 用于 治疗 消化 性 胃溃 疡 和 反食 性
胃炎等 疾病 。制备过 程 如式 ( ) 示 。 4所
c 三 c
7 : : - - : :
吡 啶 类化 合 物 的合成 及应 用研 究 进 展
要 晓丽 , 崔建 兰, 杨 玉芬
( 中北大学化 工与环境 学院 , 山西 太原 0 05 ) 3 0 1
摘 要: 合论述 了吡啶类化合物 的合成及应用研究进展 , 综 对其 中较重 要的几类化合 物进行 了讨论 , 并介绍 了该类化合物在医药方面的应用情况 。
关键词 : 吡啶类化合物 ; 医药 ; 应用
中图分 类号 :Q 5 . T 2 32 文献标识码 : A 文章编号 :0 47 5 {02)102 -4 10 —0 0 2 1 0 -0 80
通 常将 吡啶及 其 衍 生物 统 称 为 吡 啶类 化 合 物 , 此 类化合 物是 开发 应 用 范 围最 广 的精 细 化 工 原 料 。 吡啶具 有芳 香性 , 与苯环 结构相 类似 , 环上 的氮原 子
1 2 1 2 甲基 吡啶 . . 一
吡啶类 化合 物化学 性 质 非 常 活泼 , 参 与 多种 亲 电 能 和亲核 反应 , 经过 一 系列 反 应 可 以合 成 多 种重 要 的 精 细有 机 合 成 中间 体 , 在农 药 、 医药 、 染料 、 香料 、 橡 胶、 饲料 以及 日用化 工等 领域应 用 十分广泛 J 1。
含 有一对 孤对 电子 而具 有 一 定 的 亲核 能 力 。因 此 ,
1 2 烷基 吡啶 .
烷 基 吡啶分 为一 甲基 吡啶 ( 考林 ) 二 甲基 吡 皮 、 啶 ( 剔 啶 ) 三 甲基 吡 啶 ( 卢 、 可力 丁 ) 2甲基 _. 和 . 5乙 基吡 啶 ( P 等 , 泛 用 于 医药 、 药 、 料 、 业 ME ) 广 农 香 工 产 品等 的合 成 。近 年来 , 基 吡啶 的应 用 领 域 不 断 烷 扩大 , 需求增 长很 快 , 已引起 广泛 的关 注 | 。 3 J
C C CH3 H2 H2
酸地塞米松 , 磺胺类硫酸哌酸, 氢化可的松, 碘苷 , 黄 体酮 , 氟哌 酸 , 生素 A、 :D , 孢 4号等 4 维 D 、 ,头 0余种
图 2 氨丙 嘧 吡 啶
常用医药的合成原料。吡啶还可合成溴代十五烷基 2 甲基吡啶制备血管扩张药抗眩啶的过程如第 一 吡啶 , 用于生产青霉素去乳剂和发酵沉淀剂等 。 J 2 9页式 ( ) 示 J 1所 。
第3 2卷第 1期
21 0 2年 2月
山
西
化工 Biblioteka V0. 2 No 1 13 .
Fe 2 2 b. O1
S HANXIC HEMI CAL I NDU T S RY
f } 。 - ,
。
,
, t 一 ‘
※: 臻避 径坛 j
…
I
;.
tt
I  ̄ : .
2甲基 吡 啶在 医 药 领 域 可 用 于 合 成 氨 丙 嘧 吡 一
近1 0多年来 , 国内外学者对吡啶及其衍生物在 农 药 和医药研 究领 域 中的应用 , 特别 对含氟 、 氮杂 含
环 化合 物 的研究 开发给予 了高 度 的重视 。吡 啶及其 衍 生物 也将 是今后科 学研 究 和工业 生产 的热点 。本 文对几 种 吡啶类 化合物 的合 成及在 药物方 面 的应用
1 2 2 3 甲基 吡啶 . . 一
收稿 日期 :0 1 80 2 1- -8 0
作者简介 : 要晓丽 , , 8 年 出生 , 女 1 5 9 中北大学在 读硕士研究生 , 主要 从事精细化学品、 医药中间体及荧光磁性 材料 的合成及研究。
在 医药行 业 中 ,一 吡 啶用 于合 成 烟酸 、 酰 3甲基 烟 胺、 兰索拉唑、 维生素 B 尼可拉 明和强心药等。其 、
C NH2HC1 H3 ・
cH
c
伽 一
c HN c{ C Hc H } 3 l H H
NO2 c
CH3
謦 / HHN C H 1 人 C …H H C C
2
,.
NO2 CH3
OC C 3 H2 F
一 。
CN
s H
H
OC C H2
进 行 了介绍 。
啶、 扑尔敏 、 长效磺胺 、 局部麻醉药 、 泻药和血管扩张 药等 ( 图 1 图 2 。 见 和 )
C1
/
/
C H3
N
\C H
3
1 吡啶及 其衍生物 的分类和应用
1 1 吮 啶 .
图 1 扑 尔敏
吡啶本 身在 医药上 可生 产头孢 立新 , 的松 , 强 醋
21 0 2年 2月
要晓丽等 。 吡啶类化 合物 的合成及应用研究进展
・ 9・ 2
中, 兰索拉 唑是 由 日本 武 田公 司 开发 的 , 19 年 于 91 首次在 法 国上市 , 用 于食 管 炎 和 十二 指 肠 溃 疡 的 可
短期 治疗 , 有更好 的疗效 、 具 较少 的副作 用 和更 强 的 稳 定性 。制 备过 程如式 ( ) 。 2
叫
和心血 管系统 、 网状 内皮 系 统 与分 泌 的功 能。反 应
式 如式 ( )引。 3
∞
COOH
() 3
12 3 2 3 5三 甲基吡 啶 . . , ,一
23 5三甲基吡啶是合成抗溃疡药奥美拉唑的 ,,一
关 键 中间体 。奥美 拉 唑是 瑞 典 A t sa公 司 研 制 开发 r
OC CF H2 3
CH3
() 2
CH2 l C OCH2 F C 3
H
一
OCH2 3 CF
。
H
烟酸是 以3甲基吡啶为原料 、 一 经过高锰酸钾氧 化而得 , 可促 进铁 吸 收和血细胞 的生 成 , 维持 皮肤 的 正常功能和消化腺 的分泌 , 提高中枢神经的兴奋性