27与圆有关的计算
初三数学圆知识点归纳最新
初三数学圆知识点归纳最新(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如演讲稿、总结报告、合同协议、方案大全、工作计划、学习计划、条据书信、致辞讲话、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of classic sample essays, such as speech drafts, summary reports, contract agreements, project plans, work plans, study plans, letter letters, speeches, teaching materials, essays, other sample essays, etc. Want to know the format and writing of different sample essays, so stay tuned!初三数学圆知识点归纳最新数学是研究数量、结构、变化、空间以及信息等概念的一门学科。
2015届湘教版中考数学复习课件(第27课时_与圆有关的计算)
例1 [2013· 扬州] 如图27-1,在扇形 OAB中,∠AOB=110°,半径OA=18, 将扇形OAB沿过点B的直线折叠,点O恰 ︵ 好落在 AB 上的点D处,折痕交OA于点C, ︵ 5π . 则AD的长为_______
考点聚焦 归类探究 回归教材
考点聚焦 归类探究 回归教材
第27课时┃ 与圆有关的计算
考点2 扇形的面积公式
nπ r2 (1)S扇形= (n°是圆心角度数,r是扇形的半径). 360 扇形 面积 (2)S扇形=1lr(l是扇形的弧长,r是扇形的半径) 2 弓形 面积 S弓形=S扇形±S△
考点聚焦
归类探究
回归教材
第27课时┃ 与圆有关的计算
命题角度: 1. 已知扇形的半径和圆心角,求扇形的面积; 2. 已知扇形的弧长和半径,求扇形的面积.
例2 [2012· 岳阳] 如图27-2所示,在⊙O ︵ ︵ 中, AD = AC ,弦AB与弦AC交于点A,弦CD 与弦AB交于点F,连接BC. (1)求证:AC2=AB· AF; (2)若⊙O的半径长为2 cm,∠B=60°, 求图中阴影部分的面积.
第27课时┃ 与圆有关的计算
解 析
如图,连接OD.
根据折叠的性质知,OB=DB. 又∵OD=OB, ∴OD=OB=DB,即△ODB是等边三角形, ∴∠DOB=60°. ∵∠AOB=110°, ∴∠AOD=∠AOB-∠DOB=50°, ︵ 50³π ³18 ∴AD的长为 =5π . 180
考点聚焦 归类探究 回归教材
考点3
正多边形和圆
正多边形和圆的关系非常密切,将一个圆n(n≥3) 等分,依次连接各等分点所得的多边形叫作这个圆的 内接正多边形,这个圆是这个正多边形的外接圆.正
2021-2022学年基础强化华东师大版九年级数学下册第27章 圆必考点解析练习题(精选含解析)
华东师大版九年级数学下册第27章 圆必考点解析考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,DC 是⊙O 的直径,弦AB ⊥CD 于M ,则下列结论不一定成立的是( )A .AM =BMB .CM =DMC .AC BC =D .AD BD =2、数学活动课上,同学们想测出一个残损轮子的半径,小宇的解决方案如下:如图,在轮子圆弧上任取两点A ,B ,连接AB ,再作出AB 的垂直平分线,交AB 于点C ,交AB 于点D ,测出,AB CD 的长度,即可计算得出轮子的半径.现测出40cm,10cm AB CD ==,则轮子的半径为( )A.50cm B.35cm C.25cm D.20cm3、如图,AB是O的切线,B为切点,连接O A,与O交于点C,D为O上一动点(点D不与点C、点B重合),连接CD BD、.若42∠的度数为()∠=︒,则DAA.21︒B.24︒C.42︒D.48︒4、如图,点A,B,C在⊙O上,∠ACB=35°,则∠AOB的度数是()A.75°B.70°C.65°D.55°5、已知正五边形的边长为1,则该正五边形的对角线长度为().A B C D6、一个圆形人工湖如图所示,弦AB是湖上的一座桥,已知桥AB长100m,测得圆周角45∠=︒,ACB则这个人工湖的直径AD为()m.A.B.C.D.2007、如图,四边形ABCD内接于⊙O,连接BD,若AC BC=,∠BDC=50°,则∠ADC的度数是()A.125°B.130°C.135°D.140°8、如图,在O中,如果AB=2AC,则下列关于弦AB与弦AC之间关系正确的是()A.AB=AC B.AB= 2AC C.AB>2AC D.AB< 2AC9、如图,PA、PB是O的切线,A、B是切点,点C在O上,且58∠=︒,则APBACB∠等于()A.54°B.58°C.64°D.68°10、如图,A ,B ,C ,D 都是O 上的点,OA BC ⊥,垂足为E ,若26OBC ∠=︒,则ADC ∠的度数为( )A .26︒B .32︒C .52︒D .64︒第Ⅱ卷(非选择题 70分)二、填空题(10小题,每小题3分,共计30分)1、如图,AB 为O 的弦,半径⊥OD AB 于点C .若8AB =,2CD =,则O 的半径长为______.2、若扇形的圆心角为60°,半径为2,则该扇形的弧长是_____(结果保留π)3、如图,将半径为10cm 的圆形纸片沿一条弦AB 折叠,折叠后弧AB 的中点C 与圆心O 重叠,则弦AB 的长度为________cm .4、如图,已知P 的半径为1,圆心P 在抛物线2112y x =-+上运动,当P 与x 轴相切时,圆心P 的横坐标为______.5、在下图中,AB是O的直径,要使得直线AT是O的切线,需要添加的一个条件是________.(写一个条件即可)6、如图,从一块直径为2cm的圆形铁皮上剪出一圆心角为90°的扇形,则此扇形的面积为______cm2.7、《九章算术》是我国古代的数学名著,书中有这样的一个问题:“今有勾八步,股十五步,问勾中容圆径几何?”.其意思是:“如图,现有直角三角形,勾(短直角边)长为 8 步,股(长直角边)长为 15 步,问该直角三角形所能容纳的最大圆的直径是多少?”答:该直角三角形所能容纳的最大圆的直径..是______步.8、如图,在Rt ABC 中,90ACB ∠=︒,30B ∠=︒,2AB =,以点A 为圆心,AC 的长为半径画弧,以点B 为圆心,BC 的长为半径画弧,两弧分别交AB 于点D 、F ,则图中阴影部分的面积是_________.9、如图,ABC 内接于⊙O ,∠BAC =120°,AB =AC ,BD 为⊙O 的直径,CD =6,OA 交BC 于点E ,则AD 的长度是 ___.10、已知如图,AB =8,AC =4,∠BAC =60°,BC 所在圆的圆心是点O ,∠BOC =60°,分别在BC 、线段AB 和AC 上选取点P 、E 、F ,则PE +EF +FP 的最小值为____________.三、解答题(5小题,每小题8分,共计40分)1、如图, 菱形ABCD 的顶点A ,B ,D 在⊙O 上, 点C 在⊙O 外, 对角线AC 过圆心O , 且 ∠DAB =60°.(1)求证:直线CD是⊙O的切线;(2)若AB=6,求图中阴影部分的面积.2、(1)如图1,在△ABC中,AC=6,AB=135BAC∠=︒,求△ABC的面积.(2)如图2,半圆O的直径AB=10,C是半圆AB的中点,点D在BC上,且2=,点P是ABCD BD上的动点,试求PC+PD的最小值.(3)如图3,扇形AOB的半径为20,∠AOB=45°,在AB选点P,在边OA上选点E,在边OB上选点F,求PE+EF+FP的长度的最小值.3、如图,已知圆O的直径AB垂直于弦CD于点E,连接CO并延长交AD于点F,且CF⊥AD,连结AC.(1)△ACD为等边三角形;(2)请证明:E 是OB 的中点;(3)若AB =8,求CD 的长.4、已知顶点为D 的抛物线()()230y a x a =-≠交y 轴于点()0,3C ,且与直线l 交于不同的两点A 、B (A 、B 不与点D 重合).(1)求抛物线的解析式;(2)若90ADB ∠=︒,①试说明:直线l 必过定点;②过点D 作DF l ⊥,垂足为点F ,求点C 到点F 的最短距离.5、如图,等边△ABC 内接于⊙O ,P 是AB 上任一点(点P 与点A 、B 重合),连接AP 、BP ,过点C 作CM ∥BP 交PA 的延长线于点M .(1)求∠APC 和∠BPC 的度数;(2)求证:△ACM ≌△BCP ;(3)若PA =1,PB =2,求四边形PBCM 的面积;(4)在(3)的条件下,求AB 的长度.-参考答案-一、单选题1、B【解析】【分析】根据垂径定理“垂直于弦的直径平分这条弦,并且平分弦所对的两条弧”进行判断即可得.【详解】解:∵弦AB⊥CD,CD过圆心O,∴AM=BM,AC BC=,AD BD=,即选项A、C、D选项说法正确,不符合题意,当根据已知条件得CM和DM不一定相等,故选B.【点睛】本题考查了垂径定理,解题的关键是掌握垂径定理.2、C【解析】【分析】由垂径定理,可得出BC的长;连接OB,在Rt△OBC中,可用半径OB表示出OC的长,进而可根据勾股定理求出得出轮子的半径即可.【详解】解:设圆心为O,连接OB.Rt△OBC中,BC=1AB=20cm,2根据勾股定理得:OC2+BC2=OB2,即:(OB-10)2+202=OB2,解得:OB=25;故轮子的半径为25cm.故选:C.【点睛】本题考查垂径定理,勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.3、B【解析】【分析】如图:连接OB,由切线的性质可得∠OBA=90°,再根据直角三角形两锐角互余求得∠COB,然后再根据圆周角定理解答即可.【详解】解:如图:连接OB,∵AB是O的切线,B为切点∴∠OBA=90°∵42A ∠=︒∴∠COB =90°-42°=48°∴D ∠=12∠COB =24°.故选B .【点睛】本题主要考查了切线的性质、圆周角定理等知识点,掌握圆周角等于对应圆心角的一半成为解答本题的关键.4、B【解析】【分析】直接根据圆周角定理求解.【详解】解:35ACB ∠=︒,270AOB ACB ∴∠=∠=︒. 故选:B .【点睛】本题考查了圆周角定理,解题的关键是掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.5、C【解析】【分析】如图,五边形ABCDE 为正五边形, 证明,AB BC AE CD ,AF BF BG CG 1,AB AG 再证明,ABF ACB ∽可得:,ABBF AC CB设AF =x ,则AC =1+x ,再解方程即可. 【详解】解:如图,五边形ABCDE 为正五边形,∴五边形的每个内角均为108°,,AB BC AE CD∴∠BAG =∠ABF =∠ACB =∠CBD = 36°,∴∠BGF =∠BFG =72°,72,ABG AGB,,,AF BF BG GC BG BF ,AF BF BG CG 1,AB AG,,BAC FAB ABF ACB,ABF ACB ∽∴ ,AB BFAC CB设AF =x ,则AC =1+x , 1,11xx210,x x ∴+-=解得:12x x ==经检验:x = 15151.22AC故选C【点睛】本题考查的是正多边形的性质,等腰三角形的判定与性质,相似三角形的判定与性质,证明ABF ACB ∽△△是解本题的关键.6、B【解析】【分析】连接BD ,利用同弧所对圆周角相等以及直径所对的角为直角,求证ADB ∆为等腰直角三角形,最后利用勾股定理,求出AD 即可.【详解】解:连接BD ,如下图所示:ACB ∠与ADB ∠所对的弧都是AB .45ADB ACB ∴∠=∠=︒.ABD ∠所对的弦为直径AD ,90ABD ∴∠=︒.又45ADB ∠=︒,ADB ∴∆为等腰直角三角形,在ADB ∆中,100AB DB ==,∴由勾股定理可得:AD ===故选:B .【点睛】本题主要是考查了圆周角定理以及直径所对的圆周角为直角和勾股定理,熟练运用圆周角定理以及直径所对的圆周角为直角,得到对应的直角三角形,再用勾股定理求解边长,是解决本题的主要思路.7、B【解析】【分析】如图所示,连接AC ,由圆周角定理∠BAC =∠BDC =50°,再由等弧所对的圆周角相等得到∠ABC =∠BAC =50°,再根据圆内接四边形对角互补求解即可.【详解】解:如图所示,连接AC ,∴∠BAC =∠BDC =50°,∵AC BC =,∴∠ABC =∠BAC =50°,∵四边形ABCD 是圆内接四边形,∴∠ADC =180°-∠ABC =130°,故选B .【点睛】本题主要考查了圆周角定理,等弧所对的圆周角相等,圆内接四边形对角互补,熟练掌握相关知识是解题的关键.8、D【解析】【分析】取AB 的中点D ,连接AD ,BD ,则AB =2BD =2AD 根据圆心角、弧、弦关系定理的推论得到AD BD AC ==,又在ABD ∆中,根据三角形三边关系定理得出AD BD AB +>,即可得到2AB AC <.【详解】如图,取弧AB 的中点D ,连接AD ,BD ,则AB =2BD =2AD∵AB =2AC∴BD =AD =ACAD BD AC ∴==.在ABD ∆中,AD BD AB +>,AC AC AB ∴+>,即2AB AC <.故选:D .【点睛】本题主要考查了圆心角、弧、弦的关系及三角形三边关系定理,准确作出辅助线,得出AD BD AC ==是解题的关键.9、C【解析】【分析】连接OB ,OA ,根据圆周角定理可得2116AOB ACB ∠=∠=︒,根据切线性质以及四边形内角和性质,求解即可.【详解】解:连接OB ,OA ,如下图:∴2112AOB ACB ∠=∠=︒∵PA 、PB 是O 的切线,A 、B 是切点∴90OBP OAP ∠=∠=︒∴由四边形的内角和可得:36064APB OBP OAP AOB ∠=︒-∠-∠-∠=︒故选C .【点睛】此题考查了圆周角定理,切线的性质以及四边形内角和的性质,解题的关键是熟练掌握相关基本性质.10、B【解析】【分析】连接OC .根据OA BC ⊥确定AC AB =,90OEB ∠=︒,进而计算出AOB ∠,根据圆心角的性质求出AOC ∠,最后根据圆周角的性质即可求出ADC ∠.【详解】解:如下图所示,连接OC .∵OA BC ⊥,∴AC AB =,90OEB ∠=︒.∴AOC AOB ∠=∠.∵26OBC ∠=︒.∴64AOB ∠=︒.∴64AOC ∠=︒∵ADC ∠和AOC ∠分别是AC 所对的圆周角和圆心角, ∴3122A ADC OC ∠=︒∠=.故选:B .【点睛】本题考查垂径定理,圆心角的性质,圆周角的性质,综合应用这些知识点是解题关键.二、填空题1、5【解析】【分析】先根据垂径定理求出AC 的长,设⊙O 的半径为r ,再连接OA ,在Rt △OAC 中利用勾股定理求出r 的值即可.【详解】解:∵⊙O 的弦AB =8,半径OD ⊥AB ,∴AC =12AB =12×8=4,设⊙O 的半径为r ,则OC =r -CD =r -2,连接OA ,在Rt △OAC 中,OA 2=OC 2+AC 2,即r 2=(r -2)2+42,解得r =5.故答案为:5【点睛】本题考查的是垂径定理及勾股定理,根据题意作出辅助线,构造出直角三角形,利用勾股定理求解是解答此题的关键.2、23π 【解析】【分析】已知扇形的圆心角为60︒,半径为2,代入弧长公式计算.【详解】解:依题意,n =60︒,r =2,∴扇形的弧长=6022==1801803n r πππ⨯︒︒. 故答案为:23π. 【点睛】本题考查了弧长公式的运用.关键是熟悉公式:扇形的弧长=180n r π.3、【解析】【分析】连接OC 交AB 于点D ,再连接OA .根据轴对称的性质确定OC AB ⊥,OD =CD ;再根据垂径定理确定AD =BD ;再根据勾股定理求出AD 的长度,进而即可求出AB 的长度.【详解】解:如下图所示,连接OC 交AB 于点D ,再连接OA .∵折叠后弧AB的中点C与圆心O重叠,⊥,OD=CD.∴OC AB∴AD=BD.∵圆形纸片的半径为10cm,∴OA=OC=10cm.∴OD=5cm.∴AD=.∴BD=.∴AB AD BD=+=.故答案为:【点睛】本题考查轴对称的性质,垂径定理,勾股定理,综合应用这些知识点是解题关键.4、2或2-或0【解析】【分析】当⊙P与x轴相切时,圆心P的纵坐标为1或-1,根据圆心P在抛物线上,所以当y为±1时,可以求出点P的横坐标.【详解】x2+1,x=0.解:当y=1时,有1=-12x2+1,x=2±.当y=-1时,有-1=-12故答案是:2或2-或0.【点睛】本题考查的是二次函数的综合题,利用圆与x轴相切得到点P的纵坐标,然后代入抛物线求出点P的横坐标.5、∠ABT=∠ATB=45°(答案不唯一)【解析】【分析】根据切线的判定条件,只需要得到∠BAT=90°即可求解,因此只需要添加条件:∠ABT=∠ATB=45°即可.【详解】解:添加条件:∠ABT=∠ATB=45°,∵∠ABT=∠ATB=45°,∴∠BAT=90°,又∵AB是圆O的直径,∴AT是圆O的切线,故答案为:∠ABT=∠ATB=45°(答案不唯一).本题主要考查了圆切线的判定,三角形内角和定理,熟知圆切线的判定条件是解题的关键. 6、2π 【解析】【分析】连接AC ,根据圆周角定理得出AC 为圆的直径,解直角三角形求出AB ,根据扇形面积公式进行求解即可.【详解】解:如图,连接AC ,∵从一块直径为2cm 的圆形铁皮上剪出一个圆心角为90°的扇形,即∠ABC =90°,∴AC 为直径,即AC =2cm ,AB =BC (扇形的半径相等),∵在Rt ABC 中,22222AB BC AC +==,∴AB =BC ∴阴影部分的面积是()29023602ππ= (cm 2). 故答案为:2π. 【点睛】 本题考查了圆周角定理和扇形的面积计算,熟记扇形的面积公式是解题的关键.7、6【分析】依题意,直角三角形性质,结合题意能够容纳的最大为内切圆,结合内切圆半径,利用等积法求解即可;【详解】设直角三角形中能容纳最大圆的半径为:r ;17= 依据直角三角形面积公式:12S ah =,即为1815602S =⨯⨯=; 内切圆半径面积公式:1()2S r a b c =++,即为1(81517)2S r =⨯++; 所以160(81517)2r =++,可得:3r =,所以直径为:26d r ==;故填:6;【点睛】本题主要考查直角三角形及其内切圆的性质,重点在理解题意和利用内切圆半径求解面积;8、512π-【解析】【分析】根据直角三角形30度角的性质及勾股定理求出AC 、BC ,∠A =60°,利用扇形面积公式求出阴影面积.【详解】解:在Rt ABC 中,90ACB ∠=︒,30B ∠=︒,2AB =,∴AC =1,BC ==A =60°,∴图中阴影部分的面积=ABC CAD CBE S S S+-扇形扇形=2601113602π⨯⨯=512π故答案为:512π 【点睛】此题考查了直角三角形30度角的性质,勾股定理,扇形面积的计算公式,直角三角形面积公式,熟记各知识点并综合应用是解题的关键.9、【解析】【分析】过O 作OF AD ⊥于点F ,故1=2AF DF AD =,由AB AC =得OA BC ⊥,故60AOB ∠=︒根据直径所对的圆周角等于90︒得90BCD ∠=︒,由直角三角形中30角所对的边是斜边的一半可得6OA OD CD ===,由三角形外角的性质得1302OAD ODA AOB ∠=∠=∠=︒,在Rt AOF 中由勾股定理可得AF 的值,进而可得AD 值.【详解】如图,过O 作OF AD ⊥于点F ,故1=2AF DF AD =∵AB AC =,∴AB AC =,∴OA BC ⊥,∴60AOB ∠=︒,∵BD 为⊙O 的直径,∴90BCD ∠=︒∵6CD =,30DBC ∠=︒,∴212BD CD ==,162OA OD BD ===, ∴1302AOD ODA AOB ∠=∠=∠=︒, 在Rt AOF 中,6OA =,30OAF ∠=︒,∴3OF =,∴AF =∴2AD AF ==故答案为:【点睛】本题考查圆周角定理,直角三角形的性质以及勾股定理,解题的关键是掌握直角三角形中30角所对的边是斜边的一半,属于中考常考题型.10、12##12-+【解析】【分析】如图,连接BC ,AO ,作点P 关于AB 的对称点M ,作点P 关于AC 的对称点N ,连接MN 交AB 于E ,交AC于F,此时△PEF的周长=PE+PF+EF=EM+EF+FM=MN,想办法求出MN的最小值即可解决问题.【详解】解:如图,连接BC,AO,作点P关于AB的对称点M,作点P关于AC的对称点N,连接MN交AB于E,交AC于F,此时△PEF的周长=PE+PF+EF=EM+EF+FM=MN,∴当MN的值最小时,△PEF的值最小,∵AP=AM=AN,∠BAM=∠BAP,∠CAP=∠CAN,∠BAC=60°,∴∠MAN=120°,∴MN,∴当PA的值最小时,MN的值最小,取AB的中点J,连接CJ.∵AB=8,AC=4,∴AJ=JB=AC=4,∵∠JAC=60°,∴△JAC是等边三角形,∴JC=JA=JB,∴∠ACB=90°,∴BC=∵∠BOC =60°,OB =OC ,∴△OBC 是等边三角形,∴OB =OC =BC BCO =60°,∴∠ACH =30°,∵AH ⊥OH ,AH =12AC =2,CH∴OH∴OA∵当点P 在直线OA 上时,PA 的值最小,最小值为∴MN =.故答案:.【点睛】本题考查了圆周角定理,垂径定理,轴对称-最短问题等知识,解题的关键是学会利用轴对称解决最短问题,属于中考填空题中的压轴题.三、解答题1、 (1)见解析;(2)阴影部分的面积为4π【解析】【分析】(1)连接OD ,只需证明∠ODC =90°,根据等腰三角形的性质即可证明;(2)阴影部分的面积= S△ABD-S△OBD+S扇形OBD,利用三角形面积公式以及扇形OBD的面积公式求解即可.(1)证明:连接OD.∵四边形ABCD是菱形,且∠DAB=60°,∴AD=CD,∠CAD=∠ACD=30°,∵OA=OD,∴∠DOC=2∠CAD=60°.∴∠ODC=∠ACD+∠DOC=90°.即OD⊥CD,∴CD是⊙O的切线.(2)解:∵四边形ABCD是菱形,且∠DAB=60°,∴△ABD是等边三角形,∵对角线AC过圆心O,∴BD⊥AC,在Rt△EDA中,∠DAE=30°,AD=AB=BD=6,∴DE=3,AE=∴S △ABD =12BD ⨯AE在Rt △EDO 中,∠DOE =60°,DE =3,∴∠ODE =30°,∴OD =2OE ,∵OD 2=OE 2+DE 2,即4OE 2=OE 2+9,∴OE OD =∴S △OBD =12BD ⨯OE∵四边形ABCD 是菱形,且 ∠DAB =60°,∴∠DOB =120°,∴S 扇形OBD =(21204360ππ⨯=,∴阴影部分的面积= S △ABD -S △OBD +S 扇形OBD 44ππ=..【点睛】本题综合考查了菱形的性质、切线的判定方法、扇形的面积计算方法,熟练掌握切线的判定是解题的关键.2、(1)12;(2)(3)【解析】【分析】(1)如图1中,过点B作BD⊥CA,交CA延长线于点D,解直角三角形求出BD,可得结论.(2)如图2中,作点D关于AB的对称点Q,交AB于点H,连接CQ,交AB于点P,连接PD、OD、OC,过点Q作QM⊥CO,交CO延长线于点M,因为PC+PD≥CQ所以当点P处于解图2中的位置,PC+PD 取最小值,且最小值为CQ的长度,求出CQ的长即可解决问题.(3)如图3中,在AB上这一点作点P关于OA的对称点S,作点P关于OB的对称点N,连接SN,交OA于点E,交OB于点F,连接OS、ON、OP、EP、FP,因为PE+EF+FP≥SN,所以当点E、F处于解图3的位置时,PE+EF+FP的长度取最小值,最小值为SN的长度,求出SN,可得结论.【详解】解:(1)如图1中,过点B作BD⊥CA,交CA延长线于点D,∵∠BAC=135°,∴∠BAD=180°﹣∠BAC=180°﹣135°=45°,∵BD⊥CA,交CA延长线于点D,∴△BAD为等腰直角三角形,且∠BDA=90°,∴BD=AD,在△BAD中,BD=AD,∠BDA=90°,∴BD2+AD2=AB2,即2BD2=AB2,∵AB=∴222===,解得:BD=4,BD AB232∵AC=6,∴11641222ABCS AC BD∆=⋅⋅=⨯⨯=.(2)如图2中,作点D关于AB的对称点Q,交AB于点H,连接CQ,交AB于点P,连接PD、OD、OC,过点Q作QM⊥CO,交CO延长线于点M,∵D关于AB的对称点Q,CQ交AB于点P,∴PD=PQ,∴PC+PD=PC+PQ=CQ,∵点P为AB上的动点,∴PC+PD≥CQ,∴当点P处于解图2中的位置,PC+PD取最小值,且最小值为CQ的长度,∵点C为半圆AB的中点,∴∠COB=90°,∵∠BOD+∠COD=∠COB=90°,∴11903033BOD COB︒︒∠=∠=⨯=,∵AB=10,∴1110522OD AB==⨯=,在Rt△ODH中,由作图知,∠OHD=90°,且∠HOD=∠BOD=30°,∴1522DH OD ==, ∴52QH DH ==,∴OH == ∵由作图知,四边形OMQH 为矩形,∴5,2OM QH MQ OH ====, ∴515522CM OM OC =+=+=,∴CQ ==∴PC +PD 的最小值为(3)如图3中,在AB 上这一点作点P 关于OA 的对称点S ,作点P 关于OB 的对称点N ,连接SN ,交OA 于点E ,交OB 于点F ,连接OS 、ON 、OP 、EP 、FP ,∵点P 关于OA 的对称点S ,点P 关于OB 的对称点N ,连接SN ,交OA 于点E ,交OB 于点F , ∴PE =SE ,FP =FN ,∠SOA =∠POA ,∠NOB =∠POB ,OS =OP =ON ,∴PE +EF +FP =SE +EF +FN =SN ,∠SOA +∠NOB =∠POA +∠POB ,∵E 为OA 上的点,F 为OB 上的点,∴PE +EF +FP ≥SN ,∴当点E 、F 处于解图3的位置时,PE +EF +FP 的长度取最小值,最小值为SN 的长度,∵∠POA+∠POB=∠AOB=45°,∴∠SOA+∠NOB=45°,∴∠SON=∠SOA+∠AOB+∠NOB=45°+45°=90°,∵扇形AOB的半径为20,∴OS=ON=OP=20,在Rt△SON中,∠SON=90°,OS=ON=20,∠SON=90°,∴SN OS=∴PE+EF+FP的长度的最小值为【点睛】本题属于圆综合题,考查了轴对称最短问题,矩形的判定和性质,解直角三角形,等腰直角三角形的判定和性质等知识,解题的关键是学会利用轴对称解决最短问题.3、 (1)见解析(2)见解析(3)【解析】【分析】(1)根据垂直平分线的性质证明AC=AD=CD即可(2)要证明:E是OB的中点,只要求证OE=12OB=12OC,即证明∠OCE=30°即可;(3)在直角△OCE中,根据勾股定理就可以解得CE的长,进而求出CD的长.(1)证明:连接AC,如图∵直径AB垂直于弦CD于点E,∴AC AD=,AC=AD,∵过圆心O的线CF⊥AD,∴AF=DF,即CF是AD的中垂线,∴AC=CD,∴AC=AD=CD.即:△ACD是等边三角形,(2)△ACD是等边三角形,CF是AD的中垂线,∴FA FD=∴∠=∠=30°,ACF DCFOC,在R t△COE中,OE=12OB,∴OE=12∴点E为OB的中点;(3)解:在R t△OCE中,AB=8AB=4,∴OC=12又∵BE =OE ,∴OE =2,∴CE∴CD =2CE =【点睛】本题考查了垂径定理、勾股定理、中垂线性质、30°所对的直角边是斜边的一半,等边三角形的判定和性质.解此类题一般要把半径、弦心距、弦的一半构建在一个直角三角形里,运用勾股定理求解.4、 (1)21233y x x =-+【解析】【分析】(1)将点()0,3C 代入()()230y a x a =-≠即可求得a 的值,继而求得二次函数的解析式; (2)①设直线l 的解析为y kx b =+,设11(,)A x y ,()22,B x y ,则123,3MD x NF x =-=-,联立直线解析式和抛物线解析式,根据根与系数的关系求得2112,x x x x +进而求得12y y ,证明AMD DNB ∽,根据相似比求得12y y ,进而根据两个表达式相等从而得出b 与k 的关系式,代入直线解析式,根据直线过定点与k 无关,进而求得定点坐标;②设P (3,3),由①可知l 经过点P ,则3DP =, 90DFP ∠=︒,进而根据90°圆周角所对的弦是直径,继而判断F 的轨迹是以DP 的中点G 为圆心,PD 为直径的圆,根据点与圆的位置即可求得CF 最小值.(1)解:∵抛物线()()230y a x a =-≠交y 轴于点()0,3C , ∴39a =解得13a = ∴抛物线为()221132333y x x x =-=-+ (2)①如图,过点,A B 分别作x 轴的垂线,垂足分别为,M N ,设直线l 的解析为y kx b =+,设11(,)A x y ,()22,B x y ,则123,3MD x ND x =-=-,则,A B 的坐标即为21233y kx b y x x =+⎧⎪⎨=-+⎪⎩的解 即23(2)930x k x b -++-=∴()()2236493936120k b k k b ∆=+--=++>, 121236,93x x k x x b +=+=-()()2212121212()y y kx b kx b k x x kb x x b ∴=++=+++()()229336k b kb k b =-+++2296k kb b =++()23k b =+90,ADB AM x ∠=︒⊥轴,BN x ⊥轴90AMD BND ∴∠=∠=︒ADM MAD ADM BDN ∴∠+∠=∠+∠MAD NDB ∴∠=∠AMD DNB ∴∽AM MD DN NB∴= 112233y x x y -∴=- ()()121233y y x x ∴=--()121239x x x x =+--()()336(93)99333k b k b k b =+---=+=+∴()23k b +()33k b =+ ()()3330k b k b ∴++-=∴30k b +=或330k b +-=3b k ∴=-或33b k =-y kx b =+当3b k =-时,3(3)y kx k k x =-=-则l 过定点()3,0A 、B 不与点D 重合则此情况舍去;当33b k =-时,33(3)3y kx b kx k k x =+=+-=-+即过定点()33,l ∴必过定点(3,3)②如图,设P (3,3),DF l ⊥,90DFP ∠=︒,3DP =F ∴在以DP 的中点G 为圆心,PD 为直径的圆上运动3(3,0),(3,3),(3,)2D P G ∴PG =1322DP =CG ∴==CF CG FG ∴≥-=CF ∴【点睛】本题考查了待定系数法求二次函数解析式,相似三角形的性质与判定,一元二次方程根与系数的关系,点与圆的位置关系求最值,勾股定理,二次函数与直线交点问题,掌握以上知识是解题的关键.5、 (1)∠APC =60°,∠BPC =60°(2)见解析【解析】【分析】(1)根据等边三角形的性质得到∠ABC=∠BAC=∠ACB=60°,根据圆周角定理即可得到∠APC=∠ABC=60°,∠BPC=∠BAC=60°;(2)根据平行线的性质得到∠BPM+∠M=180°,∠PCM=∠BPC,求得∠M=∠BPC=60°,根据圆周角定理得到∠PAC+∠PCB=180°,根据全等三角形的判定定理即可得到结论;(3)作PH⊥CM于H,根据全等三角形的性质得到CM=CP,AM=BP,根据直角三角形的性质得到PH,根据三角形的面积公式即可得到结论;(4)过点B作BQ⊥AP,交AP的延长线于点Q,过点A作AN⊥BC于点N,连接OB,求得∠PBQ=30°,得到PQ,根据勾股定理得到BQ和AN,根据弧长公式即可得到结论.(1)解:∵△ABC是等边三角形,∴∠ABC=∠BAC=∠ACB=60°,∵BC BC=,=,AC AC∴∠APC=∠ABC=60°,∠BPC=∠BAC=60°;(2)证明:∵CM∥BP,∴∠BPM+∠M=180°,∠PCM=∠BPC,∵∠BPC=∠BAC=60°,∴∠PCM =∠BPC =60°,∴∠M =180°-∠BPM =180°-(∠APC +∠BPC )=180°-120°=60°, ∴∠M =∠BPC =60°,又∵A 、P 、B 、C 四点共圆,∴∠PAC +∠PCB =180°,∵∠MAC +∠PAC =180°,∴∠MAC =∠PBC ,∵AC =BC ,在△ACM 和△BCP 中,M BPC MAC PBC AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ACM ≌△BCP (AAS );(3)解:∵CM ∥BP ,∴四边形PBCM 为梯形,作PH ⊥CM 于H ,∵△ACM ≌△BCP ,∴CM =CP ,AM =BP ,又∠M =60°,∴△PCM 为等边三角形,∴CM =CP =PM =PA +AM =PA +PB =1+2=3,在Rt △PMH 中,∠MPH =30°,∴PH ,∴S 四边形PBCM =12(PB +CM )×PH =12(2+3; (4) 解:过点B 作BQ ⊥AP ,交AP 的延长线于点Q ,过点A 作AN ⊥BC 于点N ,连接OB ,∵∠APC =∠BPC =60°,∴∠BPQ =60°,∴∠PBQ =30°,∴PQ =12PB =1,在Rt △BPQ 中,BQ在Rt △AQB 中,AB =∵△ABC 为等边三角形,∴AN 经过圆心O ,∴BN =12AB∴AN =在Rt △BON 中,设BO =x ,则ON −x ,2x)2=x2,解得:x,∵∠BOA=∠BCA=120°,∴AB的长度为1203180π=【点睛】本题考查了三角形的外接圆与外心,全等三角形的判定和性质,解直角三角形,等边三角形的判定和性质,平行线的性质,正确的作出辅助线是解题的关键.。
专题27圆的有关性质(优选真题60道)-学易金卷:三年(2021-2023)中考数学真题分
48.(2023•成都)为传承非遗文化,讲好中国故事,某地准备在一个场馆进行川剧演出.该场馆底面为一个圆形,如图所示,其半径是10米,从A到B有一笔直的栏杆,圆心O到栏杆AB的距离是5米,观众在阴影区域里观看演出,如果每平方米可以坐3名观众,那么最多可容纳名观众同时观看演出.(π取3.14, 取1.73)
A.95°B.100°C.105°D.130°
16.(2022•贵港)如图,⊙O是△ABC的外接圆,AC是⊙O的直径,点P在⊙O上,若∠ACB=40°,则∠BPC的度数是( )
A.40°B.45°C.50°D.55°
17.(2022•株洲)如图所示,等边△ABC的顶点A在⊙O上,边AB、AC与⊙O分别交于点D、E,点F是劣弧 上一点,且与D、E不重合,连接DF、EF,则∠DFE的度数为( )
31.(2022•上海)如图所示,小区内有个圆形花坛O,点C在弦AB上,AC=11,BC=21,OC=13,则这个花坛的面积为.(结果保留π)
32.(2022•日照)一圆形玻璃镜面损坏了一部分,为得到同样大小的镜面,工人师傅用直角尺作如图所示的测量,测得AB=12cm,BC=5cm,则圆形镜面的半径为.
三.解答题(共12小题)
49.(2023•北京)如图,圆内接四边形ABCD的对角线AC,BD交于点E,BD平分∠ABC,∠BAC=∠ADB.
(1)求证DB平分∠ADC,并求∠BAD的大小;
(2)过点C作CF∥AD交AB的延长线于点F,若AC=AD,BF=2,求此圆半径的长.
50.(2023•内蒙古)如图,AB是⊙O的直径,AC是弦,D是 上一点,P是AB延长线上一点,连接AD,DC,CP.
市北资优九年级分册 第27章 27.7 与圆有关的比例线段+薛琼
27.7与圆有关的比例线段前面,我们已经学习了和圆有关的角,现在我们通过圆内一点引圆的两条弦,他们之间又有什么关系呢?实际上,它们之间存在着数量关系.如图27.7.1,从⊙O 内一点P 引圆的两条弦AB ,CD ,我们称它们为相交弦,这时,各弦分别被P 点分成两条线段,只要联结AD ,BC ,我们马上发现这四条线段在两个△P AD 和△PBC 中,容易证得,△P AD ∽△PBC ,于是得到了PB PD PC PA =,转化成乘积式后为PD CP PB AP ⋅=⋅,便得到相交两条弦的重要性质.相交弦定理 圆内的两条相交弦,被交点分成的两条线段的积相等.当圆的两条相交的弦在特殊位置时,如图27.7.2,AB 是直径,弦CD ⊥AB ,垂足为点P ,则CP =PD =21CD ,这时2CP PB AP =⋅.也就是说,如果弦和直径垂直相交,那么弦的一半是它分直径所得两条线段的比例中项.再来讨论两条割线相交于圆外一点时的有关比例线段.如图27.7.3,⊙O 的两条割线P AB 、PCD 交于圆外一点P ,得弦AB 、CD 以及有关线段P A 、PB 、PC 、PD .由相交弦定理,能否也有PD CP PB AP ⋅=⋅.类似于相交弦定理的推导,可得同样结论.如图27.7.4,分别联结AD 与BC ,∵∠ADC 与∠ABC 所对的弧是AC ,∴∠ADC =∠ABC .又∵∠P =∠P ,∴△P AD ∽△PCB .∴PBPD PC PA =.∴PD PC PB PA ⋅=⋅. 于是,得到如下定理:割线定理 从圆外一点引圆的两条割线,这一点到每条割线与圆交点的两条线段的积相等. 如果两条割线中的一条变为切线呢?又能得到什么结论?如图27.7.5,过⊙O 外一点P 引圆的一条割线P AB 和切线PC ,得弦AB 以及有关线段P A 、PB 、PC .它们有怎样的关系呢?如图27.7.6,分别联结AC 与BC .∵∠ACP 与∠ABC 所对的弧是AC ,PC 切⊙O 于点C ,∴∠ACP =∠ABC .又∵∠P =∠P ,∴△P AC ∽△PCB ∴PB PC PC PA =. ∴PB PA PC ⋅=2.于是得到以下定理:切割线定理 从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段的比例中项. 例1 AB 为⊙0直径,点C 在⊙O 上,过点C 引直径AB 的垂线,垂足为D ,点D 分这条直径为2:3的两部分,如果⊙O 的半径等于5,求BC 的长.解 如图27.7.7,延长CD 交⊙O 于点E ,设AD =2x ,则BD =3x (或AD =3x ,BD =2x ).∵r =5,∴AB =10.∴2x +3x =10.即x =2.∴AD =4(或AD =6).当AD =4时,BD =6;当AD =6时,BD =4.由相交弦定理,得BD AD ED CD ⋅=⋅.∵直径AB ⊥CE .∴CD =ED .∴BD AD CD ⋅=2.∴6264=⨯=CD .当BD =6时,BC =1523624=+;当BD =4时,BC =1021624=+.例 2 已知:如图27.7.8,AE ⊥BC 于点E ,BD ⊥AC 于点D ,AE 、BD 相交于点F ,求证:BD BF AE AF AB ⋅+⋅=2.证明 作△BEF 的外接圆,设圆心为0,交AB 于M .联结FM ,由切割线定理,得AB AM AE AF ⋅=⋅. ∵∠BEF =90°,∴BF 是⊙0的直径.∴∠BMF =∠BDA .∵∠FBM =∠ABD .∴△BMF ∽△BDA . ∴BD BM AB BF =, 即BM AB BD BF ⋅=⋅. ∴2AB BM AB AB AM BD BF AE AF =⋅+⋅=⋅+⋅例3 已知:如图27.7.9,P 是平行四边形ABCD 的边AB 的延长线上一点,DP 与AC 、BC 分别交于点E 、F ,EG 是过B 、F 、P 三点的圆的切线,G 为切点.求证:EG =DE .证明 ∵AD ∥BC ,∴△AED ∽△CEF .∴DE :EF =AE :EC . ①又∵AP ∥DC ,∴△AEP ∽△CED .∴AE :EC =EP :DE . ②由①、②得,DE :EF =EP :DE ;即EP EF DE ⋅=2.而EG 是过B 、F 、P 三点的圆的切线,EFP 为此圆的割线∴EP EF EG ⋅=2.∴22EG DE =.∴DE =EG练习27.7(1)1.如图,⊙0的直径AB =10,P 是OA 上一点,弦MN 过点P ,且AP =2,MP =22,求弦心距OQ .2.已知:如图,AB 是⊙0的直径,P 是⊙0外一点,PD ⊥AB 于D ,交⊙0于E ,P A 交⊙0于C ,BC 交PD 于F .求证:DP DF DE ⋅=2.3.已知:如图,AB 是⊙0的直径,弦CD ⊥AB ,垂足为E ,弦AQ 交CD 于点P .如果AB =10.CD =8,求:(1)DE 的长;(2)AE 的长;(3)AQ AP ⋅的值.4.如图,A 、B 、C 、D 在同一圆上,BC =CD ,AC 、BD 交于E .若AC =8,CD =4,且线段BE 、ED 为正整数,求BD 的长.5.如图,P AB 为过圆心O 的割线,且P A =OA =4,PCD 为⊙0的另一条割线,且PC =DC .求:(1)PC 的长;(2)S △P AC :S △PDB .6.已知:△ABC 是⊙0的内接三角形,∠BAC 的平分线交BC 于D ,交⊙0于E .求证:DC BD AD AC AB ⋅+=⋅2过一点P 做与圆有关的两条直线,点P 与圆的不同位置有两种:当点P 在圆内时,这两条直线分别交圆于A 、B 和C 、D ,则PD PC PB PA ⋅=⋅,这就是相交弦定理,如图27.7.10(1).当点P 在圆外时,分两种情况:(1)这两条直线与圆都有两个交点,分别为A 、B 与C 、D ,则PD PC PB PA ⋅=⋅称作割线定理,如图27.7.10(2)(2)当这两条直线中一条与圆有两个交点,另一条只有一个交点(切点)M 时,得到割线定理:2PM PB PA =⋅相交弦定理、切割线定理及切割线定理的推论(割线定理),我们统称为圆幂定理.圆幂定理在形式上也可以进一步统一.如图27.7.10(3),点P 在圆内时,像所做的虚线那样,联结OP ,过点P 作弦EF ⊥OP ,交圆于E 、F ,由于PE =PF ,故222-OP r PF PF PE PD PC PB PA ==⋅=⋅=⋅,其中r 为⊙0的半径.如图27.7.10(4),点P 在圆外时,联结OM 、ON 、OP ,有222r OP PM PN PM PD PC PB PA -==⋅=⋅=⋅.综上所述,圆幂定理可以统一为|-|22OP r PB PA =⋅.换言之,圆幂定理可叙述为:通过不在⊙0上一定点P 向⊙0任作一直线交⊙0于A 、B 两点,则有|-|22OP r PB PA =⋅(22-OP r 叫做点P 对于⊙0的幂).圆幂定理揭示了园中线段的比例关系,对于涉及相交弦,切割线的有关计算,常可利用圆幂定理去求.例1 如图27.7.11,AB 是⊙0的直径,AC 是⊙0的切线,A 为切点,割线CDF 交AB 于E ,并且CD :DE :EF =1:2:1,AC =4,求⊙0的直径AB .解 设CD =k ,则DE =2k ,EF =k ,CF =4k ,由切割线定理,有CF CD AC ⋅=2. ∴k k 442⋅=,k =2.∴CE =6,DE =4,EF =2.在Rt △ACE 中,由勾股定理, 有52462222=-=-=AC CE AE .根据相交弦定理,得EF DE EB AE ⋅=⋅.∴2452⨯=⋅EB ,554=EB .。
华师版九年级数学下册教学课件(HS) 第27章 圆 第27章 小结与复习
二、与圆有关的位置关系 1.点与圆的位置关系 判断点与圆的位置关系可由点到圆心的距离d与圆的半径r比较得到. 设☉O的半径是r,点P到圆心的距离为d,则有
d<r
点P在圆内;
[注意]点与圆的位置关系可以转 化为点到圆心的距离与半径之间
d=r
点P在圆上;
的关系;反过来,也可以通过这
种数量关系判断点与圆的位置关
d>r
点P在圆外.
系.
2.直线与圆的位置关系 设r为圆的半径,d为圆心到直线的距离
直线与圆的
位置关系
相离
相切
图形
d与r的关系 公共点个数 公共点名称 直线名称
பைடு நூலகம்
d>r 0个
d=r 1个 切点 切线
相交
d<r 2个 交点 割线
三、 圆的基本性质 1. 圆的对称性 圆是轴对称图形,它的任意一条_______所在的直直径线都是它的对称轴.
(3)边长a,边心距r的正n边形的面积为
S
1 nar 2
1 lr. 2
其中l为正n边形的周长.
考点一 圆周角定理
例1 在图中,BC是☉O的直径,AD⊥BC,若∠D=36°,则∠BAD的度数是
()
B
A. 72° B.54° C. 45° D.36 °
A
B
C
D
针对训练
1.如图a,四边形ABCD为☉O的内接正方形,点P为劣弧BC上的任意一
3.与切线相关的定理 (1)判定定理:经过圆的半径的外端且垂直于这条半径的直线是圆 的切线.
(2)性质定理:圆的切线垂直于经过切点的半径.
(3)切线长定理:经过圆外一点所画的圆的两条切线,它们的切线 长相等.这一点和圆心的连线平分这两条切线的夹角.
高中初中圆知识的绝妙衔接
1、圆是定点的距离等于定长的点的集合2、圆的内部可以看作是圆心的距离小于半径的点的集合3、圆的外部可以看作是圆心的距离大于半径的点的集合4、同圆或等圆的半径相等5、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆6、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线7、到已知角的两边距离相等的点的轨迹,是这个角的平分线8、到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线9、定理不在同一直线上的三点确定一个圆。
10、垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧11、推论1:①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧②弦的垂直平分线经过圆心,并且平分弦所对的两条弧③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧12、推论2:圆的两条平行弦所夹的弧相等13、圆是以圆心为对称中心的中心对称图形14、定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等15、推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等16、定理:一条弧所对的圆周角等于它所对的圆心角的一半17、推论:1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等18、推论:2 半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径19、推论:3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形20、定理:圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角21、①直线L和⊙O相交d﹤r ②直线L和⊙O相切d=r ③直线L和⊙O相离d ﹥r22、切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线23、切线的性质定理圆的切线垂直于经过切点的半径24、推论1 经过圆心且垂直于切线的直线必经过切点25、推论2 经过切点且垂直于切线的直线必经过圆心26、切线长定理:从圆外一点引圆的两条切线,它们的切线长相等圆心和这一点的连线平分两条切线的夹角27、圆的外切四边形的两组对边的和相等28、弦切角定理:弦切角等于它所夹的弧对的圆周角29、推论:如果两个弦切角所夹的弧相等,那么这两个弦切角也相等30、相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等31、推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项32、切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项33、推论:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等34、如果两个圆相切,那么切点一定在连心线上35、①两圆外离d﹥R+r ②两圆外切d=R+r ③两圆相交R-r﹤d﹤R+r(R﹥r) ④两圆内切d=R-r(R﹥r) ⑤两圆内含d﹤R-r(R﹥r)圆的性质及定理圆的初步认识一、圆及圆的相关量的定义(28个)1.平面上到定点的距离等于定长的所有点组成的图形叫做圆。
达标测试华东师大版九年级数学下册第27章 圆专题练习试题(无超纲)
华东师大版九年级数学下册第27章 圆专题练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、ABC 的边BC 经过圆心O ,AC 与圆相切于点A ,若20B ∠=︒,则C ∠的大小等于( )A .50︒B .25︒C .40︒D .20︒2、如图,AB 是⊙O 的直径,点D 在⊙O 上,连接OD 、BD ,过点D 作⊙O 的切线交BA 延长线于点C ,若∠C =40°,则∠B 的度数为( )A .15°B .20°C .25°D .30°3、如图,AB 是O 的直径,弦CD AB ⊥,垂足为E ,若61CD BE ==,,则AE =( )A .5B .8C .9D .104、如图,AB 为⊙O 的直径,C 、D 为⊙O 上两点,∠CDB =30°,BC =4.5,则AB 的长度为( )A .6B .3C .9D .125、如图,A ,B ,C ,D 都是O 上的点,OA BC ⊥,垂足为E ,若26OBC ∠=︒,则ADC ∠的度数为( )A .26︒B .32︒C .52︒D .64︒6、如图,在⊙O 中,C 、D 为⊙O 上两点,AB 是⊙O 的直径,已知∠AOC=130°,则∠BDC 的度数为( )A .65°B .50°C .30°D .25°7、如图,AB 为O 的直径,4AB =,CD =BC 的长是劣弧BD 长的2倍,则AC 的长为( )A .B .C .3D .8、已知圆锥的底面半径为2cm ,母线长为3cm ,则其侧面积为( )cm .A .3π B .6π C .12π D .18π9、如图,在O 中,弦CD 与直径AB 板交于点E ,连接OC ,B D .若20ABD ∠=︒,80AED ∠=︒,则COB ∠的度数为( )A .80°B .100°C .120°D .140°10、如图,Rt ABC △中,90C ∠=︒,O 是AB 边上一点,O 与AC 、BC 都相切,若3BC =,4AC =,则O 的半径为( )A.1 B.2 C.52D.127第Ⅱ卷(非选择题 70分)二、填空题(10小题,每小题3分,共计30分)1、如图,舞台地面上有一段以点O为圆心的AB,某同学要站在AB的中点C的位置上.于是他想:只要从点O出发,沿着与弦AB垂直的方向走到AB上,就能找到AB的中点C,老师肯定了他的想法.这位同学确定点C所用方法的依据是_____.2、如图,矩形ABCD中,1AB=,AD=,以BC的中点E为圆心的弧MPN与AD相切,则图中阴影部分的面积为__________.3、如图,已知正方形ABCD的边长为4,点E在BC上,DE为以AB为直径的半圆的切线,切点为F,连结CF,则ED的长为______,CF的长为______.4、如图,在ABC中,∠C=90°,AB=10,在同一平面内,点O到点A,B,C的距离均等于a(a为常数).那么常数a的值等于________.5、下面是“过圆外一点作圆的切线”的尺规作图过程.已知:⊙O和⊙O外一点P.求作:过点P的⊙O的切线.作法:如图,(1)连接OP;(2)分别以点O和点P为圆心,大于12OP的长半径作弧,两弧相交于M,N两点;(3)作直线MN,交OP于点C;(4)以点C为圆心,CO的长为半径作圆,交⊙O于A,B两点;(5)作直线PA,P B.直线PA,PB即为所求作⊙O的切线完成如下证明:证明:连接OA,OB,∵OP是⊙C直径,点A在⊙C上∴∠OAP=90°(___________)(填推理的依据).∴OA⊥AP.又∵点A在⊙O上,∴直线PA是⊙O的切线(___________)(填推理的依据).同理可证直线PB是⊙O的切线.6、有一种化学实验中用的圆形过滤纸片,如果需要找它的圆心,请你简要说明你找圆心的方法是__________________7、如图,从一块直径为2cm的圆形铁皮上剪出一圆心角为90°的扇形,则此扇形的面积为______cm2.8、已知扇形的圆心角为30,半径为6 cm,则扇形的弧长是____________cm.9、《九章算术》是我国古代的数学名著,书中有这样的一个问题:“今有勾八步,股十五步,问勾中容圆径几何?”.其意思是:“如图,现有直角三角形,勾(短直角边)长为 8 步,股(长直角边)长为 15 步,问该直角三角形所能容纳的最大圆的直径是多少?”答:该直角三角形所能容纳的最大圆的直径..是______步.10、如图,在Rt ABC 中,90ACB ∠=︒,30B ∠=︒,2AB =,以点A 为圆心,AC 的长为半径画弧,以点B 为圆心,BC 的长为半径画弧,两弧分别交AB 于点D 、F ,则图中阴影部分的面积是_________.三、解答题(5小题,每小题8分,共计40分)1、如图,已知AB 是圆O 直径,过圆上点C 作CD AB ⊥,垂足为点D .连结OC ,过点B 作BE OC ∥,交圆O 于点E ,连结AE ,CE ,1BD =,6AB =.(1)求证:CDO AEB ∽△△. (2)求sin ABE ∠的值.(3)求CE 的长.2、在⊙O 中,AC AD =,四边形ABCD 是平行四边形.(1)求证:BA 是⊙O 的切线;(2)若AB=6,①求⊙O的半径;②求图中阴影部分的面积.3、如图1,ABC中,AC=BC=4,∠ACB=90°,过点C任作一条直线CD,将线段BC沿直线CD翻折得线段CE,直线AE交直线CD于点F.直线BE交直线CD于G点.(1)小智同学通过思考推得当点E在AB上方时,∠AEB的角度是不变的,请按小智的思路帮助小智完成以下推理过程:∵AC=BC=EC,∴A、B、E三点在以C为圆心以AC为半径的圆上,∴∠AEB=∠ACB,(填写数量关系)∴∠AEB=°.(2)如图2,连接BF,求证A、B、F、C四点共圆;(3)线段AE最大值为,若取BC的中点M,则线段MF的最小值为.于点E,BD交CE于点F.4、如图,AB是O的直径,C是弧BD的中点,CE AB(1)求证:CF BF =;(2)若2CD =,4AC =,求O 的半径及CE 的长.5、如图, 菱形ABCD 的顶点A ,B ,D 在⊙O 上, 点C 在⊙O 外, 对角线AC 过圆心O , 且 ∠DAB =60°.(1)求证: 直线CD 是⊙O 的切线;(2)若AB =6, 求图中阴影部分的面积.-参考答案-一、单选题1、A【解析】【分析】连接OA ,根据圆周角定理求出AOC ∠,根据切线的性质得到90OAC ∠=︒,根据直角三角形的性质计算,得到答案.【详解】解:连接OA,∠=,20B︒∴∠=∠=︒,240AOC BAC与圆相切于点A,∴∠=︒,90OAC∴∠=︒-︒=︒,C904050故选:A.【点睛】本题考查的是切线的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键.2、C【解析】【分析】根据切线的性质得到∠CDO=90°,求得∠COD=90°-40°=50°,根据等腰三角形的性质和三角形外角的性质即可得到结论.【详解】解:∵CD是⊙O的切线,∴∠CDO=90°,∵∠C=40°,∴∠COD=90°-40°=50°,∵OD =OB ,∴∠B =∠ODB ,∵∠COD =∠B +∠ODB ,∴∠B =12∠COD =25°,故选:C .【点睛】本题考查了切线的性质,圆周角定理,三角形外角的性质,等腰三角形的性质,熟练掌握切线的性质是解题的关键.3、C【解析】【分析】连接CO ,根据垂径定理可得3CE ED ==,设O 的半径为r ,则OB OC r ==,进而勾股定理列出方程求得半径,进而求得AE【详解】解:如图,连接CO ,∵AB 是O 的直径,弦CD AB ⊥,6CD =∴3CE =设O 的半径为r ,则OB OC r ==在Rt COE △中,222OC OE CE =+,1OE OB OE r =-=-即()22213r r =-+解得=5r即10AB =9AE AB BE ∴=-= 故选C【点睛】本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.4、C【解析】【分析】连接AC ,由圆周角定理得90ACB ∠=︒,30CAB CDB ∠=∠=︒,再由含30角的直角三角形的性质求解即可.【详解】解:如图,连接AC .AB 为O 的直径,90ACB ∴∠=︒,30CAB CDB ∠=∠=︒, 4.5BC =,29AB BC ∴==,故选:C .【点睛】本题考查了圆周角定理、含30角的直角三角形的性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.5、B【解析】【分析】连接OC .根据OA BC ⊥确定AC AB =,90OEB ∠=︒,进而计算出AOB ∠,根据圆心角的性质求出AOC ∠,最后根据圆周角的性质即可求出ADC ∠.【详解】解:如下图所示,连接OC .∵OA BC ⊥,∴AC AB =,90OEB ∠=︒.∴AOC AOB ∠=∠.∵26OBC ∠=︒.∴64AOB ∠=︒.∴64AOC ∠=︒∵ADC ∠和AOC ∠分别是AC 所对的圆周角和圆心角, ∴3122A ADC OC ∠=︒∠=.故选:B .【点睛】本题考查垂径定理,圆心角的性质,圆周角的性质,综合应用这些知识点是解题关键.6、D【解析】【分析】先求出∠BOC 的度数,再根据同弧所对的圆周角等于圆心角的一半求出答案.【详解】解:∵∠AOC=130°,AB 是⊙O 的直径,∴∠BOC =180°-∠AOC=50°,∴∠BDC =12∠BOC=25°,故选:D .【点睛】此题考查了圆周角定理:同弧所对的圆周角等于圆心角的一半,熟记定理是解题的关键.7、D【解析】【分析】连接,,OC OD BC ,根据AB 求得半径,OC OD ,进而根据CD 的长,勾股定理的逆定理证明90COD ∠=︒,根据弧长关系可得60COB ∠=︒,即可证明COB △是等边三角形,求得2BC =,进而由勾股定理即可求得AC【详解】如图,连接,,OC OD BC ,4AB =2OC OD ∴==228OC OD +=,28CD =∴222OC OD CD +=OCD ∴是直角三角形,且90COD ∠=︒2CB DB ∴=23BC CD ∴= 2603BOC COD ∴∠=⨯∠=︒ OC OB =OBC ∴是等边三角形2BC OC ∴== AB 是直径,4AB =90∴∠=︒ACB∴=AC故选D【点睛】本题考查了弧与圆心角的关系,直径所对的圆周角是90度,勾股定理,等边三角形的判定,求得BC 的长是解题的关键.8、B【解析】【分析】利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算.【详解】×2π×2×3=6π(cm2).解:它的侧面展开图的面积=12故选:B.【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.9、C【解析】【分析】先利用三角形外角性质求出∠CDB=∠AED-∠ABD=80°-20°=60°,再根据圆周角定理得出∠COB=2∠CDB=2×60°=120°即可.【详解】解:∵∠AED是△DEB的外角,∴∠CDB=∠AED-∠ABD=80°-20°=60°,∴∠COB=2∠CDB=2×60°=120°.故选C.【点睛】本题考查三角形外角性质,圆周角定理,掌握三角形外角性质,圆周角定理是解题关键.10、D【解析】【分析】作OD⊥AC于D,OE⊥BC于E,如图,设⊙O的半径为r,根据切线的性质得OD=OE=r,易得四边形ODCE为正方形,则CD=OD=r,再证明△ADO∽△ACB,然后利用相似比得到443r r-=,再根据比例的性质求出r即可.【详解】解:作OD⊥AC于D,OE⊥BC于E,如图,设⊙O的半径为r,∵⊙O与AC、BC都相切,∴OD=OE=r,而∠C=90°,∴四边形ODCE为正方形,∴CD=OD=r,∵OD∥BC,∴△ADO∽△ACB,∴AF OF AC BC=∵AF=AC-r,BC=3,AC=4,代入可得,443r r -=∴r=127.故选:D.【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.也考查了相似三角形的判定与性质.二、填空题1、垂径定理【解析】【分析】垂直于弦的直径平分弦,并且平分弦所对的两条弧,据此解题.【详解】解:如图,这位同学确定点C所用的方法依据是:垂径定理,即垂直于弦的直径平分弦,并且平分弦所对的两条弧,故答案为:垂径定理.【点睛】本题考查垂径定理,是重要考点,掌握相关知识是解题关键.2、3π##13π 【解析】【分析】如图,连接,PE 证明四边形,ABEP 四边形PECD 都为矩形,可得扇形半径为1,再求解,,,MEB NEC MEN 再利用扇形的面积公式进行计算即可.【详解】解:如图,连接,PE扇形的弧MPN 与AD 相切,,PE AD矩形ABCD ,∴ 四边形,ABEP 四边形PECD 都为矩形,∴扇形半径1ME PE NE AB ====.在矩形ABCD 中,AD =E 为BC 的中点,∴在Rt BME △中,12BE AD ==.cos BE MEB ME ∠==, 30MEB ∴∠=︒,同理:30,NEC∴ 1802120MEN MEB ∠=︒-∠=︒.212013603S ππ⨯∴==阴影. 故答案为:3π 【点睛】 本题考查的是矩形的性质与判定,锐角三角函数的应用,扇形面积的计算,求解扇形的半径为1,及30MEB ∠=︒,30NEC ∠=︒是解本题的关键.3、 【解析】【分析】 先证明BE 、AD 也是半圆的切线,即可根据切线长定理得到EB =EF 、DA =DF ,再在△DCE 中即可求出DE 的值;过F 作FG ⊥DC 于G ,根据相似求出FG 、CG 的长,最后根据勾股定理即可求出CF 的值.【详解】∵正方形ABCD∴CD =AD =BC =4,CE ⊥AB ,DA ⊥AB∵以AB 为直径的半圆∴BE 、AD 也是半圆的切线∵DE 为以AB 为直径的半圆的切线,∴EB =EF 、DA =DF =4∴EC =BC -BE =4-EF ,DE =DF +EF =4+EF在Rt △DCE 中,222CD CE DE +=∴2224(4)(4)EF EF +-=+∴DE =DF +EF =4+EF =5过F 作FG ⊥DC 于G ,如图∴DFG DEC ∴GF DF DG CE DE DC== ∴4354GF DG == 解得1216,55GF DG == ∴45CG CD DG =-=∴在Rt △DCE 中,22222124()()55CF FG CG =+=+=故答案为:5 【点睛】本题考查切割线定理、相似三角形的性质与判定,解题的关键是能看出有多条切线.4、5【解析】【分析】直接利用直角三角形斜边上的中线等于斜边的一半即可求解.解:根据直角三角形斜边上的中线等于斜边的一半,即可知道点O 到点A ,B ,C 的距离相等,如下图:152OA OB OC AB ∴====, 5a ∴=,故答案是:5.【点睛】本题考查了直角三角形的外接圆的外心,解题的关键是掌握直角三角形斜边上的中线等于斜边的一半即可求解.5、 直径所对的圆周角是直角 经过半径的外端并且垂直于这条半径的直线是圆的切线【解析】【分析】连接OA ,OB ,根据圆周角定理可知∠OAP =90°,再依据切线的判定证明结论;【详解】证明:连接OA ,OB ,∵OP 是⊙C 直径,点A 在⊙C 上,∴∠OAP =90°(直径所对的圆周角是直角),∴OA ⊥AP .又∵点A 在⊙O 上,∴直线PA 是⊙O 的切线(经过半径的外端并且垂直于这条半径的直线是圆的切线),同理可证直线PB 是⊙O 的切线,故答案为:直径所对的圆周角是直角;经过半径的外端并且垂直于这条半径的直线是圆的切线.6、在圆形纸片的边缘上任取三点,,,A B C 则线段,AB AC 的垂直平分线的交点O 是圆形纸片的圆心.【解析】【分析】如图,在圆形纸片的边缘上任取三点,,,A B C 连接,,AB AC 再作,AB AC 的垂直平分线得到两条垂直平分线的交点即可.【详解】解:如图,在圆形纸片的边缘上任取三点,,,A B C连接,,AB AC 则,AB AC 的垂直平分线的交点O 是圆形纸片的圆心.故答案为:在圆形纸片的边缘上任取三点,,,A B C 则线段,AB AC 的垂直平分线的交点O 是圆形纸片的圆心.【点睛】本题考查的是确定圆的圆心,掌握“作三角形的外接圆的圆心”是解本题的关键.7、2π 【解析】【分析】连接AC ,根据圆周角定理得出AC 为圆的直径,解直角三角形求出AB ,根据扇形面积公式进行求解即可.【详解】解:如图,连接AC ,∵从一块直径为2cm 的圆形铁皮上剪出一个圆心角为90°的扇形,即∠ABC =90°,∴AC 为直径,即AC =2cm ,AB =BC (扇形的半径相等),∵在Rt ABC 中,22222AB BC AC +==,∴AB =BC ∴阴影部分的面积是()29023602ππ= (cm 2).故答案为:2π. 【点睛】本题考查了圆周角定理和扇形的面积计算,熟记扇形的面积公式是解题的关键.8、π【解析】【分析】 知道半径,圆心角,直接代入弧长公式180n r L π=即可求得扇形的弧长. 【详解】 解:180n r L π=, ∴扇形的弧长306180L cm ππ==, 故答案为:π.【点睛】本题考查了弧长公式,解题的关键是要掌握弧长公式:180n r L π=才能准确的解题. 9、6【解析】【分析】依题意,直角三角形性质,结合题意能够容纳的最大为内切圆,结合内切圆半径,利用等积法求解即可;【详解】 设直角三角形中能容纳最大圆的半径为:r ;17=依据直角三角形面积公式:12S ah =,即为1815602S =⨯⨯=;内切圆半径面积公式:1()2S r a b c =++,即为1(81517)2S r =⨯++; 所以160(81517)2r =++,可得:3r =,所以直径为:26d r ==;故填:6;【点睛】本题主要考查直角三角形及其内切圆的性质,重点在理解题意和利用内切圆半径求解面积;10、512π-【解析】【分析】根据直角三角形30度角的性质及勾股定理求出AC 、BC ,∠A =60°,利用扇形面积公式求出阴影面积.【详解】解:在Rt ABC 中,90ACB ∠=︒,30B ∠=︒,2AB =,∴AC =1,BC ==A =60°,∴图中阴影部分的面积=ABC CAD CBE S S S+-扇形扇形=2601113602π⨯⨯=512π故答案为:512π 【点睛】此题考查了直角三角形30度角的性质,勾股定理,扇形面积的计算公式,直角三角形面积公式,熟记各知识点并综合应用是解题的关键.三、解答题1、 (1)见解析【解析】【分析】(1)由题意和垂径定理可得∠AEB =∠ODC =90°,再由BE OC ∥得到∠BOC =∠ABE 即可证明结论;(2)先根据题意求得OA 、OB 、OC OD 、CD 、AC 的长,然后根据正弦的定义求得sin ∠BOC ,然后再根据∠BOC =∠ABE 即可解答;(3)连接OE 并延长交圆O 于点F ,然后连接FC 、AC 、BC ,即EF =AB =6,然后根据平行线的性质、圆周角定理、等腰三角形的性质证得△ADC ∽△ECF ,最后运用相似三角形的性质解答即可.(1)证明:∵AB 是圆O 直径∴∠AEB =90°∵CD AB ⊥∴∠ODC =90°∴∠AEB =∠ODC =90°∵BE OC ∥∴∠BOC =∠ABE∴CDO AEB ∽△△. (2)解:∵6AB =∴OA =OB =OC =3∵1BD=,∴OD=OB-BD=3-1=2,AD=AB-BD=5∴CD=AC=∴sin∠BOC=CDOC=∵∠BOC=∠ABE∴sin ABE∠= sin∠BOC(3)解:连接OE并延长交圆O于点F,然后连接FC、AC、BC,即EF=AB=6 ∴∠ECF=90°,∠CAB=∠CEB∴∠ADC=∠ECF=90°∵BE OC∥∴∠OCE=∠CEB∴∠CAB=∠OCE∵OE=OC∴∠OEC=∠OCE∴∠CAB=∠OEC∴△ADC∽△ECF∴EC EFAD AC= ,即5EC=EC【点睛】本题主要考查了垂径定理、圆周角定理、相似三角形的判定与性质等知识点,灵活运用相关性质定理成为解答本题的关键.2、(1)证明见解析;(2)①4π-【解析】【分析】(1)连接AO ,由AC AD =,四边形ABCD 是平行四边形,即得推得ACO △为等边三角形,即可得∠BAO =∠BAC +∠CAO =90°,即BA 是⊙O 的切线.(2)①由(1)有A 0=tan 60AB =︒②将阴影面积拆为相等的两部分,其中左侧部分为扇形ACO 面积减去三角形ACO 面积,由扇形面积公式,等边三角形面积公式计算后乘2即可.【详解】(1)证明:连接OA∵四边形ABCD 是平行四边形∴AD //BE∴∠ADC =∠DCO又∵AC AD =∴∠ACD=∠ADC∴∠ACO=∠ACD+∠DCO=2∠ADC又∵2∠ADC=AOC∠∴AOC ACO∠=∠∴AO=AC又∵OC=AO∴ACO△为等边三角形∴∠ACO=∠CAO=60°,∠ACD=∠DCO=30°又∵AB//CD∴∠BAC=∠ACD=30°∴∠BAO=∠BAC+∠CAO=30°+60°=90°∴BA是⊙O的切线.(2)①由(1)可知∠BAO=90°,∠BOA=60°∴tanBA BOAAO ∠=∴AO=6tan tanBABOA BOA===∠∠②连接AO,与CD交于点M∵AC=OAC=60°∴CM =sin 603AC ⋅︒==∴11322AOC S AO CM =⋅⋅=⨯=△∵AO =AOC =60°∴22360AOCn r S ===︒扇形ππ ∴2AOC AOC S S S =-△阴影扇形()∴224S =-=-阴影(ππ【点睛】本题是一道圆内的综合问题,考察了证明某线是切线、平行四边形性质、等弧的性质、解直角三角形、等边三角形性质、勾股定理、扇形面积公式等,需熟练掌握这些性质及定理,而作出正确的辅助线是解题的关键.3、 (1)12,45;(2)见解析;(3)8,2【解析】【分析】(1)根据同弧所对的圆周角等于圆心角的一半解答;(2)由题意知,CD 垂直平分BE ,连接BF ,则BF=EF ,求得∠EBF =∠AEB =45°,利用外角的性质得到∠AFB=∠EBF+∠AEB=90°,即可得到结论;(3)当点A、C、E在一条直线上时,线段AE最大,最大值为4+4=8,当MF⊥BC时线段MF最小,根据BC的中点M,得到CF=BF,设BG=FG=x,则x,CG x,由勾股定理得222+=,求出28CG BG BCx=-222MF=.BM MF BF+=,即可求出2(1)解:∵AC=BC=EC,∴A、B、E三点在以C为圆心以AC为半径的圆上,∠ACB,∴∠AEB=12∴∠AEB=45°.,45;故答案为:12(2)解:由题意知,CD垂直平分BE,连接BF,则BF=EF,∴∠EBF=∠AEB=45°.∴∠AFB=∠EBF+∠AEB=90°.∵∠ACB=90°,∴A、B、F、C在以AB为直径的圆上,即A、B、F、C四点共圆;(3)解:当点A、C、E在一条直线上时,线段AE最大,最大值为4+4=8,当MF⊥BC时线段MF最小,∵BC的中点M,∴CF=BF,设BG=FG=x ,则,CG +1)x ,∵222CG BG BC +=,∴2221)4x x ⎡⎤+=⎣⎦,得28x =-∵222BM MF BF +=,∴2222)MF +=,得2MF =,故答案为:8,2 ..【点睛】此题考查了圆周角定理,四点共圆的判定及性质,线段垂直平分线的性质,勾股定理,等腰直角三角形的性质,熟记各知识点并熟练应用解决问题是解题的关键.4、 (1)见解析(2)O CE =【解析】【分析】(1)要证明CF BF =,可以证明ECB DBC ∠=∠;AB 是O 的直径,则90ACB ∠=︒,又知CE AB ⊥,则90CEB ∠=︒,则90DBC ACE A ∠=︒-∠=∠,ECB A ∠=∠,则ECB DBC ∠=∠;(2)在直角三角形ACB 中,222AB AC BC =+,又知,BC CD =,所以可以求得AB 的长,即可求得圆的半径;再利用面积法求得CE 的长.(1)证明:AB 是O 的直径,90ACB ∴∠=︒,90A ABC ∴∠=︒-∠.CE AB ⊥,90CEB ∴∠=︒,90ECB ABC ∴∠=︒-∠,ECB A ∴∠=∠.又C 是BD 的中点,∴CD CB =,DBC A ∴∠=∠,ECB DBC ∴∠=∠,CF BF ∴=;(2) 解:解:BC CD =,2BC CD ∴==,90ACB ∠=︒,AB ∴=O ∴1122ABC S AB CE BC AC ∆=⋅=⋅,BC AC CE AB ⋅∴==【点睛】此题考查了圆中直径对应的角为直角,圆周角定理、等腰三角形的性质、勾股定理,此题综合性很强,难度适中,解题的关键是注意数形结合思想与方程思想的应用.5、 (1)见解析;(2)阴影部分的面积为4π【解析】【分析】(1)连接OD,只需证明∠ODC=90°,根据等腰三角形的性质即可证明;(2)阴影部分的面积= S△ABD-S△OBD+S扇形OBD,利用三角形面积公式以及扇形OBD的面积公式求解即可.(1)证明:连接OD.∵四边形ABCD是菱形,且∠DAB=60°,∴AD=CD,∠CAD=∠ACD=30°,∵OA=OD,∴∠DOC=2∠CAD=60°.∴∠ODC=∠ACD+∠DOC=90°.即OD⊥CD,∴CD是⊙O的切线.(2)解:∵四边形ABCD 是菱形,且 ∠DAB =60°,∴△ABD 是等边三角形,∵对角线AC 过圆心O ,∴BD ⊥AC ,在Rt △EDA 中,∠DAE =30°,AD =AB =BD =6,∴DE =3,AE=∴S △ABD =12BD ⨯AE在Rt △EDO 中,∠DOE =60°,DE =3,∴∠ODE =30°,∴OD =2OE ,∵OD 2=OE 2+DE 2,即4OE 2=OE 2+9,∴OE OD =∴S △OBD =12BD ⨯OE∵四边形ABCD 是菱形,且 ∠DAB =60°,∴∠DOB =120°,∴S 扇形OBD =(21204360ππ⨯=,∴阴影部分的面积= S △ABD -S △OBD +S 扇形OBD 44ππ=..【点睛】本题综合考查了菱形的性质、切线的判定方法、扇形的面积计算方法,熟练掌握切线的判定是解题的关键.。
圆的弦长的计算公式
圆的弦长的计算公式圆的弦长公式知识梳理⼀、直线与圆的位置关系 1.⼏何判定法:设r 为圆的半径,d 为圆⼼到直线的距离: (1)d >r ?圆与直线相离; (2)d =r ?圆与直线相切; (3)d由?=-+-=++222)()(0r b y a x C By Ax 消元,得到⼀元⼆次⽅程的判别式Δ,则 (1)Δ>0?直线与圆相交; (2)Δ=0?直线与圆相切; (3)Δ<0?直线与圆相离.⼆、圆的切线问题 1.切线⽅程(1)圆()()222x a y b r -+-=上⼀点()00,P x y 处的切线⽅程为()()()()200x a x a y b y b r --+--=(2)圆220x y Dx Ey F ++++=上⼀点()00,P x y 处的切线⽅程为0000022x x y y x x y y D E F ++++++=g g 2.切线长公式过圆外⼀点()00,P x y 引圆的切线,设点为T ,则切线长MT =MT =三、弦长问题 1.⼏何法直线l 与圆C 交于,A B 两点,圆⼼C 到直线l 的距离为d ,则圆的半径r ,d 与弦长AB 的⼀半构成直⾓三⾓形的三边,即2222AB d r ??+=,故求出2AB 后再求AB . 2.代数法——弦长公式设圆()()222x a y b r -+-=,直线l :y kx b =+,则l 被圆截得的弦长L =或L =典型例题例1:已知圆C :x 2+(y -1)2=5,直线l :mx -y +1-m =0.(1)求证:对m ∈R ,直线l 与圆C 总有两个不同的交点;(2)若直线l 与圆C 交于A 、B 两点,当|AB |=17时,求m 的值.解析:本题主要考查直线与圆的相交及弦长问题.(1)问可考虑直线过定点,通过定点在圆内证明,(2)问可利⽤弦长公式求解.答案:(1)解法⼀:由?x 2+y -12=5mx -y +1-m =0,消去y 整理,得(m 2+1)x 2-2m 2x +m 2-5=0.∵Δ=(-2m 2)2-4(m 2+1)(m 2-5)=16m 2+20>0,对⼀切m ∈R 成⽴,∴直线l 与圆C 总有两个不同交点.解法⼆:由已知l :y -1=m (x -1),故直线恒过定点P (1,1).∵12+(1-1)2<5,∴P (1,1)在圆C 内.∴直线l 与圆C 总有两个不同的交点.(2)解法⼀:圆半径r =5,圆⼼(0,1)到直线l 的距离为d ,d =r 2-?|AB |22=32.由点到直线的距离公式,得|-m |m 2+-12=32,解得m =± 3.解法⼆:设A (x 1,y 1),B (x 2,y 2), |AB |=(x 1-x 2)2+(y 1-y 2)2 =(1+k 2)(x 1-x 2)2 =(1+k 2)[(x 1+x 2)2-4x 1x2] =(1+k 2)100k 2(1-k )2(k 2+1)2-4·25k (k -2)k 2+1 ∴m =± 3.练习1:直线l 经过点P (5,5),且和圆C :x 2+y 2=25相交,截得的弦长为45,求l 的⽅程.答案:解法⼀:设直线l 的⽅程为y -5=k (x -5)且与圆C 相交于A (x 1,y 1)、B (x 2,y 2),y -5=k x -5x 2+y 2=25消去y ,得(k 2+1)x 2+10k (1-k )x +25k (k -2)=0.∴Δ=[10k (1-k )]2-4(k 2+1)·25k (k -2)>0. 解得k >0.x 1+x 2=-10k 1-k k 2+1,x 1x 2=25k k -2k 2+1. 由斜率公式,得y 1-y 2=k (x 1-x 2).∴|AB |=(x 1-x 2)2+(y 1-y 2)2 =(1+k 2)(x 1-x 2)2=(1+k 2)[(x 1+x 2)2-4x 1x 2] =(1+k 2)100k 2(1-k )2(k 2+1)2-4·25k (k -2)k 2+1=4 5.两边平⽅,整理得:2k 2-5k +2=0.解得:k =12,或k =2.故直线l 的⽅程为:x -2y +5=0,或2x -y -5=0.解法⼆:如图所⽰,|OH |是圆⼼到直线l 的距离,|OA |是圆的半径,|AH |是弦长|AB |的⼀半,在Rt △AHO 中,|OA |=5,|AH |=12|AB |=12×45=25,∴|OH |=|OA |2-|AH |2= 5. ∴|51-k |k 2+1= 5.解得:k =12或k =2. ∴直线l 的⽅程为:x -2y +5=0,或2x -y -练习2:求直线:360l x y +-=被圆22:240C x y y +--=解得的弦长答案:解法⼀:圆22:240C x y y +--=可化为()2215x y +-=∴圆⼼()0,1C ,半径5r =点C 到直线l 的距离为22301610231d ?+-==+ ∴()222210105222ABr d ??=-=-= ? ???∴10AB = 解法⼆:联⽴直线l 与圆C 的⽅程22360240x y x y y +-=??+--=? 消去y 得:2320x x -+=设两交点,A B 的坐标分别为()()1122,,,A x y B x y 由韦达定理有12123,2x x x x +==g ∴弦长()2 21334210AB =+--?=g 例2:已知圆C 1:x 2+y 2+2x -6y +1=0,圆C 2:x 2+y 2-4x +2y -11=0.求两圆的公共弦所在的直线⽅程及公共弦长.解析:因两圆的交点坐标同时满⾜两个圆⽅程,联⽴⽅程组,消去x 2项、y 2项,即得两圆的两个交点所在的直线⽅程.利⽤勾股定理可求出两圆公共弦长.答案:设两圆交点为A (x 1,y 1)、B (x 2,y 2),则A 、B 两点坐标是⽅程组x 2+y 2+2x -6y +1=0x 2+y 2-4x +2y -11=0的解①②①-②得 3x -4y +6=0.∵A 、B 两点坐标都满⾜此⽅程,∴3x -4y +6=0即为两圆公共弦所在的直线⽅程.易知圆C 1的圆⼼(-1,3),半径r =3. ⼜C 1到直线AB 的距离为 d =|-1×3-4×3+6|32+42=95. ∴|AB |=2r 2-d 2=232-? ????952=245.即两圆的公共弦长为245.课后练习1.已知圆C 和y 轴相切,圆⼼在直线x -3y =0上,且被直线y =x 截得的弦长为27,求圆C 的⽅程.答案:由题意可设圆⼼坐标为(a ,a 3),圆的半径R =|a |,由题意得(|a -a3|2)2+(7)2=a 2,∴a 2=9,a =±3.故所求圆的⽅程为(x -3)2+(y -1)2=9或(x +3)2+(y +1)2=9.2.圆x 2+y 2-4x +4y +6=0截直线x -y -5=0所得弦长是( )A.6B.522C .1 D.2答案 A。
新华东师大版九年级数学下册《27章 圆 27.3 圆中的计算问题 圆锥的侧面积和全面积》教案_24
图23.3.7(2)圆锥侧面展开图是扇形,这个扇形的半径与圆锥中的哪一条线段相等?图23.3.6圆锥的底面周长就是其侧面展开图扇形的弧长,圆锥的母线就是其侧面展开图扇形的半径。
点拨深入3′1.圆锥侧面积计算公式圆锥的母线即为扇形的半径,而圆锥底面的周长是扇形的弧长,这样,S圆锥侧=S扇形=·2πr · l = πrl2.圆锥全面积计算公式S圆锥全=S圆锥侧+S圆锥底面= πr l +πr 2=πr(l +r)3.思考:如何计算展开图中圆心角的大小?教师关注不同层次的学生对所学内容的理解和掌握.有利于培养学生数学思想、数学方法、数学能力和对数学的积极情感.拓展反思2′请同学们谈谈你本节课的收获?还有哪些疑惑?教师带领学生从知识、方法、数学思想等方面小结教师鼓励学生自我评价反思,形成知识体系。
基础训练15′1.已知圆锥的底面半径为2cm,母线长为5cm,则圆锥的侧面积是()A.10cm2 B.5π cm2 C.10π cm2 D.20π cm22.已知圆锥的高为4,母线长为5,则该圆锥的表面积为()A.21πB.15πC.12π D.24π3.已知圆锥的母线长为6cm,底面圆的半径为3cm,则此圆锥侧面展开图的圆心角是()A.30°B.60°C.90° D.180°4.一个圆锥的底面半径是6cm,其侧面展开图为半圆,则圆锥的母线长为()A.9cm B.12cm C.15cm D.18cm5.已知一个圆锥的高为6cm,半径为8cm,则这个圆锥的母长为_______学生独立完成,教师批改、总结,让学生在练习中进一步熟悉本节课教学重点。
rlncππ2180==Θlrn360=∴。
完整版华师大版九年级下册数学第27章 圆含答案
华师大版九年级下册数学第27章圆含答案一、单选题(共15题,共计45分)1、已知A为⊙O上的点,⊙O的半径为1,该平面上另有一点P,PA=,那么点P与⊙O的位置关系是()A.点P在⊙O内B.点P在⊙O上C.点P在⊙O外D.无法确定2、如图,一圆内切四边形ABCD,且BC=10,AD=7,则四边形的周长为()A.32B.34C.36D.383、已知⊙O的半径为5,AB是弦,P是直线AB上的一点,PB=3, AB=8,则tan∠OPA的值为()A.3B.C. 或D.3或4、如图,是的弦,点在上,已知,则等于()A.40°B.50C.60°D.80°5、如图,在⊙O中,直径AB,弦CD,且AB⊥CD于点E,CD=4,OE=1.5,则⊙O 的半径是()A.2.5B.2C.2.4D.36、如图,⊙O的半径为2,AB、CD是互相垂直的两条直径,点P是⊙O上任意一点(P与A、B、C、D不重合),经过P作PM⊥AB于点M,PN⊥CD于点N,点Q是MN的中点,当点P沿着圆周转过45°时,点Q走过的路径长为()A. B. C. D.7、下列语句中,正确的有()①相等的圆心角所对的弧相等;②平分弦的直径垂直于弦;③长度相等的两条弧是等弧;④经过圆心的每一条直线都是圆的对称轴.A.1个B.2个C.3个D.4个8、点P为⊙O内一点,且OP=4,若⊙O的半径为6,则过点P的弦长不可能为()A.8B.10.5C.D.129、已知:如图,在⊙O中,AB是直径,四边形ABCD内接于⊙O,∠BCD=130°,过D点的切线PD与直线AB交于点P,则∠ADP的度数为()A.45°B.40°C.50°D.65°10、如图,在△ABC中,AB=5,AC=4,BC=3,经过点C且与边AB相切的动圆与CA,CB分别相交于点P、Q,则线段PQ长度的最小值是()A.2B.C.D.11、如图,在⊙O中,弦AB∥CD,若∠ABC=40°,则∠BOD=()A.80°B.50°C.40°D.20°12、如图,PA与⊙O相切于点A,PO的延长线与⊙O交于点C,若⊙O的半径为3,PA=4.弦AC的长为()A.5B.C.D.13、下列命题错误的是()A.经过三个点一定可以作圆B.三角形的外心到三角形各顶点的距离相等 C.同圆或等圆中,相等的圆心角所对的弧相等 D.经过切点且垂直于切线的直线必经过圆心14、如图,以原点O为圆心的圆交x轴于点A、B两点,交y轴的正半轴于点C,D为第一象限内上的一点,若,则的度数是A.45°B.60°C.65°D.70°15、若刻度尺与⊙O按如图位置摆放,有刻度的一边与⊙O的两个交点处的读数如图所示(单位:cm),⊙O的半径是5cm,则圆心O到刻度尺的距离为()A.5cmB.4cmC.3cmD.2cm二、填空题(共10题,共计30分)16、用如图所示的扇形纸片制作一个圆锥的侧面,要求圆锥的高是4cm,底面周长是6πcm,则扇形的半径为________.17、如图,动点M在边长为2的正方形ABCD内,且AM⊥BM,P是CD边上的一个动点,E是AD边的中点,则线段PE+PM的最小值为________.18、如图,点P是⊙ 的直径BA的延长线上一点,PC切⊙ 于点C,若,PB=6,则PC等于 ________.19、如图是一把折扇,∠O=120°,AB交于点E,F,已知AE=20,EF=4,则扇面(阴影部分)的面积为________20、如图,△AOB中,∠O=90°,AO=8cm,BO=6cm,点C从A点出发,在边AO 上以4cm/s的速度向O点运动,与此同时,点D从点B出发,在边BO上以3cm/s的速度向O点运动,过OC的中点E作CD的垂线EF,则当点C运动了________ s时,以C点为圆心,2cm为半径的圆与直线EF相切.21、如图,AE、AD、BC分别切⊙O于E、D、F,若AD=20,则△ABC的周长为________22、如图,PA、PB是⊙O的两条切线,A、B是切点,若∠APB=60°,PO=2,则⊙O的半径等于________.23、如图,⊙O是△ABC的外接圆,BC=2,∠BAC=30°,则劣弧的长为________(保留π)24、如图,量角器的直径与直角三角板ABC的斜边AB重合,其中量角器零刻度线的端点N与点A重合,射线CP从CA处出发沿顺时针方向以每秒4度的速度旋转,CP与量角器的半圆弧交于点E,第18秒时,点E在量角器上对应的读数是________度.25、已知一个半圆形工件,未搬动前如图所示,直径平行于地面放置,搬动时为了保护圆弧部分不受损伤,先将半圆作如图所示的无滑动翻转,使它的直径紧贴地面,再将它沿地面平移10米,半圆的直径为2米,则圆心O所经过的路线长是________ 米.三、解答题(共5题,共计25分)26、计算高为4cm,底面半径为3cm的圆锥的体积.(圆锥的体积= ×底面积×高,π取3)27、阅读下面材料:在学习《圆》这一章时,老师给同学们布置了一道尺规作图题:尺规作图:过圆外一点作圆的切线.已知:P为⊙O外一点.求作:经过点P的⊙O的切线.小敏的作法如下:如图,①连接OP,作线段OP的垂直平分线MN交OP于点C.②以点C为圆心,CO的长为半径作圆,交⊙O于A,B两点.③作直线PA,PB.老师认为小敏的作法正确.请回答:连接OA,OB后,可证∠OAP=∠OBP=90°,其依据是________;由此可证明直线PA,PB都是⊙O的切线,写出依据.请写出证明过程.________28、如图,∠C=90°,以AC为半径的圆C与AB相交于点D.若AC=3,CB=4,求BD长.29、如图,A,B是⊙O上两点,∠AOB=120°,C为弧AB的中点,求证:四边形OACB是菱形.30、如图,OA、OB是⊙O的半径,OA⊥OB,C为OB延长线上一点,CD切⊙O于点D,E为AD与OC的交点,连接OD.已知CE=5,求线段CD的长.参考答案一、单选题(共15题,共计45分)1、D2、B3、D4、A5、A6、A8、A9、B10、B11、A12、D13、A14、D15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、28、29、30、。
中考数学复习第30课时《与圆有关的计算》教案
中考数学复习第30课时《与圆有关的计算》教案一. 教材分析《与圆有关的计算》是中考数学的重要内容之一,主要包括圆的周长、面积、弧长、扇形的面积等计算方法。
这部分内容在中考中占有较大比重,是学生必须掌握的知识点。
通过本节课的学习,使学生理解圆的计算方法,提高解决实际问题的能力。
二. 学情分析学生在学习本节课之前,已经掌握了相似多边形的性质、圆的定义、圆的性质等基础知识。
但部分学生在理解圆的计算方法,尤其是涉及到圆的周长、面积等公式的灵活运用上还存在困难。
因此,在教学过程中,教师需要关注学生的学习情况,针对性地进行辅导。
三. 教学目标1.理解圆的周长、面积、弧长、扇形的面积等计算方法。
2.能够灵活运用圆的计算公式解决实际问题。
3.提高学生的数学思维能力和解决问题的能力。
四. 教学重难点1.圆的周长、面积公式的理解和运用。
2.弧长、扇形面积的计算方法。
五. 教学方法1.采用问题驱动法,引导学生主动探究圆的计算方法。
2.利用多媒体辅助教学,直观展示圆的计算过程。
3.采用小组合作学习,培养学生团队合作精神。
4.注重个体差异,针对性地进行辅导。
六. 教学准备1.多媒体教学设备。
2.教学课件。
3.练习题。
七. 教学过程1.导入(5分钟)利用多媒体展示生活中的圆形物体,如硬币、地球等,引导学生关注圆的周长和面积。
提问:你知道这些物体的周长和面积是如何计算的吗?2.呈现(10分钟)讲解圆的周长和面积公式,以及如何运用这些公式解决实际问题。
通过例题,展示圆的周长和面积的计算过程。
3.操练(10分钟)学生独立完成练习题,巩固圆的周长和面积的计算方法。
教师巡回指导,针对性地进行辅导。
4.巩固(5分钟)针对学生练习中出现的问题,进行讲解和辅导。
再次强调圆的周长和面积公式的运用。
5.拓展(10分钟)讲解弧长和扇形面积的计算方法,引导学生运用所学知识解决实际问题。
6.小结(5分钟)对本节课的主要内容进行总结,强调圆的计算方法及其应用。
2022春九年级数学下册第27章圆27.3圆中的计算问题2圆锥的侧面展开图习题课件华东师大版
5.【教材改编题】若一个圆锥的底面半径为 3 cm,母线长为 5 cm, 则这个圆锥的表面积为( B ) A.15π cm2 B.24π cm2 C.39π cm2 D.48π cm2
6.某圆锥的底面圆的半径为 5,高为 12,则圆锥的表面积为 ___9_0_π___.(结果保留 π)
7.已知 Rt△ABC,∠ACB=90°,AC=6,BC=8,△ABC 绕 AC 边旋转一周得到一个圆锥,求圆锥的表面积.
即蚂蚁爬行的最短路程是 3 3r.
14. 铁匠王老五要制作一个圆锥模型,操作规则如下:在一块边 长为 16 cm 的正方形纸片上剪出一个扇形和一个圆,使得扇 形围成圆锥的侧面时,圆恰好是该圆锥的底面.他首先设计 了如图所示的方案一,发现这种方案不可行,于是他调整了 扇形和圆的半径,
设计了如图所示的方案二.(两个方案的图中,圆与正方形相邻 两边及扇形的弧均相切.方案一中扇形的弧与正方形的两边相 切)
解:将圆锥的侧面沿过点 A 的母线展开成如图的扇形,连结 AA′, 过点 O 作 OC⊥AA′于点 C,则蚂蚁爬行的最短路径为 AA′, 设∠AOA′=n°,由题意, 得 OA=OA′=3r,A︵A′的长为 2πr.
∴2πr=n1π8·03r,解得 n=120,即∠AOA′=120°, 易得∠OAC=30°. ∴OC=12OA=32r. ∴AC= OA2-OC2=32 3r. 易得 AC=A′C,∴AA′=3 3r,
【点拨】设 AB=x cm,则 DE=(6-x)cm,根据题意,得9108π0x= π(6-x),解得 x=4.故选 B.
【答案】B
11.【中考·金华】如图物体由两个圆锥组成.其主视图中,∠A =90°,∠ABC=105°,若上面圆锥的侧面积为 1,则下面圆 锥的侧面积为( ) A.2 B. 3 C.32 D. 2
圆的周长专项练习30题(有答案过程
圆的周长专项练习30题(有答案过程圆的周长专项练习30题(有答案)知识点:圆的周长概念1、圆的周长:围成圆的曲线的长度叫做圆的周长。
用字母C表示。
2、圆周率实验:在圆形纸片上做个记号,与直尺0刻度对齐,在直尺上滚动一周,求出圆的周长。
得到结论:发现一般规律,就是圆周长与它直径的比值(或商)是一个固定数(工)。
3、圆周率:任意一个圆的周长与它的直径的比值(或商)是一个固定的数,我们把它叫做圆周率。
用字母(pai)表示。
(1)一个圆的周长总是它直径的3倍多一些,这个比值是一个固定的数。
(2)圆周率工是一个无限不循环小数。
在计算时,一般取灯口3.14。
(3)在判断时,圆周长与它直径的比值是不倍,而不是3.14倍。
(4)世界上第一个把圆周率算出来的人是我国的数学家祖冲之。
4、圆的周长公式:C=7Td = C+穴 C = 2m,7,•二5、区分周长的一半和半圆的周长:(1)周长的一半:等于圆的周长+ 2. 计算方法:2不”2即;仃(2)半圆的周长:等于圆的周长的一半加直径.计算方法:加'+ 2,•即5.14r.专项练习:1. 一个圆形羊圈的半径是8米,要用多长的铁丝才能把羊圈围上3圈?2.圆的周长为12.56米,那么这个圆的半径是多少米?面积是多少平方米?3. 一辆自行车的车轮半径是36厘米.这辆自行车通过一条720米长的街道时,车轮要转多少周?(得数保留整数)4.有一颗树,树干周长为50.24平方厘米,树干的直径是厘米?5.用一根长是10米的绳子围着一根树绕4圈,还余3.72米.这棵树直径是多少米?6.师傅做一些直径10厘米的铁圈,接头处多用2厘米,做20个这样的铁圈一共用多少铁丝?7. 一个圆形水池,半径是3米,它的周长是多少?它的占地面积是多少平方米?8. 一个车轮的外直径是0.86米,如车轮6分钟转120周,车子平均每分钟前进多少米?9.在一个长9厘米,宽6厘米的长方形内作一个最大的圆,这个圆的周长是多少?面积是多少?10.汽车车轮的半径为0.3米,它滚动1圈前进多少米?11.一个钟的时针长4厘米,这个时针的尖端转动一昼夜所走的路程是多少厘米?(注意:一昼夜,时针则走2圈)12.一个圆的周长是25.12分米,那么半圆的周长是多少分米?13.一个圆形花坛,半径是10米,它的周长是多少?14.用7.71米长的一条铁丝围成一个圆圈,接头处留出3米,圆圈的半径是多少?15.有甲乙两个圆,甲圆直径是6厘米,乙圆半径是2厘米,甲圆周长是乙圆周长的几倍?16.杂技演员表演独轮车走钢丝,车轮的直径40厘米,要骑过31.4米长的钢丝,车轮要转多少周?17.画一个长3厘米,宽2厘米的长方形,再在这个长方形中作一个最大的半圆,最后计算这个半圆的周长是多少,面积是多少?18.一辆自行车车轮的半径是33厘米,车轮每分钟转80圈.每分钟大约前进多少米?(得数保留整数)19.一种压路机前轮的直径是1.5米,已知前轮每分钟转8圈,压路机3分钟前进多少米?20.一个半径12米的半圆形鱼池,计划在它的周围围一圈篱笆,篱笆至少长多少米?21.一个钟表的分针长1.4米,从10时到11时,分针针尖走过多少厘米?22.学校有一个圆形花坛,直径5米,这个花坛的周长是多少米?23.求周长.(半径r=5cm)24.一只大钟,它的分针长4()厘米.这根分针的尖端转动一周所走的路程是多少厘米?25.一只钟的分针长8厘米,这根分针的尖端转动一周走过了50.24厘米..26.一个大挂钟的分针长5分米,时针长4分米,从早上6: 00整走到上午9: 00整,分针的针尖走过的距离是多少分米?时针扫过的面积是多少平方分米?27.一个圆形牛栏半径是l()m,要用多长的铁丝才能把牛栏围上3圈?(接头处忽略不计)如果每隔3.14m装一根木桩,大约要装多少根木桩?28.如图示意是三个半I员I,求阴影部分的周长.29.如图示意,三角形ABC的边长都为6cm,分别以A、B、C三点为圆心,边长的一半为半径作弧,求阴影部分的周长.30.已知圆的周长是25.12厘米,求阴影部分的面积.参考答案:1.已知r=8 米,C=2nr=2x3.14x8=50.24 (米);50.24x3=150.72 (米);答:要用150.72米的铁丝才能把羊圈围上3圈.2.已知C=12.56 米r=O2n= 12.56+6.28=2 (米)S=3.14x2x2=12.56 (平方米)答:这个圆的半径是2米,面积是12.56平方米.3.已知r=36 厘米;车轮的周长=2x3.14x36=6.28x36=226.08 (厘米);226.08 厘米=2.2608 米;720・2.2608=319 (周);答:车轮要转动319周.4.C=Rdd=C-rTt BP;50.244-3.14=16 (厘米)答:树干的直径是16 厘米5.(1()-3.72) +4+3.14=6.28+4+3.14=0.5 (米).答:这棵树的直径是().5 米.6.已知d=10 厘米,C5d=3.14x10=31.4 (厘米);31.4+2=33.4 (厘米);33.4x20=668 (厘米);答:做20个这样的铁圈一共用668厘米的铁丝.7.(1) 2x3.14x3=3.14x6=18.84 (米).(2) 3.14x32=3.14x9=28.26 (平方米).答:它的周长是18.84米,它占地面积是28.26平方米8. 3.14x().86x (120+6) =2.7004x20=54.008 (米)答:它每分钟能前进54.008 米G 29.圆的周长是:3.14x6=18.84 (厘米),圆的面积是:3.14x (2) =3.14x9=28.26 (平方厘米);2答:这个圆的周长是18.84厘米,面积是28.26平方厘米.10.根据题意,可得,C=2Rr=2xnxO.3=2x3.14x0.3= 1.884 (^).答:它滚动1 圈前进1.884 米11.3.14x4x2x2=3.14x16=50.24 (厘米);答:这个时针的尖端转动一昼夜所走的路程是50.24厘米12.25.124-2+25.124-3.14= 12.56+8=20.56 (^);答:半圆的周长是20.56 分米13.2x3.14x10=62.8 (米);答:周长是62.8 米.14.(7.71 -3) ^3.144-2=4.71^3.14^2=1.5^2=0.75 (米),答:围成圆圈的半径是0.75 米15.6+(2x2) =64-4=1.5 (倍);答:甲圆周长是乙圆周长的L5倍.16.3.14x40=125.6 (厘米),125.6 厘米=1.256 米,31.4+1.256=25 (周);答:车轮要转25 周.17.作图示意如下:周长是:3.14x3+2+3=7.71 (厘米),面积是:3.14x (,)♦2=3.5325 (平方厘米),2答:这个半圆的周长是7.71厘米,面积是3.5325平方厘米.18.由题意知:33厘米=0.33米,2x3.14x().33x80=165.792=166 (米);答:每分钟大约前进166米19.3.14x1.5x8x3=4.71x8x3=37.68x3=113.04 (米);答:压路机3 分钟前进113.04 米.20. 3.14x12+2x12=37.68+24, =61.68 (米);答;篱笆至少长61.68 米21. 1.4 米=140 厘米;由题意知:C=2nr=2x3.14x140=879.2 (厘米);879.2乂上73.27 (厘米);12答:分针针尖走过了73.27厘米.22. 3.14x5=15.7 (米);答:这个花坛的周长是15.7米23. 3.14x5x2x^+5+3.14x5^2=23.55+5+7.85=36.4 (厘米)答:这个图形的周长是36.4 厘米.424.已知r=40厘米;C=2nr=2x3.14x40=251.2 答:这根分针的尖端转动一周所走的路程是251.2厘米.25.2x3.14x8=50.24 (厘米);答:这根分针的尖端转动一周走过了50.24厘米.故答案为:正确.26.2x3.14x5x3=31.4x3=94.2 (分米);3.14x42xl=3.14x 16x^=12.56 (平方分米);答:分针的针尖走过的距离是94.2分米,时针扫过的面积是12.56平方分米27.(1) 3.14x10x2=62.8 (米),62.8x3=188.4 (米);(2)62.8+3.14=20 (根),答:要用188.4米的铁丝才能把牛栏围上3圈,如果每隔3.14m装一根木桩,大约要装20根木桩.28. 3.14x (10+3) =3.14x13=40.82 (厘米);答:阴影部分的周长是40.82厘米.29.因为三角形ABC的边长都为6cm,所以三角形ABC为等边三角形,根据图中阴影部分的位置知道,以6・2 为半径的圆的周长的一半就是阴影部分的周长.解:3.14x6+2=9.42 (厘米),答:阴影部分的周长是9.42厘米.30.圆的半径:25.12。
中考数学点对点-涉及圆的证明与计算问题(解析版)
专题27 涉及圆的证明与计算问题专题知识点概述圆的证明与计算是中考必考点,也是中考的难点之一。
纵观全国各地中考数学试卷,能够看出,圆的证明与计算这个专题内容有三种题型:选择题、填空题和解答题。
一、与圆有关的概念1.圆:平面上到定点的距离等于定长的所有点组成的图形叫做圆。
定点称为圆心,定长称为半径。
圆的半径或直径决定圆的大小,圆心决定圆的位置。
2.圆心角:顶点在圆心上的角叫做圆心角。
圆心角的度数等于它所对弧的度数。
3.圆周角:顶点在圆周上,并且两边分别与圆相交的角叫做圆周角。
4. 外接圆和外心:经过三角形的三个顶点可以做一个圆,这个圆叫做三角形的外接圆。
外接圆的圆心,叫做三角形的外心。
外心是三角形三条边垂直平分线的交点。
外心到三角形三个顶点的距离相等。
5.若四边形的四个顶点都在同一个圆上,这个四边形叫做圆内接四边形,这个圆叫做这个四边形的外接圆。
6.和三角形三边都相切的圆叫做这个三角形的内切圆,其圆心称为内心。
内心是三角形三个角的角平分线的交点。
内心到三角形三边的距离相等。
二、与圆有关的规律1.圆的性质:(1)圆具有旋转不变性;(2)圆具有轴对称性;(3)圆具有中心对称性。
2.垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧。
3.推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.4.在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距也相等。
在同圆或等圆中,如果两条弧相等,那么他们所对的圆心角相等,所对的弦相等,所对的弦心距也相等。
在同圆或等圆中,如果两条弦相等,那么他们所对的圆心角相等,所对的弧相等,所对的弦心距也相等。
5.在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.6.半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.7.圆内接四边形的特征①圆内接四边形的对角互补;②圆内接四边形任意一个外角等于它的内对角。
第27讲 与圆有关的位置关系(课件)中考数学一轮复习(全国通用)
1. 点和圆的位置关系
已知⊙O的半径为r,点P到圆心O的距离为d,则:
位置关系
图形
半径的关系,反过来已知点到圆心的距离与半径的关系,可
以确定该点与圆的位置关系.
定义
性质及判定
点在圆的外部
d > r 点P在圆外
点在圆周上
d = r 点P在圆上
点在圆的内部
内切
内含
O2
d
性质及判定
无
> + ⇔两圆外离
1个切点
= + ⇔两圆外切
两个交点
− < < + ⇔两圆相交
1个切点
= − ⇔两圆内切
R
r
O1
O2
d
r
相交
公共点个数
O1
R
d
O2
rd R
O1 O2
R
r d
O1 O2
无
0 ≤ < − ⇔两圆内含
∴圆A与圆C外切,圆B与圆C相交,圆A与圆B外离,
故选:D.
)
考点二 切线的性质与判定
1.切线的性质与判定
定义
线和圆只有一个公共点时,这条直线叫圆的切线,这个公共点叫做切点.
圆的切线垂直于过切点的半径.(实际上过切点的半径也可理解为过切点的直径或经过切点与圆心的直线.)
解题方法:当题目已知一条直线切圆于某一点时,通常作的辅助线是连接切点与圆心(这是圆中作辅助线的一
∴不能判定BC是⊙A切线;
故选:D.
)
考点二 切线的性质与判定
题型02 利用切线的性质求线段长
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
与圆有关的计算
【课前热身】
1. (安徽)如图,在⊙O 中,60AOB ∠= ,3cm A B =, 则劣弧AB
⌒ 的长 为 cm .
2. (宜昌)翔宇学中的铅球场如图所示,已知扇形AOB 的面积是36米2,AB ⌒ 的
长度为9米,那么半径OA = 米.
3.(苏州)如图,已知扇形的半径为3cm ,圆心角为120°,则扇形的面积
为__________ 2cm .(结果保留π)
4.(常州)已知扇形的半径为2cm ,面积是24
3cm π,则扇形的弧长是 cm ,
扇形的圆心角为 °.
5. (潍坊)如图,正六边形内接于圆O ,圆O 的半径为10,则圆中阴影部分的
面积为 . 【考纲解读】
1.掌握圆的周长、弧长、面积、扇形的面积公式,并会应用
2.会进行有关圆及有关组合图形的周长及面积
3.了解圆柱、圆锥侧面展开图分别是矩形和扇形,会计算圆柱、圆锥的侧面积和全面积
【考点扫描】
1. 圆的周长为 ,1°的圆心角所对的弧长为 ,n °的圆心角所对
的弧长为 ,弧长公式为 .
2. 圆的面积为 ,1°的圆心角所在的扇形面积为 ,n °的圆心角所在的扇形面积为S= 2
R π⨯ = = .
3. 圆柱的侧面积公式:S=2rl π.(其中r 为 的半径,l 为 的高)
4. 圆锥的侧面积公式:S=rl π.(其中r 为 的半径,l 为 的长) 【典型例题】
例1 (金华)如图,CD 切⊙O 于点D ,连结OC ,交⊙O 于点B , 过点B 作弦AB ⊥OD ,点E 为垂足,已知⊙O 的半径为10,si n ∠COD =5
4.
(1)求弦AB 的长;(2)CD 的长;
第1题
第3题
第5题 第2题
(3)劣弧AB 的长.(结果保留三个有效数字,sin53.130.8 ≈,π≈3.142)
例2 (南昌)如图,A B 为⊙O 的直径,C D AB ⊥于点E ,交⊙O 于点D ,
O F A C
⊥于点F .
(1)请写出三条与B C 有关的正确结论;
(2)当30D ∠= ,1B C =
练2.1 (孝感)R t A B C △中,90C ∠= ,8A C =,6B C =
,两等圆⊙A ,⊙B 外切,那么图中两个扇形(即阴影部分)的面积之和为( )
A .
254π
B .258
π C .2516
π D .2532
π
练2.2 (厦门)如图,在矩形空地上铺4块扇形草地.若扇形的半径均为r 米,
,则铺上的草地共有 平方米.
例3 (庆阳)如图,线段A B 与⊙O 相切于点C ,连结O A 、O B ,O B 交⊙O 于点D ,已知6cm O A O B ==,AB =.
求(1)⊙O 的半径; (2)图中阴影部分的面积.
练3 (贵阳)如图,已知A B 是⊙O 的直径,点C 在⊙O 上,且13A B =,5B C =.
(1)求sin B A C ∠的值;
(2)如果O D A C ⊥,垂足为D ,求A D 的长; (3)求图中阴影部分的面积(精确到0.1).
﹡
B
O A C B D
第8题图
【课后作业】
1(2010年镇江市)14.已知圆锥的母线长为4,底面半径为2,则圆锥的侧面积等于 ( A ) A .8π B .9π C .10π D .11π
2(桂林2010)一个圆锥的侧面展开图是半径为1的半圆,则该圆锥的底面半径是 ( C ).
A .1
B .34
C .
12
D .13
3(2010年兰州) 现有一个圆心角为
90,半径为cm 8的扇形纸片,用它恰好围成一个圆锥的侧面(接缝忽略不计).该圆锥底面圆的半径为( C) A . cm 4 B .cm 3 C .cm 2 D .cm
1
4.(2010年无锡)已知圆锥的底面半径为2cm ,母线长为5cm ,则圆锥的侧面积是( C )
A .220cm
B .220cm π
C .210cm π
D .25cm π
5.(2010毕节)已知圆锥的母线长是5cm ,侧面积是15πcm 2,则这个圆锥底面圆的
半径是( B )A .1.5cm B .3cm C .4cm D .6cm
6.(2010年济宁市)如图,如果从半径为9cm 的圆形纸片剪去1
3圆周的一个扇形,
将留下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的高为( B ) A .6cm
B
. C .8cm D
.7、(2010年杭州市)如图,5个圆的圆心在同一条直线上, 且互相相切,若大圆直径是12,4个 ( B )
A. 48π
π
8(2010昆明)如图,在△ABC 中,AB = AC ,AB = 8,BC = 12,分别以AB 、AC 为直径作半圆,则图中阴影部分的面积是(D )
A
.64π-B .1632π- C
.16π-D
.16π-
9.(2010四川宜宾)将半径为5的圆(如图1)剪去一个圆心角为n °的扇形后围成如图2所示的圆锥则n 的值等于 144
10(2010年成都)若一个圆锥的侧面积是18π,侧面展开图是半圆,则该圆锥的底面圆半径是
___________.3
11(2010年眉山)已知圆锥的底面半径为4cm ,高为3cm ,则这个圆锥的侧面积为__________cm 2.20π
12(2010哈尔滨)将一个底面半径为5cm ,母线长为12cm 的圆锥形纸筒沿一条母线剪开并展平,所得的侧面展开图的圆心角是 度.150
13(2010红河自治州) 已知圆锥的底面直径为4,母线长为6,则它的侧面展开图的圆心角为 120° .
14(2010·绵阳)如图,等腰梯形ABCD 内接于半圆D ,且AB = 1,BC = 2,
则OA =( A ).23
1+
15.(2010遵义市)如图,在△ABC 中,∠C= 90,AC+BC=8,点O 是
斜边AB 上一点,以O 为圆心的⊙O 分别与AC 、BC 相切于 点D 、E .
(1)当AC =2时,求⊙O 的半径;
(2)设AC =x ,⊙O 的半径为y ,求y 与x 的函数关系式.
16(2010年怀化市) 如图8,AB 是⊙O 的直径,C 是⊙O 上一点,AB CD ⊥于D,且AB=8,DB=2. (1)求证:△ABC ∽△CBD;
(2)求图中阴影部分的面积(结果精确到0.1,参考数据
73.13,14.3≈≈π).
17(2010湖北省咸宁市)如图,在⊙O 中,直径AB 垂直于弦CD ,垂足为E ,连接AC ,
将△ACE 沿AC 翻折得到△ACF ,直线FC 与直线AB 相交于点G . (1)直线FC 与⊙O 有何位置关系?并说明理由;
(15题图) 图8
(2)若2O B BG ==,求CD 的长.
【近三年临沂中考】
1.(2008临沂)13.如图,等腰梯形ABCD 中,AD ∥BC ,以A 为圆心,AD 为半径的圆与BC 切于点M ,与AB 交于点E ,若AD =2,BC =6,则⌒DE 的长为( ) A .
2
3π B .
4
3π C .
8
3π D . π3
2.(2009临沂)17.若一个圆锥的底面积是侧面积的13
,则该圆锥侧面展开图的圆心角度数是____ _度.
3.(2010临沂)14.如图,直径AB 为6的半圆, 绕A 点逆时针旋转60°,此时点B 到了点B ', 则图中阴影部分的面积是 A .6π B .5π C .4π D .3π
第13题图
A M
D
E
B
C
B '
第14题。