初三数学期中考试卷及答案

合集下载

初三数学期中考试试卷及答案

初三数学期中考试试卷及答案

初三数学期中考试试卷及答案第一卷:选择题(共80分)一、选择题(每小题1分,共40分)1. 下列各组函数中,相等的是()a) y = x^2 - 2x + 1,y = (x - 1)^2b) y = |2x - 1|,y = -(2x - 1)c) y = |2x - 1|,y = 2|x| - 1d) y = 2|x + 1|,y = -2|x + 1|2. 单项式 2x^3 y z^2 的次数是()a) 2 b) 3 c) 4 d) 53. 若 a:b = 7:5,b:c = 4:3,求 a:b:c =a) 7:5:3 b) 7:4:5 c) 7:10:12 d) 28:20:154. 圆心坐标为 (-4, 2),半径为 5 的圆方程是()a) (x + 4)^2 + (y - 2)^2 = 5^2b) (x - 4)^2 + (y + 2)^2 = 5^2c) (x + 4)^2 + (y + 2)^2 = 5^2d) (x - 4)^2 + (y - 2)^2 = 5^2...第二卷:非选择题(共70分)五、计算题(共30分)1. 化简:(3a^2b)^3 / (6a^5b^2) =2. 解方程:4x - 5 = 3x + 73. 已知图中三角形 ABC,其中∠B = 90°,AC = 8cm,BC = 6cm。

求 sin A 和 cos C 的值。

...八、解答题(共20分)1. 某商店购进一批相同的商品,第一天卖出了商品总数的 1/4,第二天又卖出了剩余商品总数的1/3 ,已知最后剩下的商品总数是60 件,求原先购进的商品总数。

2. 一辆汽车从 A 地开往 B 地,全程 300 km,开了 4 个小时到达终点。

第二天,汽车原路返回,回到 A 地用了 6 个小时。

求汽车在去程和返程时的平均速度。

...第三卷:答题卡(共10分)请将你的答案填写在答题卡上。

注意事项:1. 请认真核对试卷上的题号和试卷形式,确保填涂无误。

2023-2024学年全国初三上数学人教版期中考试试卷(含答案解析)

2023-2024学年全国初三上数学人教版期中考试试卷(含答案解析)

专业课原理概述部分一、选择题:5道(每题1分,共5分)1. 下列哪个选项不属于《论语》中的思想?()A. 孝道B. 忠诚C. 仁爱D. 勤奋2. 《诗经》是我国最早的诗歌总集,其内容分为三部分,下列哪一项不属于这三部分?()A. 风诗B. 雅诗C. 颂诗D. 赋诗3. 下列哪个选项是《离骚》的作者?()A. 屈原B. 宋玉C. 李白D. 杜甫4. 下列哪个选项是《史记》的作者?()A. 司马迁B. 司马光C. 司马相如D. 司马炎5. 下列哪个选项是《资治通鉴》的作者?()A. 司马迁B. 司马光C. 司马相如D. 司马炎二、判断题5道(每题1分,共5分)1. 《论语》是孔子及其弟子的言论汇编,由孔子弟子及再传弟子编写而成。

()2. 《诗经》是我国最早的诗歌总集,共有305篇,分为风、雅、颂三部分。

()3. 《离骚》是屈原的代表作,被誉为中国古代浪漫主义诗歌的代表作。

()4. 《史记》是西汉史学家司马迁所著,是我国第一部纪传体通史。

()5. 《资治通鉴》是北宋史学家司马光所著,是我国第一部编年体通史。

()三、填空题5道(每题1分,共5分)1. 《论语》中,孔子曰:“学而时习之,不亦说乎?有朋自远方来,不亦乐乎?人不知而不愠,不亦君子乎?”这句话表达了孔子的______思想。

2. 《诗经》中的“风”是指______地区的民歌,具有浓厚的地方特色。

3. 《离骚》是屈原创作的长篇政治抒情诗,表达了诗人对楚国命运的深切忧虑和对理想的执着追求,被誉为中国古代浪漫主义诗歌的______。

4. 《史记》全书共130篇,包括12本纪、30世家、70列传、10表、8书,其中本纪、世家、列传是按______体例编写的。

5. 《资治通鉴》是北宋史学家司马光主编的一部多卷本编年体史书,记载了从______到______共1362年间的历史。

四、简答题5道(每题2分,共10分)1. 简述《论语》的主要思想内容。

2. 简述《诗经》的艺术特色。

【初三数学】浙江省初中名校共同体2023-2024学年九年级上学期期中数学试题(解析版)

【初三数学】浙江省初中名校共同体2023-2024学年九年级上学期期中数学试题(解析版)

2023学年第一学期浙江省初中名校发展共同体九年级期中考试数学考生须知:1.本卷满分120分,考试时间120分钟;2.答题前,在答题卷指定区域填写班级、姓名、考场、座位号及准考证号并核对条形码信息;3.所有答案必须写在答题卷上,写在试卷上无效,考试结束后,只需上交答题卷;4.参加联批学校的学生可关注“启望教育”公众号查询个人成绩分析.一、选择题(本大题共10题,每小题3分,共30分.每小题列出的四个备选项中只有一个是符合题目要求的,不选、多选、错选均不得分)1.若43a b =,则a b b -的值等于()A.13B.13-C.73D.73-【答案】A 【解析】【分析】此题考查了比例,直接利用比例设参数,然后代入求值即可,解题的关键是熟练掌握比例的性质.【详解】由43a b =,设4a k =,3b k =(0k ≠),∴431333a b k k k b k k --===,故选:A .2.已知在Rt ABC △中,90,5,12C AC BC ∠=︒==,则ABC V 的外接圆直径为()A.5B.12C.13D.6.5【答案】C 【解析】【分析】本题考查了直角三角形的外接圆直径,勾股定理求得斜边的长即可求解.【详解】解:∵在Rt ABC △中,90,5,12C AC BC ∠=︒==,∴13AB ==,∴ABC V 的外接圆直径为13,故选:C .3.若将函数23y x =的图象向右平移2个单位,再向上平移4个单位,得到的抛物线表达式为()A.23(2)4y x =+- B.23(2)4y x =++ C.23(2)4y x =-- D.23(2)4y x =-+【答案】D 【解析】【分析】本题考查了二次函数图象与几何变换,解题的关键是根据函数图象平移规律:左加右减,上加下减进行变换.【详解】解:将函数23y x =的图象向右平移2个单位,再向上平移4个单位,可得()2324y x =-+,故选D .4.筒车是我国古代发明的一种水利灌溉工具,彰显了我国古代劳动人民的智慧,图1,点M 表示筒车的一个盛水桶.如图2,当筒车工作时,盛水桶的运行路径是以轴心O 为圆心,5m 为半径的圆,且圆心在水面上方.若圆被水面截得的弦AB 长为8m ,则筒车工作时,盛水桶在水面以下的最大深度为()A.1米B.2米C.3米D.4米【答案】B 【解析】【分析】过O 点作半径OD AB ⊥于E ,如图,由垂径定理得到4AE BE ==,再利用勾股定理计算出OE ,然后即可计算出DE 的长.【详解】解:过O 点作半径OD AB ⊥于E ,如图,∴11===8=422AE BE AB ⨯,在Rt AEO △中,3OE ===,∴532(m)ED OD OE =-=-=,∴筒车工作时,盛水桶在水面以下的最大深度为2m .故选:B .【点睛】本题考查了垂径定理,垂直于弦的直径平分弦,并且平分弦所对的两条弧,能熟练运用垂径定理是解题的关键.5.关于二次函数()224y x =+-,下列说法正确的是()A.函数图象的开口向下B.函数图象的顶点坐标是()24-,C.该函数的最大值是4-D.当2x ≥-时,y 随x 的增大而增大【答案】D 【解析】【分析】本题考查了()2y a x h k =-+的图象性质,根据顶点坐标为()h k ,,对称轴x h =,开口方向,进行逐项分析,即可作答.【详解】解:A 、因为()224y x =+-中的10a =>,函数图象的开口向上,故该选项是错误的;B 、因为()224y x =+-,所以函数图象的顶点坐标是()24--,,故该选项是错误的;C 、因为10a =>,函数图象的开口向上,该函数的最小值是4-,故该选项是错误的;D 、因为对称轴2x =-,10a =>,函数图象的开口向上,当2x ≥-时,y 随x 的增大而增大,故该选项是正确的;故选:D6.如图,在ABC 中,90A ∠=︒,6AB =,10BC =,ABC ∠的平分线交AC 于点D ,与BC 的垂线CE 相交于点E ,则:BD DE 为()A.3:2B.5:3C.4:3D.2:1【答案】A 【解析】【分析】过点D 作DF BC ⊥于点F ,由勾股定理得8AC =,再由角平分线的性质得DA DF =,进而由面积法求出3DF =,则5CD AC DA =-=,然后由勾股定理得4CF =,则6BF =,最后由平行线分线段成比例定理即可得出结论.【详解】解:过点D 作DF BC ⊥于点F ,∵90A ∠=︒,6AB =,10BC =,∴DA BA ⊥,8AC ===,∵BD 平分ABC ∠,DF BC ⊥,∴DA DF =,∵ABC ABD BCD S S S =+△△△,∴111222AB AC AB DA BC DF ⋅=⋅+⋅,∴68610DF DF ⨯=+,解得:3DF =,∴3DA =,∴835CD AC DA =-=-=,∴4CF =,∴1046BF BC CF =-=-=,∵DF BC ⊥,CE BC ⊥,∴DF CE ∥,∴6342BD BF DE CF ===,即:3:2BD DE =.故选:A .【点睛】本题考查勾股定理,角平分线的性质,三角形面积,平行线的判定及平行线分线段成比例定理等知识,熟练掌握勾股定理、角平分线的性质及平行线分线段成比例定理是解题的关键.7.小舟给出如下题目:二次函数2(0)y ax bx c a =++≠的图象如图所示,点A 坐标为()1,0-,给出下列结论:①20b a +<﹔②240b ac -<;③3x =是方程20(a 0)++=≠ax bx c 的其中一个解;④30a b +>;其中正确的是()A.①B.②C.③D.④【答案】C 【解析】【分析】本题考查了二次函数图象与系数的关系:二次项系数a 决定抛物线的开口方向和大小.当0a >时,抛物线向上开口;当0<a 时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时,对称轴在y 轴左;当a 与b 异号时,对称轴在y 轴右.常数项c 决定抛物线与y 轴交点:抛物线与y 轴交于()0,c .抛物线与x 轴交点个数由判别式确定:24>0bac ∆=-时,抛物线与x 轴有2个交点;240b ac ∆=-=时,抛物线与x 轴有1个交点;240b ac ∆=-<时,抛物线与x 轴没有交点.利用抛物线的对称性得到抛物线与x 轴的另一个交点坐标为()3,0,则利用对称轴即可对①进行判断;根据判别式的意义可对②进行判断;根据抛物线与x 轴的另一个交点坐标为()3,0可对③进行判断;由20a b +=,0<a ,即可对④进行判断.【详解】解:∵抛物线的对称轴为直线1x =,即12ba-=,∴20b a +=,故①错误;∵抛物线对称轴是直线1x =,抛物线与x 轴的一个交点坐标为()1,0A -,∴抛物线与x 轴的另一个交点坐标为()3,0,即抛物线抛物线与x 轴有2个交点,∴24>0b ac =- ,故②错误;∵抛物线与x 轴的另一个交点坐标为()3,0,∴3x =是方程20(a 0)++=≠ax bx c 的其中一个解,故③正确;∵a<0,20a b +=,∴30a b +<,故④错误;故选:B .8.如图,点A ,B ,C ,D 为O 上的四个点,AC 平分BAD ∠,AC 交BD 于点E ,2,3CE CD ==,则AC 的长为()A.4B.4.5C.5D.5.5【答案】B 【解析】【分析】本题考查圆周角定理,相似三角形的性质与判定,方程思想,能够掌握相似三角形的性质是解决本题的关键.【详解】解:设AC x =2AC x =+,∵AC 平分BAD ∠,∴BAC CAD ∠∠=,∵CDB BAC ∠∠=(圆周角定理),∴CAD DB ∠∠=,∴ACD DCE ∽,∴CD ACCE DC =,即323x =,解得: 4.5x =,故选:B .9.如图,已知△ABC ,O 为AC 上一点,以OB 为半径的圆经过点A ,且与BC ,OC 交于点D ,E .设∠A =α,∠C =β()A.若α+β=70°,则 DE 的度数为20°B.若α+β=70°,则 DE的度数为40°C.若α﹣β=70°,则 DE的度数为20° D.若α﹣β=70°,则 DE的度数为40°【答案】B 【解析】【分析】连接BE ,根据圆周角定理求出∠ABE =90°,∠AEB =90﹣α,再根据三角形外角性质得出90°﹣α=β+12θ,得到 DE 的度数为180°﹣2(α+β),再逐个判断即可.【详解】解:连接BE ,设 DE的度数为θ,则∠EBD =12θ,∵AE 为直径,∴∠ABE =90°,∵∠A =α,∴∠AEB =90﹣α,∵∠C =β,∠AEB =∠C +∠EBC =β+12θ,∴90°﹣α=β+12θ,解得:θ=180°﹣2(α+β),即 DE 的度数为180°﹣2(α+β),A 、当α+β=70°时, DE的度数是180°-140°=40°,故本选项错误;B 、当α+β=70°时, DE的度数是180°-140°=40°,故本选项正确;C 、当α-β=70°时,即α=70°+β, DE的度数是180°-2(70°+β+β)=40°-4β,故本选项错误;D 、当α-β=70°时,即α=70°+β, DE的度数是40°-4β,故本选项错误;故选:B ..【点睛】本题考查了圆周角定理和三角形的外角性质,能灵活运用定理进行推理和计算是解此题的关键.10.定义平面内任意两点()()1122,,,P x y Q x y 之间的距离2121PQ d x x y y =-+-,称为这两点间的曼哈顿距离(简称为曼距).例如,在平面直角坐标系中,点()3,2P --与点()2,2Q 之间的曼距3222549PQ d =--+--=+=,若点A 在直线122y x =-上,点B 为抛物线22y x x =+上一点,则曼距AB d 的最小值() A.23540B.6940C.2316D.32【答案】C 【解析】【分析】本题考查了二次函数与一次函数的综合应用,二次函数的最值,根据定义表示出曼距AB d ,当A 、B 两点横坐标相等时,AB d 取得最小值,求解即可.【详解】解:由题意得:设1,22A a a ⎛⎫- ⎪⎝⎭,2(,2)B b b b +,∴()21222AB a b b d a b =---++,当A 、B 两点横坐标相等时,AB d 取得最小值,∴()2223323224161222ABd b b b b b b ⎛⎫==---=++ ⎪⎝⎭--+,∴曼距AB d 的最小值为2316;故选:C .二、填空题(本题有6小题,每小题4分,共24分)11.请写出一个开口向下并且顶点在y 轴上的二次函数表达式________.【答案】24y x =-+(答案不唯一)【解析】【分析】本题考查了二次函数的图象与性质,先设出二次函数解析式方程,()()20y a x h k a =++≠,再根据图像开口向下可知0a <,再根据顶点在y 轴上,有0h =,即可求解.【详解】设该二次函数的解析式为()()20y a x h k a =++≠,∵抛物线的开口向下,∴0a <,又∵顶点在y 轴上,∴0h =,∴4k =时,有:24y x =-+,故答案为:24y x =-+(答案不唯一,满足上述条件即可)12.生活中到处可见黄金分割的美.如图,在设计人体雕像时,使雕像的腰部以下a 与全身b 的高度比值接近0.618,可以增加视觉美感.若图中b 为4米,则a 约为________米.(结果精确到一位小数)【答案】2.5【解析】【分析】本题考查了黄金分割,根据0.618ab≈,4m b =,即可求出a 的值.【详解】解: 雕像的腰部以下a 与全身b 的高度比值接近0.618,4m b =,∴0.618ab≈,2.472 2.5m a ∴≈≈,a ∴的值为2.5米;故答案为2.5.13.二次函数()()53y a x x =+-的图象如图所示,当0y >时,x 的取值范围是________.【答案】53x -<<##35x >>-【解析】【分析】本题主要考查抛物线与x 轴的交点、二次函数图象与性质.先求出抛物线与x 轴的交点坐标,进而根据函数图象即可解答.【详解】解:当0y =时,()()530x x +-=,解得:1253x x =-=,∴二次函数()()53y a x x =+-的图象与x 轴的交点为(50)-,,()30,,由函数图象可得0y >的x 的取值范围为:53x -<<.故答案为:53x -<<.14.如图,在扇形EOF 中放置有三个全等的矩形方格,点O 为扇形的圆心,格点A 、B 、C 分别在扇形的1,则阴影部分的面积为________.【答案】73π【解析】【分析】连接OC ,先求出OC 长,再利用三角函数求出AOB ∠的度数,再根据阴影面积等于扇形的面积减去梯形面积即可得解.熟练掌握扇形面积公式和利用三角函数求出30AOB ∠=︒是解题的关键.【详解】解:连接OC ,1,∴OC ==,ant AOB Ð=,∴30AOB ∠=︒,∴(230π73603EOF Sπ⨯==扇形,()1232ACBO S =⨯+=梯形,∴阴影部分的面积为:73A O EOF CB S S S π=-=梯阴影扇形形故答案为:73π15.如图,矩形纸片ABCD ,点E 在边A 上,连接BE ,点F 在线段BE 上,且13EF BF =,折叠矩形纸片使点C 恰好落在点F 处,折痕为DG ,若4AB =,则折痕DG 的长为________.【答案】【解析】【分析】此题考查了矩形的折叠问题,勾股定理.正确画出辅助线,构造直角三角形是解题的关键.过点F 作MN AD ⊥于点M ,MN 交BC 于点N ,通过证明四边形ABNM 为矩形,四边形CDMN 为矩形,得出4AB MN CD ===,根据13EF BF =,推出13EF MF BF NF ==,则1,3MF NF ==,由折叠的性质得出4DF DC ==,CG FG =,即可根据勾股定理求出CN DM ===CG FG x ==,则GN x =-,根据勾股定理可得222GN NF FG +=,列出方程,求出4155x =,最后根据勾股定理可得:2DG =,即可求解.【详解】解:过点F 作MNAD ⊥于点M ,MN 交BC 于点N ,∵四边形ABCD 为矩形,∴90A ABN ∠=∠=︒,AD BC ∥,∵MN AD ⊥,∴四边形ABNM 为矩形,同理可得:四边形CDMN 为矩形,∴4AB MN CD ===,∵13EF BF =,∴13=EF BF ,∵AD BC ∥,∴13EF MF BF NF ==,∴1,3MF NF ==,∵CDG 由FDG △沿DG 折叠得到,∴4DF DC ==,CG FG =,根据勾股定理可得:CN DM ====设CG FG x ==,则GN x =,根据勾股定理可得:222GN NF FG +=,即)2223x x -+=,解得:5x =,根据勾股定理可得:2DG ===16.量角器和三角板是我们平常数学学习中常用的工具.有一天,爱思考的小聪拿着两块工具拼成了如图1的样子,计划让三角板的直角顶点始终在量角器的半圆弧上运动,紧接着小聪根据自己的想法画出了示意图(如图2).已知点C 是量角器半圆弧的中点,点P 为三角板的直角顶点,两直角边PE 、PF 分别过点A 、B .连结CP ,过点O 作OM CP ⊥交CP 于点M ,交AP 于点N .若8AB =,则NB 的最小值为________;若点Q 为 BC的中点,则点P 从点Q 运动到点B 时,N 点的运动路径长为________.【答案】①.-②.22π【解析】【分析】如图,连接AC OC ,.证明点N T 在 上,且运动轨迹是 OC,过点T 作TH AB ⊥于H .求出BT TN ,,可得结论;连接PO ,TO ,结合图形可得,点P 从点Q 运动到点B ,点Q 为 BC的中点,运动的终点时,1452POB COB ∠=∠=︒,即有9045CTN POB ∠=︒-∠=︒,则有9045OTN CTN ∠=︒-∠=︒,根据弧公式即可作答.【详解】解:当点P 在 BC上时,点N 在线段OC 的右侧,如图,连接AC OC ,.∵C 是半圆的二等分点,∴=90AOC ∠︒,即1452APC AOC ∠=∠=︒,∵OA OC =,∴AOC △是等腰直角三角形,作AOC △的外接圆T e ,连接TN ,TB .则有圆心T 为AC 中点,∵OM PC ⊥,∴CM PM =,∴NC NP =,∴45NPC NCP ∠=∠=︒,∴18090CNP PCN CPN ∠=︒-∠-∠=︒,∴90ANC PNC ∠=∠=︒,∴点N 在T e 上,运动轨迹是 OC,过点T 作TH AB ⊥于H .∵8AB =,∴142AO AB ==,∵AO OC =,=90AOC ∠︒,∴45OAC OCA ∠=∠=︒,AC ==,∴12TA TN TC AC ====,在Rt ATH 中,122AH OH AO ===,45TAH ∠=︒,∴45ATH TAH ∠=∠=︒,∴2AH TH ==,即6BH AB AH =-=,在Rt BHT 中,BT ===,∵BN BT TN ≥-,∴BN ≥-∴BN 的最小值为-当点P 在 AC 上时,如图,可知点N 在线段OC 的左侧,此时的BN 显然大于综上:BN 的最小值为-如图,连接PO ,TO ,∵2CTN CAN ∠=∠,2POB PAB ∠=∠,45CAN PAB CAO ∠+∠=∠=︒,∴()24590CTN PAB POB ∠=︒-∠=︒-∠,∵点P 从点Q 运动到点B ,点Q 为 BC的中点,∴终点时,1452POB COB ∠=∠=︒,∴9045CTN POB ∠=︒-∠=︒,∴9045OTN CTN ∠=︒-∠=︒,∵TA TN TC ===∴点N 在T e 上,运动轨迹长为:4522ππ3602︒⨯=︒,故答案为:-,2π2.【点睛】本题考查点与圆的位置关系,弧长公式,圆周角定理,垂径定理,勾股定理,等腰直角三角形的判定和性质,轨迹等知识,解题的关键是正确寻找点N 的运动轨迹.三、解答题(本题有8小题,第17~19题每小题6分,第20、21题每小题8分,第22、23题每小题10分,第24题12分,共66分)17.已知线段a 、b 、c 满足::3:2:4a b c =,且211++=a b c .(1)求a 、b 、c 的值;(2)若线段x 是线段a 、b 的比例中项,求x 的值.【答案】(1)3,2,4a b c ===(2)x 【解析】【分析】本题考查了比例和比例中项,(1)设比值为k ,然后用k 表示出a 、b 、c ,再代入等式进行计算即可得;(2)根据比例中项的定义列式求解即可得掌握比例和比例中项的定义“如果作为比例内项的是两条相同的线段,即a b b c=,那么线段b 是a 和c 的比例中项”是解题的关键.【小问1详解】解:∵::3:2:4a b c =,则设3,2,4a k b k c k ===,∵211++=a b c ,∴322411k k k +⨯+=,1111k =,1k =,∴3,2,4a b c ===;【小问2详解】解:∵线段x 是线段a 、b 的比例中项,∴a x x b=,2x ab =,232x =⨯,26x =,x =或x =(舍),即x 的值.18.如图,AB 是半圆O 的直径,C 、D 是半圆O 上的两点,且∥OD BC ,OD 与AC 交于点E .(1)若70B ∠=︒,求CAD ∠的度数;(2)若13,12AB AC ==,求DE 的长.【答案】(1)35︒(2)4【解析】【分析】(1)圆周角定理,得到90C ∠=︒, AC 的度数为140︒,平行得到90OEA ∠=︒,进而得到OE AC ⊥,垂径定理,得到 AD CD=,进而得到 CD 的度数为70︒,即可求出CAD ∠的度数;(2)勾股定理,求出OE 的长,OD OE -即可求出DE 的长.本题考查圆周角定理,垂径定理,勾股定理.熟练掌握圆周角定理和垂径定理,是解题的关键.【小问1详解】解:∵AB 是半圆O 的直径,70B ∠=︒,∴90C ∠=︒, AC 的度数为140︒,∵∥OD BC ,∴90OEA C ∠=∠=︒,∴OE AC ⊥,∴ AD CD=,∴ CD的度数为70︒,∴170352CAD ∠=⨯︒=︒;【小问2详解】∵13,12AB AC ==,OE AC ⊥,∴131,622OA OD AE AC ====,∴52OE ==,∴135422DE =-=.19.已知二次函数223y x x =-+,当22x -≤≤时,求函数y 的取值范围.小胡同学的解答如下:解:当2x =-时,则()()2222311y =--⨯-+=;当2x =时,则222233y =-⨯+=:所以函数y 的取值范围为311y ≤≤.小胡的解答正确吗?如果正确,请在方框内打“√”:如果错误,请在方框内打“×”,并写出正确的解答过程.【答案】见解析【解析】【分析】此题考查了二次函数的性质,先将该二次函数解析式化为顶点式,根据开口方向向上,求出最小值为2,再求出当2x =-时和当2x =时的函数值,即可解答.【详解】解:小胡的解答不正确,正确的解答过程如下:∵()222312y x x x =-+=-+,10a =>,∴当1x =时,该二次函数有最小值2,∵当2x =-时,则()()2222311y =--⨯-+=;当2x =时,则222233y =-⨯+=:∴当22x -≤≤时,函数y 的取值范围为211y ≤≤.20.请用无刻度的直尺在以下两个图中画出线段BC 的垂直平分线(保留作图痕迹,不写作法)(1)如图①,等腰ABC V 内接于O 中,AB AC =;(2)如图②,已知四边形ABCD 为矩形,点A 、D 在圆上,AB CD 、与O 分别交于点E 、F .【答案】(1)见详解(2)见详解【解析】【分析】本题考查的是作图,主要涉及等腰三角形的性质、垂径定理、矩形的性质、线段的垂直平分线的判定和性质等知识,解题的关键是灵活运用相关的知识解决问题.(1)如图,作直线OA 即可,OA 即为所求;(2)连接AF DE 、交于点O ,连接EC BH 、交于点H ,连接OH 即可.【小问1详解】如图①,作直线OA 即可,OA 即为所求;【小问2详解】如图②,连接AF DE 、交于点O ,连接EC BH 、交于点H ,连接OH 即可,直线OH 即为所求.21.杭州亚运会期间,某网店经营亚运会吉祥物“宸宸、琮琮和莲莲”钥匙扣礼盒装,每盒进价为30元,出于营销考虑,要求每盒商品的售价不低于30元且不高于38元,在销售过程中发现该商品每周的销售量y (件)与销售单价x 32元时,销售量为36件;当销售单价为34元时,销售量为32件.(1)请求出y 与x 的函数关系式;(2)设该网店每周销售这种商品所获得的利润为w 元,①写出w 与x 的函数关系式;②将该商品销售单价定为多少元时,才能使网店每周销售该商品所获利润最大?最大利润是多少?【答案】(1)2100y x =-+(2)①221603000w x x =-+-;②该商品销售单价定为38元时,才能使网店销售该该商品所获利润最大,最大利润是192元.【解析】【分析】本题主要考查二次函数的应用、待定系数法等知识点,灵活应用这些知识解决问题并构建二次函数解决问题成为解题的关键.(1)直接利用待定系数法求解即可;(2)①根据“总利润=每件产品利润×数量”即可列出函数关系式;②利用二次函数的性质求最值即可.【小问1详解】解:设y 与x 的函数关系式为y kx b =+,把3236x y ==,和3432x y ==,分别代入得,36323234k b k b =+⎧⎨=+⎩,解得:2100k b =-⎧⎨=⎩.∴y 与x 的函数关系式为2100y x =-+.【小问2详解】解:①由题意可得()()230210021603000w x x x x =--+=-+-:,∴w 与x 的函数关系式为221603000w x x =-+-.②()2221603000240200w x x x =-+-=--+,∵20-<且对称轴为直线40x =∴抛物线开口向下,∵3038x ≤≤在对称轴左侧,即40x <时,w 随x 的增大而增大,∴当38x =时,()223840200196w =--+=最大(元).答:该商品销售单价定为38元时,才能使网店销售该该商品所获利润最大,最大利润是192元.22.如图1,在正方形ABCD 中,12CE DE =,F 为BE 上的一点,连结CF 并延长交AB 于点M ,作MN CM ⊥交边AD 于点N .(1)当F 为BE 中点时,求证:2AM CE =﹔(2)如图2,若23EF BF =,求AN ND 的值.【答案】(1)见解析(2)13【解析】【分析】本题考查了正方形的性质与判定,全等三角形的性质与判定,相似三角形的性质与判定;(1)先证明MBC ECB ≌得出BM EC =,根据12CE DE =,以及正方形的性质即可得证;(2)根据正方形的性质可得,AB CD ∥得出FBM FEC ∽,根据已知条件设3BM a =,则2EC a =,求得4DE a =,进而求得AM ,证明AMN BCM ∽,取得AN ,进而即可求解.【小问1详解】证明:F 为BE 的中点,BF EF ∴=,四边形ABCD 为正方形,90BCE ABC ∴∠=∠=︒,CF BF EF ∴==,FBC FCB ∴∠=∠,BC CB = ,MBC ECB ∴ ≌(AAS ),BM EC ∴=,AB CD = ,12CE DE =,12BM AM ∴=,2AM CE ∴=.【小问2详解】∵四边形ABCD 为正方形,∴AB CD ∥,∴FBM FEC ∽,∵23EF BF =,∴23EF EC BF BM ==设3BM a =,则2EC a =,∵12CE DE =,∴4DE a =,∴246CD DE EC a a a =+=+=,∴633AM AB MB CD MB a a a =-=-=-=,∵MN CM ⊥,∴90NMC ∠=︒,又∵90A MBC ∠=∠=︒,∴90AMN BMC MCB ∠=︒-∠=∠,∴AMN BCM ∽,∴AM AN BC BM =,即363a AN a a =,∴32AN a =,∴39622ND AD ND a a a =-=-=,∴AN ND 312932a a ==.23.根据以下素材,探索完成任务.绿化带灌溉车的操作方案灌溉车行驶过程中喷出的水能浇灌到整个绿化带吗,请说理由灌溉时,发现水流的上下两边缘冲击力最强,喷到针简容易造成针筒脱落.那么请问在满足最大灌溉面积的前提下对行道树“打针”是否有影响,并说明理由;若你认为有影响,请给出具体的“打针”范围.【答案】任务一:()213 2.510y x =-++;任务二:灌溉车行驶过程中喷出的水能浇灌到整个绿化带,理由见解析;任务三:在满足最大灌溉面积的前提下对行道树“打针”是否有影响,建议针一般打在离地面大于1.6米且小于或等于2米的高度.【解析】【分析】本题考查了二次函数的应用,待定系数法求解析式,求函数值,二次函数的性质;任务一:待定系数法求解析式,即可求解;任务二:根据题意,求得下边缘的抛物线解析式为:21 1.610y x =-+,分别令0y =,得出抛物线与坐标轴的交点,两交点的距离,即为所求;任务三:依题意,绿化带正中间种植了行道树,即8462x --==-处种植了行道树,令6x =-,求得y 的值,与题意比较,进而得出结论.【详解】解:任务一:依题意,设上边缘水流的抛物线的函数表达式为()23 1.60.9y a x =+++,将()0,1.6代入得,1.69 2.5a =+解得:110a =-∴抛物线的表达式为:()213 2.510y x =-++任务二:∵上边缘水流的抛物线解析式为:()213 2.510y x =-++当0y =时,()213 2.5010x -++=解得:8x =-或=2(舍去),则抛物线与x 负半轴的交点坐标为()8,0-;∵下边缘水流形状与上边缘相同,且喷水口是最高点.∴下边缘的抛物线解析式为:21 1.610y x =-+当0y =时,21 1.6010x -+=,解得:4x =-或4x =(舍去),则抛物线与x 负半轴的交点坐标为()4,0-;∵()484---=而路边的绿化带宽4米,∴灌溉车行驶过程中喷出的水能浇灌到整个绿化带;任务三:上边缘水流的抛物线解析式为:()213 2.510y x =-++,∵绿化带正中间种植了行道树,即8462x --==-处种植了行道树当6x =-时,()2163 2.5 1.610y =--++=米而园林工人给树木“打针”.针一般打在离地面1.5米到2米的高度(包含端点).则在满足最大灌溉面积的前提下对行道树“打针”是否有影响,建议针一般打在离地面大于1.6米且小于或等于2米的高度.24.如图1,ABC V 是O 内接三角形,将ABC V 绕点A 逆时针旋转至AED △,其中点D 在圆上,点E 在线段AC 上.(1)求证:DE DC =﹔(2)如图2,过点B 作BF CD ∥分别交AC 、AD 于点M 、N ,交O 于点F ,连接AF ,求证:AN DE AF BM ⋅=⋅;(3)在(2)的条件下,若13AB AC =时,求BF BC 的值;【答案】(1)见解析(2)见解析(3)79【解析】【分析】(1)旋转的性质,得到,BC DE BAC EAD =∠=,根据弧,弦,角的关系,得到BC CD =,即可得证;(2)证明BCM AFM ∽,进而得到BC BM AF AM=,旋转得到,BC DE AC AD ==,根据BF CD ∥,推出AM AN =,等量代换,得到DE BM AF AN=,即可得证;(3)等量代换,得到13AB AD =,过点E 作,EP AB EQ AD ⊥⊥,角平分线的性质得到EP EQ =,等积法得到13AB E DE AD B ==,连接DF ,推出BC DF =,AB AF =,将ABD △绕点A 旋转至AB 与AF 重合得到AFD ' ,证明,,D F D '三点共线,设BE x =,则3DE x =,进而得到3BC DE DF x ===,推出7DD DF FD DF BD x ''=+=+=,证明BAF DAD ' ∽,得到13AB BF AD DD ==',得到1733BF DD x '==,再进行计算即可.【小问1详解】证明:∵将ABC V 绕点A 逆时针旋转至AED △,∴,BC DE BAC EAD =∠=,∴ BC CD =,∴BC CD =,∴DE DC =;【小问2详解】证明:∵ AB AB =,∴BCM AFM ∠=∠,∵BMC AMF ∠=∠,∴BCM AFM ∽,∴BC BM AF AM =,∵将ABC V 绕点A 逆时针旋转至AED △,∴,BC DE AC AD ==,∵BF CD ∥,∴AMN ACD ∽,∴AM AN AC AD =,∴AM AN =,∴DE BM AF AN =,∴AN DE AF BM ⋅=⋅;【小问3详解】∵13AB AC =,AC AD =,∴13AB AD =,ACD ADC ∠=∠,∴ AC AD =,∵ACB ADE∠=∠∴延长DE 必经过点B ,过点E 作,EP AB EQ AD ⊥⊥,∵BAC DAE ∠=∠,∴EP EQ =,∴1212ABE ADE AB EP S BE S DE AD EQ ⋅==⋅ (同高三角形)∴13AB E DE AD B ==,连接DF ,∵BF CD ∥,∴BDC DBF ∠=∠,∴ BCDF =,∴ ,BC DF AC BC AD DF=-=-,∴ AB AF =,∴AB AF =,将ABD △绕点A 旋转至AB 与AF 重合得到AFD ' ,则:ABD AFD '∠=∠,D F BD '=,DAD BAF '∠=∠,∵180ABD AFD ∠+∠=︒,∴180AFD AFD '∠+∠=︒,∴,,D F D '三点共线,∵13BE DE =,∴设BE x =,则3DE x =,∴3BC DE DF x ===,4BD BE DE x =+=,∴7DD DF FD DF BD x ''=+=+=,∵DAD BAF '∠=∠,ABF ADF ∠=∠,∴BAF DAD ' ∽,∴13AB BF AD DD ==',∴1733BF DD x '==,∴77339x BF BC x ==.【点睛】本题考查旋转的性质,圆周角定理,弧,弦,角的关系,相似三角形的判定和性质,圆内接四边形的性质,综合性强,难度大,属于压轴题,解题的关键是掌握相关知识点,进行线段和角的转化.。

2024年北京六十六中初三(上)期中数学试题及答案

2024年北京六十六中初三(上)期中数学试题及答案

2024北京六十六中初三(上)期中数 学2024.111.中国瓷器,积淀了深厚的文化底蕴,是中国传统艺术文化的重要组成部分.瓷器上的图案设计精美,极富变化,下面瓷器图案中,既是轴对称图形又是中心对称图形的是A .B .C .D .2.二次函数y =3(x +1)2-4的最小值是 A .1B .-1C .4D .-43.把抛物线23xy =向左平移2个单位长度,再向上平移5个单位长度,得到的抛物线的解析式为A .2)5(32+−=xy B .2)5(32++=xy C .5)2(32++=xyD .5)2(32+−=xy4.用配方法解方程x 2+6x =2,变形后结果正确的是A .(x +3)2=2B . (x +3)2=11C .(x -3)2=2D .(x -3)2=11 5.如图,四边形ABCD 内接于⊙O ,若∠A =60°,⊙O 的半径为3,则BD 的 长为率为x ,根据题意可列方程为A .23.5 6.8x =B .3.5(1) 6.8x +=C .23.5(1) 6.8x +=D .23.5(1) 6.8x −=7.在如图所示的正方形网格中,四边形ABCD 绕某一点旋转某一角度得到四边形A'B'C'D',(所有顶点都是网格线交点),在网格线交点M ,N ,P ,Q 中,可能是旋转中心的是 A .点MB .点NC .点PD .点Q7题8.如图,二次函数y=ax2+bx+c(a≠0)的图象经过点A,B,C.现有下面四个推断:①抛物线开口向下;② 4a<b③当m≤4时,关于x的一元二次方程ax2+bx+c=m必有两个不相等的实数根;④直线y=kx+c(k≠0)经过点A,C,当kx+c<ax2+bx+c时,x的取值范围是-4<x<0;其中推断正确的是A.①②③B.①③④ C.①④ D.①②③④二、填空题(本题共16分,每小题2分)9.开口向上,对称轴为y轴,顶点坐标(0,3)的抛物线的解析式.10.关于x的一元二次方程x2-x+m-2=0,有一个根是0,则m=.11.如图,⊙O为Rt ABC∆的内切圆,点D、E、F为切点,若6AD=,4BD=,则△ABC的面积为.第11题第12题12.如图,将△AOB绕点O逆时针旋转50°后得到△AOB′,若∠AOB=15°,则∠AOB′等于_________. 13.已知点A(-1,y1),B(4,y2)在二次函数的y=(x-2)2+c图象上,y1与y2的大小关系为y1y2.(填“>”,“<”或“=”)14.如图,PA,PB分别与⊙O相切于A,B两点,60P∠=°,6PA=,则⊙O的半径为.第14题第15题C EOFDBA8题15.函数21y x bx c =++与2y ax =的图象如图所示,当y 1≥y 2时,x 的取值范围是____. 16.下表记录了二次函数 y= ax 2+ bx +2(a ≠0)中两个变量x 与y 的5组对应值,其中x 1< x 2 <1.根据表中信息,当025<<−x 时,直线y=k 与该二次函数图象有两个公共点,则k 的取值范围是 .三、解答题(本题共68分,第17题8分,第18--25题各5分,第26题6分,第27,28题各7分) 17.解下列一元二次方程:(1) x 2+2x -8=0 (2) 2x 2-2x -1=0 18.已知:x 2+2x -1=0,求代数式3x 2+6x +10的值.19.在平面直角坐标系中,二次函数2y x mx n =++的图象经过点(0,1),(3,4).求此二次函数的表达式及顶点的坐标.(2)若m 为正整数,求此时方程的根.23.如图,在边长均为1个单位长度的小正方形组成的网格中,O ,B为格点(每个小正方形的顶点叫做格点),OA =3,OB =4,且∠AOB=150°.线段OA 关于直线OB 对称的线段为OA ′,将线段OB 绕点O 逆时针旋转45︒得到线段OB ′. (1)画出线段OA ′,OB ′;(2)将线段OB 绕点O 逆时针旋转角()4590αα︒<<︒得到线段OC ′,连接,若A ′C ′=5,求∠B OC ''的度数.24.如图,D 是等边三角形ABC 内一点,将线段AD 绕点A 顺时针旋转60°,得到线段AE ,连接CD ,BE .(1)求证:∠AEB =∠ADC ;(2)连接DE ,若∠ADC =110°,求∠BED 的度数.xOy A B25.如图1,某公园一个圆形喷水池,在喷水池中心O 处竖直安装一根高度为1.25m 的水管OA ,A 处是喷头,喷出水流沿形状相同的曲线向各个方向落下,喷出水流的运动路线可以看作是抛物线的一部分,建立如图2所示的平面直角坐标系,测得喷出水流距离喷水池中心O 的最远水平距离OB 为2.5m ,水流竖直高度的最高处位置C 距离喷水池中心O 的水平距离OD 为1m .(1)求喷出水流的竖直高度y (m)与距离水池中心O 的水平距离x (m)之间的关系式,并求水流最大竖直高度CD 的长;(2)安装师傅调试时发现,喷头竖直上下移动时,抛物线形水流随之竖直上下移动(假设抛物线水流移动时,保持对称轴及形状不变),若水管OA 的高度增加0.64m 时,则水流离喷水池中心O 的最远水平距离为___________m .26.在平面直角坐标系xOy 中,抛物线2(0)y ax bx c a =++>经过点(33)A a c +,.(1)求该抛物线的对称轴;(2)点1(12)M a y −,,2(2)N a y +,在抛物线上.若12c y y <<,求a 的取值范围.27.如图,△ABC 中,AC =BC ,∠ACB =90°,∠APB =45°,连接CP ,将线段CP 绕点C 顺时针旋转90°得到线段CQ ,连接AQ .(1)依题意,补全图形,并证明:AQ =BP ; (2)求∠QAP 的度数;(3)若N 为线段AB 的中点,连接NP ,请用等式表示线段NP 与CP 之间的数量关系,并证明.28.定义:对于给定函数y=ax 2+bx+c (其中a ,b ,c 为常数,且a ≠0),则 称 函数()()⎩⎨⎧−−<++≥=0022cx ax bx c x ax bx y 为函数y=ax ²+bx+c(其中a ,b ,c 为常数,且a ≠0)的“相依函数”,此“相依函数”的图像记为G . (1)已知函数y=-x 2+2x -1.①写出这个函数的“相依函数” ;ABCDE②当-1≤ x ≤1时,此相依函数的最大值为 .(2)若直线y=m 与函数212=−+−y x x 的相依函数的图象G 恰好有两个公共点,求出m 的取值范围;(3)设函数()01212>++−=n nx xy 的相依函数的图象G 在-4≤ x ≤ 2上的最高点的纵坐标为y 0,当9230≤≤y 时,直接写出n 的取值范围.参考答案本试卷满分100分,依据得分率,成绩以等级制呈现,具体等级划分标准如下:一、选择题(每题2分,共16分)二、填空题(每题2分,共16分) 9.32+=xy10. m =2 11. 24 12. 35° 13. >14.15. 13≤≥xx 或16. 2<k <83三、解答题 (本题共68分,第17题8分,第18-25题各5分,第26题6分,第27-28题,各7分) 17. (1) x 2+2x -8=0解: +4)(2)0x x =(- …………………3分12=4=2x x -,………………4分(2) 2x 2-2x -1=0解: a =2 b = -2 c= -1∆=b 2−4ac =12 …………………1分 x =−b±√b 2−4ac 2a =2±√124=2±2√34………………2分231,23121−=+=x x ………………4分18. 解: ∵3x 2+6x +10=3(x 2+2x )+10 ………………4分∵2210x x +−=∴ 3x 2+6x +10=3(x 2+2x )+10=13 ………………5分 19. 解:∵二次函数2y x mx n =++的图象经过点(0,1),(3,4);A B∴1934n m n =⎧⎨++=⎩…………………2分解得:21m n =−⎧⎨=⎩.…………………3分∴221y x x =−+ 当 2121x −=−=⨯ ,…………………4分 ∴212110y =−⨯+=…………………5分∴顶点的坐标为(1,0).20.设这两年该市进出口贸易总额的年平均增长率为x : …………………1分60000(1+x )2=86400…………………2分(1+x )2=36251+x=65± 解得: x 1=0.2 x 2=-2.2…………………4分经检验:x =-2.2不符实际意义,舍去∴x =0.2=20%答:这两年该市进出口贸易总额的年平均增长率为20%. 5分21.解:连接OC ,如图.………… 1分设⊙O 的半径为x .∵AB 是⊙O 的直径,CD AB ⊥,∴132CE CD ==.在Rt OEC △中,90OEC ∠=°, 由勾股定理,得222OC OE CE =+. 即 222(1)3x x =−+.…………………… 4分解得 5x =. ∴⊙O 的半径为5.……………………5分22.解:(1)∵1a =,4b =−,2c m =+∴ 24164(2)84b ac m m ∆=−=−+=− …………………1分∵一元二次方程有两个不相等的实数根 ∴840m −> …………………2分∴2m < …………………3分(2)∵2m <∴1m =∴2430x x −+=∴11x =,23x = …………………5分23.(1)……………….2分(2)如图,在△A OC ''中,==3OA OA ',==4OC OB ',=5A C '',∴222=A C OA OC ''''+. ∴△A OC ''是直角三角形. ∴=90.A OC ''︒∠………………..3分∵∠AOB =150°,OA OA OB '与关于直线对称, ∴=150.A OB '︒∠………………..4分∴=60C OB '︒∠,即=60α︒.∴=604515B OC C OB B OB '''''−=︒−︒=︒∠∠∠. ………………..5分24.(1)证明:∵ AD 绕点A 顺时针旋转60°得到线段AE∴AE AD =,60EAD ∠=° ……………………1分∵ABC ∆是等边三角形 ∴AB AC =,60BAC ∠=° ……………………2分∴EAB DAC ∠=∠ ∴EAB DAC ∆≅∆∴AEB ADC ∠=∠……………………3分(2)解: ∵∠ADC =110°∴AEB ADC ∠=∠=110°……………………4分∵AE AD =,60EAD ∠=° ∴EAD ∆是等边三角形 ∴60AED ∠=50∠=∠−∠=AED AEB BED ………………5分25.解:(1)由题意,A 点坐标为(0,1.25),B 点坐标为(2.5,0).设抛物线的解析式为y =a (x -1)2+k (a ≠0)………………1分∵抛物线经过点A ,点B .∴ ()21250251.a k,a .k.=+⎧⎪⎨=−+⎪⎩解得:1225a ,k ..=−⎧⎨=⎩∴y =-(x -1)2+2.25(0≤x ≤2.5) . ……………………………….…………… 3分 ∴x =1时,y =2.25.∴水流喷出的最大高度为2.25 m . ……………… 4分(2)2.7………………5分26.解:(1)∵抛物线2(0)y ax bx c a =++>经过点(33)A a c +,,∴393a c a b c +=++. ∴2b a =−.∴12bx a=−=. 即抛物线的对称轴为1x =. ………………………… 2分 (2)∵0a >,抛物线的对称轴为1x =,∴121a −<,21a +>∴点1(12)M a y −,在对称轴左侧,点2(2)N a y +,在对称轴右侧. 依题意可得点M ,N (0)c ,在抛物线上的位置如右图(示意图)所示. 设点2(2)N a y +,关于对称轴1x = 的对称点为点'N , 则2'()N a y −,. ∵0a >,12c y y <<, ∴120a a −<−<.∴112a <<……………… 5分∴ <<.………………6分27.(1)补全图形,如图1.证明:∵ 线段CP 绕点C 顺时针旋转90°得到线段CQ , ∴ CP =CQ ,∠PCQ =90°. ∵ ∠ACB =90°,∴ ∠BCP =∠ACQ . ∵ AC =BC , ∴ △BCP ≌△ACQ .2y 3y 1y+2,y 2)∴ AQ =BP . ………………2分(2)解:连接QP ,如图2.由(1)可得△PCQ 是等腰直角三角形, ∴ ∠CQP =∠CPQ =45°. ∴ ∠CQA +∠PQA =45°. ∵ ∠APB =45°, ∴ ∠APQ =∠CPB .由△BCP ≌△ACQ 可得∠CQA =∠CPB . ∴ ∠APQ +∠PQA =45°.∴ ∠QAP =135°. ………………4分(3)CP =2NP .证明:延长PN 至K ,使得NK=PN ,连接AK ,如图3. ∵ N 为线段AB 的中点, ∴ AN =BN ∵ ∠ANK =∠BNP∴ △ANK ≌△BNP∴ ∠KAN =∠PBN ,AK =BP ∴ AK ∥BP ,AK =AQ∴ ∠KAP +∠APB =180° ∵ ∠APB =45° ∴ ∠KAP =135° ∵ ∠QAP =135° ∴ ∠KAP =∠QAP ∵ AP =AP ∴ △KAP ≌△QAP ∴ KP =QP∵ 在等腰直角△PCQ 中,CP =CQ ∴ KP =QP =2CP∵ KP =2NP∴ CP =2NP ………………7分28. 解:(1)① y ={−x 2+2x −1,(x ≥0)−x 2−2x +1,(x <0) ………………1分② 2 ………………2分(2)m <-1 或 m =0 或 1<m <2 ………………5分(3)1≤ n ≤ ………………7分29图3图2。

黑龙江省绥化市望奎县第五中学(五四学制)2024-2025学年九年级上学期期中数学试卷(含答案)

黑龙江省绥化市望奎县第五中学(五四学制)2024-2025学年九年级上学期期中数学试卷(含答案)

2024-2025学年度初三上学期期中考试数学试题考生注意:考试时间90分钟;本题共计五道大题,满分120分.一、填空题(每题3分,共30分)1.等腰三角形中,有一个角是,则另外两个角分别为__________.2.两边长分别为的等腰三角形的周长是__________.3.如图,在中,,则的长为__________.4.如图.,那么,__________,__________.假设.那么__________.5.如图,相交于点,请你补充一个条件,使得.你补充的条件是__________.6.点关于轴对称的点的坐标是__________,直线与轴的位置关系是__________.7.已知中,,则__________.8.如图,直线,点在上,假设的面积为16,那么的面积为__________.70 6cm 10cm 、ABC 90,60,4A C BC ∠=∠== AC ABC ADE ≌AB =E ∠=∠12040BAE BAD ∠=∠= BAC ∠=,AB CD ,O AD CB =AOD COB ≌()2,1M -x N MN x ABC ()23B C A ∠+∠=∠A ∠=AE ∥BD C BD 4,8,AE BD ABD == ACE9.如图,在中,是的垂直平分线,的周长为的周长为,则的长为__________.10.如图,在中,平分交于点,点分别是线段上一动点且,则的最小值为__________.二、选择题(每小题3分,计30分)11.2023年全国民航工作会议介绍了2023年民航业发展目标:民航业将按照安全第一、市场主导、保障先行的原则,在做好运行保障能力评估的基础上,把握好行业恢复发展的节奏,下列航空图标,其文字上方的图案是轴对称图形的是( ).A. B.C. D.12.下列长度的三条线段,能组成三角形的是()A. B. C. D.13.一个边形的每个外角都是,则这个n 边形的内角和是().A.1080B.540C.2700D.216014.过一个多边形的一个顶点的所有对角线把多边形分成4个三角形,则这个多边形的边数为( )A.3B.4C.5D.6ABC DE AC ABC 19cm,ABD 13cm AE ABC BD ABC ∠AC D ,M N BD BC 、AB BD >10,5S ABC AB == CM MN +2,4,66,8,157,5,116,7,14n 4515.某公路急转弯处设立了一面圆形大镜子,车内乘客从镜子中看到汽车前车牌的部分号码如图所示,则该车牌的部分号码为( )A. B.C. D.16.如图,某同学把一块三角形的玻璃打碎成了四块,现在要到玻璃店去配一块完全一样的玻璃,那么,最省事的方法是()A.带①去 B.带③去 C.带②去 D.带④去17.如图,在中,,以顶点为圆心,适当长为半径画弧,分别交于点,再分别以为圆心,大于的长为半径画弧,两弧交于点,作射线交于点,若,则的面积是( )A.15B.30C.40D.4518.如图,在中,为线段的垂直平分线与直线的交点,连结,则( )A. B. C. D.19.如图,已知是等边三角形,点在同一直线上,且,则( )E9362E9365E6395E6392Rt ABC 90C ∠= A AC AB 、M N 、M N 、12MN P AP BC D 5,18CD AB ==ABD ABC 50,20,ABC BAC D ∠=∠= AB BC AD CAD ∠=40 30 20 10ABC ,B C D E 、、,CG CD DF DE ==E ∠=A.35B.20C.15D.1020.如图,已知,直角的顶点是的中点,两边分别交于点.给出以下四个结论:①;②;③是等腰直角三角形;④,上述结论始终正确的有( )A.①②③ B.①③ C.①② D.①③④三、作图题(共18分)21.最近几年来,国家实施“村村通”工程和农村医疗卫生改革,某县打算在张村、李村之间建一座定点医疗站P ,张、李两村座落在两相交公路内(如下图).医疗站必需知足以下条件:①使其到两公路距离相等,②到张、李两村的距离也相等,请你通过作图确信点的位置.(不写作法,要保留作图痕迹)(8分)22.如图是由边长为1的若干个小正方形拼成的方格图,的顶点均在小正方形的顶点上.(10分)(1)在图中建立恰当的平面直角坐标系,且使点的坐标为,并写出两点的坐标;(4分)(2)在(1)中建立的平面直角坐标系内画出关于y 轴对称的;(3分)(3)求的面积.(3分)四、解答题(满分42分)23.如图,是的中线,的周长比的周长多.若的周长为,且,求和的长.(8分),,90ABC AB AC A =∠= EPF ∠P BC ,PE PF ,AB AC E F 、AE CF =BE CF EF +=EPF 12ABC AEPF S S = 四边形P ABC ,,A B C A ()4,2-,B C ABC A B C ''' ABC BD ABC ABD BCD 2cm ABC 18cm 4cm AC =AB BC24.如图,为上一点,.求证:.(6分)25.如图,中,于,且分别是的中点,延长至点,使.(8分)(1)的度数.(4分)(2)求证:.(4分)26.如图,在中,边的垂直平分线与的外角平分线交于点,过点作于点于点.若.求的长度(8分)27.(12分)(1)问题发现:如图①,和都是等边三角形,点在同一条直线上,连接.E BC AC ∥,,BD AC BE ABD CED =∠=∠AB ED =ABC ,AB AC BE AC =⊥E D E 、AB AC 、BCF CF CE =ABC ∠BE FE =ABC AB PQ ABC P P PD BC ⊥,D PE AC ⊥E 8,4BD AC ==CE ABC EDC B D E 、、AE①的度数为__________.②线段之间的数量关系为__________.(2)拓展探究:如图②,和都是等腰直角三角形、,点在同一条直线上,为中边上的高,连接,试求的度数及判断线段之间的数量关系,并说明理由;(3)解决问题:如图③,和都是等腰三角形,,点在同条直线上,请直接写出的度数.AEC ∠AE BD 、ABC EDC 90ACB DCE ∠=∠= B D E 、、CM EDC DE AE AEB ∠CM AE BE 、、ABC EDC 36ACB DCE ∠=∠= B D E 、、EAB ECB ∠+∠参考答案一、填空题(每题3分,共30分)或2.或3.24.,,5.(答案不唯一)6.垂直7.8.89.10.4二、选择题(每小题3分,计30分)11-15DCADC16-20CDBCD三、作图题(共18分)21.如图所示(8分)22.(1);(3分)(2)(3分)(3)(4分)(1)点的坐标表明点在第二象限,横坐标离坐标原点的距离为4,纵坐标离坐标原点的距离为2,由此确定坐标原点的位置,再画坐标轴,结果如下:结合点在方格图中的位置可得它们的坐标为:;(2)点关于y 轴对称:横坐标互为相反数,纵坐标相同则三点的坐标分别为:1.55,55 70,4022cm 26cmAD C ∠80A C ∠=∠(2,1)--723cm()()1,0,3,1B C ---72A ()4,2-A O O OBC 、()()1,0,3,1B C ---,,A B C '''()()()4,2,1,0,3,1A B C ''-'先在平面直角坐标系中描出三点,再连接,画图如下:(3)如图,的面积等于正方形的面积减去三个直角三角形的面积即则.四、解答题(满分42分)23...(8分)由题意知①,点D 为AC 的中点,,,,即②,由①②得24.(6分)在与中,,,A B C '''ABC ABC ADC BCE ABFADEF S S S S S =--- 正方形111373313122391322222ABC S =⨯-⨯⨯-⨯⨯-⨯⨯=---= 8cm,6cm AB BC ==18cm,4cm,14cm C ABC AC AB BC ==∴+= AD DC ∴=2cm C ABD C BCD -= ()()2cm AB BD AD BC BD DC ∴++-++=2cm AB BC -=8cm,6cmAB BC ==AC ∥BDACB EBD∴∠=∠,,ABD CED ABD ABC EBD CED EBD EDB ∠=∠∠=∠+∠∠=∠+∠ ABC EDB∴∠=∠ABC EDB ABC EDB ACB EBDAC BE ∠=∠⎧⎪∠=∠⎨⎪=⎩.25.(8分)(1);(4分)(2)(4分)(1)于是的中点,是等腰三角形,即,,是等边三角形,;(2),,,,是等边三角形,,,,;26.(8分)连接是的平分线,是线段的垂直平分线在和中27.(12分)解:(1);()ABC EDB AAS ∴ ≌AB ED ∴=60 BE AC ⊥ ,E E AC ABC ∴ AB BC =AB AC = ABC ∴ 60ABC ∴∠= CF CE = F CEF ∴∠=∠60ACB F CEF ∠==∠+∠ 30F ∴∠= ABC BE AC ⊥30EBC ∴∠= F EBC ∴∠=∠BE EF ∴=PA PB、CP BCE ∠,PD BC PE AC ⊥⊥PD PE∴=PQ AB PA PB∴=Rt AEP Rt BDP PE PD=PA PB=()Rt Rt HL AEP BDP ∴ ≌AE BD∴=4CE BD AC ∴=-=4CE ∴=1120(2).;(2),理由如下:是等腰直角三角形,由(1)得,,,都是等腰直角三角形,为中边上的高,;(3)AE BD =2CM AE BM +=DCE 45CDE ∴∠=135CDB ∴∠=ECA DCB ≌135,CEA CDB AE BD ∴∠=∠== 45CEB ∠= 90AEB CEA CEB ∴∠=∠-∠=DCE CM DCE DE CM EM MD∴==EM MD BD BE++= 2CM AE BE ∴+=180EAB ECB ∠+∠=。

2023-2024学年北京东城区广渠门中学初三(上)期中数学试卷和答案

2023-2024学年北京东城区广渠门中学初三(上)期中数学试卷和答案

2023北京广渠门中学初三(上)期中数 学本试卷共8页,100分.考试时长120分钟.考生务必将答案答在答题纸上,在试卷上作答无.......效.. 一、选择题(共8小题,每道小题2分,共16分)1. 习近平总书记提出:发展新能源汽车是我国从汽车大国走向汽车强国的必由之路.当前随着新一轮科技革命和产业变革孕育兴起,新能源汽车产业正进入加速发展的新阶段.下列图案是我国的一些国产新能源车企的车标,图案既是轴对称图形,又是中心对称图形的是( )A. B.C. D.2. 下列各式中,y 是x 的二次函数的是( )A. 31y x =−B. 21y x =C. 231y x x =+−D. 321y x =− 3. 若关于x 的一元二次方程230x x m −+=有两个相等的实数根,则实数m 的值为( )A. 9−B. 94−C. 94D. 94. 如图将ABC 绕点A 顺时针旋转90︒到ADE ,若50DAE ∠=︒,则CAD ∠=( )A. 30︒B. 40︒C. 50︒D. 90︒ 5. 如图,O 的半径为5,弦8AB =,OC AB ⊥于点C ,则OC 的长为( )A. 1B. 2C. 3D. 46. 在2023年中考体育考试前,小康对自己某次实心球的训练录像进行了分析,发现实心球飞行路线是一条抛物线,若不考虑空气阻力,实心球的飞行高度y (单位:米)与飞行的水平距离x (单位:米)之间具有函数关系21531682y x x =−++,则小康这次实心球训练的成绩为( )A. 14米B. 12米C. 11米D. 10米7. y 是x 的二次函数,其对应值如下表:A. 该二次函数的图象的对称轴是直线 1x =B. 1m =C. 当3x >时,y 随x 的增大而增大D. 图象与x 轴有两个公共点8. 如图,在边长为2的正方形ABCD 中,点M 在AD 边上自A 至D 运动,点N 在BA 边上自B 至A 运动,M ,N 速度相同,当N 运动至A 时,运动停止,连接CN ,BM 交于点P ,则AP 的最小值为( )A. 1B. 2 1二、填空题(共8小题,每道小题2分,共16分)9. 点(3,2)−关于原点对称的点的坐标为_______.10. 已知2x =是一元二次方程220x mx −+=的一个根,则另一个根是_________.11. 某种型号的芯片每片的出厂价为400元,经科研攻关实现国产化后,成本下降,进行两次降价,若每次降价的百分率都为x ,降价后的出厂价为144元、依题意可列方程为:___________.12. 如图,平面直角坐标系中,AB x ⊥轴于点B ,点A 的坐标为(32),,将AOB 绕原点O 顺时针旋转90︒得到A OB ''△,则A '的坐标是_____.13. 若抛物线24y x =向右平移2个单位长度,再向下平移1个单位长度,则所得的抛物线的解析式是________.14. 关于x 的方程220x x c +−=无实数根,则二次函数22y x x c =+−的图象的顶点在第______ 象限. 15. 已知点()()1,,2,m n −在二次函数223(0)y ax ax a =++>的图象上,则m _____________n .(填“>”“<”或“=”)16. 在平面直角坐标系xOy 中,已知二次函数2y ax bx =+,其中0a b +>,下列结论:①若这个函数的图象经过点(2,0),则它必有最大值;②若这个函数的图象经过第三象限的点P ,则必有a<0;③若a<0,则方程20ax bx +=必有一根大于1;④若0a >,则当112x ≤≤时,必有y 随x 的增大而增大. 结合图象判断,所有正确结论的序号是____________.二、解答题(共12小题,共68分)17. 按要求解下列方程.(1)用因式分解法解:250x x +=;(2)用公式法解:2310x x ++=.18. 小北同学解方程2210x x −−=的过程如下所示.解方程:2210x x −−=.解:221x x −=⋯第一步2(1)1x −=⋯第二步10x =,22x =⋯第三步(1)小北同学是用___________(“配方法”、“公式法”或“因式分解法”)来求解的,从第___________步开始出现错误.(2)请你用与小北同学相同的方法解该方程.19. 若m 是关于x 的一元二次方程210x x −−=的根,求2322−+m m 的值.20. 已知二次函数2y x bx c =++的图象经过点(1,10),(2,8)A B −−两点.(1)求b ,c 的值.(2)求该函数图象与x 轴的交点坐标.21. 已知抛物线22(21)y x m x m m =−−+−.(1)求证:此抛物线与x 轴必有两个不同的交点;(2)若此抛物线与直线33y x m =−+的一个交点在y 轴上,求m 的值.22. 如图,正方形网格中,ABC 的顶点均在格点上,请在所给直角坐标系中按要求解答下列问题:(1)画出与ABC 关于坐标原点O 成中心对称的111A B C △.(2)111A B C △的面积为___________.(3)将ABC 绕某点逆时针旋转90︒后,其对应点分别为2(1,2)A −−,2(1,3)B −,2(0,5)C −,则旋转中心的坐标为___________.23. 如图,已知△ABC 是等边三角形,在△ABC 外有一点D ,连接AD ,BD ,CD ,将△ACD 绕点A 按顺时针方向60旋转得到△ABE ,AD 与BE 交于点F ,∠BFD =97°.(1)求∠ADC 的大小;(2)若∠BDC =7°,BD =2,BE =4,求AD 的长.24. 2022年9月,教育部正式印发《义务教育课程方案》,《劳动教育》成为一门独立的课程,官渡区某学校率先行动,在校园开辟了一块劳动教育基地:一面利用学校的墙(墙的最大可用长度为22米),用长为34米的篱笆,围成中间隔有一道篱笆的矩形菜地,在菜地的前端各设计了两个宽1米的小门,供同学们进行劳动实践若设菜地的宽AB 为x 米.(1)BC =( )米(用含x 的代数式表示);(2)若围成的菜地面积为96平方米,求此时的宽AB .25. 请阅读下列材料,并按要求完成相应的任务:人类对一元二次方程的研究经历了漫长的岁月.一元二次方程及其解法最早出现在公元前两千年左右的古巴比伦人的《泥板文书》中.到了中世纪,阿拉伯数学家花拉子米在他的代表作《代数学》中给出了一元二次方程的一般解法,并用几何法进行了证明.我国古代三国时期的数学家赵爽也给出了类似的几何解法. 赵爽在其所著的《公股圆方图注》中记载了解方程25140x x +−=,即(5)14x x +=的方法.首先构造了如图1所示的图形,图中的大正方形面积是2(5)x x ++,其中四个全等的小矩形面积分别为(5)14x x +=,中间的小正方形面积为25,所以大正方形的面积又可表示为24145⨯+,据此易得原方程的正数解为2x =.任务:(1)参照上述图解一元二次方程的方法,请在三个构图中选择能够说明方程23100x x −−=解法的正确构图是___________(从序号①②③中选择).(2)请你通过上述问题的学习,在图2的网格中设计正确的构图,用几何法求方程22150x x +−=的正数解(写出必要的思考过程)26. 在平面直角坐标系xOy 中,点123(1)(1)(2)y y y −,,,,,在抛物线2y ax bx =+上.(1)若12a b ==−,,求该抛物线的对称轴并比较1y ,2y ,3y 的大小;(2)已知抛物线的对称轴为x t =,若2310y y y <<<,求t 的取值范围.27. 已知四边形ABCD 是正方形,将线段CD 绕点C 逆时针旋转α(090α︒<<︒),得到线段CE ,联结BE 、CE 、DE . 过点B 作BF ⊥DE 交线段DE 的延长线于F .(1)如图,当BE =CE 时,求旋转角α的度数;(2)当旋转角α的大小发生变化时,BEF ∠的度数是否发生变化?如果变化,请用含α的代数式表示;如果不变,请求出BEF ∠的度数;(3)联结AF ,求证:DE =.28. 定义:在平面直角坐标系中,有一条直线x m =,对于任意一个函数,作该函数自变量大于m 的部分关于直线x m =的轴对称图形,与原函数中自变量大于或等于m 的部分共同构成一个新的函数图象,则这个新函数叫做原函数关于直线x m =的“镜面函数”.例如:图①是函数1y x =+的图象,则它关于直线0x =的“镜面函数”的图像如图②所示,且它的“镜面函数”的解析式为1(0)1(0)x x y x x +≥⎧=⎨−+<⎩,也可以写成1y x =+.(1)在图③中画出函数21y x =−+关于直线1x =的“镜面函数”的图象.(2)函数222y x x −=+关于直线=1x −的“镜面函数”与直线y x n =−+有三个公共点,求n 的值. (3)已知抛物线242(0)y ax ax a =−+<,关于直线0x =的“镜面函数”图像上的两点()11,P x y ,()22,Q x y ,当111t x t −≤≤+,24x ≥时,均满足12y y ≥,直接写出t 的取值范围.参考答案一、选择题(共8小题,每道小题2分,共16分)1. 【答案】D【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【详解】解:A .该图形不是轴对称图形,也不是中心对称图形,不符合题意;B.该图形是轴对称图形,不是中心对称图形,不符合题意;C.该图形是轴对称图形,不是中心对称图形,不符合题意;D.该图形既是中心对称图形又是轴对称图形,符合题意;故选:D .【点睛】此题考查了轴对称图形和中心对称图形,将一个图形沿着某条直线翻折,直线两侧能完全重合的图形叫轴对称图形;将一个图形绕一点旋转180度后能与自身完全重合的图形叫中心对称图形,掌握轴对称图形和中心对称图形的概念是解题关键.2. 【答案】C【分析】利用二次函数定义:一般地,形如y=ax 2+bx +c (a 、b 、c 是常数,a ≠0)的函数,叫做二次函数进行解答即可.【详解】解:A 、y =3x -1是一次函数,故此选项不合题意;B 、21y x =不是二次函数,故此选项不合题意; C 、y =3x 2+x -1是二次函数,故此选项符合题意;D 、y =2x 3-1不是二次函数,故此选项不合题意;故选:C .【点睛】此题主要考查了二次函数定义,关键是掌握判断函数是否是二次函数,首先是要看它的右边是否为整式,若是整式且仍能化简的要先将其化简,然后再根据二次函数的定义作出判断,要抓住二次项系数不为0这个关键条件.3. 【答案】C【分析】根据一元二次方程有两个相等的实数根,可得Δ0=,进而即可求解.【详解】解:∵关于x 的一元二次方程230x x m −+=有两个相等的实数根,∴24940b ac m ∆=−=−=. 解得:94m =. 故选:C .【点睛】本题考查了一元二次方程20ax bx c ++= (0a a b c ≠,,,为常数)的根的判别式24b ac ∆=−,理解根的判别式对应的根的三种情况是解题的关键.当0∆>时,方程有两个不相等的实数根;当Δ0=时,方程有两个相等的实数根;当Δ0<时,方程没有实数根.4. 【答案】B【分析】由旋转的性质可得50BAC DAE ∠=∠=︒,90BAD ∠=︒,即可求解.【详解】解:由旋转的性质,得50BAC DAE ∠=∠=︒,90BAD ∠=︒,∴40CAD BAD BAC ∠=∠−∠=︒,故选:B .【点睛】本题主要考查了旋转的性质,灵活运用旋转的性质是解答本题的关键.5. 【答案】C【分析】由于OC AB ⊥于点C ,所以由垂径定理可得142AC AB ==,在Rt ABC 中,由勾股定理即可得到答案.【详解】解:在O 中,∵OC AB ⊥,8AB = ∴142AC AB == ∵在Rt ABC 中,5OA =,4AC =∴由勾股定理可得:3OC ===故选:C .【点睛】本题考查了垂径定理的性质,熟练运用垂径定理并结合勾股定理是解答本题的关键.6. 【答案】B【分析】根据铅球落地时,高度0y =,把实际问题可理解为当0y =时,求x 的值即可.【详解】解:当0y =时,则215301682x x −++=, 解得2x =−(舍去)或12x =.故选:B .【点睛】本题考查了二次函数的应用中函数式中变量与函数表达的实际意义,需要结合题意,取函数或自变量的特殊值列方程求解是解题关键.7. 【答案】D【分析】由待定系数法求出二次函数的解析式,求出对称轴,可以判断A ,当0x =时,求出m 的值,可以判断B ,根据a 的值和对称轴确定y 随x 的变化情况,可以判断C ,根据根的判别式确定与x 轴的交点个数,可以判断D ,从而得到答案.【详解】解:设二次函数为2y ax bx c =++,则01424a b c a b c a b c =++⎧⎪=++⎨⎪=−+⎩,解得:121a b c =⎧⎪=−⎨⎪=⎩,∴二次函数的解析式为:221y x x =−+, 对称轴为:2122b x a −=−=−=,故选项A 正确, 当0x =时,1y =,1m ∴=,故选项B 正确,10a ∴=>,∴图象开口向上,∴当1x ≥时,y 随x 的增大而增大,∴当3x >时,y 随x 的增大而增大,故选项C 正确,()22424110b ac ∆=−=−−⨯⨯=,∴图象与x 轴有一个公共点,故选项D 错误,故选:D .【点睛】本题考查了二次函数的图象与性质,解答本题的关键是采用待定系数法,求出二次函数的解析式.8. 【答案】C【分析】先确定点P 的运动轨迹为以BC 为直径的一段弧,再求AP 的最小值即可【详解】解:如图1,∵四边形ABCD 是正方形,∴,90AB BC CD DA A ABC ===∠=∠=︒,∴90BCN BNC ∠+∠=︒,又BN AM =,∴ABM BCN ∆≅∆,∴ABM BCN ∠=∠,∴90ABM BNC ∠+∠=︒,∴90BPC BPN ∠=∠=︒,∴点P 的运动轨迹为以BC 为直径的一段弧,如图2所示,连接1AO 交弧于点P ,此时,AP 的值最小,在1Rt ABO ∆中,112,12AB BO BC ===,由勾股定理得,1AO ===,∴111AP AO PO =−=,故选:C【点睛】本题考查了正方形的性质,全等三角形的判定与性质,勾股定理及圆的性质,知道线段最短时点的位置并能确定出最小时点的位置是解题关键.二、填空题(共8小题,每道小题2分,共16分)9. 【答案】(3,2)−【分析】根据关于原点对称的点,横坐标与纵坐标都互为相反数求解即可.【详解】解:点()3,2−关于原点对称的点的坐标为()3,2−,故答案为:()3,2−.【点睛】本题考查了平面直角坐标系中关于原点对称的点的坐标特征,解题的关键是掌握:两个点关于原点对称时,它们的坐标符号相反,即点(),x y 关于原点O 的对称点是(),x y −−.10. 【答案】1x =【分析】根据一元二次方程根与系数的关系可进行求解.【详解】解:设该方程的另一个根为a ,则根据一元二次方程根与系数的关系可得:22a =,∴1a =;故答案为1x =.【点睛】本题主要考查一元二次方程根与系数的关系,熟练掌握一元二次方程根与系数的关系是解题的关键.11. 【答案】2400(1)144x −=【分析】平均每次降价的百分率为x ,则第一次降价后的价格400(1)x −元,第二次降价后的价格为2400(1)x −元.根据降价后的出厂价为144元,列出方程即可.【详解】解:根据题意,列方程为2400(1)144x −=.故答案为:2400(1)144x −=.【点睛】本题主要考查由实际问题抽象出一元二次方程,根据所设未知数,表示出第二次降价后价格是解决本题的关键.12. 【答案】(23)−,【分析】根据题意画出图形旋转后的位置,根据旋转的性质确定对应点A '的坐标.【详解】解:如图.∵将AOB 绕原点O 顺时针旋转90︒得到A OB ''△,∴23A B AB OB OB ''==='=,,90OA B OBA ∠=∠=''︒,∴(23)A '−,. 故答案为:(23)−,. 【点睛】此题考查了旋转变换、点的坐标及旋转的性质,解答本题的关键是掌握旋转的三要素,及旋转的性质:()a b ,绕原点顺时针旋转90︒得到的坐标为()b a −,. 13. 【答案】()2421y x =−−【分析】根据“左加右减,上加下减”的原则进行解答即可.【详解】解:平移后的抛物线的解析式是()2421y x =−−,故答案为:()2421y x =−−【点睛】本题考查的是二次函数的图象的平移,熟知“上加下减,左加右减”的原则是解答此题的关键. 14. 【答案】二【分析】由程220x x c +−=无实数根,可知抛物线与x 轴没有交点,由二次项系数大于0可知抛物线在x 轴的上方,然后结合对称轴即可求解.【详解】解:∵关于x 的方程220x x c +−=无实数根,∴二次函数22y x x c =+−的图象与x 轴没有交点,∵10a =>,∴二次函数22y x x c =+−的图象开口向上,∴抛物线在x 轴上方, ∵对称轴为直线12b x a=−=−, ∴抛物线顶点在第二象限.故答案为:二.【点睛】本题考查了二次函数的图象与性质,以及二次函数与坐标轴的交点问题,一元二次方程与二次函数的关系,熟练掌握二次函数的图象与性质是解答本题的关键.15. 【答案】>【分析】根据二次函数的图象性质,得对称轴=1x −,结合对称性判断.【详解】解:二次函数223(0)y ax ax a =++>, 对称轴为212a x a=−=−, ∵1(1)21(2)1−−=>−−−=,∴(1,)m 与对称轴的距离较(2,)n −与对称轴的距离远.而0a >,∴m n >.故答案为:>【点睛】本题考查二次函数的图象性质;确定对称轴,理解对称性是解题的关键.16. 【答案】①③④【分析】①将点(2,0)代入2y ax bx =+中,得2b a =−,再将其代入0a b +>,判断出a 与0的关系,从而判断最值即可;②通过0a >,0b >,可得抛物线过一、二、三象限,从而判断出a<0错误即可;③根据a<0,0a b +>判断出对称轴的取值范围,再利用抛物线的对称性可判断方程的根;④当0a >时,0b ≥或0b <进行分类讨论,先判断对称轴的范围,最后判断增减性即可.【详解】解:①将(2,0)代入2y ax bx =+中,得420a b +=,∴2b a =−,∵0a b +>,∴20a b a a a +=−=−>,即a<0∴抛物线开口向下,有最大值,故①正确;②∵抛物线2y ax bx =+过原点,且0a b +>,∴当0a >,0b >时,对称轴02b x a=−<, ∴图象经过第三象限时,不一定有a<0,故②错误;③抛物线2y ax bx =+过原点,且0a b +>,∴方程20ax bx +=的其中一个根为0,当a<0时,b a >−, 则有对称轴122b x a =−>, 根据抛物线的对称性可知:方程20ax bx +=的另一根大于1,故③正确;④当0a >,0b ≥时,抛物线对称轴02b x a=−≤, ∴112x ≤≤,y 随x 增大而增大, 当0a >,0b <时,即0a b −<<, 抛物线对称轴122b x a =−<, ∴112x ≤≤,y 随x 增大而增大, 综上所述:若0a >时,则当112x ≤≤,y 随x 增大而增大, 故答案为:①③④.【点睛】本题考查了二次函数的图像与性质,解题的关键是熟练掌握其性质.二、解答题(共12小题,共68分)17. 【答案】(1)120,5x x ==−(2)1233,22x x −−== 【分析】(1)先用提取公因式分解方程的左边,然后求解即可;(2)先用根的判别式判别一元二次方程根的情况,然后再根据求根公式解答即可.【小问1详解】解:250x x +=()50x x +=0,50x x =+=120,5x x ==−.【小问2详解】解:2310x x ++=2341150∆=−⨯⨯=>3322x −−±==1233,22x x −−==. 【点睛】本题主要考查了解一元二次方程,掌握运用因式分解法和公式法解一元二次方程是解答本题的关键.18. 【答案】(1)配方法,二(2)11x =+,21x =【分析】本题考查一元二次方程的解法,掌握配方法的一般步骤是解题的关键.(1)根据配方法解一元二次方程的一般步骤判断;(2)利用配方法解一元二次方程即可.【小问1详解】解:小北同学是用配方法来求解的,从第二步开始出现错误,故答案为:配方法,二.【小问2详解】2210x x −−=.解:221x x −=2(1)2x −=1x −=11x =,21x =.19. 【答案】1【分析】把x m =代入210x x −−=即可得到21m m −=,再整体代入即可求值.【详解】解:∵m 是关于x 的一元二次方程210x x −−=的根∴把x m =代入210x x −−=得:210m m −−=∴21m m −=∴2232232()3211m m m m −+=−−=−⨯=.【点睛】本题考查一元二次方程的解,利用整体求值是解题的关键.20. 【答案】(1)5,6b c ==−(2)()(1,0),60−,【分析】(1)依据题意,将A 、B 代入解析式进行计算可以得解;(2)由(1)再令0y =,从而计算可以得解.【小问1详解】解:点(1,10),(2,8)A B −−代入抛物线,得110,428b c b c −+=−⎧⎨++=⎩5.6b c =⎧∴⎨=−⎩【小问2详解】∵5,6b c ==−∴256y x x =+−.令0y =,解得,121,6x x ==−.∴二次函数与x 轴的交点坐标为()(1,0),60−,. 【点睛】本题主要考查了抛物线与x 轴的交点,解题时要熟练掌握并理解是关键.21. 【答案】(1)证明见解析;(2)m 的值为-3或1.【分析】(1)先求得△的值,然后证明△0>即可;(2)依据此抛物线与直线33y x m =−+的一个交点在y 轴上可得到233m m m −=−+,然后解关于m 的方程即可.【详解】解:(1)令0y =得:22(21)0x m x m m −−+−=①△22(21)4()10m m m =−−−=>∴方程①有两个不等的实数根,∴原抛物线与x 轴有两个不同的交点;(2)令:0x =,根据题意有:233m m m −=−+,整理得:2230m m +−=解得3m =−或1m =.【点睛】本题主要考查的是抛物线与x 轴的交点,依据此抛物线与直线33y x m =−+的一个交点在y 轴上得到关于m 的方程是解题的关键.22. 【答案】(1)见解析 (2)52(3)()01−,【分析】本题考查作图—旋转变换、 中心对称,熟练掌握旋转的性质、中心对称的性质是解答本题的关键.(1)根据中心对称的性质作图即可.(2)利用割补法求三角形的面积即可.(3)连接22,AA CC ,分别作线段22,AA CC ,的垂直平分线,两线相交于点M ,则点M 为ABC 与222A B C 的旋转中心,即可得出答案.【小问1详解】如图, 111A B C △即为所求.【小问2详解】111A B C △的面积为()111523221312222⨯+⨯−⨯⨯−⨯⨯=, 故答案为:52. 【小问3详解】如图, 连接22,AA CC ,再分别作线段22,AA CC 的垂直平分线,两线相交于点M ,则 ABC 是绕点M 逆时针旋转90︒后得到的222A B C ,∴旋转中心的坐标为()01−,, 故答案为:()01−,.23. 【答案】(1)23°;(2)【分析】(1)由旋转的性质可得AB =AC ,∠ADC =∠E ,∠CAB =∠DAE =60°,由三角形的内角和定理可求解;(2)连接DE ,可证△AED 是等边三角形,可得∠ADE =60°,AD =DE ,由旋转的性质可得△ACD ≌△ABE ,可得CD =BE =4,由勾股定理可求解.【详解】解:(1)∵将△ACD 绕点A 按顺时针方向旋转得到△ABE ,∴AB =AC ,∠ADC =∠E ,∠CAB =∠DAE =60°,∵∠BFD =97°=∠AFE ,∴∠E =180°−97°−60°=23°,∴∠ADC =∠E =23°;(2)如图,连接DE ,∵AD =AE ,∠DAE =60°,∴△AED 是等边三角形,∴∠ADE =60°,AD =DE ,∵将△ACD 绕点A 按顺时针方向旋转得到△ABE ,∴△ACD ≌△ABE ,∴CD =BE =4,∵∠BDC =7°,∠ADC =23°,∠ADE =60°,∴∠BDE =90°,∴DE ,∴AD =DE =【点睛】本题考查了旋转的性质,全等三角形的判定和性质,等边三角形的性质,勾股定理等知识,添加恰当辅助线构造直角三角形是本题的关键.24. 【答案】(1)36-3x(2)8【分析】对于(1),根据3432BC AB =−+即可表示;对于(2),根据面积公式列出方程,求出解,并判断.【小问1详解】根据题意可知3432363BC AB x =−+=−;故答案为:363x −;【小问2详解】根据题意,得(363)96x x −=,解得8x =或4x =(不合题意,舍去).所以,宽AB 为8米.【点睛】本题主要考查了一元二次方程的应用,确定等量关系是解题的关键.25. 【答案】(1)② (2)3x =【分析】(1)仿照阅读材料构造图形,即可判断出构图方法;(2)仿照阅读材料构造大正方形面积是()22x x ++,其中四个全等的小矩形面积分别为 ()215x x +=,中间的小正方形面积为22,即可解决问题.【小问1详解】∵应构造面积是 ()23x x +−的大正方形,其中四个全等的小矩形面积分别为 ()310x x −=,中间的小正方形面积为23,∴大正方形的面积又可表示为2410349⨯+=,∴大正方形的边长为7,所以 37x x +−=5x ∴=,故正确构图②,故答案为: ②;【小问2详解】首先构造了如图2所示的图形,图中的大正方形面积是()22x x ++,其中四个全等的小矩形面积分别为()215x x +=,中间的小正方形面积为22,所以大正方形的面积又可表示为2415264⨯+=,进一步可知大正方形的边长为8,所以28x x ++=,解得 3.x =【点睛】本题是材料阅读题,考查了构造图形解一元二次方程,关键是读懂材料中提供的构图方法,并能正确构图解一元二次方程,体现了数形结合的思想.26. 【答案】(1)132y y y >>;(2)112t <<. 【分析】(1)将12a b ==−,代入函数解析式可得抛物线开口方向及对称轴,进而求解;(2)由抛物线解析式可得抛物线经过原点,分别讨论0a >与a<0两种情况.【小问1详解】解:(1)∵12a b ==−,,∴22y x x =−, ∴抛物线开口向上,对称轴为直线212x −=−=, ∵1(1)2111−−>−>−, ∴132y y y >>;【小问2详解】把0x =代入2y ax bx =+得0y =, ∴抛物线经过原点(00),, ①0a >时,抛物线开口向上,∵20y <,∴0t >,当31y y =时,12122t −+==, ∵31y y <, ∴12t >; 当20y =时,0212t +==, ∴112t <<满足题意. ②a<0时,抛物线开口向下, ∵20y <,∴0t <,∴0x >时,y 随x 增大而减小, ∴32<y y ,不符合题意. 综上所述,112t <<. 【点睛】本题考查二次函数的性质,解题关键是掌握二次函数图象与系数的关系,掌握二次函数与不等式的关系.27. 【答案】(1)30°;(2)不变;45°;(3)见解析【分析】(1)利用图形的旋转与正方形的性质得到△BEC 是等边三角形,从而求得α=∠DCE =30°.(2)因为△CED 是等腰三角形,再利用三角形的内角和即可求∠BEF =18045CED CEB ︒−∠−∠=︒. (3)过A 点与C 点添加平行线与垂线,作得四边形AGFH 是平行四边形,求得△ABG ≌△ADH .从而求得矩形AGFH 是正方形,根据正方形的性质证得△AHD ≌△DIC ,从而得出结论.【详解】(1)证明:在正方形ABCD 中, BC =CD .由旋转知,CE =CD ,又∵BE =CE ,∴BE =CE =BC ,∴△BEC 是等边三角形,∴∠BCE =60°.又∵∠BCD =90°,∴α=∠DCE =30°.(2)∠BEF 的度数不发生变化.在△CED 中,CE =CD ,∴∠CED =∠CDE =1809022︒−αα︒−, 在△CEB 中,CE =CB ,∠BCE =90α︒−,∴∠CEB =∠CBE =1804522BCE α︒−∠=︒+, ∴∠BEF =18045CED CEB ︒−∠−∠=︒.(3)过点A 作AG ∥DF 与BF 的延长线交于点G ,过点A 作AH ∥GF 与DF 交于点H ,过点C 作CI ⊥DF 于点I易知四边形AGFH 是平行四边形,又∵BF ⊥DF ,∴平行四边形AGFH 是矩形.∵∠BAD =∠BGF =90°,∠BPF =∠APD ,∴∠ABG =∠ADH .又∵∠AGB =∠AHD =90°,AB =AD ,∴△ABG ≌△ADH .∴AG =AH ,∴矩形AGFH 是正方形.∴∠AFH =∠FAH =45°,∴AH =AF∵∠DAH +∠ADH =∠CDI +∠ADH =90°∴∠DAH =∠CDI又∵∠AHD =∠DIC =90°,AD =DC ,∴△AHD ≌△DIC∴AH =DI ,∵DE =2DI ,∴DE =2AH AF【点晴】本题考查正方形的性质和判定、图形的旋转、等腰三角形的性质、全等三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.28. 【答案】(1)见解析 (2)4或74(3)33t −≤≤【分析】(1)根据“镜面函数”的定义画出函数21y x =−+的“镜面函数”的图象即可;(2)分直线y x m =−+过“镜面函数”图象与直线=1x −的交点和与原抛物线相切两种情况求解即可; (3)根据题意可作出对应的函数图象,再根据二次函数的性质可得出关于t 的不等式组,解之即可得出结论.【小问1详解】解: 如图,即为函数函数 21y x =−+关于直线 1x =的“镜面函数”的图象,【小问2详解】如图,对于 222,y x x 当0x =时, 2y =,∴函数 222y x x −=+与y 轴的交点坐标为()02,, 当直线y x n =−+经过点 ()1,5−时, 4m =;此时222y x x −=+关于直线=1x −的“镜面函数”与直线有三个公共点,当直线y x n =−+与原抛物线只有一个交点时,则有:222x mx x −+=+−, 整理得 220,x x m −+−=此时()()2Δ1420m =−−−=, 解得74m =, 综上,m 的值为4或74; 【小问3详解】 根据题意可知,该抛物线的“镜面函数”为:()()()222240,224(0)a x a x y a x a x ⎧−+−≥⎪=⎨++−<⎪⎩ 函数图象如图所示:当 24x =时,如图,点Q 关于直线2x =的对称点为 ()20Q y ',,关于 0x =的对称点为 ()24,Q y −'', 若当 1211,4t x t x −≤≤+≥时,均满足12,y y 则需满足 1414t t −≥−⎧⎨+≤⎩,解得3 3.t −≤≤故答案为:33t −≤≤.【点睛】本题考查二次函数的综合应用; 理解并运用新定义“镜面函数”,能够将图象的对称转化为点的对称,借助图象解题是关键.。

2024-2025学年北京北师大附中初三上学期期中数学试题及答案

2024-2025学年北京北师大附中初三上学期期中数学试题及答案

2024北京北师大附中初三(上)期中数 学考生须知1.本试卷有三道大题,共10页.考试时长120分钟,满分100分. 2.考生务必将答案填写在答题纸上,在试卷上作答无效. 3.考试结束后,考生应将答题纸交回. 一、选择题(共8小题,共16分)1. 2023年5月30日神舟十六号载人飞船发射取得圆满成功,此次任务是我国载人航天工程进入空间站应用与发展阶段的首次载人飞行任务.下列有关航天的4个图标图案中是中心对称图形的是( )A. B. C. D .2. 把抛物线2y x =−向上平移3个单位长度,则乎移后抛物线的解析式为( ) A. ()23y x =−+ B. ()23y x =−− C. 23y x =−+D. 23=−−y x3. 将一元二次方程2810x x −+=通过配方转化为()2x a b +=的形式,下列结果中正确的是( ) A. ()2826x −= B. ()286x −= C. ()246x −=− D. ()246x −=4. 如图,在ABC 中,80B ∠=︒,65C =︒∠,将ABC 绕点A 逆时针旋转得到AB C ''△.当AB '落在AC 上时,BAC '∠的度数为( )A. 65︒B. 70︒C. 80︒D. 85︒5. 如图,已知正六边形ABCDEF 的外接圆半径为2cm ,则该正六边形的边心距是( )A. 1cmB. 2cm6. 如图所示,用10米的铁丝网围成一个面积为15的矩形菜地,菜地的一边靠墙(不使用铁丝),如果设平行于围墙的一边为x 米,那么可列方程( )A. ()1015xx −=B.()10152xx −= C. 110152x x ⎛⎫−= ⎪⎝⎭D.()102152xx −= 7. 下面是“作ABC 的外接圆”的尺规作图方法.ABC 的外接圆O .上述方法由,得到OA OB OC ==,从而知O 经过A ,,三点.其中获得OA OB =的依据是( )A. 线段垂直平分线上的点与这条线段两个端点的距离相等B. 与一条线段两个端点距离相等的点,在这条线段的垂直平分线上C. 角平分线上的点到角的两边的距离相等D. 角的内部到角的两边距离相等的点在角的平分线上8. 二次函数()20y ax bx c a =++≠的对称轴是2x =−,该抛物线与x 轴的一个交点在点(4,0)−和点(3,0)−之间,其部分图象如图所示,下列结论:①40a b −=,②0a b c ++<,③2324b b ac +>,④若点()5,n −在二次函数的图像上,则关于x 的不等式20ax bx c n ++−>的解集是51x −<<,其中正确的是( )A. ①③B. ③④C. ①③④D. ①②③④二、填空题(共8小题,共16分)9. 若关于x 的一元二次方程220x x m +−=有一个根为1,则m 的值为_______. 10. 如图,点A ,B ,C 在O 上,55BAC ∠=︒,则BOC ∠的度数为_______︒.11. 若点()2,a ,()3,b 都在二次函数y =(x −1)2−1的图象上,则a _______b .(填<,=或>). 12. 请你写出一个二次函数,其图象满足条件:①开口向下,②顶点在y 轴上.此二次函数的解析式可以是_______.13. 如图,PA PB ,是O 的两条切线,切点分别为A ,B ,连接OA AB ,,若35OAB ∠=︒,则P ∠=________︒.14. 如图,抛物线2y ax bx =+与直线y mx n =+相交于点(3,6)A −−,(1,2)B −,则关于x 的方程2ax bx mx n +=+的解为_______________ .15. 无论非零实数m 取何值,抛物线()2211y mx m x =++−一定经过的定点的坐标是________.16. 如图,AB 是O 的直径,C 为O 上一点,AB OC ⊥,P 为圆上一动点,M 为AP 的中点,连接CM ,若O 的半径为4,则CM 长的最大值是________.三、解答题(共12小题,共68分.其中第17题8分,第18题4分,第19,21,22,23,25题每小题5分,第20,24,26,27题每小题6分,第28题7分)17. 解方程:(1)210x x +−=. (2)()()3121x x x +=+18. 如图,AB 是O 的弦,半径OC AB ⊥,垂足为D ,AB =(1)BD =________. (2)若D 为OC 中点,求O 的半径.19. 已知关于x 的一元二次方程()22210x m x m m −+++=. (1)求证:该方程总有两个不相等的实数根; (2)当该方程的两个实数根的和为0时,求m 的值. 20. 已知二次函数 2=23y x x −−.(1)求该二次函数的顶点坐标;(2)在平面直角坐标系 xOy 中,画出二次函数 2=23y x x −−的图象; (3)结合函数图象:直接写出当12x −<<时,y 的取值范围.21. 如图,在边长均为1个单位长度的小正方形组成的网格中,点0A ,B ,C 均为格点(每个小正方形的顶点叫做格点).(1)作点()01,1A −−关于原点O 的对称点A ; (2)连接AC ,AB 得ABC ,将ABC 绕点A 逆时针旋转90°得11AB C △.画出旋转后的11AB C △;(3)在(2)的条件下,点1B 的坐标是________,边AC 扫过区域的面积为________. 22. 下面是小于同学设计的“过直线外一点作这条直线的平行线”的尺规作图过程.(1)使用直尺和圆规,完成作图;(保留作图痕迹)(2)完成下面的证明,并在括号中填推理的依据: 证明:连接DP , ∵CP DQ = ∴________DQ = ∴PDC________.∴PQ l ∥(________).23. 如图1,某公园在入园处搭建了一道“气球拱门”,拱门两端落在地面上.若将拱门看作抛物线的一部分,建立如图2所示的平面直角坐标系.当拱门上的点到O 点的水平距离为x (单位:m )时,它距地面的竖直高度为y (单位:m ).(1)经过对拱门进行测量,发现x 与y 的几组数据如下:离),并求y 与x 满足的函数关系式.(2)在一段时间后,公园重新维修拱门.在同样的坐标系下,新拱门上的点距地面的竖直高度y (单位:m )与它到O 点的水平距离x (单位:m )近似满足函数关系()20.187.30y x h =−−+,若记原拱门的跨度为1d ,新拱门的跨度为2d ,则1d ______2d (填“>”,“=”或“<”). 24. 如图,AB 为O 的直径,点C 在O 上,ACB ∠的平分线CD 交O 于点D ,过点D 作DE AB ∥,交CB 的延长线于点E .(1)求证:DE 是O 的切线;(2)若60ADC ∠=︒,4BC =,求CD 的长. 25. 【项目式学习】 项目主题:车轮的形状项目背景:在学习完圆的相关知识后,九年级某班同学通过小组合作方式开展项目式学习,深入探究车轮制作成圆形的相关原理. 【合作探究】(1)探究A 组:车轮做成圆形的优点是:车轮滚动过程中轴心到地面的距离始终保持不变.另外圆形车轮在滚动过程中,最高点到地面的距离也是不变的.如图1,圆形车轮半径为4cm ,其车轮最高点到地面的距离始终为______cm ;(2)探究B 组:正方形车轮在滚动过程中轴心到地面的距离不断变化.如图2,正方形车轮的轴心为O ,若正方形的边长为6cm ,车轮轴心O 距离地面的最高点与最低点的高度差为______cm ;(3)探究C 组:如图3,有一个正三角形车轮,边长为6cm ,车轮轴心为O (三边垂直平分线的交点),车轮在地面上无滑动地滚动一周,求点O 经过的路径长.探究发现:车辆的平稳关键看车轮轴心是否稳定,即车轮的轴心是否在一条水平线上运动.【拓展延伸】如图4,分别以正三角形的三个顶点A ,B ,C 为圆心,以正三角形的边长为半径作60︒圆弧,这样形成的曲线图形叫做“莱洛三角形”.“莱洛三角形”在滚动时始终位于一组平行线之间,因此放在其上的物体也能够保持平衡,但其车轴中心O 并不稳定.(4)探究D 组:使“莱洛三角形”以图4为初始位置沿水平方向向右滚动.在滚动过程中,其“最高点”和“车轮轴心O ”均在不断移动位置,那么在“莱洛三角形”滚动一周的过程中,其“最高点”和“车轮轴心O ”所形成的图形按上、下放置,应大致为______.26. 在平面直角坐标系xOy 中,点()1,m −,()3n ,在抛物线()2<0y ax bx c a =++上,设抛物线的对称轴为x t =.(1)当5c =,m n =时,求抛物线与y 轴交点的坐标及t 的值;(2)点()()00,3x n x ≠在抛物线上,若m n c <<,求t 的取值范围及0x 的取值范围.27. 如图,在Rt ABC △中,90ABC ∠=︒,()030BAC a α∠=︒<<︒.将射线AC 绕点A 逆时针旋转2α得到射线l ,射线l 与射线BC 的交点为M .在射线BC 上截取MD AC =(点D 在点M 左侧),(1)如图1,当点D 与点C 重合时,此时α=_________°,ACB ∠的度数为_________°.(2)当点D 与点C 不重合时,在线段MA 上截取2ME BC =,连接DE .依题意补全图2,用等式表示EDM ∠与BAC ∠的数量关系,并证明.28. 在平面直角坐标系xOy 中,给定图形W 和点P ,若图形W 上存在两个不同的点S ,T 满足2ST PM =.其中点M 为线段ST 的中点,则称点P 是图形W 的相关点.(1)已知点(2A ,0)①在点1234113(,),(,(2,1)2222P P P P −−中,线段OA 的相关点是_______; ②若直线y x b =+上存在线段OA 的相关点,求b 的取值范围.(2)已知点(3Q −,0),线段的长度为d ,当线段CD 在直线2x =−上运动时,如果总能在线段CD 上找到一点K ,使得在y 轴上存在以QK 为直径的圆的相关点,直接写出d 的取值范围.参考答案一、选择题(共8小题,共16分)1. 【答案】C【分析】本题考查的是中心对称图形,中心对称图形是要寻找对称中心,旋转180度后与自身重合.根据中心对称图形的概念判断.把一个图形绕某一点旋转180度,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.【详解】解:选项A 、B 、D 不都能找到一个点,使图形绕某一点旋转180度后与原来的图形重合,所以不是中心对称图形.选项C 能找到一个点,使图形绕某一点旋转180度后与原来的图形重合,所以是中心对称图形. 故选:C . 2. 【答案】C【分析】本题考查了二次函数图象的平移,掌握平移规律是解题的关键.根据抛物线的平移规律:上加下减,左加右减解答即可.【详解】解:把抛物线2y x =−向上平移3个单位,则平移后抛物线的解析式为23y x =−+ 故选:C . 3. 【答案】D【分析】此题考查了配方法解一元二次方程,配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.先把常数项移到方程右边,再把方程两边加上16 【详解】解:移项得2810x x −=−,配方得22284104x x −+=−+,即2(4)6x −=. 故选:D . 4. 【答案】B【分析】本题主要考查了旋转的性质,三角形内角和定理,由旋转的性质可得B AC BAC ''∠=∠, 由三角形内角和定理可得出35B AC BAC ∠=∠=''︒,最后根据角的和差关系即可得出答案. 【详解】解:由旋转的性质可得出B AC BAC ''∠=∠, ∵180BAC B C ∠+∠+∠=︒, ∴180806535BAC ∠=︒−︒−︒=︒, ∴35B AC BAC ∠=∠=''︒,∴70BAC BAC B AC ∠=∠+''∠='︒, 故选:B . 5. 【答案】D【分析】该题主要考查了正多边形与圆,构建直角三角形,利用直角三角形的边角关系求解是解题的关键.连接OA ,作OM AB ⊥,构造出直角OAM △,且根据正六边形的性质可知30AOM ∠=︒,即可解答; 【详解】解:连接,OA OB ,作OM AB ⊥于点M , ∵正六边形ABCDEF 的外接圆半径为2cm , ∴正六边形的半径为2cm , 即2cm OA =,在正六边形ABCDEF 中,360660AOB ∠=︒÷=︒, ∴30AOM ∠=︒,∴正六边形的边心距是)cos302cm 2OM OA =︒⨯=⨯=, 故选:D .6. 【答案】B【分析】平行于围墙的一边为x 米,则垂直于围墙的一边为()1102x −米,再根据矩形的面积公式列方程即可.()10152xx −=. 故选:B .【点睛】本题主要考查一元二次方程的应用,正确列出方程是解题的关键. 7. 【答案】A【分析】本题考查作图-复杂作图,线段的垂直平分线,解题的关键熟练掌握基本知识,属于中考常考题型.【详解】解:由作图可知直线1l 是线段AB 的垂直平分线,则OA OB =的依据是线段垂直平分线上的点与这条线段两个端点的距离相等, 故选:A . 8. 【答案】D【分析】本题考查了二次函数的图像与性质,熟练掌握对称轴,最值,相应方程的根是解题关键.根据抛物线的对称轴可判断①对错;根据图像利用抛物线的顶点坐标,得到2434ac b a−=,即可判断③对错;抛物线的对称性可知,当0x =时,0y <,得到0c <,即可判断②对错;根据二次函数2(0)y ax bx c a =++≠和直线y n =的交点,即可判断④对错.【详解】解:∵抛物线的对称轴为直线22b x a=−=−, 4b a ∴=,∴40a b −=,①正确;∵抛物线的顶线坐标为(2,3)−,2434ac b a−∴=, 2124b a ac ∴+=,4b a =,234b b ac ∴+=,0a <,40b a ∴=<,∴2b 2>b ,∴2b 2+b 2+2b >b +b 2+2b ,∴3b 2+2b >b 2+3b ,∴3b 2+2b >b 2+3b =4ac ,成立,故③正确;∵抛物线与x 轴的一个交点在点(4,0)−和点(3,0)−之间,∴由抛物线的对称性可知,另一个交点在(1,0)−和(0,0)之间,0x ∴=时,0y <,0c ∴<,0a <,40b a ∴=<,∴0a b c ++<,②正确;∵抛物线的顶线坐标为(2,3)−,点()5,n −在二次函数的图像,∴抛物线与直线y n =有两个交点,∴交点的横坐标即为方程2ax bx c n ++=的两个实数根,∵点()5,n −在二次函数的图像,∴5−为其中一个实数根,根据函数图像对称性,对称轴2x =−,∴另一个实数根是1,∴关于x 的不等式20ax bx c n ++−>的解集是51x −<<,∴④正确,故选:D .二、填空题(共8小题,共16分)9. 【答案】3【分析】本题考查了方程根的定义即使方程左右两边相等的未知数的值,转化求解是解题的关键. 把1x =代入220x x m +−=,转化为m 的方程求解即可.【详解】解:把1x =代入220x x m +−=,得210m +−=,解得:3m =,故答案为:3.10. 【答案】110【分析】本题考查的知识点是圆周角定理,熟记定理内容是解题的关键.根据同圆中同弧所对的圆周角等于圆心角的一半解答即可.【详解】解:∵点A 、B 、C 在O 上,55BAC ∠=︒,2110BOC A ∴∠=∠=︒,故答案为:110.11. 【答案】<【分析】本题考查了二次函数2()y a x h k =−+图象的性质,掌握二次函数2()y a x h k =−+图象的性质是解题的关键.根据二次函数的解析式求得对称轴以及开口方向,根据点与对称轴的距离越远函数值越大即可判断,a b 的大小关系.【详解】解:∵二次函数2(,1011)y x a =−=>−,开口向上,对称轴为1x =,当x >1时,y 随x 增大而增大,又点()2,a ,()3,b 都在二次函数y =(x −1)2−1的图象上,211,312−=−=,a b ∴<,故答案为:<.12. 【答案】23y x =−+(答案不唯一)【分析】本题考查了二次函数的性质以及二次函数图象上点的坐标特征,利用二次函数的性质及二次函数图象上点的坐标特征,找出0a <,0b =是解题的关键.根据二次函数的性质可得出0a <,利用二次函数图象顶点在y 轴上的特征可得出0b =,取取1a =−,0b =,c 为任何数即可得出结论.【详解】解:设二次函数的解析式为2y ax bx c =++.∵抛物线开口向下,∴0a <.∵抛物线顶点在y 轴上,∴0b =,c 为任何数,则取1a =−,0b =,3c =时,二次函数的解析式为23y x =−+.故答案为:23y x =−+(答案不唯一).13. 【答案】70【分析】先根据等边对等角和三角形内角和定理求出110AOB ∠=︒,再根据切线的性质得到90OAP OBP ∠=∠=︒,再根据四边形内角和定理求出P ∠的度数即可.【详解】解:∵OA OB =,∴35OAB OBA ∠=∠=︒,∴180110AOB OAB OBA ∠=︒−∠−∠=︒,∵PA PB ,是O 的两条切线,∴90OAP OBP ∠=∠=︒,∴36070P AOB OAP OBP =︒−−−=︒∠∠∠∠,故答案为:70.【点睛】本题主要考查了切线的性质,等边对等角,三角形内角和定理,四边形内角和定理,熟知切线的性质是解题的关键.14. 【答案】x 1=﹣3,x 2=1【分析】关于x 的方程ax 2+bx =mx +n 的解为抛物线y =ax 2+bx 与直线y =mx +n 交点的横坐标,由此即可得到答案.【详解】∵抛物线y =ax 2+bx 与直线y =mx +n 相交于点A (﹣3,﹣6),B (1,﹣2),∴关于x 的方程ax 2+bx =mx +n 的解为x 1=﹣3,x 2=1.故答案为x 1=﹣3,x 2=1.【点睛】本题考查了抛物线与直线的交点问题:把求二次函数y =ax 2+bx +c (a ,b ,c 是常数,a ≠0)与x 轴的交点坐标问题转化解关于x 的一元二次方程即可求得交点横坐标.也考查了二次函数的性质. 15. 【答案】(2,3)−−,()01−,【分析】本题考查二次函数图象过定点问题,解决此类问题:首先根据题意,化简函数式,提出未知的常数,化简后再根据具体情况判断.把含m 的项合并,只有当m 的系数为0时,不管m 取何值抛物线都通过定点,可求x 、y 的对应值,确定定点坐标.【详解】解:∵()2211y mx m x =++−, ()222121y mx mx x m x x x ∴=++−=++−,∴当220x x +=时,与m 的取值无关,即0x =或2x =−时,不管m 取何值时都通过定点,当2x =−时,()422113y m m =−+−=−,当x =0时,1y =−,故不管m 取何值时都通过定点(2,3)−−或()01−,. 故答案为:(2,3)−−,()01−,.16. 【答案】2+【分析】本题考查圆周角定理,勾股定理,由90OMA ∠=︒得出点M 的移动轨迹,再根据圆外一点到圆上一点最大距离进行计算即可.【详解】解:如图,取OA 中点O ',连接O C ',O M ',OM ,∵M 为AP 的中点,∴90OMA ∠=︒, ∴122O M O A O O OA '''====, ∴当点P 在O 上移动时,AP 的中点M 的轨迹是以OA 为直径的O ',∴'CO 交O '于点M ,此时CM 的值最大,由题意得,4OA OB OC ===,122OO OA O M ''===, 在Rt O OC '中,4OC =,2OO '=,∴O C '==,∴2CM CO O M ''=+=,故答案为:2+.三、解答题(共12小题,共68分.其中第17题8分,第18题4分,第19,21,22,23,25题每小题5分,第20,24,26,27题每小题6分,第28题7分)17. 【答案】(1)112x −=,212x −−= (2)11x =−,223x = 【分析】此题考查了一元二次方程的求解,解题的关键是掌握一元二次方程的求解方法.(1)利用公式法求解即可;(2)移项,利用因式分解法求解即可.【小问1详解】解:∵1,1,1a b c ===−,∴122b x a −−===,则112x −+=,212x −=; 【小问2详解】解:()()3121x x x +=+()()31210x x x +−+=()()1320x x +−=∴10x +=或320x −= 则11x =−,223x =. 18. 【答案】(1)√3 (2)2【分析】本题考查垂径定理,勾股定理.(1)根据垂径定理即可得到12AD BD AB ==即可得出结果; (2)连接OA ,设O 的半径为r ,在Rt AOD 中,利用勾股定理即可求解. 【小问1详解】解:∵AB 是O 的弦,半径OC AB ⊥,垂足为D ,AB =∴12AD BD AB === 【小问2详解】 解:连接OA ,如图所示:设O 的半径为r ,即OA OC r ==, 若D 为OC 中点,1122OD OC r ∴==,由(1)知12AD BD AB ===在Rt AOD 中,由勾股定理可知222AD OA OD =−,即22212r r ⎛⎫=− ⎪⎝⎭, 解得2r =(负值舍去), ∴O 的半径为2.19. 【答案】(1)见详解 (2)12m =− 【分析】本题主要考查根与系数的关系,解题的关键是掌握根与系数的关系及根的判别式.(1)根据方程的系数结合根的判别式,可得出10∆=>,进而即可证出:方程总有两个不相等的实数根; (2)用根与系数的关系列式求得m 的值即可.【小问1详解】证明:∵[]22(21)41()10m m m ∆=−+−⨯⨯+=>.即0∆>,∴方程总有两个不相等的实数根.【小问2详解】解:设方程的两根为a 、b ,利用根与系数的关系得:210a b m +=+=, 解得:12m =−. 20. 【答案】(1)()1,4−(2)见解析 (3)40y −≤<【分析】本题主要考查了二次函数的图象和性质,做题的关键是通过数形结合去解题.(1)将二次函数表达式化为顶点式,即可进行解答;(2)由五点作图法即可画出二次函数图象;(3)根据图象即可求得y 的范围;【小问1详解】()222314y x x x =−−=−−, ∴该二次函数的顶点坐标为()1,4−;【小问2详解】列表如下,=23y x x 的图象如图,【小问3详解】由图象可知,当1x =−时,y 取得最大值,y 的最大值为0,当1x =时,y 取得最小值,y 的最小值为-4,∴当12x −<<时,y 的范围为40y −≤<.21. 【答案】(1)()1,1A(2)见详解 (3)()12,3B −,94π 【分析】本题主要考查对称性和旋转的性质.(1)根据一点关于原点对称点的性质即可求解;(2)结合旋转的性质即可得到旋转后的图形;(3)结合点A 的坐标和旋转的性质即可求得点1B ,利用旋转的性质和面积公式即可.【小问1详解】解:∵()01,1A −−,∴()1,1A ;【小问2详解】解:如图,【小问3详解】解:根据旋转得,13AC AC ==,12BC B C ==,∵点()1,1A ,∴点()12,3B −,∵将ABC 绕点A 逆时针旋转90°得11AB C △.∴边AC 扫过区域的面积为229019·336044AC πππ⨯=⨯=. 22. 【答案】(1)作图见解析(2)CP ,DPQ ∠,内错角相等,两直线平行【分析】本题考查的作已知直线的平行线,圆周角定理的应用,平行线的判定;(1)根据题干的作图语言逐步作图即可;(2)证明CP DQ =,可得PDC DPQ ∠=∠,结合平行线的判定可得结论.【小问1详解】解:如图,作图如下:.【小问2详解】证明:连接DP ,∵CP DQ =,∴CP DQ =,∴PDC DPQ ∠=∠.∴PQ l ∥(内错角相等,两直线平行).23. 【答案】(1)该拱门的高度为7.2m ,跨度为12m ,()20.267.2y x =−−+(2)<【分析】本题考查了二次函数的实际应用,(1)由表格得当0x =时,0y =,当12x =时,0y =,从而可求对称轴和顶点坐标,进而可求出拱门的高度和跨度,再把解析式设为顶点式利用待定系数法即可求解;(2)先把()0,0代入()20.187.30y x h =−−+中,求出h 的值,则可求出2d ,进行比较即可. 【小问1详解】解:由表格可知抛物线经过()0,0和()12,0,∴抛物线的对称轴为直线6x =,∵当6x =,7.2y =,∴该拱门的高度为7.2m ,∵12012−=,∴跨度为12m ;设抛物线解析式为()267.2y a x =−+,把()2,4代入()267.2y a x =−+中得:()2267.24a −+=, 解得:0.2a =−,∴()20.267.2y x =−−+;【小问2详解】解:把()0,0代入()20.187.30y x h =−−+中得()200.1807.30h =−−+,解得3h =或3h =−(舍去),∴抛物线()20.187.30y x h =−−+与x 轴的另一个交点坐标为,03⎛⎫ ⎪⎝⎭,∴2m 3d =, 由(1)可得110m d =, ∵222114601009d d =>=, ∴21d d >,故答案为:<.24. 【答案】(1)证明见解析(2)【分析】(1)连接OD .根据直径所对的圆周角是直角得90ACB ∠=︒,再根据角平分线得45ACD BCD ∠=∠=︒,进而得45ABD ACD ∠=∠=︒,又由45ODB OBD ∠=∠=︒,从而根据平行线的性质得45BDE OBD ︒∠=∠=,于是90ODE ODB BDE ∠=∠+∠=︒,得OD DE ⊥,根据切线的判定即可证明结论成立;(2)如图2,过点B 作BF CD ⊥于点F ,先证明BF CF =.再根据勾股定理得BF CF ==,根据直角三角形的性质得2BD BF ==【小问1详解】证明,如图1,连接OD .AB 是O 的直径,90ACB ∴∠=︒, CD 平分ACB ∠,45ACD BCD ∴∠=∠=︒45ABD ACD ∴∠=∠=︒OD OB =,45ODB OBD ∴∠=∠=︒, DE AB ∥,45BDE OBD ︒∴∠=∠=,90ODE ODB BDE ︒∴∠=∠+∠=, OD DE ∴⊥ OD 为O 的半径,∴直线DE 是O 的切线.【小问2详解】解:如图2,过点B 作BF CD ⊥于点F ,90BFC BFD ︒∴∠=∠=, ∵AB 为O 的直径,∴90ACB ∠=︒,∵ACB ∠的平分线CD 交O 于点D , ∴45ACD BCD ∠=∠=︒, 45CBF ∴∠=︒,BF CF ∴=.在Rt BFC △中,4BC =,根据勾股定理,得42BF CF ==⨯= ∵60ABC ADC ∠=∠=︒,∴906030BAC ∠=︒−︒=︒, BC BC =,30CDB BAC ︒∴∠=∠=,2BD BF ∴==在Rt BFD 中,根据勾股定理,得DF ==CD CF DF ∴=+=.【点睛】本题主要考查了勾股定理、圆周角角定理、直径所对的圆周角是直角、切线的判定以及平行线的性质,等腰三角形的判定与性质,熟练掌握圆周角角定理、直径所对的圆周角是直角以及切线的判定是解题的关键.25. 【答案】8;3−;;A【分析】本题主要考查圆的综合应用,主要考查了弧长公式,正方形的性质,等边三角形的性质,理解题意并画出图形是解题的关键.(1)利用正方形的性质解答即可;(2)画出图形,找到最高点和最低点即可得到答案; (3)分别求出三部分一定的距离,然后相加即可;(4)由题意知:最高点与水平面距离不变,即可得到结论. 【详解】解:(1)圆形车轮与地面始终相切,∴车轮轴心O 到地面的距离始终等于圆的直径,圆形车轮半径为4cm ,故车轮最高点到地面的距离始终为8cm ,故答案为:8;(2)如图所示,OC 为正方形车轮的轴心O 移动的部分轨迹,点D 为车轮轴心O 的最高点,点C 为车轮轴心O 的最低点,由题意得车轮轴心O 距离地面的最低高度为AD OA ==∴车轮轴心O 距离地面的最高点与最低点的高度差为3)cm ,故答案为:3);(3)点O 的运动轨迹为圆,以点C 为圆心,23=运动距离为2π⨯=故答案为:; (4)由题意知,当“莱洛三角形”在滚动时始终位于一组平行线之间,因此放在其上的物体也能够保持平衡,故“最高点”和“最低点所形成的图案大致是”A ,故答案为:A .26. 【答案】(1)抛物线与y 轴交点的坐标为()0,5,1t =(2)010x −<<【分析】本题考查了二次函数图像的性质;运用二次函数的增减性按要求列出相应的不等式是解题的关键.(1)将5c =代入()20y ax bx c a =++<中,可得抛物线与y 轴交点的坐标,再根据m n =可得点()1,m −与()3,n 关于抛物线的对称轴对称,即132t −+=计算即可; (2)根据m n c <<,可确定出2a >−b >3a , 结合20a <,可得对称轴的取值范围,再利用对称轴可表示为直线032x x +=,进而可确定0x 的取值范围. 【小问1详解】解:当5c =时,抛物线:25y ax bx =++当0x = 时,5y =;∴ 抛物线与y 轴交点的坐标为:()0,5;∵m n =,∴点()1,m −与()3,n 关于抛物线的对称轴对称, ∴1312x t −+===; 【小问2详解】解:∵m n c <<,∴93a b c a b c c −+<++<,解得23a b a −<<−,∴2a >−b >3a , 而20a <, ∴3122b a <−<,即312t <<, ∵点()3,n ,()()00,3x n x ≠在抛物线上, ∴抛物线的对称轴为直线032x x +=, ∴033122x +<<, 解得:010x −<<,∴0x 的取值范围010x −<<.27. 【答案】(1)18︒,72°(2)补全图形见解析,2EDM BAC ∠=∠,证明见解析【分析】(1)当点D 与点C 重合时,由等腰三角形等边对等角,得到 2AMC CAM α∠=∠=,再根据直角三角形的性质可得590AMC CAM BAC α∠+∠+∠==︒,进而求出18α=︒,可求ACB ∠的度数; (2)根据题意补全图形,在CB 的延长线上截取BF BC =,连接AF ,在AF 上取点N ,使得CF CN =, 连接CN , 证明DME ACN ≌可得EDM CAN ∠=∠,即可得到EDM ∠与BAC ∠的等量关系.【小问1详解】解:∵点D 与点C 重合,,2MD AC CAM α=∠=,∴2AMC CAM α∠=∠=,在Rt ABC △中,90ABC ∠=︒,∴90AMC MAB ∠+∠=︒,∵BAC α∠=,∴590AMC CAM BAC α∠+∠+∠==︒,∴18α=︒,∴236MAC AMC α∠=∠==︒,∴22472ACB MAC MAC a αα∠=∠+∠=+==︒;【小问2详解】解:补全图形如图;2EDM BAC ∠=∠,理由如下:如图, 在CB 的延长线上截取BF BC =,连接AF ,在AF 上取点N ,使得CF CN =, 连接CN ,∵,90BF BC ABC =∠=︒,∴AC AF =,∴22CAN BAC α∠=∠=, ∴()1180902AFC ACF CAN α∠=∠=︒−∠=︒−, ∵CF CN =,∴90CNF AFC α∠=∠=︒−,∴1802FCN AFC CNF α∠=︒−∠−∠=,∴903ACN ACF FCN α∠=∠−∠=︒−,∵22MAC BAC α∠=∠=,∴90903AMD MAC BAC α∠=︒−∠−∠=︒−,∴ACN AMD ∠=∠,∵2ME BC =,2CF CN BC ==,∴ME CN =,∵MD AC =,∴()SAS DME ACN ≌,∴22EDM CAN BAC α∠=∠==∠.【点睛】本题考查了等腰三角形的性质,全等三角形的判定和性质,三角形内角和定理,直角三角形的性质.关键是添加辅助线构造全等三角形,找到线段的等量关系.28. 【答案】(1)①1P ,3P ;②1−b ≤≤1(2)d ≥【分析】(1)①根据新定义得出P 点在以OA 为直径的圆上及其内部,以OA 为直径,()1,0为圆心作圆,在圆上或圆内的点即为所求;②根据①可得P 点在以OA 为直径的圆上及其内部,作出图形,进而根据直线y x b =+上存在线段OA 的相关点,求得相切时的临界值,即可求解;(2)设点K 是直线2x =−上一点,且点K ,使得在y 轴上存在以QK 为直径的圆的唯一相关点,设()2,K k −,则以QK 为直径的圆上两点ST 为直径的圆与y 轴相切于点P ,且ST y ∥轴,当ST CP ⊥且ST PC =时,y 轴上存在以QK 为直径的圆的唯一相关点P ,勾股定理求得KB 的值,进而根据对称性可得当K 点在x 轴的下方时,符合题意,即可求解.【小问1详解】解:①∵(2A ,0),∴2OA =,∵P 是线段OA 的相关点,∵2ST PM =,若点,S T 分别与点()()0,0,2,0A 重合,则中点为()1,0,∴P 在以OA 为直径的圆上,∵,S T 是线段OA 上的点,∴P 点在以OA 为直径的圆上及其内部,故答案为: 1P ,3P. ②由题意可得线段OA 的所有相关点都在以OA 为直径的圆上及其内部,如图.设这个圆的圆心是H .(2A ,0),∴ (1H ,0).当直线y x b =+与H 相切,且0b >时,将直线y x b =+与x 轴的交点分别记为B ,则点B 的坐标是(b −,0).∴ 1BH b =+.BH =,∴1b +=1b =.当直线y x b =+与H 相切,且0b <时,同理可求得1b =−.所以b 的取值范围是1−b ≤≤1.【小问2详解】解:设点K 是直线2x =−上一点,且点K ,使得在y 轴上存在以QK 为直径的圆的唯一相关点, 设()2,K k −,则以QK 为直径的圆上两点ST 为直径的圆与y 轴相切于点P ,且ST y ∥轴,如图所示,设以QK 为直径的圆,圆心是C .则5,22k C ⎛⎫− ⎪⎝⎭, ∴52CP = M 是ST 的中点,2ST PM =,∴SP =当ST CP ⊥且ST PC =时,y 轴上存在以QK 为直径的圆的唯一相关点P ,在Rt CSM 中,52224CS CP ===,∴22QK CS ==,∴2KB ===, 根据对称性可得当K 点在x 轴的下方时,也符合题意,∴d ≥.【点睛】本题考查了几何新定义,切线的性质,垂径定理,勾股定理,理解新定义是解题的关键.。

2024-2025学年北京四中初三上学期期中数学试题及答案

2024-2025学年北京四中初三上学期期中数学试题及答案

数学试卷班级__________ 姓名__________学号__________ 成绩__________一、选择题 (共16分,每题2分)第1-8题均有四个选项,符合题意的选项只有一个. 1.下面四个标志中是中心对称图形的是( ).A .B .C .D .2.方程220x x -=的根是( ). A .0x =B .2x =C .0x =或2x =D .0x =或2x =-3.若1(3,)A y -,2(2,)B y -,3(3,)C y 为二次函数21y x =+()图象上的三点,则1y ,2y ,3y 的大小关系是( ). A .123y y y <<B .213y y y <<C .312y y y <<D .132y y y <<4.二次函数(5)(7)y x x =-+的图象的对称轴是(). A .直线1x =- B .直线1x =C .直线2x =D .直线6x =5.如图,AB 为O 直径,点C 、D 在O 上,如果70ABC ∠=︒,那么D ∠的度数为( ).A .20︒B .30︒C .35︒D .70︒6.2024年北京第一季度GDP 约为1.058万亿元,第三季度GDP 约为1.167万亿元,设2024年北京平均每季度GDP 增长率为x ,则可列关于x 的方程为( ). A .21.058(1) 1.167x -= B .1.058(12) 1.167x +=C .21.058(1) 1.167x +=D .21.167(1)1.058x -=7.如图是一个钟表表盘,连接整点2时与整点10时 的B 、D 两点并延长,交过整点8时的切线于点P ,若切线长2PC =,则表盘的半径长为( ).A .3B. C . D.A8.某农场用篱笆围成饲养室,一面靠现有墙(墙足够长),已知计划中的篱笆(不包括门)总长为12m ,现有四种方案(如图)中面积最大的方案为( ). A 方案为一个封闭的矩形B 方案为一个等边三角形,并留一处1m 宽的门C 方案为一个矩形,中间用一道垂直于墙的篱笆隔开,并在如图所示的三处各留1m 宽的门D 方案为一个矩形,中间用一道平行于墙的篱笆隔开,并在如图所示的四处各留1m 宽的门A. B.C. D.二、填空题(共16分,每题2分)9.在平面直角坐标系xOy 中,将抛物线23y x =向上平移1个单位,得到的抛物线表达式为 .10.如图,四边形ABCD 内接于O ,E 为BC 延长线上一点,50A ∠=︒,则DCE ∠的度数为 .11.抛物线256y x x =-+与y 轴的交点的坐标是 .12.如图,PA 、PB 分别切O 于A 、B 两点,点C 为AB 上一点,过点C 作O 的切线分别交PA 、PB 于M 、N 两点,若△PMN 的周长为10,则切线长PA 等于 .第10题图 第12题图13.已知22310a a -+=,则代数式2(3)(3)a a a -++的值为 .14.“青山绿水,畅享生活”,人们经常将圆柱形竹筒改造成生活用具,图1所示是一个竹筒水容器,图2为该竹筒水容器的截面.已知截面的半径为10cm ,开口AB 宽为12cm ,这个水容器所能装水的最大深度....是 cm .图1 图2 第15题图15.二次函数2(0)y ax bx c a =++≠的部分图象如图所示,图象过点(1,0)-, 对称轴为直线2x =,抛物线与y 轴交点在(0,1)A 和(0,2)B 之间(不与A 、B 重合).下列结论:①0abc >; ②93a c b +>; ③40a b +=; ④当0y >时,15x -<<; ⑤a 的取值范围为2155a -<<-. 其中正确结论有 .(填序号)16.如图,在直角三角形ABC 中,∠A =90°,D 是AC 上一点,BD =10, AB =CD ,则BC 的最大值为 .三、解答题(共68分,第17题8分,第18、21、25题每题4分,第19、23、24题每题5分,第20、26题6分,第22、27、28题每题7分)17.解下列方程:(1)23610x x -+=; (2)2(3)3x x x -=-.18.如图,在平面直角坐标系中,已知△ABC 的三个顶点的坐标分别为(1,1)A -,(3,1)B -,(1,4)C -.将△ABC 绕着点B 顺时针旋转90︒后得到△11A BC , (1)请在图中画出△11A BC ; (2)线段BC 旋转过程中所扫过的面积是 (结果保留π).19.如图,D 是等边三角形ABC 内一点,将线段AD 绕点A 顺时针旋转60︒,得到线段AE ,连接CD ,BE . (1)求证:△AEB ≌△ADC ; (2)连接DE ,若96ADC ∠=︒,求BED ∠的度数. 20.已知关于x 的一元二次方程22(8)40x k x k +--=.(1)求证:该方程总有两个实数根;(2)若该方程有一个根小于3,求k 的取值范围. 21.已知:如图O 及O 外一点P .求作:直线PB ,使PB 与O 相切于点B .李华同学经过探索,想出了两种作法.具体如下(已知点B 是直线OP 上方一点):A ,A 交O 于点B ,则直线PB 是O 的切O 于点M ;②以点的长为半径作弧,交直线,交O 于点B PB 是O 的切线. 证明:如图1,连接OB , A 直径,90PBO =︒.( OB . OB 是O 的半径,∴直线PB 是O 的切线.请仔细阅读,并完成相应的任务.(1)“作法一”中的“依据”是指 ; (2)请写出“作法二”的证明过程.NQ M P22.在平面直角坐标系xOy 中,二次函数2y x bx c =++的图象经过(0,2)A -,(2,0)B 两点.(1)求这个二次函数的解析式;(2)填写表格并在给出的平面直角坐标系中画出这个函数的图象;(3)若一次函数y mx n =+的图象也 经过A ,B 两点,结合图象,直接写出 不等式2x bx c mx n ++<+的解集.23.如图,在Rt △ABC 中,90C ∠=︒,BE 平分ABC ∠交AC于点E ,点D 在AB 上,DE EB ⊥. (1)求证:AC 是△BDE 的外接圆的切线;(2)若2AD =,AE =,求EC 的长.24.如图1所示的某种发石车是古代一种远程攻击的武器.将发石车置于山坡底部O 处,以点O 为原点,水平方向为x 轴方向,建立如图2所示的平面直角坐标系,将发射出去的石块当作一个点看,其飞行路线可以近似看作抛物线2(20)y a x k =-+的一部分,山坡OA 上有一堵防御墙,其竖直截面为ABCD ,墙宽2BC =米,BC 与x 轴平行,点B 与点O 的水平距离为28米,竖直距离为6米.若发射石块在空中飞行的最大高度为10米. (1)求抛物线的解析式;(2)试通过计算说明石块能否飞越防御墙.25.如图1,线段AB 及一定点C ,P 是线段AB 上一动点,作直线CP ,过点A 作AQ CP ⊥于点Q ,已知7AB =cm ,设A 、P 两点间的距离为x cm ,A 、Q 两点间的距离为1y cm ,P 、Q 两点间的距离为2y cm .小明根据学习函数的经验,分别对函数1y 、2y 随自变量x 的变化而变化的规律进行了探究.下面是小明的探究过程:第一步:按照下表中自变量x 的值进行取点、画图、测量,分别得到了1y 、2y 与x 的几组对应值.1(,)x y ,2(,)x y ,并画出函数1y 、2y 的图象. 解决问题:(1)在给出的平面直角坐标系中(图2)补全函数2y 的图象;(2)结合函数图象,解决问题:当△APQ 中有一个角为30︒时,AP 的长度约为 cm .图1图226.在平面直角坐标系xOy 中,已知抛物线224(0)y ax a x a =-≠. (1)当1a =时,求抛物线的顶点坐标;(2)已知1(M x ,1)y 和2(N x ,2)y 是抛物线上的两点.若对于15x a =,256x ,都有12y y <,求a 的取值范围.27.已知,如图,在△ABC 中,∠ACB =90°,∠ABC =45°,点D 在BC 的延长线上,点E 在CB 的延长线上,DC =BE ,连接AE ,过C 作CF ⊥AE 于F ,CF 交AB 于G ,连接DG . (1)求证:∠AEB =∠ACF ;(2)用等式表示CG ,DG 和AE 的数量关系,并证明.28. 对于平面直角坐标系xOy 内的直线l 和点P ,若点A 关于l 作轴对称变换得到点1A ,点1A 关于点P 作中心对称变换得到点2A ,我们则称点2A 为点A 关于直线l 和点P 的“正对称点”. 已知B (-1,0),C (2,0),(1)写出B 关于y 轴和点C 的“正对称点”的坐标________;(2)已知点1C (2,m )(102m ),存在过原点O 的直线1l ,使得点B 关于直线1l 和点1C 的“正对称点”在直线2l :y =x+b 上,求b 的取值范围;(3)已知点H 是直线x =1上的一点,且点H 的纵坐标小于0,C (3,0),E 点在以C 为圆心1为半径的圆上,对于直线x =6上的点F (6,h ),以F 为圆心,1为直径作圆F ,若圆F 上存在点B 关于直线OH 和点E 的“正对称点”,直接写出h 的取值范围.备用图数学参考答案一、选择题1.D 2.C 3.B 4.A 5.A 6.C 7.B 8.C二、填空题9. 231y x =+ 10. 50° 11.(0,6) 12.5 13.8 14.18 15.③④⑤16. 5+ 补充说明:T15只有一个正确答案得1分,有错误答案不得分。

人教版初三上册《数学》期中考试卷及答案【可打印】

人教版初三上册《数学》期中考试卷及答案【可打印】

一、选择题(每题1分,共5分)1. 在直角坐标系中,点P(2,3)关于x轴的对称点坐标是()。

A.(2,3)B.(2,3)C.(2,3)D.(2,3)2. 已知一组数据:1,2,3,4,5,那么这组数据的众数、中位数、平均数分别是()。

A. 3,3,3B. 3,3,3.5C. 3,3,4D. 3,3,4.53. 下列函数中,属于一次函数的是()。

A. y=2x+1B. y=x^2C. y=2/xD. y=3sinx4. 已知正比例函数y=kx(k≠0),当x=2时,y=4,那么k的值为()。

A. 2B. 4C. 2D. 45. 在平面直角坐标系中,点A(3,2),点B(3,2),那么线段AB的中点坐标是()。

A.(0,0)B.(0,1)C.(0,1)D.(1,0)二、判断题(每题1分,共5分)1. 直角三角形的两个锐角互余。

()2. 在同一平面内,垂直于同一直线的两条直线互相平行。

()3. 一元二次方程的根一定是实数。

()4. 圆的周长与半径成正比。

()5. 一组数据的方差越大,说明这组数据的波动越小。

()三、填空题(每题1分,共5分)1. 在等腰三角形中,若底边长为10,腰长为13,则这个等腰三角形的周长是______。

2. 在平面直角坐标系中,点P(m,n)关于原点的对称点坐标是______。

3. 已知一元二次方程ax^2+bx+c=0(a≠0),若方程有两个相等的实数根,则判别式△=______。

4. 在等差数列{an}中,若a1=3,d=2,则第10项a10=______。

5. 在平面直角坐标系中,点A(m,n),点B(m,n),则线段AB的长度是______。

四、简答题(每题2分,共10分)1. 请简述一元二次方程的根的判别式。

2. 请简述圆的性质。

3. 请简述等差数列的性质。

4. 请简述三角形的内角和定理。

5. 请简述平行线的性质。

五、应用题(每题2分,共10分)1. 已知一个等腰三角形的底边长为8,腰长为5,求这个等腰三角形的周长。

北京市2024-2025学年北京陈经纶中学初三(上)期中考试数学试卷及答案

北京市2024-2025学年北京陈经纶中学初三(上)期中考试数学试卷及答案

2024北京陈经纶初三(上)期中数 学时间:90分钟 满分:100分一、选择题:本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,有且只有一项是符合题目要求的.1. 抛物线()212y x =−+的顶点坐标是( ) A. ()1,2 B. ()1,2− C. ()1,2− D. ()1,2−− 2. 用配方法解方程242x x +=,变形后结果正确的是( )A. ()223x −=B. ()223x +=C. ()226x −=D. ()226x += 3. 图中的五角星图案,绕着它的中心O 旋转n ︒后,能与自身重合,则n 的值至少是( )A. 144B. 72C. 60D. 504. 若关于x 的一元二次方程240x x m −=有两个相等的实数根,则实数m 的值为( )A. 4B. 4−C. 4±D. 25. 将抛物线231y x =+的图象向左平移2个单位,再向下平移3个单位,得到的抛物线是( )A. ()2323y x =+−B. ()2322y x =+− C. ()2323y x =−− D. ()2322y x =−− 6. 如图,在平面直角坐标系中,△ABC 顶点的横、纵坐标都是整数.若将△ABC 以某点为旋转中心,顺时针旋转90°得到△DEF ,其中A 、B 、C 分别和D 、E 、F 对应,则旋转中心的坐标是( )A. (0,0)B. (1,0)C. (1,1)−D. ()0.5,0.5 7. 11(,)2A y −,2(1,)B y ,3(4,)C y 三点都在二次函数2(2)y x k =−−+的图像上,则123,,y y y 的大小关系为( ) A. 123y y y << B. 132y y y <<C. 312y y y <<D. 321y y y << 8. 四位同学在研究二次函数()260y ax bx a =+−≠时,甲同学发现函数图象的对称轴是直线1x =;乙同学发现当3x =时,y =−6;丙同学发现函数的最小值为8−;丁同学发现3x =是一元二次方程()2600ax bx a +−=≠的一个根,已知这四位同学中只有一位同学发现的结论是错误的,则该同学是( )A. 甲B. 乙C. 丙D. 丁二、填空题:本大题共8个小题,每小题3分,共24分.9. 方程260x x −=的解是_____.10. 请写出一个开口向上,并且与y 轴交于点()0,1−的抛物线的表达式______.11. 如图,将OAB △绕点O 逆时针旋转80︒,得到OCD ,若2100A D ∠=∠=︒,则α∠的度数__________.12. 如图,已知二次函数210y ax bx c a ++≠=()与一次函数20y kx b k +≠=()的图象相交于点(24),82A B ﹣,(,),则2ax bx c kx b +++=的解是 _____.13. 杭州亚运会的吉祥物“江南忆”出自唐朝诗人白居易的名句“江南忆,最忆是杭州”,它融合了杭州的历史人文、自然生态和创新基因.经统计,某商店吉祥物“江南忆”6月份的销售量为1200件,8月份的销售量为1452件,设吉祥物“江南忆”6月份到8月份销售量的月平均增长率为x ,则可列方程为______. 14. 若关于x 的一元二次方程()221310k x x k −++−=的一个根为0,则k 的值为___________. 15. 汽车刹车后行驶的距离y (单位:m )关于行驶的时间x (单位:s )的函数解析式是:2156s x x =−,汽车刹车后前进了______米才能停下来.16. 车间里有五台车床同时出现故障.已知第一台至第五台修复的时间如下表:(1)若只有一名修理工,且每次只能修理一台车床,则下列三个修复车床的顺序:①D B E A C →→→→;②D A C E B →→→→;③C A E B D →→→→中,经济损失最少的是______(填序号);(2)若由两名修理工同时修理车床,且每台车床只由一名修理工修理,则最少经济损失为______元.三.解答题:共52分,第17-24题,每题5分,第25-26题,每题6分.解答应写出文字说明、演算步骤或证明过程.17. 解方程22730x x −+=.18. 若a 是关于x 的一元二次方程2390x x −+=的根,求代数式()()()4431a a a +−−−的值. 19. 如图,ABC 是直角三角形,90C ∠=︒,将ABC 绕点C 顺时针旋转90︒.(1)试作出旋转后的DCE △,其中B 与D 是对应点;(2)在作出的图形中,已知5,3AB BC ==,求BE 的长.20. 已知抛物线()20y ax bx c a =++≠图象上部分点的横坐标x 与纵坐标y 的对应值如下表:(1)并画出图象;(2)求此抛物线的解析式;(3)结合图象,直接写出当03x <<时y 的取值范围.21. 已知关于x 的一元二次方程2(2)10x m x m −+++=.(1)求证:无论m 取何值,方程总有两个实数根;(2)若方程的一个实数根是另一个实数根的两倍,求m 的值.22. 景区内有一块58⨯米的矩形郁金香园地(数据如图所示,单位:米),现在其中修建一条花道(阴影所示),供游人赏花.若改造后观花道的面积为12平方米,求x 的值.23. 数学活动课上,老师提出一个探究问题:制作一个体积为310dm ,底面为正方形的长方体包装盒,当底面边长为多少时,需要的材料最省(底面边长不超过3dm ,且不考虑接缝).某小组经讨论得出:材料最省,就是尽可能使得长方体的表面积最小.下面是他们的探究过程,请补充完整:(1)设长方体包装盒的底面边长为x dm ,表面积为2dm y 、可以用含x 的代数式表示长方体的高为210dm x.根据长方体的表面积公式:长方体表面积=2×底面积+侧面积. 得到y 与x 的关系式:_________(03x <≤);(2)列出y 与x 的几组对应值:(说明:表格中相关数值精确到十分位)(3)在下面的平面直角坐标系xOy 中,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象:(4)结合画出的函数图象,解决问题:长方体包装盒的底面边长约为_______dm 时,需要的材料最省.24. 在平面直角坐标系xOy 中,抛物线 (²0)y ax bx c a =++>的对称轴为 x t =,点(),A t m −,()2,B t n , ()00,C x y 在抛物线上.(1)当2t =时,直接写出m 与n 的大小关系;(2)若对于 056x << 都有 0m y n >> 求t 的取值范围.25. 在ABC 中,AB AC =,090BAC ︒<∠<︒,将线段AC 绕点A 逆时针旋转α得到线段AD ,连接BD ,CD .(1)如图1,当BAC α∠=时,则ABD ∠=______(用含有α的式子表示);(2)如图2,当90α=︒时,作BAD ∠的角平分线交BC 的延长线于点F ,交BD 于点E ,连接DF . ①依题意在图2中补全图形,并求DBC ∠的度数;②用等式表示线段AF ,CF ,DF 之间的数量关系,并证明.26. 对于平面直角坐标系xOy 内的点P 和图形M ,给出如下定义:如果点P 绕原点O 顺时针旋转90︒得到点P ',点P '落在图形M 上或图形M 围成的区域内,那么称点P 是图形M 关于原点O 的“伴随点”.已知点()()()1,1,3,1,3,2A B C .(1)在点()()()1232,0,1,1,1,2P P P −−−中,点______是线段AB 关于原点O 的“伴随点”;(2)如果点(),2D m 是ABC 关于原点O 的“伴随点”,直接写出m 的取值范围;(3)已知抛物线()21y x n =−−+上存在ABC 关于原点O 的“伴随点”,求n 的最大值和最小值.参考答案一、选择题:本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,有且只有一项是符合题目要求的.1. 【答案】A【分析】本题考查了二次函数的性质,熟练掌握利用顶点式解析式写出顶点坐标的方法是解题的关键.根据抛物线的顶点解析式写出顶点坐标即可. 【详解】解:顶点式()2y a x h k =−+顶点坐标是(),h k ,∴抛物线()212y x =−+的顶点坐标是()1,2, 故选:A .2. 【答案】D【分析】本题考查配方法,根据配方法的步骤:一除二移三配方,进行配方即可.【详解】解:242x x +=24424x x ++=+∴()226x +=;故选D .3. 【答案】B【分析】五角星图案,可以被平分成五部分,因而每部分被分成的圆心角是72︒,并且圆具有旋转不变性,因而旋转72度的整数倍,就可以与自身重合.【详解】该图形被平分成五部分,旋转72度的整数倍,就可以与自身重合,∴旋转的度数至少为72︒,故选:B .【点睛】本题考查旋转对称图形的概念:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角.4. 【答案】A【分析】本题考查了一元二次方程根的判别式,一元二次方程()200ax bx c a ++=≠的根与24b ac ∆=−有如下关系:①0∆>,方程有两个不相等的实数根,②0∆=,方程有两个相等的实数根,③0∆<,方程没有实数根.由题意得出()2440m ∆=−−=,计算即可得出答案.【详解】解:∵关于x 的一元二次方程240x x m −+=有两个相等的实数根,∴()2440m ∆=−−=,解得:4m =.5. 【答案】B【分析】此题主要考查了二次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.根据“左加右减、上加下减”的原则进行解答即可.【详解】解:将抛物线231y x =+向左平移2个单位所得直线解析式为:()2321y x =++;再向下平移3个单位为:()()223213322y x x =++−=+−.故选:B .6. 【答案】C【分析】根据对应点连接线段的垂直平分线的交点即为旋转中心,作出旋转中心,可得结论;【详解】如图,点Q 即为所求,(1,1)Q −;故选C .7. 【答案】B【分析】由二次函数解析式可得函数对称轴和增减性,再根据离对称轴的远近的点的纵坐标的大小比较,即可得出123,,y y y 的大小关系.【详解】解:二次函数2(2)y x k =−−+的图像开口向下,对称轴为2x =,∴3(4,)C y 关于对称轴的对称点为3(0,)C y ',∵在对称轴左侧,y 随x 的增大而增大, 又∵10122−<<<, ∴132y y y <<.故选:B .【点睛】本题主要考查了比较函数值的大小,解决此题的关键是理解当二次函数开口向下时,在函数图像上距离对称轴越远的点,函数值越小;当二次函数开口向上时,在函数图像上距离对称轴越远的点,函数值越大.【分析】分别根据四个人的信息得到相应的关系式,假设其中一个不对时,判断其它三个条件是否同时成立.【详解】解:当甲同学的结论正确,即当函数的对称轴是直线1x =时,12b a−=,即2b a =−. 当乙同学的结论正确,即当3x =时,y =−6时,9366a b +−=−,可得3b a =−.当丙同学的结论正确,即当函数的最小值为8−时,22424844ac b a b a a−−−==−,可得28b a =. 当丁同学的结论正确,即当3x =是一元二次方程()2600ax bx a +−=≠的一个根时,9360a b +−=,可得23b a =−.根据3b a =−和23b a =−不能同时成立,可知乙同学和丁同学中有一位的结论是错误的,假设丁同学的结论错误,联立2b a =−和3b a =−,得0a =,0b =,不满足0a ≠,故假设不成立; 假设乙同学的结论错误,联立2b a =−和23b a =−,得2a =,4b =−,此时满足28b a =,故假设成立;故选:B .【点睛】本题主要考查二次函数的图象及性质,熟练掌握二次函数抛物线的对称轴、顶点坐标与系数的关系是解题的关键.二、填空题:本大题共8个小题,每小题3分,共24分.9. 【答案】10x =,26x =【分析】利用因式分解法解答即可.【详解】解:260x x −=,∴()60x x −=,∴0x =或60x −=,解得:10x =,26x =.【点睛】本题主要考查了利用因式分解法解一元二次方程,熟练掌握因数分解法解一元二次方程是解题的关键.10. 【答案】221y x x =−−【分析】此题考查了二次函数的性质,熟练掌握二次函数性质是解本题的关键.写出一个二次函数,使其二次项系数为正数,常数项为1−即可.【详解】解:根据题意得:221y x x =−−(答案不唯一),故答案为:221y x x =−−(答案不唯一)11. 【答案】50︒【分析】根据旋转的性质可得D B ∠=∠,80BOD ∠=︒,求出B ∠,再利用三角形内角和定理求出AOB ∠,进而可求α∠的度数.【详解】解:由旋转得:D B ∠=∠,80BOD ∠=︒,∵2100A D ∠=∠=︒,∴50∠=∠=︒B D ,∴18030AOB A B ∠=︒−∠−∠=︒,∴803050BOD AOB α∠=∠−∠=︒−︒=︒,故答案为:50︒.【点睛】本题考查了旋转的性质,三角形内角和定理,熟练掌握旋转前后的对应角相等,旋转角的定义是解题的关键.12. 【答案】2x =−或=8x【分析】根据图象,2ax bx c kx b +++=的解就是二次函数210y ax bx c a ++≠=()与一次函数20y kx b k +≠=()的图象交点的横坐标,据此解答即可.【详解】解:由图形可得,2ax bx c kx b +++=的解就是二次函数210y ax bx c a ++≠=()与一次函数20y kx b k +≠=()的图象交点的横坐标,所以2ax bx c kx b +++=的解是2x =−或=8x ,故答案为:2x =−或=8x【点睛】本题考查了二次函数与一次函数交点问题,解决本题的关键是熟练掌握用数形结合解决二次函数与一次函数交点问题.13. 【答案】()2120011452x +=【分析】本题考查了一元二次方程的应用;设月平均增长率为x ,根据增长率问题的等量关系列方程即可.【详解】解:设月平均增长率为x ,根据题意得:()2120011452x +=,故答案为:()2120011452x +=.14. 【答案】1−【分析】本题考查了一元二次方程的解及定义,把x =0代入一元二次方程,再根据一元二次方程的定义可得10k −≠,由此即可求解.【详解】解:把x =0代入一元二次方程得,210k −=,且10k −≠,解得,1k =±,且1k ≠,∴1k =−,故答案为:1− .15. 【答案】758 【分析】本题考查了二次函数的应用,根据二次函数的解析式求得顶点,再利用二次函数的性质求出s 的最大值即可得出结论. 【详解】解:60<,∴函数有最大值.∴()201575468s −==⨯−最大值,即汽车刹车后前进了758米才能停下来. 故答案为:758. 16. 【答案】 ①. ① ②. 1010【分析】本题考查了有理数的混合运算,找出方案是解题的关键.(1)因为要经济损失最少,就要使总停产的时间尽量短,显然先修复时间短的即可;(2)一名修理工修按D ,E ,C 的顺序修,另一名修理工修按B ,A 的顺序修,修复时间最短,据此计算即可.【详解】解:(1)①总停产时间:574831021529156⨯+⨯+⨯+⨯+=分钟,②总停产时间:574153292108210⨯+⨯+⨯+⨯+=分钟,③总停产时间:529415310287258⨯+⨯+⨯+⨯+=分钟,故答案为:①;(2)一名修理工修按D ,E ,C 的顺序修,另一名修理工修按B ,A 的顺序修,7514936223101⨯+⨯+⨯+⨯+=分钟,101101010⨯=(元)故答案为:1010.三.解答题:共52分,第17-24题,每题5分,第25-26题,每题6分.解答应写出文字说明、演算步骤或证明过程.17. 【答案】13x =,212x = 【分析】直接代入求根公式求解即可.【详解】解:2a =,7b =−,3c =因为224(7)423250b ac −=−−⨯⨯=>所以754x ±== 所以13x =,212x = 【点晴】本题考查了一元二次方程的解法,熟练记住求根公式是解题的关键.18. 【答案】22−【分析】将x a =代入2390x x −+=得2390a a −+=,由()()()24431313a a a a a +−−−=−−即可求解;【详解】解:将x a =代入2390x x −+=得2390a a −+=,∴239a a −=−,()()()244311633a a a a a +−−−=−−+2313a a =−−913=−−22=−【点睛】本题主要考查一元二次方程的应用,根据所求代数式进行变换求解是解题的关键.19. 【答案】(1)见解析 (2)7【分析】(1)根据题意作出旋转图形即可;(2)由勾股定理得出4AC =,再由旋转的性质结合图形求解即可.【小问1详解】解:如图所示;【小问2详解】解:∵5,3,90AB BC C ==∠=︒,∴4AC ==,∵DCE △由ABC 旋转而成, ∴4CE AC ==,∵90DCE ACB ∠=∠=︒,∴B 、C 、E 共线,∴347BE BC CE =+=+=.【点睛】题目主要考查旋转图形的作法,勾股定理解三角形,熟练掌握运用这些基础知识点是解题关键. 20. 【答案】(1)见解析;(2)2=23y x x −−;(3)40y −≤<.【分析】本题考查了待定系数法求抛物线解析式,描点法画函数图象,根据图像求函数值范围,熟练掌握待定系数法和描点法画函数图象是解题关键.(1)再利用描点法画函数图象;(2)根据表格得出抛物线过点()1,4−、()1,0−、()3,0,将点坐标代入抛物线解析式求出a 、b 、c 即可,(3)分别求出,x =0,13x x ==,时的函数值,利用图象可直接得到答案.【小问1详解】解:抛物线图象如图,【小问2详解】解:∵设二次函数的解析式为2(0)y ax bx c a =++≠,由题意得:当0x =时,=3y −,∴3c =−,∵1x =时,4y =−,当1x =−时,0y =,∴3034a b a b −−=⎧⎨+−=−⎩, 解得12a b =⎧⎨=−⎩, ∴2=23y x x −−;【小问3详解】解:∵()22=23=14y x x x −−−−,∴当x =1时4y =−,当x =0时,2=0203=3y −−−⨯,当3x =时,2=3233=0y −−⨯,∴由图象可得,当03x <<时,40y −≤<. 21. 【答案】(1)见详解 (2)12−或1 【分析】(1)根据24b ac ∆=−即可证明;(2)根据公式法即可得()()122222m m xx ++==,再根据方程的一个实数根是另一个实数根的两倍即可求解;【小问1详解】解:根据题意,()()22Δ42410b ac m m m ⎡⎤=−=−+−+=≥⎣⎦,∴无论m 取何值,方程总有两个实数根.【小问2详解】由题意,根据公式法得,()222m b x a +−==,∴()()122222m m x x +++==,∴()()22222m m +++−=⋅, 解得:12112m m =−=,.【点睛】本题主要考查一元二次方程的应用,掌握相关知识是解题的关键.22. 【答案】1x =【分析】本题考查一元二次方程解决实际问题,根据面积公式可得园地修建花道后剩余的面积为()()85x x −−平方米,根据花道面积等于整个园地面积减去剩余的面积即可列出方程,求解即可. 【详解】解:根据题意,得()()185285122x x ⨯−⨯−−=, 整理,得213120x x −+=,解得:11x =,212x =,∵园地的宽为5米,而2125x =>,∴212x =不合题意,舍去.答:x 的值为1.23. 【答案】(1)2402y x x =+(2)28(3)见解析 (4)2.2【分析】(1)根据长方体表面积公式即可求解;(2)将2x =代入(1)中所得函数关系式即可;(3)描点连线即可完成作图;(4)观察图象,找到图象最低点的横坐标即可.【小问1详解】 解:2221040242y x x x x x=+⨯=+,故答案为:2402y x x=+; 【小问2详解】 解:当2x =时,82028y =+=,故答案为:28;【小问3详解】解:如图所示:【小问4详解】解:观察图象可知,当x 约为2.2dm 时,需要的材料最省,故答案为:2.2.【点睛】本题考查了二次函数在几何中的实际应用.掌握函数的研究方法是解题关键.24. 【答案】(1)m n >(2)6t ≤−或522t ≤≤ 【分析】本题考查了二次函数的图象与性质.熟练掌握二次函数的图象与性质并分情况求解是解题的关键. (1)由2(0)y ax bx c a =++>,可知图象开口向上,且抛物线上的点离对称轴越远,函数值越大,当2t =时,对称轴为2x =,()1,A m ,(4,)B n ,由4221−>−,可得m n <;(2)分当0t <,05t ≤<,56t ≤<, 6t ≥四种情况,作函数图象,根据抛物线上的点离对称轴越远,函数值越大,确定关于t 的不等式,然后求出满足要求的解即可.【小问1详解】解:∵2(0)y ax bx c a =++>,∴图象开口向上,则抛物线上的点离对称轴越远,函数值越大,当2t =时,对称轴为2x =,()2,A m −,(4,)B n ,∵()2242−−>−,∴m n >;【小问2详解】解:当0t <时,如图1,∴(),A t m −在抛物NQ 线段上,()2,B t n 在MN 段上,()00,C x y 在PQ 上,∵对于056x <<,都有0m y n >>,∴6t −≥且225t t t >≥−,且0t <,解得:6t ≤−;当05t ≤<时,如图2,∵对于056x <<,都有0m y n >>,∴26t t −≤−且025t <≤, 解得:522t ≤≤; 当56t ≤<时,如图3,∵对于056x <<,都有0m y n >>,又∵0y 在图象中已包含最小值,∴不存在0y n >的情况,即此种情况舍去;当6t ≥时,如图4,∵对于056x <<,都有0m y n >>,又∵225t t >−,∴0n y >,即此种情况与题意不符,舍去;综上所述,t 的取值范围为6t ≤−或522t ≤≤. 25. 【答案】(1)90α︒−(2)①图形见解析,45DBC ∠=︒.②DF CF +=,证明见解析.【分析】(1)本题由旋转的性质可知AC AD =,结合AB AC =推出AB AD =,再根据等腰三角形性质即可求解.(2)①本题考查等腰三角形性质,根据等腰三角形性质用BAC ∠表示出ABC ∠和ABD ∠,再利用DBC ABC ABD ∠=∠−∠即可解题.②延长CB ,取BM CF =,连接AM ,证明()ABM ACF SAS ≌,得到AF AM =,AFC AMB ∠=∠,利用AF 为BAD ∠的角平分线,再证明()AMC AFD SAS ≌,得到MC DF =,最后结合勾股定理即可解题.【小问1详解】解:由旋转的性质可知,DAC α∠=,AC AD =,AB AC =,BAC α∠=,AB AD ∴=,2BAD α∠=,ABD ∴为等腰三角形,1802902ABD αα︒−∴∠==︒−, 故答案为:90α︒−.【小问2详解】解:①补全图形如下:AB AC =,1802BAC ABC ACB ︒−∠∴∠=∠=, AC AD =, AB AD ∴=,90α=︒,()180902BAC ABD ADB ︒−∠+︒∴∠=∠=,()180901804522BAC BAC DBC ABC ABD ︒−∠+︒︒−∠∴∠=∠−∠=−=︒.②解:DF CF +=,证明如下:证明:延长CB ,取BM CF =,连接AM ,如图所示:AB AC =,,ABC ACB ∴∠=∠ABM ACF ∴∠=∠,()ABM ACF SAS ∴≌,AF AM ∴=,AFC AMB ∠=∠,AB AD =,AF 为BAD ∠的角平分线,AF BD ∴⊥,即90BEF ∠=︒,45DBC ∠=︒,45AMB AFC BEF DBC ∴∠=∠=∠−∠=︒,90MAF ∴∠=︒,AC AD =,90DAF CAF MAF CAF CAM ∠=︒−∠=∠−∠=∠,()AMC AFD SAS ∴≌,MC DF ∴=,222AF AM MF +=,()222AF MC CF ∴=+,即()222AF DF CF =+,整理得DF CF +=.【点睛】本题考查旋转的性质、等腰三角形性质和判定,角平分线性质、全等三角形性质和判定、勾股定理等,解题的关键在于旋转构造等腰三角形和全等三角形,再熟练运用其性质即可解题.26. 【答案】(1)2P 和3P(2)312m −≤≤− (3)最大值为12,最小值为5【分析】(1)根据“伴随点”的定义,画出每个点绕点O 旋转后的对应点,进行判断即可; (2)过点D 作DP x ⊥轴于点P ,过点D 作D Q x '⊥轴于点Q ,证明DPO OQD '≌,求出D 的坐标,再求出点D 在线段AC 上和在线段AB 上时,m 的值,即可得出结论;(3)将ABC 绕点O 逆时针旋转90︒得到A B C ''',根据抛物线上存在ABC 关于原点O 的“伴随点”,得到当抛物线过点A '时n C '时n 有最大值,即可得解.【小问1详解】解:∵()()1,1,3,1A B ,∴AB x ∥轴,如图所示,点()()()1232,0,1,1,1,2P P P −−−绕点O 顺时旋转90︒得到的对应点分别为:()()()1230,2,1,1,2,1P P P ''',其中点()()231,1,2,1P P '',在线段AB 上, ∴2P 和3P 是线段AB 关于原点O 的“伴随点”;【小问2详解】解:∵()()()1,1,3,1,3,2A B C , ∴ABC 在第一象限,∵点(),2D m 是ABC 关于原点O 的“伴随点”; ∴点D 在第二象限,过点D 作DP x ⊥轴于点P ,过点D 作D Q x '⊥轴于点Q ,则:90DPO D QO '∠=∠=︒,∵OD 绕点O 顺时针旋转90︒得到OD ', ∴OD OD '=,90DOD '∠=︒,∴90DOP OD Q D OQ ''∠=∠=︒−∠, ∴DPO OQD '≌,∴,OQ DP D Q OP '==,∵(),2D m , ∴,2OQ DP m D Q OP '====, ∵ABC 在第一象限,∴()2,D m '−,设直线AC 的解析式为:y kx b =+,则: 132k b k b +=⎧⎨+=⎩, 解得:1212k b ⎧=⎪⎪⎨⎪=⎪⎩,第21页/共21页 ∴1122y x =+, 当D 在AC 上时,112m −=+,解得:32m =−; 当D 在AB 上时,1m −=,解得:1m =−; ∴当312m −≤≤−时,点(),2D m 是ABC 关于原点O 的“伴随点”; 【小问3详解】 解:如图:ABC 绕点O 逆时针旋转90︒得到A B C ''',其中()()()1,1,1,3,2,3A B C '''−−−.∵抛物线上存在ABC 关于原点O 的“伴随点”, ∴当()21y x n =−−+过A ',即()2111n =−−−+,解得:5n =,∴n 的最小值为5;同理,当()21y x n =−−+过C ',得到n 的最大值为12.【点睛】本题考查坐标与图形,旋转的性质,一次函数和二次函数的综合应用,解题的关键是理解并掌握“伴随点”的定义,利用数形结合的思想进行求解.。

重庆市江津区12校2024届九年级上学期期中考试数学试卷(含答案)

重庆市江津区12校2024届九年级上学期期中考试数学试卷(含答案)

2023-2024学年度上期期中测试数学题卷(满分150分,考试时间120分钟)注意事项:1.试题的答案书写在答题卡上,不得在试卷上直接作答。

2.作答前认真阅读答题卡上的注意事项。

3.考试结束,监考人员将试题卷和答题卡一并收回。

4.参考公式:抛物线的顶点坐标为,对称轴为.一、选择题(每小题4分,共40分)1.下列方程一定是一元二次方程的是()A .212023x x -=B .30y x -=C .2350x x -=D .3210x x ++=2.将抛物线y =x 2﹣1向上平移3个单位,再向右平移1个单位后,得到的抛物线所对应的函数表达式为()A .y =(x ﹣1)2﹣1B .y =(x ﹣1)2+2C .y =(x +1)2+2D .y =(x +1)2﹣13.下列方程中,没有实数根的是()A. B.C.D.4.下列关于抛物线()2314y x =+-的结论,正确的是()A .开口方向向下B .对称轴为直线x =-1C .顶点坐标是(1,-4)D .当x =-1时,函数有最大值为-45.一元二次方程x 2-6x +5=0配方可变形为()A.(x -3)2=14B.(x -3)2=4C.(x +3)2=14D.(x +3)2=46.点()()()11223331P y P y P y -,、,、2,均在二次函数244y x x =--的图象上,则y 1,y 2,y 3的大小关系是()A .123y y y >>B .312y y y >>C .231y y y >>D .213y y y >>7.已知二次函数y =ax 2+bx +c 的图象如图所示,根据图中提供的信息,可求得使y ≥1成立的x 的取值范围是()A .-1≤x ≤3B .x ≥3C .x ≤-1D .x ≤-1或x ≥38.关于x 的一元二次方程()22210x a a x a +-+-=两个实数根互为相反数,则a 的值为()A.2B.0C.1D.2或09.已知二次函数2y ax bx c =++的图象如图所示,顶点为(﹣1,0),则下列结论:①0abc <;②240b ac -=;③20a b -=;④2a >;⑤420a b c -+<.其中正确结论的个数是()A .2个B .3个C .4个D .5个10.对于实数a 、b ,定义新运算()()22*a ab a b a b b ab a b ⎧-≥⎪=⎨-<⎪⎩ ,若二次函数()2*1y x x =-,则下列结论正确的有()①方程()2*10x x -=的解为x =0或x =−1;②关于x 的方程()2*1x x m-=有三个解,则102m ≤<;③当x <−1时,y 随x 增大而增大;④当x >−1时,函数()2*1y x x =-有最大值0.A .1个B .2个C .3个D .4个二、填空题(每小题4分,共32分)11.一元二次方程的解是.12.抛物线21252y x x =-+-的顶点坐标是.13.有一个人患了新冠病毒,经过两轮传染后共有169人患了流感,每轮传染中平均一个人传染了个人.14.若直角三角形的两边长分别是方程的两根,则该直角三角形的面积是.15.已知m 、n 是一元二次方程2250x x +-=的两个实数根,则m 2+mn +2m 的值为.第7题图第9题图16.如图,已知二次函数223y x x =-的图象与正比例函数1y x =的图象在第一象限交于点,与轴正半轴交于点,若,则的取值范围是.17.使得关于x 的不等式组6101131282x a x x -≥-⎧⎪⎨-+<-+⎪⎩有且只有4个整数解,且关于x 的方程()25410a x x -++=有实数根的所有整数a 的值之和为.18.对于一个四位自然数M ,若它的千位数字比个位数字多6,百位数字比十位数字多2,则称M 为“天真数”.如:四位数7311,∵716-=,312-=,∴7311是“天真数”;四位数8421,∵816-≠,∴8421不是“天真数”。

2024年全新初三数学下册期中试卷及答案(人教版)

2024年全新初三数学下册期中试卷及答案(人教版)

2024年全新初三数学下册期中试卷及答案(人教版)一、选择题1. 若a²4a+4=0,则a的值为()A. 2B. 2C. 1D. 12. 若a+b=5,ab=1,则a²+b²的值为()A. 12B. 13C. 14D. 153. 若x²5x+6=0,则x的值为()A. 2,3B. 2,3C. 2,3D. 2,34. 若a²+b²=20,a+b=5,则a²b²的值为()A. 5B. 5C. 105. 若a²2a8=0,则a的值为()A. 4,2B. 4,2C. 2,4D. 2,46. 若a²3a+2=0,则a的值为()A. 1,2B. 1,2C. 1,2D. 1,27. 若x²4x+4=0,则x的值为()A. 2,2B. 2,2C. 2,2D. 2,28. 若a²5a+6=0,则a的值为()A. 2,3B. 2,3C. 2,3D. 2,39. 若a²+b²=18,a+b=3,则a²b²的值为()A. 3B. 3D. 610. 若x²3x+2=0,则x的值为()A. 1,2B. 1,2C. 1,2D. 1,2二、填空题11. 若a²4a+4=0,则a的值为______。

12. 若a+b=5,ab=1,则a²+b²的值为______。

13. 若x²5x+6=0,则x的值为______。

14. 若a²+b²=20,a+b=5,则a²b²的值为______。

15. 若a²2a8=0,则a的值为______。

16. 若a²3a+2=0,则a的值为______。

17. 若x²4x+4=0,则x的值为______。

18. 若a²5a+6=0,则a的值为______。

2024年人教版初三数学下册期中考试卷(附答案)

2024年人教版初三数学下册期中考试卷(附答案)

2024年人教版初三数学下册期中考试卷(附答案)一、选择题:5道(每题1分,共5分)1. 下列哪个选项是勾股定理的正确表达?A. a^2 + b^2 = c^2B. a^2 b^2 = c^2C. a^2 + c^2 = b^2D. a^2 c^2 = b^22. 在平面直角坐标系中,点P(2,3)关于x轴的对称点是?A. P'(2,3)B. P'(2,3)C. P'(2,3)D. P'(2,3)3. 下列哪个选项是平行四边形的性质?A. 对角线相等B. 对角线互相垂直C. 对角线互相平分D. 对角线互相平行4. 下列哪个选项是二次函数的一般形式?A. y = ax^2 + bx + cB. y = ax^3 + bx^2 + cC. y = ax^2 + bx + dD. y = ax^3 + bx + d5. 下列哪个选项是圆的面积公式?A. A = πr^2B. A = 2πrC. A = πrD. A = 2πr^2二、判断题5道(每题1分,共5分)1. 一个等腰三角形的底角是60度,则顶角也是60度。

()2. 一个数的平方根只有一个。

()3. 任何两个圆都是相似的。

()4. 两个相似的三角形,它们的对应边长之比相等。

()5. 一个二次函数的图像是一个抛物线。

()三、填空题5道(每题1分,共5分)1. 勾股定理中,斜边的长度是直角边的长度的平方和的平方根。

2. 在平面直角坐标系中,点P(x,y)关于y轴的对称点是P'( , )。

3. 平行四边形的对角线互相_________。

4. 二次函数的一般形式是y = ________。

5. 圆的面积公式是A = ________。

四、简答题5道(每题2分,共10分)1. 简述勾股定理的内容。

2. 简述平行四边形的性质。

3. 简述二次函数的一般形式。

4. 简述圆的面积公式。

5. 简述两个相似的三角形的性质。

五、应用题:5道(每题2分,共10分)1. 一个直角三角形的两条直角边分别是3cm和4cm,求斜边的长度。

北京市2024-2025学年北京十一学校初三(上)期中考试数学试卷及答案

北京市2024-2025学年北京十一学校初三(上)期中考试数学试卷及答案

大学实验室辐射安全事故应急预案1总则1.1编制目的为贯彻落实“以人为本、安全第一、预防为主”的工作方针,指导和规范辐射安全管理工作,有效预防、及时控制和消除突发辐射事故的危害,减轻辐射事故造成的损失,防止事故造成的影响进一步扩大,保障师生身体健康,维护校园正常秩序和安全稳定,结合学校实际,特制定本预案。

1.2编制依据本预案以《放射性污染防治法》(2003年)、《放射性同位素与射线装置安全和防护条例》(2005年)、《放射性同位素与射线装置安全和防护管理办法》(2011年)、《突发环境事件应急预案》(2014年)和《XX大学实验室技术安全管理办法》等有关法律法规及规定为依据。

1.3应急原则1.3.1以人为本,安全第一将师生的人身安全和身体健康放在首位,采取必要的预防和避险措施,切实加强对师生的安全防护,预防和减少突发辐射事故的发生,最大限度地降低事故造成的损失。

1.3.2预防为主,防救结合辐射事故预防及应急响应与日常监督管理相结合,充分利用现有资源,建立健全突发辐射事故的预警和风险防范体系。

加强辐射安全管理,做好辐射事故预防工作;积极开展培训教育,组织应急演练,提高师生员工的安全意识,做好救援物资和技术力量储备工作。

1.3.3统领导,分级负责在学校的统领导下,实行分级负责。

学校各有关部门、学院、单位按照职责和权限,负责突发辐射事故的应急处置工作。

1.3.4快速响应,果断处置事发单位是事故应急救援的第一响应者,一旦发生辐射事故,要以最快速度、最大效能,有序地实施自救,快速、及时启动分级应急响应。

在应急处置工作中,应贯彻“先控制后消除、救人第一”的原则,在避免事故扩大的前提下,首要开展抢救人员的应急处置行动,同时做好救援人员的自身安全防护,通过学校及时向相关部门报告,请求支援。

1.4适用范围本预案适用于校园内从事辐射实验场所中发生的辐射事故的应急处置工作。

校医院及其他场所可根据实际情况参照执行或另行编制预案。

2024年北京八中初三(上)期中数学试题及答案

2024年北京八中初三(上)期中数学试题及答案

2024-2025学年度第一学期期中练习题年级:初三 科目:数学 班级:_________ 姓名:__________..1. 在平面直角坐标系中,点A (3,4)-关于原点对称的点的坐标是( ) A. (3,4) B. (3,-4) C. (-3,-4) D. (-4,3) 2.已知⊙O 的半径为4,如果OP 的长为3,则点P 在( )A .⊙O 内B .⊙O 上C .⊙O 外D .不确定3. 若关于x 的一元二次方程220x x m +-=有一个根为 1,则另一个根的值为( ) A. 3B. 3-C. 32-D.124. 如图,在⊙O 中,弦AB ,CD 相交于点E ,∠AEC =74°,∠ABD =36°,则∠BOC 的度数为( )A. 100°B. 110°C. 148°D. 140°5. 在 圆、正六边形、平行四边形、等腰三角形、正方形这五个图形中,既是轴对称图形又是中心对称图形的图形有( )A .2个B .3个C .4个D .5个 6. 在平面直角坐标系xOy 中,抛物线2y ax bx c =++如图所示,则关于x 的方程240++-=ax bx c 的根的情况为( )A.没有实数根B.有两个相等的实数根C. 有两个不相等的实数根D.有实数根 7. 如图,点O 为线段AB 的中点,∠ACB =∠ADB =90°, 连接OC,OD .则下面结论不.一定成立的是( )A .OC =ODB .∠BDC =∠BAC C .∠BCD+∠BAD =180° D .AC 平分∠BAD第4题图 第6题图 第7题图8. 在平面直角坐标系xOy 中,抛物线2(0)y ax bx c a =++≠的顶点为P (-1,k ),且经过点 A (-3,0),其部分图象如图所示,下面四个结论中, ①0abc >; ②2b a =-;③若点()N t n ,在此抛物线上且n c <,则02或><-t t ; ④对于任意实数t ,都有2(1)(1)0-++≤a t b t 成立. 正确的有( )个A. 0B. 1C. 2D. 3二、填空题(本题共16分,每小题2分)9. 写出一个开口向上,对称轴为1=x 的抛物线的表达式 .10. 将抛物线2=y x 向下平移3个单位,向左平移1个单位,得到新的抛物线的表达式是 . 11. ⊙O 的直径为17cm ,若圆心O 与直线l 的距离为7.5cm ,则l 与⊙O 的位置关系是________(填“相交”、“相切”或“相离”).12. 如图,将一块正方形空地划出部分区域进行绿化,原空地一边减少了2m ,另一边减少了3m ,剩余一块面积为20m 2的矩形空地,若原正方形空地边长是x m ,则可列关于x 的一元二次方程 .第12题图 第13题图 第16题图13. 如图,P A ,PB 分别与⊙O 相切于点A ,B ,点C 为劣弧AB 上的点,过点C 的切线分别交P A ,PB 于点M ,N .若P A =8,则△PMN 的周长为 .14. 在平面直角坐标系xOy 中,抛物线21(0)(3)a y a x +<=-的顶点坐标是 ;若点(2,1y ),(6,2y )在此抛物线上,则1y ,2y ,1的大小关系是 (用“<”号连接). 15. 已知二次函数2(2)2y a x a =--, 当14x ≤≤ 时,函数值y 的最大值为4,则a 的值为 .16. 如图,以点G (0,1)为圆心,2为半径的圆与x 轴交于A ,B 两点,与y 轴交于C ,D 两点,E 为G 上一动点,CF AE ⊥于点F ,连接FG ,则弦AB 的长度为 ;点E 在G 上运动的过程中,线段FG 的长度的最小值为 .三、解答题(本题共68分,17题每小题 3分;18-19题每题 4 分; 20-21题每题6分;22题5分;23题7分;24题6分;25题5分;26题6分;27题7分;28题6分) 17. 解方程:(1) 2410x x --=; (2)2230+=x x .18. 已知:如图,△ABC 绕某点按一定方向旋转一定角度后得到△A 1B 1C 1,点A ,B ,C 分别对应点A 1,B 1,C 1.(1)请通过画图找到旋转中心,将其记作O ; (2)直接写出旋转方向 (填顺时针或逆时针),旋转角度 °; (3)在图中画出△A 1B 1C 1.19. 如图, AB 是⊙O 的弦,半径OD ⊥AB 于点C . 若AB =16,CD =2,求⊙O 的半径的长.20. 已知关于x 的一元二次方程220mx x --=有两个不相等的实数根. (1)求m 的取值范围;(2)当m 取最小的正整数时,求方程的根.B21. 已知二次函数y=ax ²+bx+c (a ≠0)图象上部分点的横坐标x ,纵坐标y 的对应值如下表所示:(1值为 (2)求此二次函数的解析式,并用描点法画出该二次函数的图象;(不用列表) (3)一次函数3=+y kx ,当03x <<时,对于x 的每一个值,都有23kx ax bx c +>++,直接写出k 的取值范围.22. 如图,△ABC 中,∠C =90°. 将△ABC 绕点B 逆时针旋转60°得到△''A BC .若'3BC =,AC =4,求'AA 的长.23. 小明在学习了圆内接四边形的性质“圆内接四边形的对角互补”后,想探究它的逆命题“对角互补的四边形的四个顶点在同一个圆上”是否成立. 他先根据命题画出图形,并用符号表示已知,求证.已知:如图,在四边形ABCD 中,∠B+∠ADC=180º.求证:点A ,B ,C ,D 在同一个圆上.他的基本思路是依据“不在同一直线上的三个点确定一个圆”,先作出一个过三个顶点A ,B ,C 的⊙O ,再证明第四个顶点D 也在⊙O 上. 具体过程如下:步骤一 利用直尺与圆规,作出过A ,B ,C 三点的⊙O ,并保留作图痕迹.图1步骤二用反证法证明点D也在⊙O上.假设点D不在⊙O上,则点D在⊙O内或⊙O外.(ⅰ)如图2,假设点D在⊙O内.延长CD交⊙O于点D1,连接AD1,∴∠B+∠D1=180º(①).(填推理依据)∵∠ADC是△ADD1的外角,∴∠ADC=∠DAD1+∠D1.∴∠ADC>∠D1.∴∠B+∠ADC>180º.这与已知条件∠B+∠ADC=180º矛盾.∴假设不成立.即点D不在⊙O内.(ⅱ)如图3,假设点D在⊙O外.设CD与⊙O交于点D2,连接AD2,∴②+∠AD2C=180º.∵∠AD2C是△AD2D的外角,∴∠AD2C=∠DAD2+ ③.∴④<∠AD2C.∴⑤+∠ADC<180º.这与已知条件∠B+∠ADC=180º矛盾.∴假设不成立.即点D不在⊙O外.综上所述,点D在⊙O上.∴点A,B,C,D在同一个圆上.阅读上述材料,并解答问题:(1)根据步骤一,补全图1(要求:尺规作图,保留作图痕迹);(2)填写推理依据:①_____________________________________________;(3)填空:②,③,④,⑤.24. 如图,点C在以AB为直径的⊙O上,CD平分∠ACB交⊙O于点D,交AB于点E,过点D作DF∥AB,交CO的延长线于点F.(1)求证:直线DF是⊙O的切线;(2)若A∠=30°,AC DF的长.图2图325. 投掷实心球是北京市初中学业水平考试体育现场考试的选考项目之一. 实心球被投掷后的运动的运动路线可以看作是抛物线的一部分. 建立如图所示的平面直角坐标系,实心球从出手(点A 处)到落地的过程中,其竖直高度y (单位:m )与水平距离x (单位:m )近似满足二次函数关系.小石进行了三次训练,每次实心球的出手点A 的竖直高度为2m .记实心球运动路线的最 高点为P ,训练成绩(实心球落地点的水平距离)为d (单位:m ).训练情况如下:(1)求第二次训练时满足的函数关系式; (2)小石第二次训练的成绩2d 为 m ; (3)直接写出训练成绩1d ,2d ,3d 的大小关系.26. 在平面直角坐标系xOy 中,二次函数2222(0)y ax a x a =-+≠的图象与y 轴交于点A ,与直线x =2交于点B.(1)若AB ∥x 轴,求二次函数解析式;(2)记抛物线在A ,B 之间的部分为图象G (包含A ,B 两点),若对于图象G 上任意一点C (C x ,C y ),都有2C y ≤,求a 的取值范围.2OA27. 如图,Rt ABC∆中,∠B=90°,∠ACB=α(0°<α<45°),点E是线段BC延长线上一点,点D为线段EC的中点,连接EA. 将射线EA绕点E顺时针旋转α得到射线EM,过点A作AF⊥EM,垂足为点F,连接FD.(1)用等式表示线段BD与DF之间的数量关系,并证明;(2)求∠FDB的大小(用含α的代数式表示);(3)若点D满足BC=CD,直接写出一个α的值,使得CF⊥BE.28.在平面直角坐标系xOy 中,将对角线交点为T 的正方形记作正方形T ,对于正方形T 和点P (不与O 重合)给出如下定义:若正方形T 的边上存在点Q ,使得直线OP 与以TQ 为半径的⊙T 相切于点P ,则称点P 为正方形T 的“伴随切点”.(1)如图,正方形T 的顶点分别为点O ,A (2-,2),B (4-,0),C (2-,2-).①在点1P (1-,1),2P (1-,1-),3P (2-,1)中,正方形T 的“伴随切点”是_____________;②若直线y x b =-+上存在正方形T 的“伴随切点”,求b 的取值范围;(2)已知点T (t ,1t -),正方形T 的边长为2.若存在正方形T 的两个“伴随切点”M ,N ,使得OMN 为等边三角形,直接写出t 的取值范围.x第1页,共4页2024-2025学年度第一学期初三数学期中练习答案一、选择题(本题共16分,每小题2分)题号12345678答案BACDBCDD二、填空题(本题共16分,每小题2分)9.2(1)y x =-(答案不唯一);10.2(1)3y x =+-;11.相交;12.(2)(3)20x x --=13.16;14.(3,1);211y y <<;15.2或2-;16.1-.三、解答题(本题共68分,17题6分;18-19题每题4分;20-21题每题6分;22题5分;23题7分;24题6分;25题5分;26题6分;27题7分;28题6分)17.解:(1)2410x x --=;2(2)5x -=1222x x ==(2)2230x x +=.(23)0x x +=1230,2x x ==-18解:(1)如图;(2)顺时针;90(3)如图19.解:连接OA .∵OD ⊥AB ,AB =16,∴AC =12AB =8.设OA=x ,则OC=x -2.∵OD ⊥AB ,∴OC ²+AC ²=OA²,第2页,共4页∴(x -2)²+64=x ².解得,x =17,∴⊙O 的半径为17.20.解:(1)∵关于x 的一元二次方程220mx x --=有两个不相等的实数根,∴14(2)810m m ∆=-⋅-=+>,∴18m >-且m ≠0.(2)∵m 取最小的正整数,∴m =1.此时一元二次方程为:x ²-x -2=0,解得12x =,21x =-.21.(1)0;(2)设y =a (x -2)²-1.将点(1,0)代入,得a =1,即y =(x -2)²-1.(3)1k ≥-且0k ≠.22.解:∵将△ABC 绕点B 逆时针旋转60°得到△''A BC∴△ABC ≌△''A BC ,∠'A BA =60°,∴''3BC B C ==.∵∠C =90°,AC =4,∴AB =5.∵'AB A B =,∴△'A BA 为等边三角形,∴''AA A B ==5.23.解:(1)如图;(2)圆内接四边形对角互补;(3)∠B ;∠D ;∠D ;∠B .24.(1)证明:连接OD ,∵CD 平分∠ACB ,∴∠ACD =∠BCD ,∴∠AOD =∠BOD ,∵∠AOD +∠BOD =180°,∴∠AOD =90°,∴OD ⊥AB ,第3页,共4页∵FD ∥AB ,∴OD ⊥FD ,∴FD 为⊙O 的切线.(2)∵AB 为⊙O 的直径,∴∠ACB =90°.∵∠A =30°,AC =∴AB =4,∴122OD AB ==.∴∠COB =2∠A =60°,∴∠AOF =∠COB =60°,∴∠FOD =30°.设DF=x ,OF =2x ,2=,∴3x =∴3DF =.25.(1)设2(4) 3.6y a x =-+,∵过点A (0,2),∴20(04) 3.6a =-+,∴0.1a =-,∴20.1(4) 3.6y x =--+.(2)10;(3)312d d d <<26.(1)∵A (0,2),AB ∥x 轴,∴B (2,2),∴24422a a -+=,∵0a ≠,∴1a =.∴222y x x =-+.(2)∵对称轴为:x=a ,∴A (0,2)关于对称轴x=a 的对称点'A (2a ,2).若a >0,∵当02x ≤≤时,2C y ≤,第4页,共4页∴22a ≥,∴1a ≥.若a <0,当02x ≤≤时,y 随x 增大而减小,∴2C y ≤恒成立.综上,1a ≥或a <0.27.(1)BD=DF ;证明:延长EF ,使FN =EF ,连接AN ,NC .∵AF ⊥EN ,∴AE =AN ,①∴∠EAN =180°2α-.延长CB ,使CB =BH .∵∠ABC =90°,∴AC =AH ,②∴∠CAH =180°2α-,∴∠NAC =∠EAH ,③∴△NCA ≌△EAH ,∴CN =EH .∵ED =DC ,EF =FN ,∴CN =2FD .∵EH =2BD ,∴FD =BD .(2)解:由(1)可知,△EAH ≌△NCA ,∴∠NCA =∠A =α,∴∠NCH =2α.∵NH ∥FD ,∴∠FDB =∠NCH =2α.(3)30°28.(1)①1P ,2P ;②∴21b -≤≤.(2t ≤≤t ≤≤。

2023-2024学年全国初三下数学人教版期中考试试卷(含答案解析)

2023-2024学年全国初三下数学人教版期中考试试卷(含答案解析)

20232024学年全国初三下数学人教版期中考试试卷一、选择题(每题10分,共100分)1. 若一个三角形的两边长分别是5cm和12cm,且这两边的夹角是90°,那么这个三角形的周长是:A. 17cmB. 30cmC. 26cmD. 34cm2. 下列哪个函数是增函数?A. y = 2x + 3B. y = x^2 4x + 4C. y = 3/xD. y = x^23. 已知一个等差数列的前三项分别是2, 5, 8,那么这个数列的公差是:A. 1B. 3C. 6D. 84. 若一个圆的半径增加了50%,那么这个圆的面积增加了:A. 50%C. 150%D. 200%5. 在直角坐标系中,点(3, 4)关于y轴的对称点是:A. (3, 4)B. (3, 4)C. (3, 4)D. (4, 3)6. 若一个等腰三角形的底边长是10cm,腰长是13cm,那么这个三角形的周长是:A. 32cmB. 36cmC. 42cmD. 46cm7. 下列哪个数是素数?A. 21B. 29C. 35D. 398. 若一个长方体的长、宽、高分别是2cm、3cm和4cm,那么这个长方体的对角线长度是:A. 5cmB. 6cmC. 7cm9. 若一个二次函数的图像开口向上,且顶点坐标是(2, 3),那么这个函数的标准形式是:A. y = a(x + 2)^2 + 3B. y = a(x 2)^2 + 3C. y = a(x^2 + 4x) + 3D. y = a(x^2 4x) + 310. 下列哪个图形不是轴对称图形?A. 矩形B. 正五边形C. 圆D. 梯形二、判断题(每题10分,共50分)11. 任何一个三角形的内角和都是180°。

()12. 若两个函数的图像关于y轴对称,则这两个函数是相等的。

()13. 任何一个偶数都可以表示为两个奇数的和。

()14. 若一个数的平方是负数,那么这个数一定是负数。

四川省自贡市富顺第一中学校2023-2024学年九年级上学期期中考试数学试卷(含答案)

四川省自贡市富顺第一中学校2023-2024学年九年级上学期期中考试数学试卷(含答案)

2023-2024上初三期中考试数学试题一、单选题(共48分)1. 下列交通标志图案中,既是中心对称图形又是轴对称图形的是()A. B. C. D.答案:B2. 一元二次方程的解是()A. B. C. , D. ,答案:C3. 将△ABC绕点A逆时针旋转100°,得到△ADE.若点D在线段BC的延长线上,如图,则的大小为()A. 80°B. 100°C. 120°D. 不能确定答案:B4. 如果0是关于的一元二次方程的一个根,那么的值是()A. 3B.C.D.答案:A5. 将抛物线向左平移2个单位,再向上平移1个单位,得到抛物线的解析式为()A. B. C. D.答案:B6. 已知一元二次方程,根据下列表格中的对应值:… 3.09 3.10 3.11 3.12……0.11…可判断方程的一个解的范围是()A. B.C. D.答案:D7. 函数与在同一坐标系内的图象是图中的()A. B.C. D.答案:B8. 一部售价为4000元的手机,一年内连续两次降价,如果每次降价的百分率都是x,则两次降价后的价格y(元)与每次降价的百分率x之间的函数关系式是()A. B. C. D.答案:B9. 某地有两人患了流感,经过两轮传染后又有70人患了流感,每轮传染中平均一个人传染的人数为()A. 5人B. 6人C. 7人D. 8人答案:A10. 如图,正三角形ABC的边长为3,将△ABC绕它的外心O逆时针旋转60°得到△A'B'C',则它们重叠部分的面积是( )A. 2B.C.D.答案:C11. 已知二次函数的图象如图所示,有下列4个结论:①;②;③;④关于的方程有四个根,且这四个根的和为4,其中正确的结论有()A. ①②③B. ②③④C. ①④D. ②③答案:B12. 经过两点的抛物线(为自变量)与轴有交点,则线段长为()A. 10B. 12C. 13D. 15答案:B二、填空题(共24分)13. 点关于原点的对称点是,则______.答案:14. 抛物线的对称轴是______.答案:直线15. 关于x的一元二次方程有实数根,则k的取值范围是______.答案:且16. 将二次函数的图象绕着顶点旋转后得到的新图象的解析式是___________.答案:17. 已知a,b是一元二次方程两个实数根,则的值为_____.答案:718. 在实数范围内定义一种运算“*”,其运算法则为.根据这个法则,下列结论中错误的是______.(只填写番号)①;②若,则;③是一元二次方程;④方程有一个解是.答案:①③④三、解答题(共78分)19. 解方程:答案:,解:,,,,,解得:,.20. 如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系中,的三个顶点,,均在格点上,(1)画出将向下平移4个单位长度得到;(2)画出绕点C逆时针旋转后得到的,并写出点的坐标;答案:(1)画图见解析(2)画图见解析,点的坐标【小问1详解】解:如图,即为所求;【小问2详解】解:如图,即为所求;∴点的坐标.21. 已知关于x的方程x2+ax+a-1=0.(1)若方程有一个根为1,求a的值及该方程的另一个根;(2)求证:不论a取何实数,该方程都有实数根.答案:(1)a=0,x2=-1;(2)见解析.(1)因为x=1是方程x2+ax+a-1=0的解,所以把x=1代入方程x2+ax+a-1=0得,1+a+a-1=0,解得a=0∵x1+x2=-a,∴1+x2=0,∴x2=-1(2)∵△=a2-4(a-1)=a2-4a+4=(a-2)2≥0,∴无论a何值,此方程都有实数根.22. 某公司设计了一款工艺品,每件的成本是元,为了合理定价,投放市场进行试销:据市场调查,销售单价是元时,每天的销售量是件,而销售单价每提高元,每天就减少售出件,但要求销售单价不得超过元.要使每天销售这种工艺品盈利元,那么每件工艺品售价应为多少元?答案:元解:设每件工艺品售价为元,则每天的销售量是件,依题意得:,整理得:,解得:,(不符合题意,舍去).故每件工艺品售价应为元.23. 如图,用长为的篱笆,一面利用墙(墙的最大可用长度是),围成中间有一道篱笆的矩形花圃,设花圃的一边长是(单位:),面积是(单位:).(1)求与的函数关系式及的取值范围;(2)如果要围成面积为的花圃,的长为多少米?(3)长为多少时,花圃面积最大,最大面积是多少?答案:(1)(2)要围成面积为的花圃,的长为9米.(3),最大面积为:.【小问1详解】解:根据题目数量关系得,,根据题意,,∴,∴.【小问2详解】将代入得,整理得:,∴,∵,则不符合题意舍去,∴要围成面积为的花圃,的长为9米.【小问3详解】∵,,∴抛物线的对称轴为直线,当时,随的增大而减小,∴当时,面积最大,此时,最大面积为:;24. 如图1,是抛物线形的拱桥,当拱顶高离水面2米时,水面宽4米,如图建立平面直角坐标系,解答下列问题:(1)如图2,求该抛物线的函数解析式.(2)当水面下降1米,到处时,水面宽度增加多少米?(保留根号)答案:(1);(2)水面宽度增加米【小问1详解】解:根据题意可设该抛物线的函数解析式为,∵当拱顶高水面2米时,水面宽4米.∴点,,把点代入得:,解得:,∴该抛物线的函数解析式为;【小问2详解】解:∵水面下降1米,到处,∴点D的纵坐标为,当时,,解得:,∴此时水面宽度为米,∴水面宽度增加米.25. 已知关于x的方程(1)求证此方程总有实数根(2)若方程的两个实数根都为整数,求k的值.答案:(1)详见解析.(2)或或或.【小问1详解】证明:当时,方程为一元一次方程,此方程有一个实数根;当时,方程为一元二次方程,,即,当k取除以外的任意实数时,此方程总有两个实数根.综上可得,不论k取何值,此方程总有实数根.【小问2详解】方程的两个实数根都为整数,且方程的两个解之和也为整数,即是整数,即是整数,或或或.26. 如图,抛物线与x轴交于,两点,与轴交于点.(1)求抛物线解析式及,两点坐标;(2)以,,,为顶点的四边形是平行四边形,求点坐标;(3)该抛物线对称轴上是否存在点,使得,若存在,求出点的坐标;若不存在,请说明理由.答案:(1)抛物线解析式为,,(2)或或(3)【小问1详解】解:∵抛物线与x轴交于,∴解得:,∴抛物线解析式为,当时,,∴,当时,解得:,∴【小问2详解】∵,,,设,∵以,,,为顶点的四边形是平行四边形当为对角线时,解得:,∴;当为对角线时,解得:∴当为对角线时,解得:∴综上所述,以,,,为顶点的四边形是平行四边形,或或【小问3详解】解:如图所示,作交于点,为的中点,连接,∵∴是等腰直角三角形,∴在上,∵,,∴,,∵,∴在上,设,则解得:(舍去)∴点设直线的解析式为∴解得:.∴直线的解析式∵,,∴抛物线对称轴为直线,当时,,∴.。

2024年北京一六一中初三(上)期中数学试题及答案

2024年北京一六一中初三(上)期中数学试题及答案

2024北京一六一中初三(上)期中数 学2024年11月班级______________姓名______________学号______________1.抛物线2(1)5=−+y x 的顶点坐标为A .(1,5)B .(0,5)C .(1,8)D .(0,8) 2.如果2m =3n (n ≠0),那么下列比例式中正确的是A .23=m nB .23=m n C .32=m n D .32=m n 3.将抛物线23=−y x 平移,得到抛物线23(2)1=−+−y x ,下列平移正确的是A .先向左平移2个单位,再向上平移1个单位B .先向左平移2个单位,再向下平移1个单位C .先向右平移2个单位,再向上平移1个单位D .先向右平移2个单位,再向下平移1个单位4.如图,点D 、E 分别在△ABC 的AB 、AC 边上,下列条件中:①∠ADE =∠C ;②=AE DE AB BC;③=AD AE AC AB . 使△ADE 与△ACB 一定相似的是A .①②B .②③C .①③D .①②③ 5.已知关于x 的方程2340−+=mx x ,如果m <0,那么此方程的根的情况是A .有两个不相等的实数根B .有两个相等的实数根C .无实数根D .不能确定 6.如图,△ABC 的顶点都在方格纸的格点上,那么sin A 的值为A .32B .34C .35D .457.如图,在ABCD 中,点E 在边AD 上,AC 与BE 交于点O ,:1:2=AE ED ,则△AOE 与△COB 的面积之比为A .1:3 B .1:9 C .1:2 D .1:48.已知二次函数22(1)=−−≤≤y x x x t ,当1=−x 时,函数取得最大值;当1=x 时,函数取得最小值,则t 的取值范围是A .11−≤≤tB .13−≤≤tC .1≥tD .13≤≤t二、填空题 (共16分,每题2分)9.如果tan αα=______. 10.如图,在△ABC 中,点D ,E 分别是边AB ,AC 上的点,DE ∥BC ,AD =1,BD =AE =2,则EC 的长为______.11.将二次函数225+=−y x x 用配方法化成2()=−+y a x h k 的形式为=y ______.12.点A (0,y 1),B (5,y 2)在二次函数24−+=y x x c 的图象上,y 1与y 2的大小关系是______.13.我国南宋数学家杨辉在《田亩比类乘除捷法》中记录了这样一个问题:“直田积八百六十四步,只云长阔共六十步,问长多阔几何?”其大意是:矩形面积是864平方步,其中长与宽和为60步,问长比宽多多少步?若设长为x 步,则可列方程为______.14.如图,矩形纸片ABCD 中,AB >AD ,E ,F 分别是AB ,DC 的中点,将矩形ABCD 沿EF 所在直线对折,若得到的两个小矩形都和矩形ABCD 相似,则用等式表示AB 与AD 的数量关系为______.15.函数242−+=y x x m 满足以下条件:当23<<x 时,它的图象位于x 轴的下方;当21−<<−x 时,它的图象位于x 轴的上方,则m 的值为______.16.如图,已知△ABC 是等边三角形,3AB =,点D 在AC 上,2AD CD =,点E 在BC 的延长线上,将线段DE 绕D 逆时针旋转90︒得到线段DF ,连接AF ,若//AF BE ,则AF 的长是______.三、解答题 (共68分,第17题4分,第18题8分,第19-20题,每题4分,第21-22题,每题5分,第23-26题每6分,第27-28题每题7分)17.计算:sin 60cos30tan 45︒−︒+︒.18.解方程:(1)228=x ; (2)2610−−=x x .19.若a 是关于x 的一元二次方程2231=−x x 的根,求代数式2(21)(25)−+−a a a 的值.20.如图,AD 与BC 交于O 点,∠A =∠C ,AO =4,CO =2,CD =3,求AB 的长.21.已知关于x 的一元二次方程2(4)30x m x m +−+−=.(1)求证:该方程总有两个实数根;(2)若该方程恰有一个实数根为非负数,求m 的取值范围.22.如图,在等腰△ABC 中,=AC AB ,90∠=︒CAB ,E 是BC 上一点,将E 点绕A 点逆时针旋转90︒到AD ,连接DE 、CD .(1)求证:△ABE ≅△ACD ;(2)若20∠=︒CDE ,求∠CED 的度数.23.已知二次函数22=−−+y x x c ,它的图象过点(2,5)−A ,并且与x 轴负半轴交于点B .(1)求二次函数的解析式和点B 坐标;(2)当22−<<x 时,结合函数图象,直接写出函数值y 的取值范围;(3)若直线=+y kx b 经过A ,B 两点,直接写出关于x 的不等式22+>−−+kx b x x c 的解集.24.如图,在菱形ABCD 中,AC ,BD 交于点O ,延长CB 到点E ,使=BE BC ,连接AE .(1)求证:四边形AEBD 为平行四边形;(2)连接OE ,若1tan 2∠=AEB ,AC =2,求OE 的长. 25.小明发现某乒乓球发球器有“直发式”与“间发式”两种模式.在“直发式”模式下,球从发球器出口到第一次接触台面的运动轨迹近似为一条抛物线;在“间发式”模式下,球从发球器出口到第一次接触台面的运动轨迹近似为一条直线,球第一次接触台面到第二次接触台面的运动轨迹近似为一条抛物线.如图1和图2分别建立平面直角坐标系xOy .图1 直发式 图2 间发式通过测量得到球距离台面高度y (单位:dm )与球距离发球器出口的水平距离x (单位:dm )的相关数据,如下表所示:表1 直发式B AC DEO表2 间发式根据以上信息,回答问题:(1)表格中m =______,n =______;(2)求“直发式”模式下,球第一次接触台面前的运动轨迹的解析式;(3)若“直发式”模式下球第一次接触台面时距离出球点的水平距离为d 1,“间发式”模式下球第二次接触台面时距离出球点的水平距离为d 2,则d 1 ______ d 2(填“>”“=” 或“<”).26. 在平面直角坐标系xOy 中,点(1,)−A m ,点(3,)B n 在抛物线2(0)=++>y ax bx c a 上.设抛物线的对称轴为直线=x t .(1)当2=t 时,①直接写出b 与a 满足的等量关系;②比较m ,n 的大小,并说明理由;(2)已知0(,)C x p 在该抛物线上,对于034<<x ,都有>>m p n ,求t 的取值范围.27. 如图,在ABC ∆中,AB AC =,120BAC ∠=︒.D 是AB 边上一点,DE AC ⊥交CA 的延长线于点E .(1)用等式表示AD 与AE 的数量关系,并证明;(2)连接BE ,延长BE 至F ,使EF BE =.连接DC ,CF ,DF .①依题意补全图形;②判断DCF ∆的形状,并证明.28. 在平面直角坐标系xOy 中,对于点A ,点B 和直线l ,点A 关于l 的对称点为点A ',点B 是直线l 上一点.将线段A B '绕点A '逆时针旋转90︒得到A C ',如果线段A C '与直线l 有交点,称点C 是点A 关于直线l 和点B 的“旋交点”.(1)若点A 的坐标为(1,2),在点1(1,2)C −,2(1,0)C −,3(1,1)C −−中,是点A 关于x 轴和点B 的“旋交点”的是______;(2)若点B 的坐标是(0,2)−,点A 、C 都在直线2y x =+上,点C 是点A 关于y 轴和点B 的“旋交点”,求点A 的坐标;(3)点A 在以(0,)t 为对角线交点,边长为2的正方形M (正方形的边与坐标轴平行)上,直线l :1=−y x ,若正方形M 上存在点C 是点A 关于直线l 和点B 的“旋交点”,直接写出t 的取值范围.参考答案一、选择题(共16分,每题2分)二、填空题(共16分,每题2分)1= ……………………3分 1= ……………………4分18. 解:(1) 228=x24=x12=−x ,22=x ……………………4分(2) 2610−−=x x26910−+=x x2(3)10−=x3−=x 13=x ,23=+x 分19. 解:根据题意知,2231−=a a ,所以2231−=−a a ,则:22222441256913(2(21)(5))123=−++−=−+=−+−+−a a a aa a a a a a a ……………………2分∴原式312=−+=−. ……………………4分20. 解:∠=∠A C ,AOB COD ∠=∠,AOB COD ∴∆∆∽,……………………2分 ∴AB AO CD CO =,即432AB =, 6AB ∴=. ……………………4分21.(1)证明:△22(4)41(3)(2)0m m m =−−⨯⨯−=−,∴此方程总有两个实数根. ……………………2分(2)解:212(4)30(1)(3)01,3+−+−=++−==−=−x m x m x x m x x m , ……………………4分该方程恰有一个实数根为非负数,30m ∴−,3m ∴.……………………5分 22.解:(1)Rt △ABC 中,90BAC ∠=︒,AB AC =,45ABC ACB ∴∠=∠=︒,由旋转可知:AD AE =,90DAE ∠=︒,90∠+∠=∠+∠=︒BAE CAE CAD CAE ,∠=∠BAE CAD ,在△BAE 与△CAD 中,=⎧⎪∠=∠⎨⎪=⎩AB AC BAE CAD AE AD ,∴△BAE ≅△CAD (SAS ) ……………………3分(2)△BAE ≅△CAD45∴∠=∠=︒ACD ABC ,454590ECD ∴∠=︒+︒=︒;90902070∴∠=︒−∠=︒−︒=︒CED CDE .……………………5分 23.解:(1)将A (2,5)−代入求得解析式为223=−−+y x x ……………………1分令y =0,解方程2230−−+=x x 得13=−x ,21=x 所以点B (3,0)−……………………2分 (2)54−<≤y……………………4分 (3)3<−x 或2>x……………………6分24.(1)证明:四边形ABCD 是菱形,∴AD ∥EB ,AD =BC ,BE =BC ,∴AD =BE ,∴四边形ABCD 是平行四边形. ……………………3分(2)解:四边形ABCD 是菱形,∴ OA=OC=112=AC ,AC ⊥BD ∴∠BOC=90°,四边形ABCD 是平行四边形∴AE ∥BD ,∴∠EAC =∠BOC =90°,在Rt △AEC 中,tan ∠AEB =12=AC AE ,AC =2, ∴AE =4,∴OE =分25. 解:(1)3.84,2.52; ……………………2分(2)由表1可知:“直发式”模式下,抛物线的顶点为(4,4),∴设此抛物线的解析式为2(4)4(0)=−+<y a x a ,把(0,3.84)代入,得23.84(04)4=−+a ,解得:0.01=−a , ……………………5分∴ “直发式”模式下,球第一次接触台面前运动轨迹的解析式为20.01(4)4y x =−−+;(3)=. ……………………6分26. 解:(1)①22=−=b t a,4b a ∴=−; ……………………1分 ②m >n . 理由如下:由①得24,4=−∴=−+b a y ax ax c点A (-1,m )、点B (3,n )在抛物线上,∴m=a +4a +c =5a +c ,n =9a -12a +c =-3a +c .∵a >0,∴5a >-3a .∴5a +c >-3a +c .∴m >n . ……………………3分(2) ∵a >0:当x ≥t 时,y 随x 的增大而增大,当x ≤t 时,y 随x 的增大而减小.当034<<x 时,0,3>∴≤<p n t x当t ≤-1时,t ≤-1<3,∴n >m ,不符合题意.当-1<t ≤3时,设点A (-1,m )关于抛物线对称轴x =t 的对称点为点''(,)A A x m , 则',>A x t 可得'2 1.=+A x t由m >p 知021,+>t x当034<<x 时,214+≥t32∴≥t t ∴的取值范围是332≤≤t .(结合图象分析) ……………………6分 27.解:(1)结论:2AD AE =.……………………1分 理由:DE ⊥AE , 90E ∴∠=︒,∠BAC =120°,60DAE ∴∠=︒,30ADE ∴∠=︒,2AD AE ∴=;……………………2分 (2)①图形如图所示: ……………………3分②结论:DFC ∆是等边三角形.……………………4分理由:延长AE 到R ,使得ER AE =,连接BR ,RF ,DR . ⊥DE AR .AE ER =,DR DA ∴=,∠DAE =60°,ADR ∴∆是等边三角形,60ADR DRA ∴∠=∠=︒,=AE RE ,AEB REF ∠=∠,EB EF =,()AEB REF SAS ∴∆≅∆, ……………………5分 AB RF ∴=,60EAB ERF ∠=∠=︒,AB = AC ,RF AC ∴=,∠DRF =∠DAC =120°,RD AD =,()RFD ACD SAS ∴∆≅∆,DF DC ∴=,RDF ADC ∠=∠,60FDC RDA ∴∠=∠=︒,DFC ∴∆是等边三角形. ……………………7分28.解:(1)1C ,2C ;……………………2分 (2)做辅助线如图,可求证()A EC BDA AAS ''≅∆设(,2)A m m +,则(,2)A m m '−+,其中0m >,BD OG EF m ∴===,2A G m '=+,224CE A D m m ∴='=++=+,A E BD m '==,24FO EG A G A E m m m ∴=='+'=++=+,44CF EC EF m m ∴=−=+−=.(4,4)C m ∴+,424m ∴+=+,解得:2m =,(2,4)A ∴; ……………………4分(3)t 的取值范围为53−≤≤t . ……………………7分。

北京市海淀区北京大学附属中学2024-2025学年九年级上学期期中考试数学试卷(含答案)

北京市海淀区北京大学附属中学2024-2025学年九年级上学期期中考试数学试卷(含答案)

2024~2025学年度第一学期期中练习九年级数学学科试卷2024年11月考生须知:1.本试卷共8页,共三道大题,28道小题.满分100分.考试时间120分钟.2.在试卷和答题卡上准确填写班级、姓名.3.答案一律填涂或书写在答题卡相应位置上,用黑色字迹签字笔作答.4.考试结束,只交答题卡,并妥善保管试卷.一、选择题(共16分,每题2分)第1~8题均有四个选项,符合题意的选项只有一个.1.下列图形中,既是中心对称图形也是轴对称图形的是( ).A .B .C .D .2.在平面直角坐标系内,点关于原点的对称点Q 的坐标为( ).A .B .C .D .3.一元二次方程的解是( ).A .,B .C .,D .,4.抛物线的顶点坐标是( ).A .B .C .D .5.如图是一个标准的五角星,若将它绕旋转中心旋转一定角度后能与自身重合,则至少应将它旋转的度数是( ).A .B .C .D .6.北京市2021年人均可支配收入为7.5万元,2023年达到8.18万元,若2021年至2023年间每年人均可支配收入的增长率都为x ,则下面所列方程正确的是( ).A .B.()3,2P -()3,2-()3,2()2,3-()3,2--20x x +=10x =21x =121x x ==11x =-21x =10x =21x =-()212y x =-+()1,2()1,2-()1,2-()1,2--144︒90︒72︒60︒()28.1817.5x +=()27.518.18x +=C .D .7.如图所示,在4×4的正方形网格中,绕某点旋转一定的角度,得到,则其旋转中心是( ).A .点AB .点BC .点CD .点D8.如图,是边长为4的等边三角形,D 是BC 的中点,E 是直线上的一个动点,连接,将线段绕点C 逆时针旋转得到,连接.下列说法中正确的个数是( ).①;②;③;④点E 的运动过程中,的最小值是1.A .1个B .2个C .3个D .4个二、填空题(共16分,每题2分)9.请写出一个图象开口向上,且与y 轴交于点)的二次函数的解析式__________.10.关于x 的一元二次方程有一个根是,则__________.11.若关于x 的方程有两个相等的实数根,则实数a 的值是__________.12.如图,为的直径,点C 是上的一点,,则__________°.13.点,在抛物线上,则__________(填“>”“<”或“=”).14.如图,在平面直角坐标系中,点,,以点B 为旋转中心,把线段顺时针旋转得到线段,则点C 的坐标为__________.()27.518.18x -=+()28.1817.5x -=MNP △111M N P △ABC △AD EC EC 60︒FC DF 2DC =FCD ECA ∠=∠CE CF =DF ()0,1230x x m -+=1x =m =20x x a -+=AB O e O e 70ABC ∠=︒BAC ∠=()13,A y -()22,B y 22y x =1y 2y xOy ()0,2A ()1,0B BA 90︒BC15.如图,将绕顶点C 逆时针旋转得到,且点B 刚好落在上,若,,则等于__________°.16.已知函数,下列结论:①若该函数图象与x 轴只有一个交点,则;②方程至少有一个整数根;③若,则的函数值都是负数;④不存在实数a ,使得对任意实数x 都成立.所有正确结论的序号是__________.三、解答题(共68分,第17题8分,18~25题每题5分,第26题6分,第27、28题每题7分)解答应写出文字说明、演算步骤或证明过程.17.解方程:(1);(2).18.如图,在平面直角坐标系中,抛物线的部分图象经过点,.(1)求该抛物线的解析式;(2)结合函数图象,直接写出时,x 的取值范围.19.已知m 是方程的一个根,求代数式的值.20.已知:如图,为锐角三角形,.求作:一点P ,使得.ABC △A B C ''△A B ''25A ∠=︒45BCA =∠'︒A BA '∠()211y ax a x =-++1a =()2110ax a x -++=11x a<<()211y ax a x =-++()2110ax a x -++≤24250x -=2280x x +-=xOy 22y ax x c =++()0,3A -()1,0B 0y <2220x x --=()()()22111m m m -+-+ABC △AB AC =APC BAC ∠=∠作法:①以点A 为圆心,长为半径画圆;②以点B 为圆心,长为半径画弧,交于点C ,D 两点;③连接并延长交于点P .点P 即为所求.(1)使用直尺和圆规,依作法补全图形(保留作图痕迹);(2)完成下面的证明:证明:连接,.∵,∴点C 在上.∵,∴∠______=∠______.∴.∵点D ,P 在上,∴.(__________)(填推理的依据)∴.21.如图,是等边三角形,点D 在边上,以为边作等边,连接,.求证:.22.已知关于x 的一元二次方程.(1)求证:方程总有两个实数根;(2)若方程两个根差为1,求此时m 的值.23.学校计划利用一片空地建一个长方形自行车车棚,其中一面靠墙,墙的长度为8米.在与墙平行的一面开一个2米宽的门,已知现有的木板材料可修建的总长为26米,且全部用于除墙外其余三面外墙的修建.(1)长方形车棚与墙垂直的一面至少为__________米;(2)如图,为了方便学生取车,施工单位决定在车棚内修建几条等宽的小路(如图中阴影),若车棚与墙AB BC A e DA A e PC BD AB AC =A e BC BD =12BAC CAD ∠=∠A e 12CPD CAD ∠=∠APC BAC ∠=∠ABC △AC CD CDE △BD AE BD AE =()2320m x x m -+++=垂直的一面长按(1)中的最小长度,则停放电动车的区域面积能否达到54平方米,若能,此时小路的宽度是多少米?若不能,请说明理由.24.如图,是直径,是的一条弦,且于点E ,连接、和.(1)求证:;(2)若,,求的半径.25.有机肥作为一种富含有机质及多样营养元素的优质肥料,对于土壤改良及肥力提升具有显著效果.将其应用于小树施肥,不仅能有效供给必要的养分,还能优化土壤结构,进而促进小树的茁壮成长.在针对金叶女贞和连翘这两种植物的培育过程中,我们统一施用了A 种有机肥,并确保了它们在浇水、松土、除草等抚育管理措施上的一致性.以下表格详细记录了A 种有机肥对这两种植物增长高度的影响:天数t /天1530456090金叶女贞增长的高度 3.3 6.39.612.615.919.3连翘增长的高度 1.14.09.115.636.2(1)通过分析数据,发现与t 之间近似满足正比例函数关系.请在给出的平面直角坐标系中,画出关于t 的函数的图象;(2)观察图象,补全表格(结果保留小数点后一位);(3)实验前,测量金叶女贞的高度为,连翘的高度为,大概在第__________天时,连翘和金叶女贞一样高(结果保留到整数).26.已知关于x 的二次函数上两个不同的点,.(1)求顶点坐标;(2)若且时,总有,求m 的取值范围.27.已知,点D 是直线上一动点(不含B 点),连接,将线段绕点A 逆时针旋转得到线段,连接线段,过点E 作交直线于点F .AB O e CD O e CD AB ⊥AC BD OC ACO D ∠=∠2BE =CD =O e 1cm h 2cmh 1h 2h 43.6cm 31.2cm 221y mx mx m =-+-()11,A x y ()22,B x y 145x <<221x m =-12y y <60ABC ∠=︒BC AD AD 60︒AE ED EF AB ⊥AB图1备用图(1)如图1,点D 在点B 右侧时,①依题意补全图形;②用等式表示与的数量关系,并证明;③用等式表示线段,,之间的数量关系,并证明;(2)当点D 在直线上运动时,请直接写出线段,,之间的数量关系.28.在平面直角坐标系中,点,点为定点,对于点P 作如下变换,将点P 绕点M 逆时针旋转得到点,再将点绕点N 逆时针旋转后得到点Q ,则称点Q 为点P 的“双逆转点”.备用图1 备用图2(1)若点P 为线段上的一点,则在点,,中,点P 的“双逆转点”可能为__________;(2)若点P 的“双逆转点”在x 轴上,请写出一个满足条件的点P 的坐标__________;(3)若点P 坐标为,点Q 为点P 的“双逆转点”,①当长度最短时,求m 的值;②已知半径为2,若存在过点Q 的直线被所截得的弦长为2,则m 的取值范围为__________.EAB ∠EDB ∠BF BD AB BC BF BD AB xOy ()0,2M ()1,0N 90︒1P 1P 90︒MN ()1,1A --()1,0B -()2,1C -(),4m m +PQ N e N e初三第一学期期中练习答案和评分标准数学2024.11一、选择题(本题共6分,每小题2分)题号12345678答案CADACBBD二、填空题(本题共16分,每小题2分)9.(答案不唯一) 10.2 11.12.2013.>14.15.40 16.②④(答对一个给1分,多选或错选不得分)三、解答题(共68分,第17题8分,18~25题每题5分,第26题6分,第27、28题每题7分)17.(1)(一个答案2分,如果只会移项给1分)(2),,.(不限方法,不全对的酌情给分)18.(1)由题意知,(2分)解得,解析式为.(3分)(2).(5分)19.解.原式.(3分)∵,∴,(4分)∴原式.(5分)20.(1)如图所示.(2分)(2),,一条弧所对的圆周角等于它所对圆心角的一半.(5分)21.证明:∵,均为等边三角形,∴,,.21y x =+14()3,152x =±2280x x +-=14x =-22x =3230c a =-⎧⎨+-=⎩31c a =-⎧⎨=⎩223y x x =+-31x -<<()()222212123m m m m m =--++=--2220m m --=222m m -=231=-=-BAC BAD ABC △CDE △AC BC =CD CE =60ACB ACE ∠=∠=︒在与中,,∴≌(SAS ),(4分)∴.(5分)22.(1)∵,∴方程总有两个实数根.(2分)(2)解:∵,∴,∴,.∵方程两个根的差为1,∴或0.∴或.(5分)23.解:(1).(2分)(2)设小路的宽为a 米,根据题意得,.(4分)整理得;,解得:(舍去),.(5分)答:小路的宽为1米.24.(1)证明;∵,∴,∵,∴.(2分)(2)解,设的半轻为r ,则.∵,∴(3分)在中,,解得.( 5分)25.(1)(2分)(2)23~30之间均可.(4分)(3)78~86之间均可.(5分)26.(1)由题意可知:,∵,∴顶点坐标为.(2分)BCD △ACE △60AC BC ACB ACE CD CE =⎧⎪∠=∠=︒⎨⎪=⎩BCD △ACE △BD AE =()()()234210m m m ∆=+-+=+≥()2320x m x m -+++=()()210x m x ---=12x m =+21x =22m +=0m =2-10x ≥()()821054a a --=214130a a -+=13a =1a =OA OC =ACO A ∠=∠A D ∠=∠ACO D ∠=∠O e 2OE r =-CD AB ⊥1122CE DE CD ===⨯=Rt OCE △(()2222r r +-=3r =0m ≠()()2222121111y mx mx m m x x m x =-+-=-+-=--()1,1-法2:对称轴,当时,,∴顶点坐标为.(2分)(2)当时,对称轴是直线,当时,y 随x 的增大而增大;当时,y 随x 的增大而减小.∵,∴点始终在对称轴右侧,若A 、B 在对称轴右侧,,即时,∵,∴,∴,若A 、B 在对称轴异侧,,即时,关于对称轴的对称点是.∵,∴,即,∴(舍) .综上所述:.(4分)当时,对称轴是直线,当时,y 随x 的增大而减小;当时,y 随x 的增大而增大.∵,,∴,,关于对称轴的对称点是 .∵,∴,即,2122b m x a m-=-=-=1x =211y m m m =-+-=-()1,1-0m >1x =1x ≥1x <145x <<()11,A x y 2211x m =->1m >12y y <215m -≥3m ≥2211x m =-<1m <()22,B x y ()222,B x y '-12y y <225x -≥()2215m --≥1m ≤-3m ≥0m <1x =1x ≥1x <221x m =-145x <<2211x m =-<1145x <<<()22,B x y ()222,B x y '-12y y <224x -≤()2214m --≤∴,∴.(6分)综上所述:或.27.(1)①补全图形,如图所示(1分)②,(2分)理由如下:∵线段绕点A 逆时针旋转得到线段,∴,,∴是等边三角形,∴.∵,∴.∵在四边形中,,∴,∴.(3分)③,理由如下:(4分)延长线段至点G 使得,连结,.∵,,∴.∵是等边三角形,∴.在和中,,∴≌(SAS ),(5分),∴.∵,∴.∵,,,∴.(6分)(2)当点D 在点B 右侧时,,当点D 在点B 左侧时,.(7分)12m ≥-102m -≤<102m -≤<3m ≥180EAB BDE ∠+∠=︒AD 60︒AE AE AD =60EAD ∠=︒AED △60AED ∠=︒60ABC ∠=︒180120ABD ABC ∠=︒-∠=︒ABDE 360EAB ABD BDE DEA ∠+∠+∠+∠=︒12060360EAB BDE ∠+︒+∠+︒=︒180EAB BDE ∠+∠=︒2BF AB BD =+BA AG BD =EG EB 180EAG EAB ∠+∠=︒180EAB EDB ∠+∠=︒EAG EDB ∠=∠AED △EA ED =EGA △EBD △EA EDEAG EDB GA BD =⎧⎪∠=∠⎨⎪=⎩EGA △EBD △EG EB =EF BF ⊥GF FB =BG BA GA =+GA BD =2BG BF =2BF BA BD =+2BF AB BD =+2BF AB BD =-28.(1)A ,C .(2分)(2)答案不唯一,纵坐标为1即可.(3分)(3)①(5分)②或(7分)2m =-m≥m ≤。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一学期 期中考试初三数学试卷一、选择题:(每题3分,共24分)1.计算()23-的结果是 ( )A.3B.3-C.3±D.92.下列各式中与2是同类二次根式的是 ( ) A. 12 B. 24 C. 32 D. 233.下列运算中正确的是 () A .523=+ B .82)8()2(-⨯-=-⨯-C .322944= D .1882-=4.一元二次方程0422=-+x x 的根的情况是 () A .有两个相等的实数根 B .有两个不相等的实数根C .只有一个相等的实数根D .没有实数根5.用配方法解一元二次方程0782=++x x ,则方程可变形为 () A .9)4(2=-x B .57)8(2=+xC .16)8(2=-xD .9)4(2=+x6.在某次同学聚会上,每两人都互赠了一件礼物,所有人共送了210份礼物,设有x 人参加这次聚会,则列出方程正确的是 () A.210)1(=-x x B.2102)1(=-x xC. 210)1(=+x xD. 2102)1(=+x x7.如图,⊙O 的半径OA 与弦AB 相等,C 点为⊙O 上一点,则∠ACB 的度数是 () A.60° B. 45° C.30° D.15° 8.如图,在平面直角坐标系中,⊙A 与y 轴相切于原点O ,平行于x 轴的直线交⊙A 于M 、N 两点,若点M 的坐标是(—4,—2),则点N 的坐标为 ()A.(—1,—2)B.(1,—2)C.(—1.5,—2)D. (1.5,—2)二、填空题:(每题2分,共16分) 9.2-x 在实数范围内有意义,则x 的取值范围是 .10.一元二次方程0132=--x x 的解是 .第7题第8题11.等腰三角形两边的长分别为方程02092=+-x x 的两根,则三角形的周长是 .12. 关于x 的一元二次方程04)2(22=-+-+m mx x m 有一根为0,则m= .13.实数a 在数轴上的位置如图所示,化简()2|1|2a a -+-= .14.对于任意不相等的两个数a,b ,定义一种运算*如下:b a b a b a -+=*,如523232*3=-+=,那么)5(*3-= . 15. 如图,△ABC 内接于⊙O ,AC 是⊙O 的直径,∠ACB =500,点D 是BAC 上一点,则∠D =________.16. 如图,在ABC Rt ∆中,∠C =90°,AC=6,BC=8,则△ABC 的内切圆半径r= . 三、解答题:(共60分) 17.计算:(每题5分,共10分)(1)()22832264÷+- (2)253230÷⨯ 18.(本题6分)已知关于x 的方程0102=-+kx x 的一个解与分式方程5252=-+x x 的解相等. (1)求k 的值; (2)求方程0102=-+kx x 的另一个解.19.(本题6分)先化简,再求值:)2(24422x x x x x +÷+++,其中3=x 20.(本题6分)如图,AB 是⊙O 的直径,AC 是⊙O 的弦,以OA 为直径的⊙D 与AC 相交于点E.(1)若AC=16,求AE 的长?(2)若C 点在⊙O 上运动(不包括A 、B 两点),则在运动的过程中AC 与AE 有何特殊的数量关系?请把你探究得到的结论填写在横线上.21.(本题7分)大众电影院为吸引学生观看电影,推出如下的收费标准: 江南中学组织初三学生观看电影,共支付给电影院3750元,请问共组织了多少学生观看电影?22.(本题8分)太阳能作为一种可再生的清洁能源备受国家重视。

在政府的大力扶持下,某厂生产的太阳能电池板销售情况喜人。

一套太阳能电池板的售价在7—9月间按相同的增长率递增。

请根椐表格中的信息,解决下列问题:(1)表格中a 的值是多少?为什么?(2)7—8月电池板的售价提高了,但成本价也提高了50%,该电池板8月份的销售利润率只有7月份的一半,则b = ;c = .23.(本题8分)如图,BD 是⊙O 的直径,OA ⊥OB,M 是劣弧AB 上一点,过点M 点作⊙O 的切线PM 交OA 的延长线于P 点,DM 与OA N 点.(1)PM 与PN 是否相等?为什么? (2)若BD =12,AO = 32P A ,过点B 作BC ∥MP 交⊙O 于C 点,求BC 的长. 24.(本题9分)在直角梯形ABCD 中,∠ABC=90°,AD=4,CD=10,BC=12,⊙C 的半径是4.D -1012a第13题 50°O A C B D 第15题 第16题月份 7月 8月 9月 成本价(万元/套) b c 22.5 销售价(万元/套) 25 a 36E 点以每秒3个单位的速度沿着D→C→B→A 运动. 在E 点运动的同时,以E 点为圆心,⊙E 的半径以每秒1个单位的速度逐渐增大(当E 点在初始位置D 点时,⊙E 的半径为0). 当E 点运动到A 点时,整个运动全部停止。

设运动的时间为t 秒。

⑴当E 点在CD 边上运动时,当t 为何值时,⊙E 与⊙C 相切?⑵在整个运动过程中,当t 为何值时,⊙E 与⊙C 最后一次相切?⑶在整个运动过程中,⊙E 与⊙C 共有多少次相切?t 的值分别为多少?2011—2012学年度 第一学期 期中考试初三数学参考答案 (2011.10)一、选择题:(每题3分,共24分)1.A 2.C 3.D 4.B 5.D 6.A 7.C 8.A二、填空题:(每题2分,共16分) 9.2≥x 10.2133,213321-=+=x x 11.13或14 12.2 13.1 14.22- 15.40° 16.2 三、解答题:(共60分)17.(1)()22832264÷+-=232+化简83正确得1分,832264+-计算正确得2分,得出正确答案得2分,共5分(2)253230÷⨯=22 乘法计算正确得2分,除法计算正确得2分,得出正确答案得1分,共5分18.(1)k= -3 计算出x=5得2分,计算出k=-3得2分,共4分.(2)另一个解为 -2 计算正确得2分.19. )2(24422x x x x x +÷+++=x x x x x 1)2(12)2(2=+⋅++ 当3=x 时,原式=33 化简中间过程正确得2分,化简结果正确得2分,代入求值正确得2分,共6分.20.(1)AE=8 (2)若C 点在⊙O 上运动(不包括A 、B 两点),则在运动的过程中AC=2AE得到AC ⊥OE 得2分,由垂径定理得到AE=8得2分,得到(2)的结论2分,共6分.备用图21.(1)若人数不超过100人,则人数为3750÷30=125人,与题意不符(1分)(2)若人数超过100人,设人数为x 人: 得到方程3750)1010030(=--x x (3分) 解得250,15021==x x (5分) 当x=150时,团体票价为25元;当x=250时,团体票价为15元,与题意不符 经检验x=150符合题意 (6分)答:组织了150人观看电影。

(7分)22.(1)设增长率为x36)1(252=+x (2分)2.2,2.021-==x x x=-2.2不合题意,所以x=0.2 (3分)a=30)2.01(25=+⨯ (4分)(2)b=15 c=22.5 (每空2分,共4分)23.(1)PM=PN ………………………(1分)连接OM∵PM 切⊙O 于M∴∠OMP=90°∴∠PMN+∠DMO=90°…………… (2分)∵OA ⊥OB∴∠1+∠D=90°∵OM=OD∴∠DMO=∠D∴∠PMN=∠1∵∠1=∠2∴∠PMN=∠2∴PN=PM …………………………… (4分)(2)∵OA ⊥OB∴∠3+∠POM=90°∵∠OMP=90°∴∠P+∠POM=90°∴∠P=∠3∵CB//PM又∵PM ⊥OM∴CB ⊥OM 即∠OEB=90°∵∠OEB=∠OMP=90°,∠P=∠3∴△OEB ∽△PMO ……………………… (6分)∴OMBE PO BO =∵AO = 32 P A ∴53==PO AO PO BO ∴BE=3.6……………………… (7分)∵BC ⊥OM∴BC=2BE=7.2……………………… (8分)24. (1)当E 在CD 边上运动时(3100<<t ) 当⊙C 与⊙E 外切时,1043=++t t5.1=t ……………… (2分)当⊙C 与⊙E 内切时,1043=+-t t3=t ……………… (4分)答:当E 点在CD 上运动时,t=1.5或3秒。

本小题共4分(2)AB=6 当⊙C 与⊙E 最后一次相切时,E 点在AB 上(328322<<t ) BE=3t-22,BC=12,CE=t+4222)223(12)4(-+=+t t ………… (5分)答:当t=9时,两圆最后一次相切………… (6分)本小题共2分(3)共相切六次,答出六次给1分,写出3.5和7给1分,写出其余四个给1分本小题共3分A DB C E A D B C E。

相关文档
最新文档