圆的基本性质(竞赛)

合集下载

圆竞赛知识点总结

圆竞赛知识点总结

圆竞赛知识点总结圆是我们在数学中常见的一个几何形状,它在数学的各个分支中都有着重要的地位。

在数学竞赛中,圆的知识是必不可少的,它涉及了很多基础的几何知识和运算技巧。

本文将对圆的相关知识进行总结,希望可以对参加数学竞赛的同学有所帮助。

1. 圆的基本概念圆是平面上到一个定点距离等于一个定长的点的全体。

这个定点叫做圆心,这个定长叫做半径。

而圆的直径是穿过圆心的两个点,并且圆的任何一条直径都被分成两个半圆。

2. 圆的基本性质(1)圆的面积和周长圆的面积公式是S=πr^2,其中r是圆的半径。

而圆的周长(也就是圆的边长)公式是C=2πr。

(2)圆的内接四边形和外接四边形圆的内接四边形是指在圆内部的四边形,而外接四边形是指在圆外部的四边形。

圆的内接四边形和外接四边形在数学竞赛中常常需要应用一些性质来进行相关的计算。

3. 圆的相关定理(1)切线与圆的交点圆的切线与圆的交点的性质是数学竞赛中经常考察的问题。

具体来说,如果一个线段与圆只有一个交点,那么这个线段就可以称为是圆的切线。

切线与圆的交点有着很多相关的性质,如切线与切线的交点、切线与半径的交点等。

(2)弦的性质圆上的弦是在圆内部连接两点的线段。

圆的弦有着很多性质,如弦与切线的交点、弦长的计算等。

在数学竞赛中,考察弦的性质是一个很常见的问题。

(3)圆心角和弧度圆心角是指以圆心为顶点的角。

圆心角的角度是以角的顺时针旋转所在的弧长来度量的。

而弧度是用角度的弧长来度量的。

圆心角和弧度在数学竞赛中是比较常见的计算题目。

(4)圆的判定定理圆的判定定理是指给定几个点的时候如何确定一个圆。

这个问题在数学竞赛中也是比较常见的题目。

4. 圆与其他图形的关系(1)圆与三角形的关系圆和三角形有着很多关系,比如三角形内外接圆的性质、三角形内外接圆的圆心位置等。

圆和三角形的关系是数学竞赛中经常考察的内容。

(2)圆与四边形的关系圆和四边形的关系也是数学竞赛的常见题目。

比如四边形内外接圆的性质、四边形内接圆和外接圆的圆心位置等。

圆基本性质(竞赛)

圆基本性质(竞赛)

1 / 3圆的基本性质〖知识点〗圆、圆的对称性、点和圆的位置关系、不在同一直线上的三点确定一个圆、三角形的外接圆、垂径定理逆定理、圆心角、弧、弦、弦心距之间的关系、圆周角定理、圆内接四边形的性质 〖大纲要求〗1. 正确理解和应用圆的点集定义,掌握点和圆的位置关系;2. 熟练地掌握确定一个圆的条件,即圆心、半径;直径;不在同一直线上三点。

一个圆的圆心只确定圆的位置,而半径也只能确定圆的大小,两个条件确定一条直线,三个条件确定一个圆,过三角形的三个顶点的圆存在并且唯一;3. 熟练地掌握和灵活应用圆的有关性质:同(等)圆中半径相等、直径相等直径是半径的2倍;直径是最大的弦;圆是轴对称图形,经过圆心的任一条直线都是对称轴;圆是中心对称图形,圆心是对称中心;圆具有旋转不变性;垂径定理及其推论;圆心角、圆周角、弧、弦、弦心距之间的关系; 4. 掌握和圆有关的角:圆心角、圆周角的定义及其度量;圆心角等于同(等)弧上的圆周角的2倍;同(等)弧上的圆周角相等;直径(半圆)上的圆周角是直角;90°的圆周角所对的弦是直径;5. 掌握圆内接四边形的性质定理:它沟通了圆内外图形的关系,并能应用它解决有关 问题;6. 注意:(1)垂径定理及其推论是指:一条弦①在“过圆心”②“垂直于另一条弦”③“平分这另一条弦”④“平分这另一条弦所对的劣弧”⑤“ 平分这另一条弦所对的优弧”的五个条件中任意具有两个条件,则必具有另外三个结论(当①③为条件时要对另一条弦增加它不是直径的限制),条理性的记忆,不但简化了对它实际代表的10条定理的记忆且便于解题时的灵活应用,垂径定理提供了证明线段相等、角相等、垂直关系等的重要依据;(2)有弦可作弦心距组成垂径定理图形;见到直径要想到它所对的圆周角是直角,想垂径定理;想到过它的端点若有切线,则与它垂直,反之,若有垂线则是切线,想到它被圆心所平分;(3)见到四个点在圆上想到有4组相等的同弧所对的圆周角,要想到应用圆内接四边形的性质。

《圆的基本性质》 省赛获奖-完整版课件

《圆的基本性质》 省赛获奖-完整版课件
B
C
OA
大于半圆的 弧叫做优弧 (用三个点 表示)如弧
BCA
C
小于半圆的 弧叫做劣弧.
如弧AB
B
OA
例1 已知:如图24-17,AB,CD为⊙O的直径.
求证:AD∥BC.
证明:连接AC,DB. ∵AB,CD为⊙O的直径,
∴OA=OB OC=OD
∴四边形ADBC为平行四边形, ∴AD∥BC.
这节课我们学习了 什么知识,我们有什么 新的感受?
则有:
dp
点P在⊙O内d<rr点P在⊙O上 点P在⊙O外
d=r
d
r
p
d>r P d
r
练习:
1.已知⊙ O的半径为4cm.如果点P到圆心O的距离 为4.5cm,那么点P与⊙ O有怎样的位置关系?如
果点P到圆心O的距离分别为4cm、3cm呢?
解:⊙ O的半径r= 4cm, 记点P到圆心O的距离为d. d= 4.5cm时,点P在圆外; d= 4cm时,点P在圆上; d= 3cm时,点P在圆内.
如图:以O为 圆心的圆,记 作:“⊙O”, 读作“圆O”.
o
r A
由圆的定义可知: (1) 圆上的各点到定点(圆心O)的距
离等于定长(半径的长r); (2)到定点的距离等于定长的点都在圆上
因此,圆心为O、半径
or
为r的圆可以看成是所有到 定点O的距离等于定长r的
A 点组成的图形.
设⊙O 的半径为r,点P到圆心的距离OP=d,
圆是生活中常见的 图形,许多物体都 给我们以圆的形象.
问题:为什么自古到今从古代的 马车到现在的自行车他们的轮子 都做成圆的,而不做成方形了或 三角形了 ?
F
圆的定义: 在一个平面内,线段OA饶它的一 个端点O旋转一周,另一个端点A随之旋转所形 成的的图形叫做圆(circle).固定的端点O叫做 圆心(center of a circle),线段OA叫做半径 (radius).

圆的基本性质

圆的基本性质

圆的基本性质圆是平面几何的重要内容之一,圆的基本性质具有非常广泛的应用,因此,它也是数学竞赛命题的热点.一、基础知识圆的基本性质有:1.圆是轴对称图形,也是中心对称图形.对称轴是任何一条直径所在的直线,对称中心是它的圆心,并且具有绕其圆心旋转的不变性.2.直径所对的圆周角是直角.3.垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.4.在同圆或等圆中,两个圆心角和它所对的两条弧、两条弦以及两个弦心距这四组量中,如果其中一组量相等,则其它三组量也都分别相等.5.如果弦长为2a,圆的半径为R,那么弦心距d为.例1 已知⊙O的半径OA=1,弦AB、AC的长分别是、.求∠BAC的度数.图1导析:如图1,作OD⊥AB,OE⊥AC,则AD=/2,AE=/2.在Rt△ODA中,cos∠OAD=/2,则∠OAD=45°;在Rt△OEA中,cos∠OAE=/2,则∠OAE=30°.当AC、AB位于OA两侧时,有∠BAC=∠OAB+∠OAE=75°;当AC、AB位于OA同侧时,有∠BAC=∠OAB-∠OAE=15°.说明:本题入手不难,能否完整作答,关键在于对弦AB、AC与直线OA的位置关系进行讨论.例2 如图2,⊙O是锐角△ABC的外接圆,H是两条高线的交点,OG是外心O到BC边的垂线段.求证:OG=(1/2)AH.图2导析:作直径CE,连结EB、AE,则AE⊥AC.又BH⊥AC,∴EA∥BH.同理可证EB∥AH.∴四边形AEBH是平行四边形.∴AH=EB.在Rt△CEB中,OG∥EB,OC=OE,∴OG是△CEB的中位线,OG=(1/2)EB.故OG=(1/2)AH.二、综合应用由于圆的问题知识容量大,综合性强,方法涉及面广,因而在处理有关圆的问题时,常常要构造直角三角形和寻找相似三角形,利用勾股定理和相似三角形的性质来解决.例3 已知半径为2的⊙O有两条互相垂直的弦AB和CD,其交点E到圆心O的距离为1,求AB2+CD2的值.导析:按照AB和CD都不是直径,AB和CD中有一条是直径分别计算.图3如果AB和CD都不是直径,如图3,作AB和CD的弦心距OF和OG,连结OB、OD,则∠FEG=∠EGO=90°.∴四边形OFEG是矩形,则OF=EG,又OF2+OG2=OE2,∴AB2+CD2=4(AF2+DG2)=4(R2-OF2+R2-OG2)=4(2R2-OE2)=28,其中R为⊙O的半径,下同.如果AB和CD中有一条是直径,不妨设AB是直径,则E为CD的中点.由垂径定理,得(1/2CD)2=AE·EB=(R+OE)(R-OE)=R2-1.∴CD2=4(R2-1)=12.又AB2=4R2=16.于是,AB2+CD2=28.综上可得AB2+CD2=28.例4 已知点A、B、C、D顺次在圆O上,,BM⊥AC,垂足为M.求证:AM=DC+CM.图4导析:由于DC和CM不在一条直线上,要证明其和等于AM,可延长DC,使延长部分等于CM.延长DC到N,使CN=CM(如图4),则∠BCN=∠BAD.又∠ACB=∠ADB,而,则∠ACB=∠BAD,AB=AD,于是∠BCN=∠BCM.从而推知△BCN≌△BCM,得BM=BN.因∠BAM=∠BDM,所以△BAM≌△BDN.得AM=DN=DC+CM.说明:此题即为著名的阿基米德折弦定理.例5 △ABC为锐角三角形,过顶点A、B、C分别作此三角形外接圆的三条直径AA1、BB1、CC1,求证△ABC的面积等于△A1BC、△AB1C、△ABC1的面积之和.图5导析:注意到AA1、BB1、CC1为三角形外接圆的直径,而直径所对的圆周角为直角,联想到三角形垂心的性质,即垂心与各顶点的连线垂直于对边,从而可通过三角形的垂心将△ABC分割为与所求的三个三角形面积分别相等的三个三角形.如图5,设H是△ABC的垂心,连结AH、BH、CH,则AH⊥BC,BC1⊥BC,∴AH∥BC1.同理可证BH∥AC1.∴AHBC1为平行四边形.∴S△AHB=S△ABC1.同理可证S△AHC=S△AB1C,S△BHC=S△A1BC.因此S△ABC=S△AHC+S△AHB+S△BHC=S△AB1C+S△ABC1+S△A1BC.三、强化训练1.如图6,AB为半圆的直径,C为半圆上一点,CD⊥AB,垂足为D,若CD=6,AD∶DB=3∶2,则AC·BC等于().图6A.15B.30C.60D.902.自圆外一点P,引圆的割线PAB、PCD,并连结AC、BD、AD、BC,则图中相似三角形的对数有().A.2对B.3对C.4对D.5对3.以AB为直径作一个半圆,圆心为O,C是半圆上一点,且OC2=AC·BC,则∠CAB=______.4.在△ABC中,∠C=3∠A,a=27,c=48,则b的值是______.5.已知⊙O中,半径r=5cm,AB、CD是两条平行弦,且AB=8cm,CD=6cm,求AC的长.6.一个内接于圆的六边形的五条边的长都为81,只有第六边AB 的长为31,求从B出发的三条对角线长的和.参考答案与提示1.B.先分别求出AD、DB,再用三角形面积公式得AC·BC=AB·CD.2.C.3.15°或75°,由三角形的面积公式及题设条件可得CD=(1/2)OC,从而∠AOC=30°,由圆的对称性可得有两种情况.4.35.先三等分弧,两次使用折弦定理即可算得.5.或5或7.分AB、CD在圆心同侧和异侧两种情况完成.先求出AB、CD间的距离.6.384.重复使用折弦定理即可.摘自《中学数学参考》。

九年级数学竞赛讲座圆的基本性质附答案

九年级数学竞赛讲座圆的基本性质附答案

【例题求解】【例1】在半径为1的⊙O 中,弦AB 、AC 的长分别为3和2,则∠BAC 度数为 . 作出辅助线,解直角三角形,注意AB 与AC 有不同的位置关系.注: 由圆的对称性可引出许多重要定理,垂径定理是其中比较重要的一个,它沟通了线段、角与圆弧的关系,应用的一般方法是构造直角三角形,常与勾股定理和解直角三角形知识结 合起来.圆是一个对称图形,注意圆的对称性,可提高解与圆相关问题周密性.【例2】 如图,用3个边长为1的正方形组成一个对称图形,则能将其完全覆盖的圆的最小半径为( ) A .2 B .25C .45D .16175思路点拨 所作最小圆圆心应在对称轴上,且最小圆应尽可能通过圆形的某些顶点,通过设未知数求解.【例3】 如图,已知点A 、B 、C 、D 顺次在⊙O 上,AB=BD ,BM ⊥AC 于M ,求证:AM=DC+CM .思路点拨 用截长(截AM)或补短(延长DC)证明,将问题转化为线段相等的证明,证题的关键是促使不同量的相互转换并突破它.【例4】 如图甲,⊙O 的直径为AB ,过半径OA 的中点G 作弦C E ⊥AB ,在CB 上取一点D ,分别作直线CD 、ED ,交直线AB 于点F ,M . (1)求∠COA 和∠FDM 的度数; (2)求证:△FDM ∽△COM ;(3)如图乙,若将垂足G 改取为半径OB 上任意一点,点D 改取在EB 上,仍作直线CD 、ED ,分别交直线AB 于点F 、M ,试判断:此时是否有△FDM ∽△COM? 证明你的结论. 思路点拨 (1)在Rt △COG 中,利用OG=21OA=21OC ;(2)证明∠COM=∠FDM ,∠CMO= ∠FMD ;(3)利用图甲的启示思考.⌒ ⌒⌒⌒注:善于促成同圆或等圆中不同名称的相互转化是解决圆的问题的重要技巧,此处,要努力把圆与直线形相合起来,认识到圆可为解与直线形问题提供新的解题思路,而在解与圆相关问题时常用到直线形的知识与方法(主要是指全等与相似).【例5】 已知:在△ABC 中,AD 为∠BAC 的平分线,以C 为圆心,CD 为半径的半圆交BC 的延长线于点E ,交AD 于点F ,交AE 于点M ,且∠B=∠CAE ,EF :FD =4:3. (1)求证:AF =DF ; (2)求∠AED 的余弦值;(3)如果BD =10,求△ABC 的面积. 思路点拨 (1)证明∠ADE =∠DAE ;(2)作AN ⊥BE 于N ,cos ∠AED =AEEN,设FE=4x ,FD =3x ,利用有关知识把相关线段用x 的代数式表示;(3)寻找相似三角形,运用比例线段求出x 的值.注:本例的解答,需运用相似三角形、等腰三角形的判定、面积方法、代数化等知识方法思想,综合运用直线形相关知识方法思想是解与圆相关问题的关键.学历训练1.D 是半径为5cm 的⊙O 内一点,且OD =3cm ,则过点D 的所有弦中,最小弦AB= . 2.阅读下面材料:对于平面图形A ,如果存在一个圆,使图形A 上的任意一点到圆心的距离都不大于这个圆的半径,则称图形A 被这个圆所覆盖.对于平面图形A ,如果存在两个或两个以上的圆,使图形A 上的任意一点到其中某个圆的圆心的距离都不大于这个圆的半径,则称图形A 被这些圆所覆盖.例如:图甲中的三角形被一个圆所覆盖,图乙中的四边形被两个圆所覆盖.回答下列问题:(1)边长为lcm的正方形被一个半径为r的圆所覆盖,r的最小值是 cm;(2)边长为lcm的等边三角形被一个半径为r的圆所覆盖,r的最小值是 cm;(3)长为2cm,宽为lcm的矩形被两个半径都为r的圆所覆盖,r的最小值是 cm.(2003年南京市中考题)3.世界上因为有了圆的图案,万物才显得富有生机,以下来自现实生活的图形中都有圆:它们看上去多么美丽与和谐,这正是因为圆具有轴对称和中心对称性.(1)请问以下三个图形中是轴对称图形的有,是中心对称图形的有(分别用下面三个图的代号a,b,c填空).(2)请你在下面的两个圆中,按要求分别画出与上面图案不重复的图案(草图) (用尺规画或徒手画均可,但要尽可能准确些,美观些).a.是轴对称图形但不是中心对称图形.b.既是轴对称图形又是中心对称图形.4.如图,AB是⊙O的直径,CD是弦,若AB=10cm,CD=8cm,那么A、B两点到直线CD的距离之和为( ) A.12cm B.10cm C. 8cm D.6cm5.一种花边是由如图的弓形组成的,ACB 的半径为5,弦AB =8,则弓形的高CD 为( )A .2B .25 C .3 D .3166.如图,在三个等圆上各自有一条劣弧AB 、CD 、EF ,如果AB+CD=EF ,那么AB+CD 与E 的大小关系是( )A .AB+CD =EFB .AB+CD=FC . AB+CD<EFD .不能确定7.电脑CPU 芯片由一种叫“单晶硅”的材料制成,未切割前的单晶硅材料是一种薄形圆片,叫“晶圆片”.现为了生产某种CPU 芯片,需要长、宽都是1cm 的正方形小硅片若干.如果晶圆片的直径为10.05cm ,问:一张这种晶圆片能否切割出所需尺寸的小硅片66张?请说明你的方法和理由(不计切割损耗).8.如图,已知⊙O 的两条半径OA 与OB 互相垂直,C 为AmB 上的一点,且AB 2+OB 2=BC 2,求∠OAC 的度数. 9.不过圆心的直线l 交⊙O 于C 、D 两点,AB 是⊙O 的直径,AE ⊥l ,垂足为E ,BF ⊥l ,垂足为F . (1)在下面三个圆中分别补画出满足上述条件的具有不同位置关系的图形;(2)请你观察(1)中所画图形,写出一个各图都具有的两条线段相等的结论(不再标注其他字母,找结论的过程中所连辅助线不能出现在结论中,不写推理过程); (3)请你选择(1)中的一个图形,证明(2)所得出的结论.⌒ ⌒ ⌒ ⌒ ⌒⌒ ⌒10.以AB 为直径作一个半圆,圆心为O ,C 是半圆上一点,且OC 2=AC ×BC , 则∠CAB= .11.如图,把正三角形ABC 的外接圆对折,使点A 落在BC 的中点A ′上,若BC=5,则折痕在△ABC 内的部分DE 长为 .12.如图,已知AB 为⊙O 的弦,直径MN 与AB 相交于⊙O 内,MC ⊥AB 于C ,ND ⊥AB 于D ,若MN=20,AB=68,则MC —ND= .13.如图,已知⊙O 的半径为R ,C 、D 是直径AB 同侧圆周上的两点,AC 的度数为96°,BD 的度数为36°,动点P 在AB 上,则CP+PD 的最小值为 .14.如图1,在平面上,给定了半径为r 的圆O ,对于任意点P ,在射线OP 上取一点P ′,使得OP ×OP ′=r 2,这种把点P 变为点P ′的变换叫作反演变换,点P 与点P ′叫做互为反演点.(1)如图2,⊙O 内外各有一点A 和B ,它们的反演点分别为A ′和B ′,求证:∠A ′=∠B ;(2)如果一个图形上各点经过反演变换得到的反演点组成另一个图形,那么这两个图形叫做互为反演图形. ①选择:如果不经过点O 的直线与⊙O 相交,那么它关于⊙O 的反演图形是( )A .一个圆B .一条直线C .一条线段D .两条射线②填空:如果直线l 与⊙O 相切,那么它关于⊙O 的反演图形是 ,该图形与圆O 的位置关系⌒⌒是 .15.如图,已知四边形ABCD 内接于直径为3的圆O ,对角线AC 是直径,对角线AC 和BD 的交点为P ,AB=BD ,且PC=0.6,求四边形ABCD 的周长.16.如图,已知圆内接△ABC 中,AB>AC ,D 为BAC 的中点,DE ⊥AB 于E ,求证:BD 2-AD 2=AB ×AC .17.将三块边长均为l0cm 的正方形煎饼不重叠地平放在圆碟内,则圆碟的直径至少是多少?(不考虑其他因素,精确到0.1cm)18.如图,直径为13的⊙O ′,经过原点O ,并且与x 轴、y 轴分别交于A 、B 两点,线段OA 、OB(OA>OB)的长分别是方程0602=++kx x 的两根. (1)求线段OA 、OB 的长;(2)已知点C 在劣弧OA 上,连结BC 交OA 于D ,当OC 2=CD ×CB 时,求C 点坐标;(3)在⊙O ,上是否存在点P ,使S △POD =S △ABD ?若存在,求出P 点坐标;若不存在,请说明理由.⌒ ⌒参考答案。

初中竞赛圆知识点

初中竞赛圆知识点

圆的基本性质:
1、圆是定点的距离等于定长的点的集合
2、圆的内部可以看作是圆心的距离小于半径的点的集合
3、圆的外部可以看作是圆心的距离大于半径的点的集合
4、同圆或等圆的半径相等
5、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆
6、和已知线段两个端点的距离相等的点的轨迹,是这条线段的垂直平分线
16、定理:一条弧所对的圆周角等于它所对的圆心角的一半
17、推论:1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等
18、推论:2 半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径
19、推论:3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形
20、定理: 圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角
△ABC的外接圆的直径,则BC=AE.其中正确的是
A. B. C. D.
4.(1)如图1,在⊙O中,C是 的中点,直线CD⊥AB于点E,则AE=BE.请证明此结论;
(2)从圆上任一点出发的两条弦所组成的折线,称为该圆的一条折弦.如图2,PA,PB组成⊙O的一条折弦,C是劣弧 的中点,直线CD⊥PA于点E,则AE=PE+PB. 请证明此结论;
21、①直线L和⊙O相交 d﹤r
②直线L和⊙O相切 d=r
③直线L和⊙O相离 d﹥r
22、切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线
23、切线的性质定理圆的切线垂直于经过切点的半径
24、推论1 经过圆心且垂直于切线的直线必经过切点
25、推论2 经过切点且垂直于切线的直线必经过圆心
(可以说成:若平面上四点连成四边形的对角互补或一个外角等于其内对角。那么这四点共圆)

圆的性质竞赛.提高专题

圆的性质竞赛.提高专题

圆的基本性质(竞赛)知识要点:1、理解圆的定义,掌握点与圆的位置关系;2、理解弦、弧、半圆、优弧、同心圆、等圆、等弧、弓形、圆心角、圆周角等与圆有关的概念;3、掌握圆心角、弧、弦、弦心距之间的关系,并会运用这些关系解决一些几何证明题和计算题。

例题精析:1.平面直角坐标系内,以原点O 为圆心,5为半径作⊙O ,已知A 、B 、C 三点的坐标分别为A (3,4),B (-3,-3), C (4,10-)试判断A 、B 、C 三点与⊙O 的位置关系。

分析:要判断点与圆的位置关系就是要比较点到圆心的距离与半径的大小关系。

解:∵OA =54322=+=OA 523)3()3(22<=-+-=OB526)10(422>=-+=OC∴点A 在⊙O 上,点B 在⊙O 内,点C 在⊙O 外2.如右图,在⊙O 中,AB =2CD ,那么( )A 、 2AB CD >B 、2AB CD < C 、2AB CD = D 、AB 与 2CD 的大小关系不能确定解:如图,作⋂⋂=CD DE ,则⋂⋂=CD CE 2∵在△CDE 中,CD +DE >CE ∴2CD >CE ∵AB =2CD ∴AB >CE ∴⋂⋂〉CE AB ,即⋂⋂>CD AB 2变式:如图,在⊙O 中, 2AB CD =,问AB 与2CD 的大小关系?解:取⋂AB 的中点E ,则⋂⋂⋂==CD BE AE ∴AB =BE =CD∵在△AEB 中,AE +BE >AB ∴2CD >AB ,即AB <2CD∙3图1 OEDCBA∙OEDCBA3.已知点M (p ,q )在抛物线12-=x y 上,若以M 为圆心的圆与x 轴有两个交点A 、B ,且A 、B 两点的横坐标是关于x 的方程022=+-q px x的两根(1)当M 在抛物线上运动时,⊙M 在x 轴上截得的弦长是否变化?为什么?(2)若⊙M 与x 轴的两个交点和抛物线的顶点C 构成一个等腰三角形,试求p 、q 的值分析:(1)设A 、B 两点的横坐标分别是1x 、2x ,由根与系数的关系知p x x 221=+,q x x =⋅21,那么:q p x x x x x x x x AB -=-+=-=-=2212212212124)()(,又因问题图为M 在抛物线12-=x y 上,所以12-=p q 。

《圆的基本性质》奥数复习题

《圆的基本性质》奥数复习题

《圆的基本性质》复习题姓名 学号一、填空题1.如果圆中一条弦长与半径相等,那么此弦所对的圆周角的度数为 .2.在Rt ΔABC 中,AB =6,BC =8,则这个三角形的外接圆直径是3.在等边三角形ABC 外有一点D ,满足AD=AC ,则∠BDC= 。

4.在四边形ABCD 中,AB=BC=AC=AD ,AH ⊥CD 于H ,CP ⊥BC 交AH 于P ,若AP=l ,则BD=5.如图,点A 、B 、Q 、D 、C 在圆上,BQ 与QD 分别是42°和38°, 则∠P+∠Q= . 6.(1998年全国初中数学竞赛试题)已知圆环内直径为a cm ,外直径为b cm ,将50个这样的圆环一个接一个环套地连成一条锁链,那么这条锁链拉直后的长度为 cm 。

7.如图,扇形MON 中,∠MON=90°,过线段MN 的中点A 作AB ∥ON ,交MN 于B ,∠BON= 8.(2008年蚌埠二中自主招生考试数学素质测试题)已知⊙O 的半径1=OA ,弦AB 、AC 的长分别是2、3,则BAC ∠的度数是 。

9.(2006年“TRULY 信利杯”全国初中数学竞赛初赛试题)半径为2的⊙O 中,弦AB 与弦CD 垂直相交于点P ,连结OP ,若OP =1,则AB ²+CD ²的值为 。

10.如图,在△ABC 中,∠A= 70°,⊙O 截△ABC 的三边所截得的弦长都相等,则∠BOC= .11.如图,△ABC 内接于直径为d 的圆.设BC=a ,AC=b ,那么△ABC 的高 CD= .12.(北京市竞赛题)如图所示,正方形ABCD 的中心为O ,面积为1989 cm ²,P 为正方形内一点,且∠OPB=45°,PA :PB=5:14,则PB 的长为 。

13.如图,在直径为20cm 的半圆0上P 、Q 两点,PC ⊥ AB 于C,QD ⊥AB 于D,QE ⊥ PO 于 E,AC=4cm ,则DE= cm.14.已知P 是正方形ABCD 内的一点,O 为正方形的中心,AP⊥BP ,OP=,PA=6,则正方形ABCD 的边长为 。

初中数学竞赛辅导讲义及习题解答 第18讲 圆的基本性质

初中数学竞赛辅导讲义及习题解答 第18讲 圆的基本性质

第十八讲圆的基本性质形,又是一中心对称图形.用圆的基本性质解题应注意:
三角形,常与勾股定理和解直角三角形知识结
(3)如图乙,若将垂足G改取为半径OB上任意一点,点D改取在EB上,仍作直线CD、
ED,分别交直线AB于点F、M,试判断:此时是否有△FDM∽△COM? 证明你的结论.
形问题提供新的解题思路,而在解与圆相关问题时常用到直线形的知识与方法(主要是指全等与相似).∠B=∠CAE,EF:FD=4:3.
⌒⌒


(3)寻找相似三角形,运用比例线段求出x的值.
圆相关问题的关键.
形A被这些圆所覆盖.
轴对称和中心对称性.
要长、宽都是1cm的正方形小硅片若干.如果晶圆片的直径为10.05cm,问:一张这种晶圆片能否切
中,不写推理过程);
最小值为.
换叫作反演变换,点P与点P′叫做互为反演点.
的周长.
根.

⌒⌒
⌒。

初中数学竞赛练习第11讲 圆(含解析)

初中数学竞赛练习第11讲 圆(含解析)

第11讲圆一、模空题I.(2022·福建·九年级统考竞赛〉如1蜀,ABCD为圆。

的内按四边形,且AC..LBD,若AB=IO,CD=8,则阁。

的面积为一一一··B2.(2022·广东·九年级统考竞赛)古希腊数学家希波克拉底曾研究过如图所示的几何图形,此图|如三个半圆构成,三个半圆的直径分别为Rt-ABC的斜边βC,]豆角边AB,AC.若以AB,AC为直径的两个半阁的弧长总长度为2π,则以斜边BC为直径的半圆顶积的;最小值为·3.(2018·全国九年级竞赛〉已知D是..ABC内一点,E是AC的中点,AB=6,BC=IO,ζBAD=ζBCD, LEDC=LABD,则DE=-A5、』ε豆、C4.(2022谷·湖南长沙·八年级校联考竞赛)如图1~4,在旦角边分别为3和4ti甘直角三角形中,每多作一条斜边上的高就增加一个三角形的内切圆,依此类推,因10中有10个直角三角形的内切圆,它们的面积分别记为S1,缸,缸,....S10,则S1+S2+S3+... +S10=一一.,因l国2图3国45.216秋山东泰安·九年级党赛〉如图是“横店影视城”的困弧形门,妙可同学到影视城游玩,很想知边这扇门的相关数据.于是她从景点管理人员处打听到:这个圆弧形门所在的因与水平地丽是相切的,,!也"',('�"'咀f)cm,BD = 200 c m,且AB,CD与水平地商都是垂直,的根据以上数据,你帮助妙可同学计算这个回弧形门的最高点离地丽的高度是一一一一一6.215秋,山东ilfliifr·九年级党和已知正六边形的边心距为占,ljjl]它的周长是一一一·7.215:f)、山东临沂·九年级党赛〉如果圆锥的底面周长是20π,侧面展开后所得的扇形的因心角为120。

’则因锥的母线长是·8. 215秋·山东泰安·九年级竞赛〉如图,直线AB与半径为2的。

第二讲 培优竞赛 圆的基本性质

第二讲   培优竞赛 圆的基本性质

第二讲 直线和圆的位置关系一、知识点(一)基础知识填空1.直线与圆在同一平面上做相对运动时,其位置关系有______种,它们分别是________________.2.直线和圆_________时,叫做直线和圆相交,这条直线叫做____________.直线和圆_________时,叫做直线和圆相切,这条直线叫做____________.这个公共点叫做_________. 直线和圆____________时,叫做直线和圆相离.3.设⊙O 的半径为r ,圆心O 到直线l 的距离为d ,________⇔直线l 和圆O 相离;_________⇔直线l 和圆O 相切;_________⇔直线l 和圆O 相交.4.圆的切线的性质定理是__________________________________________.5.圆的切线的判定定理是__________________________________________.6.已知直线l 及其上一点A ,则与直线l 相切于A 点的圆的圆心P 在_____________________.(二)基础知识填空1.经过圆外一点作圆的切线,______________________________叫做这点到圆的切线长.2.从圆外一点可以引圆的____条切线,它们的_______相等.这一点和____________平分____________.3.三角形的三个内角的平分线交于一点,这个点到__________________相等.4.___________的圆叫做三角形的内切圆,内切圆的圆心是____________,叫做三角形的____________.5.已知:如图,△ABC 的三边BC =a ,CA =b ,AB =c ,它的内切圆O 的半径长为r .则△ABC 的面积S ___________.6、设等边三角形的内切圆半径为r ,外接圆半径为R ,边长为a ,则r ∶R ∶a =______.7.设O 为△ABC 的内心,若∠A =52°,则∠BOC =____________.8、如图,点I 为△ABC 的内心,点O 为△ABC 的外心,∠O=140°,则∠I 为______.二、基础训练一、选择题1.已知:如图,PA ,PB 分别与⊙O 相切于A ,B 点,C 为⊙O 上一点,∠ACB =65°,则∠APB 等于( ).A .65°B .50°C .45°D .40°2.如图,△ABC 内接于⊙O ,过A 点作直线DE ,当直线DE 与⊙O 相切时,若∠BAE =α,则( ).A .∠C =90°-αB .∠C = αC .∠CAB = αD .∠o 1902CAB α=-1题图 2题图 3题图 4题图3.如图,△ABC 中,∠A =60°,BC =6,它的周长为16.若⊙O 与BC ,AC ,AB 三边分别切于E ,F ,D 点,则DF 的长为( ).A .2 B .3 C .4 D .64.下面图形中,一定有内切圆的是( ).A .矩形B .等腰梯形C .菱形D .平行四边形5.如图,直线l1∥l2,⊙O 与l1和l2分别相切于点A 和点B.点M 和点N 分别是l1和l2上的动点,MN 沿l1和l2平移.⊙O 的半径为1,∠1=60°.下列结论错误的是( )A. MN= B. 若MN 与⊙O 相切,则AMC. 若∠MON=90°,则MN 与⊙O 相切D. l1和l2的距离为2 6、已知:如图,AB 为⊙O 的直径,CD 、CB 为⊙O 的切线,D 、B 为切点,OC 交⊙O 于点E ,AE 的延长线交BC 于点F ,连接AD 、BD .以下结论:①AD ∥OC ;②点E 为△CDB 的内心;③FC=FE ;④CE.FB=AB.CF .其中正确的只有( )A.①②B.②③④C.①③④D.①②④二、解答题7、已知:如图,AB 是⊙O 的直径,F ,C 是⊙O 上两点,且=,过C 点作DE ⊥AF 的延长线于E 点,交AB 的延长线于D 点.(1)试判断DE 与⊙O 的位置关系,并证明你的结论;(2)试判断∠BCD 与∠BAC 的大小关系,并证明你的结论.8、已知:如图,AB 为⊙O 的直径,PQ 切⊙O 于T ,AC ⊥PQ 于C ,交⊙O 于D .(1)求证:AT 平分∠BAC ;(2)若,3,2==TC AD 求⊙O 的半径.三、培优例题求解【例1】(切线性质与判定的综合运用)如图,△ABC内接与⊙O,AB是直径,⊙O的切线PC交BA的延长线于点P,OF∥BC交AC于点E,交PC于点F,连接AF.(1)判断AF与⊙O的位置关系并说明理由;(2)若⊙O的半径为4,AF=3,求AC的长.【例2】(圆的切线与垂径定理)如图,AB为⊙O的直径,C为 AE的中点,CD BE于D.(1)判断DC与⊙O的位置关系,并说明理由;(2)若DC=3,⊙O的半径为5,求DE的长.【例3】(圆的切线与勾股定理)如图,已知点A是⊙O上一点,半径OC的延长线与过点A的直线交于点B,OC=BC,AC=12 OB.(1)求证:AB是⊙O的切线;(2)(2)若∠ACD=45︒,OC=2,求弦CD的长.【例4】(圆的切线与全等三角形)如图,BD为⊙O的直径,A为 BC的中点,AD交BC于E,过D作⊙O的切线,交BC 的延长线于F. (1)求证:DF=EF;(2)若AE=2,DE=4,求DB的长.【例5】(四边形切圆的问题)如图,AB是⊙O的直径,AM,BN分别切⊙O于点A,B,CD交AM,BN于点D,C,DO平分∠ADC.(1)求证:CD是⊙O的切线;(2)若AD=3,BC=5,求⊙O的的面积聚焦圆中无图多解题圆是中考数学考查的一个热点,题型较全,选择、填空、作图、计算与证明经常出现,常与三角形、四边形、相似形、二次函数等知识一起考查。

竞赛讲座圆

竞赛讲座圆

竞赛讲座09—圆基础知识如果没有圆,平面几何将黯然失色.圆是一种特殊的几何图形,应当掌握圆的基本性质,垂线定理,直线与圆的位置关系,和圆有关的角,切线长定理,圆幂定理,圆和圆的位置关系,多边形与圆的位置关系.圆的几何问题不是独立的,它与直线形结合起来,将构成许多丰富多彩的、漂亮的几何问题,“三角形的心”,“几何着名的几何定理”,“共圆、共线、共点”,“直线形”将构成圆的综合问题的基础.本部分着重研究下面几个问题:1•角的相等及其和、差、倍、分;2.线段的相等及其和、差、倍、分;3.二直线的平行、垂直;4•线段的比例式或等积式;5.直线与圆相切;6•竞赛数学中几何命题的等价性.命题分析例1.已知A为平面上两个半径不等的O O i和O O2的一个交点,两圆的外公切线分别为RP20Q2, M i、M2 分别为RQ i、P2Q2的中点,求证:NO!AO2 =NM!AM2例2.证明:唯一存在三边长为连续整数且有一个角为另一个角的两倍的三角形.例3.延长AB至D,以AD为直径作半圆,圆心为H , G是半圆上一点,• ABG为锐角.E在线段BH 上,Z在半圆上,EZ II BG,且EH ED =EZ2, BT II HZ .求证:TBG 工1 ABG .3例4•求证:若一个圆外切四边形有两条对边相等,则圆心到另外两边的距离相等.例5 .设.A是厶ABC中最小的内角,点B和C将这个三角形的外接圆分成两段弧,U是落在不含A的那段弧上且不等于B与C的一个点,线段AB和AC的垂直平分线分别交线段AU于V和W,直线BV和CW相交于T .证明:AU =TB - TC .例6.菱形ABCD的内切圆O与各边分别切于E,F,G,H,在EF与GH上分别作O O切线交AB于M,交BC于N,交CD于P,交DA于Q,求证:MQ II NP .例7.O O1和O O2与厶ABC的三边所在直线都相切,E,F,G,H为切点,并且EG,FH的延长线交于点P .求证:直线PA与BC垂直.例8.在圆中,两条弦AB,CD相交于E点,M为弦AB上严格在E、B之间的点.过D,E,MMB MD NC NE的圆在E点的切线分别交直线BC、AC于F,G .已知如二t,求些(用t表示).AB EF 例9 .设点D和E是厶ABC的边BC上的两点,使得• BAD 二/CAE .又设M和N分别是△1111ABD、△ ACE的内切圆与BC的切点.求证:— ^二丄•丄.例10.设厶ABC满足.A = 90 , . B <C,过A作厶ABC外接圆W的切线,交直线BC于D , 设A关于直线BC的对称点为E ,由A到BE所作垂线的垂足为X , AX的中点为Y , BY交W于Z 点,证明直线BD 为厶ADZ外接圆的切线.例11 •两个圆M和:2被包含在圆:内,且分别现圆:相切于两个不同的点M和N •丨i经过:2 的圆心.经过M 和丨2的两个交点的直线与〕相交于点A和B,直线MA和直线MB分别与丨i相交于点C和D •求证:CD与:2相切.例12•已知两个半径不相等的O O i和O 02相交于M、N两点,且O O i、O O2分别与O O内切于S、T两点•求证:OM _MN的充要条件是S、N、T三点共线.例13.在凸四边形ABCD中,AB与CD不平行,O O1过A、B且与边CD相切于点P , O O2过C、D且与边AB相切于点Q • O O1和O O2相交于E、F ,求证:EF平分线段PQ的充要条件是BC II AD •例14・设凸四边形ABCD的两条对角线AC与BD互相垂直,且两对边AB与CD不平行•点P 为线段AB 与CD的垂直平分线的交点,且在四边形的内部•求证:A、B、C、D四点共圆的充要条件为S pAB二S p CD训练题1 •△ ABC内接于O O , ■ BAC ::: 90,过B、C两点O O的切线交于P , M为BC的中点, 求证:(1)如二cos BAC ;(2)BAM =/PAC •AP2 •已知A,B,C •分别是厶ABC外接圆上不包含A, B,C的弧BC,CA,AB的中点,BC分别和CA \ AB •相交于M、N两点,CA分别和A B、BC •相交于P、Q两点,AB分别和BC、C A相交于R、S两点•求证:MN二PQ二RS的充要条件是△ ABC为等边三角形.3•以△ ABC的边BC为直径作半圆,与AB、CA分别交于点D和E,过D、E作BC的垂线,垂足分别为F、G •线段DG、EF交于点M •求证:AM _ BC •4•在厶ABC中,已知.B内的旁切圆与CA相切于D,■ C内的旁切圆与AB相切于E,过DE 和BC的中点M和N作一直线,求证:直线MN平分△ ABC的周长,且与• A的平分线平行.5•在厶ABC中,已知,过该三角形的内心I作直线平行于AC交AB于F •在BC边上取点P使1得3BP 二BC •求证:BFP B •26•半圆圆心为O,直径为AB,一直线交半圆于C,D,交AB于M ( MB :::MA, MC ::: MD )•设K是厶AOC与厶DOB的外接圆除点O外之另一交点•求证:• MKO为直角•7•已知,AD是锐角△ ABC的角平分线,• BAC h、,• ADC = ,且cos二=c c s2一:•求证:2AD 二BD DC •8. M为厶ABC的边AB上任一点,r1,r2,r分别为△ AMC、△ BMC、△ ABC的内切圆半径;匚匚亍分别为这三个三角形的旁切圆半径(在• ACB内部).求证:L L L L = L .P i P2 P9 •设D是厶ABC的边BC上的一个内点,AD交厶ABC外接圆于X,P、Q是X分别到AB 和AC的垂足,0是直径为XD的圆.证明:PQ与O O相切当且仅当AB=AC .10•若AB是圆的弦,M是AB的中点,过M任意作弦CD和EF ,连CD, DE分别交AB于X,Y ,则MX 二MY.11 •设H为厶ABC的垂心,P为该三角形外接圆上的一点,E是高BH的垂足,并设PAQB与PARC都是平行四边形,AQ与BR交于X •证明:EX II AP .12•在△ ABC中,.C的平分线分别交AB及三角形的外接圆于明:(1)ID IK —1 •ID IKD和K , I是内切圆圆心•证。

九年级数学竞赛 第13讲 圆的基本性质

九年级数学竞赛 第13讲 圆的基本性质

九年级数学竞赛第十三讲圆的基本性质在课内同学们已学了圆的许多基本性质,在此基础上,我们再补充一些与圆有关的性质.§13.1圆内角与圆外角与圆有关的角我们学习过圆心角、圆周角、弦切角以及它们的大小与它们所对(或夹)的弧的度数之间的关系.如果角的顶点在圆内,则称这样的角为圆内角,如图3-28中的∠APB 即为圆内角.圆内角的大小究竟与弧有何关系呢?延长AP,BP分别交圆于C,D两点,再连结AD,则∠APB=∠A+∠D.因为所以即圆内角的度数等于它和它的对顶角所对的两弧度数和的一半,其中圆心角是特殊的圆内角.如果角的顶点在圆外,且角的两边都与同一个圆相交,则称这样的角为圆外角,如图3-29中的∠APB即为圆外角,圆外角的度数与它所夹两弧的度数有关.连结AD,则∠P=∠CAD-∠D.因为所以即圆外角的度数等于它所夹两弧度数差的一半.§13.2圆内接多边形1.圆内接三角形与正弦定理在前一讲中我们介绍了正弦定理,利用三角形的外接圆不但可以证明正弦定理,而且还能得出更完满的结果.如图3-30所示.设⊙O为△ABC的外接圆,⊙O的半径为R,连接BO并延长交⊙O于A′,连结A′C,则∠A=∠A′,且∠A′CB=90°,所以上面这个等式就是正弦定理,它说明任意一个三角形中,一边与其所对的角的正弦值之比都等于该三角形的外接圆的直径.2.圆内接四边形与四点共圆任意一个三角形都存在外接圆,但是任意一个四边形不一定存在外接圆.什么样的四边形外接于圆呢?我们知道,圆内接四边形对角互补,这个性质定理的逆命题就是圆内接四边形的判定定理,即对角互补的四边形是圆内接四边形.我们学过圆的这个性质:同弧所对的圆周角相等,如图3-31中A,B,C,A′在圆O上,则∠A=∠A′.这个性质的逆命题就是四点共圆的判定定理,即具有公共边的且同侧公共边所对的角相等的两个三角形共圆,如图3-32所示.△ABC与△A′BC中∠A=∠A′,则A,B,C,A′四点共圆.§13.3圆外切多边形的性质及判定1.三角形内切圆半径如图3-33所示,⊙O是△ABC的内切圆,D,E,F为切点,设内切圆半径为r,连接AO,BO,CO,则有若△ABC为直角三角形,如图3-34所示,⊙I为其内切圆,D,E,F 为切点.由切线长定理知,AD=AF,BD=BE,CE=CF,所以有AC+BC-AB=CF+CE.又因为四边形IECF是边长为r的正方形,所以CF+CE=2r,即直角三角形内切圆半径等于两直角边之和与斜边差的一半.2.圆外切四边形根据切线长定理可推出,圆外切四边形两组对边和相等,即AD+BC=AB+CD(如图3-35所示).若圆外切四边形是梯形,则圆外切梯形两底和等于两腰和.特别地,圆外切等腰梯形的腰长等于中位线的长(如图3-36所示).我们知道,任意一个三角形既有外接圆也有内切圆,但是任意一个四边形不一定有外接圆,也不一定有内切圆,只有两组对边和相等的四边形才有内切圆.下面通过例题,进一步说明与圆有关的常见的一些问题的思路和解法.例1 已知⊙O的半径r=4,AB,CD为⊙O的两条弦,AB,CD的长分别是方程的两根,其中AB>CD,且AB∥CD.求AB与CD间的距离.分析解一元二次方程求得方程两根,从而得出弦AB与CD的长,由弦长及半径可求出每条弦的弦心距.若AB,CD位于圆心同侧,则两弦间距离等于弦心距的差;若AB,CD位于圆心异侧,则两弦间距离等于弦心距之和.解由方程所以作OF⊥CD于F,因为AB∥CD,所以OF⊥AB,设垂足为E.(1)若AB,CD位于圆心O的同侧(图3-37(a)),则AB与CD间的(2)若AB,CD位于圆心O的异侧(图3-37(b)),则AB与CD间的距离说明 (1)垂径定理在与弦长有关的计算或证明中是经常使用的,应注意.(2)注意运用分类讨论的思想,将符合条件的图形间的不同位置关系逐一考查.例2 已知△ABC内接于⊙O,∠B=60°,AD是直径,过D点分析在△ABC中,只知道AB的长度及∠B的大小,是无法确定BC 的长的.因为AD是直径,DE是⊙O的切线,所以DE⊥AD.若连接DC,则∠ADC=∠B=60°,且∠DCE=90°,∠CDE=30°,这样△DCE可解,求出DE边以后可利用切割线定理求出AC的长,或者求出DC边后利用射影定理求出AC,这样由△ABC可解出BC的长.解连结DC.因为AD为⊙O的直径,DE切⊙O于D,所以AD⊥DE,∠ACD=90°.又因为∠ADC=∠B=60°,所以∠CDE=90°-60°=30°.因为DC2=AC×CE(射影定理),在△ABC中,根据余弦定理有AC2=AB2+BC2-2AB·BC·cosB.设BC=x,则22+x2-4x·cos60°=6,整理得x2-2x-2=0,说明本题已知条件中虽然给出了两条线段的长度及一个角的大小,但是这些已知量没有集中在同一个三角形中,所以图中各个三角形都无法求解,这时应通过作适当的辅助线,将这些已知量尽可能地转移到同一个三角形中.另外,在求出AC后,问题转化为在△ABC中已知两边及一对角求另一边,用余弦定理列出一元二次方程,BC的情况完全由方程确定,也可以通过A点向BC边作高线AF,转化为解直角三角形的问题.应注意,垂足F究竟落在BC上还是落在BC的延长线上,因此,应分类讨论.例3 如图3-39所示.已知⊙O的外切△ABC,AB,BC,AC边上的切点为M,D,N,MN与直线DO交于E,连接AE并延长交BC于F.求证:BF=CF.分析若证F是BC的中点,因为ED与BC垂直,因此考虑将MN绕E 点旋转到与BC平行的位置,即M′N′,这时只要E点是M′N′的中点,结论即可得出.证过E点作M′N′∥BC,交AB于M′,交AC于N′,连结OM,ON,OM′,ON′.因为⊙O是△ABC的内切圆,且D,M,N为切点,所以∠OMM′=∠ODB=90°.因为∠OEM′=∠ODB,所以∠OMM′=∠OEM′,所以O,E,M,M′四点共圆,所以∠OME=∠OM′E.同理,O,E,N′,N四点共圆,所以∠ONE=∠ON′E.因为OM=ON,所以∠OME=∠ONE,∠OM′E=∠ON′E,OM′=ON′,EM′=EN′.因为 M′N′∥BC,所以 BF=FC.例4 如图3-40所示.在半径为1的⊙O中,引两条互相垂直的直径AE和BF,在EF上取点C,弦AC交BF于P,弦CB交AE于Q.证明:四边形APQB的面积是1.正方形面积为2.而△ABD的面积为正方形面积的一半,所以,只需证明S△APQB=S△A BD,即证S△BPD=S△BPQ,即证DQ∥PB.因为BP⊥AE,所以,只需证DQ ⊥AE.证因为AE,BF为互相垂直的两条直径,垂足O为圆心,所以AE,BF互相平分、垂直且相等,所以四边形ABEF是正方形.所以∠ACB=∠AEF=45°,即∠DCQ=∠QED,所以D,Q,E,C四点共圆.连接CE,DQ,则∠DCE+∠DQE=180°.因为AE为⊙O的直径,所以∠DCE=90°,∠DQE=90°.因为∠FOE=90°,进而DQ∥BF,所以S△BPQ=S△BPD,所以S△ABP+S△BPQ=S△A BP+S△BPD,即S ABQP=S△ABD.说明当题目的结论直接证明较繁或无法证明时,可根据条件先证明某四点共圆,再利用圆的性质可使问题得以解决,这种方法常称之为“作辅助圆”方法.练习十三任一点,自M向弦BC引垂线,垂足为D.求证:AB+BD=DC.2.如图3-42所示.P是△ABC的外接圆上一点,由P向边BC,CA,AB引垂线,垂足分别是D,E,F.求证:D,E,F三点共线.3.如图3-43所示.AB为半圆O的直径,经过A,B引弦AC与BD,设两弦交于E,又过C,D分别引⊙O的切线交于点P,连接PE.求证:PE ⊥AB.。

数学培优竞赛新方法九年级圆的基本性质

数学培优竞赛新方法九年级圆的基本性质

第15讲 圆的基本性质知识纵横到顶点等于定长的点的集合叫圆,圆常被人们看成是最完美的事物,圆的图形在人类进程中打下深深的烙印。

圆的基本性质有:一是与圆相关的基本概念与关系,如弦,弧,弦心距,圆心角,圆周角等;二是圆的对称性,圆既是一个轴对称图形,又是一个中心对称图形。

用圆的基本性质解题应注意:1.熟练运用垂径定理及推论进行计算和证明2.了解弧的特性及中介作用3.善于促成同圆或等圆不同名称等量关系的转化例题求解【例1】在半径为1的圆O 中,弦AC AB ,的长分别为3和2,则BAC 度数为_________(黑龙江省中考题)思路点拨 作出辅助线,解直角三角形,注意AC AB ,有不同的位置关系。

【例2】P 是圆O 内一点,圆O 的半径为15,P 点到圆心O 的距离为9,通过P 点,长度是整数的弦的条数是( )(江苏省竞赛题)5A 7B 10C 12D思路点拨 过点P 最长的弦为圆O 的直径,最短的弦与OP 垂直(为什么),可求得过点P 点的弦长范围。

【例3】如图,已知点D C B A ,,,顺次在圆O 上,弧AB =弧BD ,AC BM ⊥于M ,求证CM DC AM +=(江苏省竞赛题)思路点拨 用截长(截AM )或补短(延长DC )证明,将问题转化为线段相等的证明,证题的关键是促使不同量的相互转换并突破它。

【例4】如图,o Θ的直径为AB ,过半径OA 的中点G 作弦AB CE ⊥,在弧AB 上取一点D ,分别作直线CD 、ED ,交直线AB 于点F 、M 。

(1)求COA ∠和FDM ∠的度数; (2)求证:FDM ∆~COM ∆;(3)如图,若将垂足G 改取为半径OB 上任意一点,点D 改取在弧EB 上,仍作直线CD 、ED ,分别交直线AB 于点F 、M ,试判断:此时是否有FDM ∆~COM ∆?证明你的结论。

(苏州市中考题)思路点拨 (1)在C O G Rt ∆中,利用OC OA OG 2121==;(2)证明FDM COM ∠=∠,FMD CMO ∠=∠;(3)利用图的启示思考。

初中数学竞赛专题-第27章 圆的解析性质及应用

初中数学竞赛专题-第27章  圆的解析性质及应用

第二十七章 圆的解析性质及应用【基础知识】圆有如下一系列有趣的解析性质:性质1 圆心为(,)a b ,半径为r 的圆的方程为222()()x a y b r -+-=.性质2 二次方程表示圆的方程所应满足的条件是2240D E F +->,且220x y Dx Ey F ++++=. 性质3 圆心为(,a b ),半径为r 的圆的参数方程为cos sin x a r y b r θθ=+⋅⎧⎨=+⋅⎩(θ为参数).性质 4 与两定点(,0)a ,(,0)b (a b ≠)距离的比为mn(n m ≠且0,0n m >>)的点的轨迹是圆:22222222()an bm mn a b x y n m n m ⎛⎫--⎡⎤-+= ⎪⎢⎥--⎣⎦⎝⎭. 性质 5 与两定点(,0)a ,(0,)c 的距离的比为mn (n m ≠且0n >,0m >)的轨迹是圆:2222an x n m ⎛⎫- ⎪-⎝⎭ 2222222()cm mn a c y n m n m ⎛⎫+⎡⎤++= ⎪⎢⎥--⎣⎦⎝⎭. 性质6 以点11(,)A x y ,22(,)B x y 为圆的直径两端点的圆的方程为 1212()()()()0x x x x y y y y --+--=.注 上述方程可变形为2212121212()()0x y x x x y y y x x y y +-+-+++=.此式说明:若两曲线的两交点坐标满足它,则此两点为这圆的直径的两端点.性质7 若直线(),0f x y =与二次曲线(,)0F x y =相交于P ,Q 两点,且由(,)0,(,)0.f x y F x y =⎧⎨=⎩消去y ,得()0g x =;消去x ,得()0h y =(其中()g x 与()h y 的二次项系数均为1),那么以P ,Q 为直径端点的圆的直径式方程为()()0g x h y +=.证明 设P ,Q 的坐标分别为11(,)P x y ,22(,)Q x y ,则1x ,2x 是方程()0g x =的两个根;1y ,2y 是方程()0h y =的两个根,即12()()()0g x x x x x =--=,12()()()0h y y y y y =--=.两式相加,有1212()()()()()()0g x h y x x x x y y y y +=--+--=.由性质6,即证得结论成立.性质8 设O 为平面直角坐标系原点,P 为直线l :(,)1g x y Ax By =+=(A ,B 不同时为零)上一点,射线OP 交圆:2222(,)1x y f x y r r=+=于点R ,若点Q 在OP 上且满足22OQ OP OR r ⋅==,则点P 在l 上移动时,Q 点的轨迹是圆2222224()224Ar Br A B r x y ⎛⎫⎛⎫+⋅-+-=⎪ ⎪⎝⎭⎝⎭,或(,)(,)0f x y g x y -=. 证明 设00(,)P x y ,(,)Q x y ,则由Q 在OP 上可设OP k OQ =⋅.由2OQ OP r ⋅=,有OQ R OQ ⋅⋅= 2r ,即22r k OQ=,亦即22r OP OQ OQ=⋅,从而2022r x x x y =⋅+,2022r y y x y =⋅+.又00(,)x y 在直线l 上,即有001Ax By +=,亦即2222221r x r yA B x y x y ⋅⋅⋅+⋅=++,由此得222Ar x ⎛⎫- ⎪⎝⎭22224()24Br A B r y ⎛⎫+⋅+-=⎪⎝⎭. 上式又可化为2222x y Ax By r r+=+,故(,)(,)0f x y g x y -=.性质9 过两圆1(,)0f x y =,2(,)0f x y =(或一圆与一二次曲线)交点的圆的方程为1(,)f x y +2(,)0(1)f x y λλ=≠-.注 若1λ=-,则为一直线方程.性质10 设直线l :0Ax By C ++=,圆Γ:222()()x a y b r -+-=,圆心(,)O a b 到直线l 的距离为d =则(1)当d R <时,直线l 与圆Γ相交,反之亦真;(2)当d R =时,直线l 与圆Γ相切,反之亦真; (3)当d R >时,直线l 与圆Γ相离,反之亦真.性质11 直线0Ax By C ++=与圆222x y r +=相切的充要条件是()2222A B r C +=. 性质12 设00(,)M x y ,圆的方程222x y r +=,对于直线l 的方程200x x y y r +=,则(1)当M 在圆上时,l 为圆的切线;(2)当M 在圆外时,l 为圆的切点弦直线;(3)当M 在圆内时,l 为与以M 为中点的弦平行且过此弦端点切线交点的直线.事实上,这可由第二十五章的性质7推论后的注即得.这里,其实l 即为点M 关于圆的极线. 【典型例题与基本方法】例1 已知一圆在x 轴上的截距为a ,b ,在y 轴上的截距为(0)c c ≠,求此圆的方程.解法1 由于圆过点(,0)A a ,(,0)B b ,(0,)C c 三点,则圆心M 在AB ,AC 的垂直平分线上,即M 点是两直线1()2x a b =+,2222()()x a y x y c -+=+-的交点,求得2,22a b c ab M c ⎛⎫++ ⎪⎝⎭,又可求得半径22222a b c ab r MA b c ⎛⎫++⎛⎫==-+ ⎪ ⎪⎝⎭⎝⎭.故由性质1,得所求圆的方程为22222a b c ab x y ⎛⎫++⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭22222b a c ab c ⎛⎫-+⎛⎫+⎪ ⎪⎝⎭⎝⎭. 解法2 设此圆的方程为220x y Dx Ey F ++++=.此圆在x 轴上的距离是a ,b ,则20a Da F ++=,① 20b Db F ++=. ②由①,②知a ,b 是方程20x Dx F ++=的两根,从而由韦达定理,有a b D +=-,ab F =. 又此圆在y 轴上截距为c ,有20c Ec F ++=.③从而20c Ec ab ++=,即2c abE c+=-.此时,显然满足2240D E F +->,故由性质2知所求圆的方程为22()0ab x y a b x c y ab c ⎛⎫+-+-++= ⎪⎝⎭.注 也可由①,②,③联立求出D ,E ,F .例2 设A 为定点(b ,0),P 为圆229x y +=上一点,M 是AP 上的一点,且满足12AM MP =.当点P 在圆上运动时,求点M 的轨迹方程.解法1 如图27-1,作MN PO ∥交x 轴于N ,显见MN 为定长,即1MN =,且N 为定点(4,0).由圆的平面几何定义知,到定点的距离等于定长的点的轨迹是圆,定点是圆心,定长为半径,故所求圆的方程为22(4)1x y -+=.解法2 设点M 的坐标是(,)x y ,设圆229x y +=的参数方程为3cos ,3sin .x y θθ=⎧⎨=⎩(θ为参数)于是可设点P 的坐标为(3cos ,3sin )θθ,由此例定理(或由定比分点坐标公式)得点M 的轨迹的参数方程为4cos ,sin .x y θθ=+⎧⎨=⎩(θ为参数)由此即知,线段AP 上的点M 的轨迹是以点(4,0)为圆心,以1为半径的圆.例3 已知一曲线是与两个定点(0,0)O ,A (3,0)的距离的比为12的点的轨迹,求此曲线的方程. 解法1 由题设,运用性质4,知0a =,3b =,1m =,2n =.或运用性质5,知3a =,0c =,1n =,2m =,可求得曲线方程为22(1)4x y ++=.解法 2 由题设及圆的轨迹定义和所求的曲线为圆,即可推知其圆心在直线OA 上,且圆与直线OA 的两个交点即为直径的两端点.由平面几何知识得动点P 满足12PO PA=点为(1,0)P ,(3,0)Q -,从而所求方程为(1)(3)(0)(0)0x x y y -++--=,即22(1)4x y ++=.例 4 求以相交两圆1C :22410x y x y ++++=,及2C :222210x y x y ++++=的公共弦为直径的圆的方程.解法1 由两圆的方程相减即得公共弦所在直线的方程:20x y -=. 设所求圆的方程为2241(2)0x y x y x y λ+++++-=,即 22(42)(1)10x y x y λλ++++-+=.其圆心12,2λλ-⎛⎫-- ⎪⎝⎭必在直线20x y -=上,即由()122202λλ----=,求得75λ=-. 故所求圆的方程为2255161250x y x y ++++=. 解法2 可求得两已知圆的公共弦方程为20x y -=. 运用性质7,由22410,20.x y x y x y ⎧++++=⎨-=⎩分别消去y ,x ,得25610x x ++=及251240y y ++=.此两式相加,得225561250x y x y ++++=,此即为所求圆的方程. 例5 直线2y x =-与抛物线22y x =相交于A ,B .求证:OA OB ⊥. 证明 由222y x y x=-⎧⎨=⎩分别消去y ,x ,得2640x x -+=,2240y y -+=.此两式相加,得以AB 为直径的圆的方程:22620x y x y +--=. 显然,原点O 在圆22620x y x y +--=上,故OA OB ⊥.例6 已知双曲线的中心在原点,焦点在x 轴上,P ,Q 两点.若OP OQ ⊥,且4PQ =,求双曲线的方程.(1991年全国高考理科题)解 设双曲线方程为22221x y a b-=,直线方程为3()5y x c =-,其中22c a b =+. 联立直线和双曲线方程分别消去y ,x ,得2222222222635()05353a c a c a b g x x x b a b a+=+-=--. 24222222153()05353b c b h y y y b a b a =++=--.由性质7,知以PQ 为直径的圆的方程为()()0g x h y +=.因OP OQ ⊥,所以圆过原点,则(0)(0)0g h +=,即222243530a c a b b +-=.解得223b a =.设11(,)P x y ,22(,)Q x y ,则PQ 的中点为1212,22x x y y M ++⎛⎫⎪⎝⎭.由题设得122OM PQ ==,即221212()()16x x y y +++=.而2122261532a c x x cb a +=-=--,21221515b c y y +==. 将其代入()*式,得22151644c c +=,解得24c =.由此求得21a =,23b =.故所求双曲线方程为2x213y -=. 例7 已知函数1sin 1sin y x x =+-求y 的最大值.(新加坡竞赛题)解 令1sin u x =+1sin v x -则有直线方程:0u v y +-=,及圆的方程:222u v +=. 由已知可知直线与圆有公共点(,)u v ),从而22y即2y ≤,等号当且仅当0x =时成立,故max 2y =. 例8 确定最大的实数z ,使5x y z ++=,3xy yz zx ++=,并且x ,y 也是实数. (第7届加拿大竞赛题)解 由已知,得22222()2()52319x y z x y z xy yz zx ++=++-++=-⋅=. 令直线l :(5)0x y z ++-=,O :22219x y z +=-.由已知可知l 与O 有公共点,从而 25192z z --即2310130z z --≤. 解得313z 1-≤≤,故max 133z =.例9 112()2x y z x y z --++.(1978年罗马竞赛题)解 x u =1y v -2z t -=,u v t s ++=,则可令l :()0u v t s ++-=,O :222u v s +=- 23t -.因l 与O 有公共点,2232t s S t ---即222(2)360s t t s t -+++≤.因s 有实数解,则22[2(2)]4(36)0t t ∆=-+-+≥,即2(1)0t -≤,故1t =.此时23s t =+=,223z t =+=,代入l 与O 的方程得2u v +=,222u v +=.解此方程得1u v ==,故原方程的解为1x =,2y =,3z =.【解题思维策略分析】1.运用圆的解析性质证明圆锥曲线性质例10 从椭圆22221x y a b+=上一点P ,引以短轴为直径、原点为圆心的O 的两条切线,切点为A ,B ,直线AB 与x 轴,y 轴分别相交点M ,N ,则222222a b a bONOM+=.图27-2证明 如图27-2,设00(,)P x y ,O 的方程为222x y b +=,则切点弦AB 的方程为200x x y y b +=.由0x =得20b ON y y ==,0y =得20b OM x x ==,从而2222222220022442a y b x a b a b a b b bON OM++===.注 类似地,(i )可证明将上例中的O 换为以长轴为直径的圆,P 为此圆上一点,引椭圆的两条切线,则44222a b a OMON+=;(ii)可证明对于双曲线22221(0,0)x y a b a b -=>>,抛物线22(0)y px p =>的类似于上例的结论:(a)从双曲线22221(0,0)x y a b a b-=>>上一点P ,向以实轴为直径、原点为圆心的圆O 引两条切线,切点为A ,B ,直线AB 与x 轴、y 轴分别交于M ,N ,则 222222b a b a OMON-=. (b)从双曲线22221(0,0)x y a b a b-=>>上一点P ,向以虚轴为直径,原点为圆心的圆O 引两条切线,切点为A ,B ,直线AB 与x 轴、y 轴分别交于M ,N ,则 222222b a a b OMON-=. (c)从抛物线22(0)y px p =>上一点P ,向以2p (通径)为直径,原点为圆心的圆引两条切线,切点为A ,B ,直线AB 与x 轴,y 轴相交于点M ,N ,则222OM pON=. 例11 设P 是半径为R 的圆O 内任意一点,过点P 任意引(2)n n ≥条直线1l ,2l ,…,n l .如果这n 条直线相邻两条所成的角都为πn ,且第i 条直线i l 交圆于i M ,i M '两点(1i =,2,…,n ),那么221()ni i i PM PM ='+∑是与P 点无关的定值22nR .证明 以圆心O 为坐标原点,射线OP 为x 轴正半轴建立直角坐标系,则圆的方程为222x y R +=.设(,0)P r ,不妨设直线1l 的倾斜角α最小,1l 的参数方程为cos ,sin ,x r t y t αα=+⎧⎨=⎩(t 为参数)将此方程代入圆的方程222x y R +=,整理得 2222cos 0t r t r R α+⋅⋅+-=.设关于t 的上述二次方程的两根为1t ,2t ,则知 122cos t t r α+=-,2212()t t R r =--.由t 的几何意义,从而222211121212()2PM PM t t t t t '+=+=+-222222(1cos2)2()2(cos2)r R r r R αα=++-=+ (*)设直线i l (1i =,2,…,n )对应的倾斜角为(1)πi n α-+,分别以πn α+,2πn α+,…,(1)πn nα-+代(*)式的α,然后将n 个式子(连同(*)式)相加,并注意三角公式 12(1)πcos 0ni m i n θ=-⎡⎤+=⎢⎥⎣⎦∑,(n m >均为正整数) 从而22222112(1)π()2cos 22nn ii i i i PMPM r nR nR n α==⎧-⎫⎡⎤'+=++=⎨⎬⎢⎥⎣⎦⎩⎭∑∑. 注 若注意到22211111212()4M M PM PM t t t t ''=-=+-,可得22212(2)niii M M n R r ='=⋅-∑;211PM +21212222121()21t t t t t t PM +-=⋅',可得2222221112()n i i i nR R r PM PM =⎛⎫ ⎪+= ⎪-'⎝⎭∑;221212221112()411t t t t PM PM t t ⎛⎫+-+= ⎪ ⎪'⋅⎝⎭,可得22222212(2)()i i n R r PM PM R r ⎛⎫1-∑+= ⎪ ⎪'-⎝⎭等. 2.注意点圆方程的巧用例12 已知圆0C 的方程为222x y r +=,求经过圆0C 上一点00(,)M x y 的切线方程.解 视点00(,)M x y 为点圆曲线0Γ:2200()()0x x y y -+-=.于是00{}C M Γ=∩,由性质9,得曲线系2222200[()()]0x y r x x y y λ+-+-+-=.且由题设知其中1λ=-,故有22220000222x x y y x y r r +=++=.即得200x x y y r +=即为所求.例13 求与圆C :2268170x y x y +--+=切于点(1,2)的圆的方程. 解 视点(1,2)为点圆曲线0Γ:22(1)(2)0x y -+-=,由性质9得所求圆的方程为2268x y x y +-- 2217[(1)(2)]0x y λ-+-+-=.即 ()2223428111x y λλλλλ+⎛⎫⎛⎫-+-= ⎪ ⎪++⎝⎭⎝⎭+.由228(1)λ=+⎝⎭,求得115λ=-或295λ=-.于是得1C :2227922x y ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭⎝⎭及2C :2223122x y ⎛⎫⎛⎫+++= ⎪ ⎪⎝⎭⎝⎭⎝⎭. 易知点(1,2)满足圆1C 的方程,且圆1C 与圆C 的圆心距等于两圆半径之差的绝对值,所以圆1C 与圆C 内切于点(1,2),圆1C 为所求.同理,圆1C 与圆C 外切于点(1,2),圆2C 也为所求. 3.借助圆的解析性质求解其他代数问题例14 若正数x ,y ,z 满足x y z a ++=,2222(0)2a x y z a ++=>,求证:203x <≤,203y <≤,203z <≤.证明 由已知有x y a z +=-,22222a x y z +=-,此二式同时成立,即知直线x y a z +=-与圆22222a x y z +=-(z )有公共点,即原点到直线的距离不大于圆的半径,得2320z az -≤.又0a >,则203z a <≤.同理有203y a <≤,203z a <≤.例15 已知cos cos 2m αβ+=,sin sin 2n αβ+=.求cot cot αβ的值.解 令(cos ,sin )A αα,(cos ,sin )B ββ,则知A ,B 在圆221x y +=上.设线段AB 的中点为(,)C m n ,则1(cos cos )2m αβ=+,1(sin sin )2n αβ=+,且OC n k m =,AB m k n =-.AB 的方程为22m m n y x n n +=-+,并代入圆的方程,得222222222222()()10m m m n n m n x x n n n ⎛⎫++-+-+= ⎪⎝⎭.又cos α,cos β为此方程两根,有222222()cos cos n m n m n αβ+-⋅=+. 同理22222()sin sin m n m m n αβ+-⋅=+.故2222222()cot cot ()m n n m n m αβ+-⋅=+-为所求.【模拟实战】习题A1.求过直线l :240x y ++=与圆C :222410x y x y ++-+=的两个交点P ,Q ,且面积最小的圆的方程.2.已知直线1y x =-与椭圆22221(1)1x y a a a +=>-相交于A ,B 两点,若以AB 为直径的圆过椭圆的左焦点,求a 的值.3.已知圆C :2224x y +=,直线l :1128x y+=,P 是l 上一点,射线OP 交圆于点R ,又点Q 在OP 上且满足:2OQ OP OR ⋅=.当点P 在l 上移动时,求点Q 的轨迹方程,并说明轨迹是什么曲线. 4.求与抛物线24y x =相切于点P (1,4)且过点(3,0)的圆的方程. 5.求函数3cos ()2sin xy f x x+==-的值的取值范围.6.解方程组222 1.x y z x y z ⎧++⎪⎨++=⎪⎩7.已知a ,b +∈R ,且1a b +=,求证:2211252a b b a ⎛⎫⎛⎫+++ ⎪ ⎪⎝⎭⎝⎭≥.8.已知α,β是锐角,目4422sin cos 1cos sin ααββ+=.求证:π2αβ+=.9.已知sin sin()cos()ααβαβ++++=,π,π4β⎡⎤∈⎢⎥⎣⎦,求β的值.习题B1.自点A (3-,3)发出的光线l 射到x 轴上,被x 轴反射,其反射光线与圆224470x y x y +--+=相切,求光线l 所在直线方程.2.半径等于某个正三角形高的圆在这个正三角形的一边上滚动.证明三角形两边截圆的弧的总长等于60︒. 3.(九点圆定理)证明:三角形三边的中点,三高的垂足,垂心与顶点连接线段的中心,这九个点共圆.第二十七章 圆的解析性质及应用 习题A1.面积最小的圆是以PQ 为直径的圆,由240x y ++=与222410x y x y ++-+=分别消去y ,x ,得()22633055g x x x =++=,()2124055h y y y =-+=,故所求圆的方程为22261240555x y x y ++-+=. 2.将1y x =-代入椭圆方程,得()2242222202121a a a g x x x a a -=-+=--.将1x y =+代入椭圆方程,得()22422222202121a a a h y y y a a --=++=--.从而以AB 为直径的圆的方程为2224222222224210212121a a a a x y y a a a ---+-++=---. 因为此圆过椭圆的左焦点()1,0-,由此代入上述方程得42410a a -+=.而1a >,从而求得()1622a =+.3.由2224241218x y x y +=+整理,得()22313124x y ⎛⎫-+-= ⎪⎝⎭,此即为以31,2⎛⎫ ⎪⎝⎭为圆心,132为半径的圆. 4.因为点()1,4P 在抛物线上,所以由圆锥曲线的一般性质,知过点P 与抛物线相切的切线方程为442y x +=,即840x y --=. 视点()1,4为点圆曲线0Γ:()()22140x y -+-=,设所求圆方程为()()()2214840x y x y λ-+-+--=.此圆过点()3,0,从而求得1λ=-.于是有22107210x y x y +--+=. 将上述方程与24y x =联立,消去y ,得42162710210x x x --+=,即()()2211632210x x x -++=.易知此方方程的实根有仅有二重根1x =,从而推知抛物线24y x =与圆22107210x y x y +--+=有且仅有公共点()1,4,也即它们相切于点()1,4,因此22107210x y x y +--+=为所求圆的方程. 5.令cos u x =,sin v x =,则l :()320u yv y ++-=,O :221u v +=,由已知l 与O 有公共点,有23211y y -+≤,即231280y y -+≤,解得23232233y -+≤≤. 6.令l :()30x y z ++-=,O :2221x y z +=-.由已知l 与O 有公共点,知2312z z --≤,即()310z -≤,故33z =,由此求得33x y ==.7.令2211a b u b a ⎛⎫⎛⎫+++= ⎪ ⎪⎝⎭⎝⎭,1a x b +=,1b y a +=,则l :110x y ab ⎛⎫+-+= ⎪⎝⎭O :22x y u +=.由已知条件知l 与O 有公共点,有112ab u ⎛⎫-+ ⎪⎝⎭,即21112u ab ⎛⎫+ ⎪⎝⎭≥.又由已知1a b +=得14ab ≤,由此知()21251422u +=≥. 8.令2sin cos x αβ=,2cos sin y αβ=,则l :cos sin 10x y ββ⋅+⋅-=,O :221x y +=(由已知所设).又l 与O 有公共点,从而有1,即22cos sin 1ββ+=,而22cos sin 1ββ+=,这说明l 与O 有且只有一个公共点,而22sin cos ,cos sin P ααββ⎛⎫⎪⎝⎭与点()cos ,sin Q ββ均是l 与O 上的点,从而2sin cos cos αββ=,亦即22sin cos αβ=,又α,β均为锐角,故2αβπ+=. 9.由已知得()()1cos sin sin sin cos cos ββαββα+-⋅++⋅.令sin u α=,cos v α=, 则l :()()1cos sin sin cos cos 0u ββββα+-⋅++⋅. O :221u v +=.由l 与O 有公共点,1即cos sin ββ≥,而,4βπ⎡⎤∈π⎢⎥⎣⎦,从而cos sin ββ=,故4βπ=.习题B1.已知圆的方程为22221x y -+-=()(),它关于x 轴的对称圆方程为()()22221x y -++=.此圆与直线l 相切,设切点()11,B x y ,l 上任一点为(),M x y ,B 分MA 为定比λ,则131x x λλ-=+,131y y λλ+=+.又B 在圆上有()()22249255194470y x x y x y λλ+-+++-++=,又l 与圆相切有0=△,即()()83434330x y x y -+-++=,故所求两条光线方程为3430x y +-=,4330x y ++=.2.取正ABC △的顶点A 为原点,BC 边上的高DA 所在直线为y 轴建立直角坐标系,则AB,AC 的 程分别为0y -=,0y +=.若正ABC △的高为r ,则与边BC 相切而滚动的圆的方程为()222x m y r -+=.设圆与AB ,AC 分别交于Q ,R 两点,则Q ,R 两点的横坐标Q x ,R x 为方程()2223x m x r -+=,即222420x mx m r -+-=的根.即有2Q R m x x +=,()214Q R x x mr ⋅=-.又Q Q y ,R R y ,则()()()2222222232Q R Q R Q Q R R Q Q R R RQ x x y y x x x x x x x x =-+-=-++++()222224444Q R Q R m m r x x x x r ⎛⎫-⎡⎤=+-=-= ⎪⎢⎥⎣⎦⎝⎭. 从而RQ r =,故RQ 在圆心所张的角恒为60︒的圆上.3.以垂心为原点,ABC △的高AD 所在直线为y 轴建立直角坐标系.设()0,2A a ,()22B b d ,,()22C c d ,,则三边中点的坐标分别为()2P b c d +,,(),Q c a d +,(),R b a d +垂心与三顶点连线的中点分别为()0,J a ,(),K b d ,(),L c d .因AD ,BE ,CF 是ABC △的三条高,则JPD △,KQE △,LRF △都是直角三角形,故它们的外接圆直径分别为JP ,KQ ,LR .又因这三条线段的中点坐标均为2,22b c a d ++⎛⎫⎪⎝⎭,故三外接圆的圆心重合.而()()2222JP b c d a =++-,()2222KQ LR b c a ==-+,且从BE AC ⊥可得()2220d d a b c -+⋅=,即2d bca d+=,故 ()()()22222220JP KQ b c d a b c a -=++----=,故JP KQ LR ==,即三圆直径相等,由此得JPD △,KQE △,LRF △的三外接圆重合,故九个点共圆.。

初中奥林匹克数学竞赛知识点总结及训练题目-圆的基本性质

初中奥林匹克数学竞赛知识点总结及训练题目-圆的基本性质

初中数学竞赛辅导讲义---圆的基本性质到定点(圆心)等于定长(半径)的点的集合叫圆,圆常被人们看成是最完美的事物,圆的图形在人类进程中打下深深的烙印.圆的基本性质有:一是与圆相关的基本概念与关系,如弦、弧、弦心距、圆心角、圆周角等;二是圆的对称性,圆既是一个轴对称图形,又是一中心对称图形.用圆的基本性质解题应注意:1.熟练运用垂径定理及推论进行计算和证明;2.了解弧的特性及中介作用;3.善于促成同圆或等圆中不同名称等量关系的转化.熟悉如下基本图形、基本结论:【例题求解】【例1】在半径为1的⊙O 中,弦AB 、AC 的长分别为3和2,则∠BAC 度数为 .作出辅助线,解直角三角形,注意AB 与AC 有不同的位置关系.注: 由圆的对称性可引出许多重要定理,垂径定理是其中比较重要的一个,它沟通了线段、角与圆弧的关系,应用的一般方法是构造直角三角形,常与勾股定理和解直角三角形知识结 合起来.圆是一个对称图形,注意圆的对称性,可提高解与圆相关问题周密性.【例2】 如图,用3个边长为1的正方形组成一个对称图形,则能将其完全覆盖的圆的最小半径为( )A .2B .25C .45D .16175思路点拨 所作最小圆圆心应在对称轴上,且最小圆应尽可能通过圆形的某些顶点,通过设未知数求解.【例3】 如图,已知点A 、B 、C 、D 顺次在⊙O 上,AB=BD ,BM ⊥AC 于M ,求证:AM=DC+CM .思路点拨 用截长(截AM)或补短(延长DC)证明,将问题转化为线段相等的证明,证题的关键是促使不同量的相互转换并突破它.【例4】 如图甲,⊙O 的直径为AB ,过半径OA 的中点G 作弦C E ⊥AB ,在CB 上取一点D ,分别作直线CD 、ED ,交直线AB 于点F ,M .(1)求∠COA 和∠FDM 的度数;(2)求证:△FDM ∽△COM ; (3)如图乙,若将垂足G 改取为半径OB 上任意一点,点D 改取在EB 上,仍作直线CD 、ED ,分别交直线AB 于点F 、M ,试判断:此时是否有△FDM ∽△COM? 证明你的结论.思路点拨 (1)在Rt △COG 中,利用OG=21OA=21OC ;(2)证明∠COM=∠FDM ,∠CMO= ∠FMD ;(3)利用图甲的启示思考.注:善于促成同圆或等圆中不同名称的相互转化是解决圆的问题的重要技巧,此处,要努力把圆与直线形相合起来,认识到圆可为解与直线形问题提供新的解题思路,而在解与圆相关问题时常用到直线形的知识与方法(主要是指全等与相似).【例5】 已知:在△ABC 中,AD 为∠BAC 的平分线,以C 为圆心,CD 为半径的半圆交BC 的延长线于点E ,交AD 于点F ,交AE 于点M ,且∠B=∠CAE ,EF :FD =4:3.(1)求证:AF =DF ;(2)求∠AED 的余弦值;(3)如果BD =10,求△ABC 的面积.思路点拨 (1)证明∠ADE =∠DAE ;(2)作AN ⊥BE 于N ,cos ∠AED =AEEN ,设FE=4x ,FD =3x ,利用有关知识把相关线段用x 的代数式表示;(3)寻找相似三角形,运用比例线段求出x 的值.⌒ ⌒ ⌒ ⌒注:本例的解答,需运用相似三角形、等腰三角形的判定、面积方法、代数化等知识方法思想,综合运用直线形相关知识方法思想是解与圆相关问题的关键.学历训练1.D是半径为5cm的⊙O内一点,且OD=3cm,则过点D的所有弦中,最小弦AB= .2.阅读下面材料:对于平面图形A,如果存在一个圆,使图形A上的任意一点到圆心的距离都不大于这个圆的半径,则称图形A被这个圆所覆盖.对于平面图形A,如果存在两个或两个以上的圆,使图形A上的任意一点到其中某个圆的圆心的距离都不大于这个圆的半径,则称图形A被这些圆所覆盖.例如:图甲中的三角形被一个圆所覆盖,图乙中的四边形被两个圆所覆盖.回答下列问题:(1)边长为lcm的正方形被一个半径为r的圆所覆盖,r的最小值是cm;(2)边长为lcm的等边三角形被一个半径为r的圆所覆盖,r的最小值是cm;(3)长为2cm,宽为lcm的矩形被两个半径都为r的圆所覆盖,r的最小值是cm.(2003年南京市中考题)3.世界上因为有了圆的图案,万物才显得富有生机,以下来自现实生活的图形中都有圆:它们看上去多么美丽与和谐,这正是因为圆具有轴对称和中心对称性.(1)请问以下三个图形中是轴对称图形的有,是中心对称图形的有(分别用下面三个图的代号a,b,c填空).(2)请你在下面的两个圆中,按要求分别画出与上面图案不重复的图案(草图) (用尺规画或徒手画均可,但要尽可能准确些,美观些).a .是轴对称图形但不是中心对称图形.b .既是轴对称图形又是中心对称图形.4.如图,AB 是⊙O 的直径,CD 是弦,若AB=10cm ,CD =8cm ,那么A 、B 两点到直线CD 的距离之和为( )A .12cmB .10cmC . 8cmD .6cm5.一种花边是由如图的弓形组成的,ACB 的半径为5,弦AB =8,则弓形的高CD 为( )A .2B .25C .3D .316 6.如图,在三个等圆上各自有一条劣弧AB 、CD 、EF ,如果AB+CD=EF ,那么AB+CD 与E 的大小关系是( )A .AB+CD =EFB .AB+CD=FC . AB+CD<EFD .不能确定7.电脑CPU 芯片由一种叫“单晶硅”的材料制成,未切割前的单晶硅材料是一种薄形圆片,叫“晶圆片”.现为了生产某种CPU 芯片,需要长、宽都是1cm 的正方形小硅片若干.如果晶圆片的直径为10.05cm ,问:一张这种晶圆片能否切割出所需尺寸的小硅片66张?请说明你的方法和理由(不计切割损耗).8.如图,已知⊙O 的两条半径OA 与OB 互相垂直,C 为AmB 上的一点,且AB 2+OB 2=BC 2,求∠OAC 的度数.9.不过圆心的直线l 交⊙O 于C 、D 两点,AB 是⊙O 的直径,AE ⊥l ,垂足为E ,BF ⊥l ,垂足为F .(1)在下面三个圆中分别补画出满足上述条件的具有不同位置关系的图形;(2)请你观察(1)中所画图形,写出一个各图都具有的两条线段相等的结论(不再标注其他字母,找结论的过程中所连辅助线不能出现在结论中,不写推理过程);(3)请你选择(1)中的一个图形,证明(2)所得出的结论.⌒ ⌒ ⌒ ⌒ ⌒ ⌒ ⌒10.以AB 为直径作一个半圆,圆心为O ,C 是半圆上一点,且OC 2=AC ×BC , 则∠CAB=.11.如图,把正三角形ABC 的外接圆对折,使点A 落在BC 的中点A ′上,若BC=5,则折痕在△ABC 内的部分DE 长为 .12.如图,已知AB 为⊙O 的弦,直径MN 与AB 相交于⊙O 内,MC ⊥AB 于C ,ND ⊥AB 于D ,若MN=20,AB=68,则MC —ND= .13.如图,已知⊙O 的半径为R ,C 、D 是直径AB 同侧圆周上的两点,AC 的度数为96°,BD 的度数为36°,动点P 在AB 上,则CP+PD 的最小值为 .14.如图1,在平面上,给定了半径为r 的圆O ,对于任意点P ,在射线OP 上取一点P ′,使得OP ×OP ′=r 2,这种把点P 变为点P ′的变换叫作反演变换,点P 与点P ′叫做互为反演点.(1)如图2,⊙O 内外各有一点A 和B ,它们的反演点分别为A ′和B ′,求证:∠A ′=∠B ;(2)如果一个图形上各点经过反演变换得到的反演点组成另一个图形,那么这两个图形叫做互为反演图形.①选择:如果不经过点O 的直线与⊙O 相交,那么它关于⊙O 的反演图形是( )A .一个圆B .一条直线C .一条线段D .两条射线②填空:如果直线l 与⊙O 相切,那么它关于⊙O 的反演图形是 ,该图形与圆O 的位置关系是 .15.如图,已知四边形ABCD 内接于直径为3的圆O ,对角线AC 是直径,对角线AC 和BD 的交点为P ,AB=BD ,且PC=0.6,求四边形ABCD 的周长.16.如图,已知圆内接△ABC 中,AB>AC ,D 为BAC 的中点,DE ⊥AB 于E ,求证:BD 2-AD 2=AB×AC .⌒ ⌒ ⌒17.将三块边长均为l0cm 的正方形煎饼不重叠地平放在圆碟内,则圆碟的直径至少是多少?(不考虑其他因素,精确到0.1cm)18.如图,直径为13的⊙O ′,经过原点O ,并且与x 轴、y 轴分别交于A 、B 两点,线段OA 、OB(OA>OB)的长分别是方程0602=++kx x 的两根.(1)求线段OA 、OB 的长; (2)已知点C 在劣弧OA 上,连结BC 交OA 于D ,当OC 2=CD ×CB 时,求C 点坐标;(3)在⊙O ,上是否存在点P ,使S △POD =S △ABD ?若存在,求出P 点坐标;若不存在,请说明理由.⌒参考答案。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆的基本性质
〖知识点〗圆、圆的对称性、点和圆的位置关系、不在同一直线上的三点确定一个圆、三角形的外接圆、垂径定理逆定理、圆心角、弧、弦、弦心距之间的关系、圆周角定理、圆内接四边形的性质 〖大纲要求〗
1. 正确理解和应用圆的点集定义,掌握点和圆的位置关系;
2. 熟练地掌握确定一个圆的条件,即圆心、半径;直径;不在同一直线上三点。

一个
圆的圆心只确定圆的位置,而半径也只能确定圆的大小,两个条件确定一条直线,三个条件确定一个圆,过三角形的三个顶点的圆存在并且唯一;
3. 熟练地掌握和灵活应用圆的有关性质:同(等)圆中半径相等、直径相等直径是半径的2倍;直径是
最大的弦;圆是轴对称图形,经过圆心的任一条直线都是对称轴;圆是中心对称图形,圆心是对称中心;圆具有旋转不变性;垂径定理及其推论;圆心角、圆周角、弧、弦、弦心距之间的关系; 4. 掌握和圆有关的角:圆心角、圆周角的定义及其度量;圆心角等于同(等)弧上的
圆周角的2倍;同(等)弧上的圆周角相等;直径(半圆)上的圆周角是直角;90°的圆周角所对的弦是直径;
5. 掌握圆内接四边形的性质定理:它沟通了圆内外图形的关系,并能应用它解决有关 问题;
6. 注意:(1)垂径定理及其推论是指:一条弦①在“过圆心”②“垂直于另一条弦”
③“平分这另一条弦”④“平分这另一条弦所对的劣弧”⑤“ 平分这另一条弦所对的优弧”的五个条件中任意具有两个条件,则必具有另外三个结论(当①③为条件时要对另一条弦增加它不是直径的限制),条理性的记忆,不但简化了对它实际代表的10条定理的记忆且便于解题时的灵活应用,垂径定理提供了证明线段相等、角相等、垂直关系等的重要依据;(2)有弦可作弦心距组成垂径定理图形;见到直径要想到它所对的圆周角是直角,想垂径定理;想到过它的端点若有切线,则与它垂直,反之,若有垂线则是切线,想到它被圆心所平分;(3)见到四个点在圆上想到有4组相等的同弧所对的圆周角,要想到应用圆内接四边形的性质。

典型例题
1.一个点到圆的最大距离为11cm ,最小距离为5cm,则圆的半径为( ) (A)16cm 或6cm, (B)3cm 或8cm (C)3cm (D )8cm
2.P ∠与⊙O 交于A ,B ,C ,D 四点,AQ ,CQ 为圆的两条弦,弧BQ 的度数为,42︒
弧QD 的度数为,38︒求__________=∠+∠Q P
3.如图,⊙O 中直径AB 垂直于弦CD ,若AB=10,CD=6,则BE 的长为________[1] 4.如图,正方形CDEF 的边CD 在半圆O 的直径上,正方形的过长为1,AC=a, BC=b, 在
5)4(;1)3(;5)2(;1)1(22=+==+=-b a ab b a b a ,各式中成立的个数为_______[3]
5。

如图,四过形内接于⊙O, AD 为直径, 若︒=∠60CBE , 则圆心角
=
∠AOC
________]120[︒
6.BC 为半圆O 的直径, A 、D 为半圆上的两点, AB=3, BC=2, 则∠D=___________]150[︒
7.四边形ABCD 中,若n m D C B A :4::5:::=∠∠∠∠,则四边形ABCD 内接于圆的条件是
________________ C ; 8. 已知︒
=∠40A ,弧BE=弧BC=弧CD ,则___________
=∠ACE ︒15 9. 在⊙O 中,弦AB=24,弦CD=10,AB 弦的弦心距为5,则CD 弦的弦心距为___________ 10.
若AB 为⊙O 的直径,弦 CD ⊥AB 于E ,AE=16cm ,BE=4cm ,则CD=________12
AC=________________58 11. 已知弧AB=
101
圆周,AD 平分OAB ∠,交OB 于D ,求ADB ∠的度数___________︒72 12.
已知,ABC ∆中,︒
=∠70A ,⊙O 截ABC ∆的三条边所截得弦都相等,
则BOC ∠为_______________(如图)︒125
二.证明题与计算题
1.在⊙O 中,直径AB 与弦CD 相交,分别过B ,O ,A 向CD 引垂线,垂足分别为E ,F ,G ,求证:CE=DG
2.已知:⊙O 中,两弦AB=CD ,且交于E 点,求证:AE=CE
3.已知,在∆ABC 中,AD ⊥BC 于D ,其延长线交⊙O 于E ,CF ⊥AB 于F ,交AD 于G ,求证:DE=DG
4.已知,∆ABC 内接于圆,D 是AB 上一点,AD=AC ,E 是AC 延长线上一点,AE=AB ,连接DE 交圆于F ,
延长ED 交圆于G ,求证:
AF=AG
E
5.已知CD 为垂直于直径AB 的弦,在CD 的延长线上取一点F ,连AF 交圆于E ,求证:DEF AEC ∠=∠
13. 圆内接ABC ∆为正三角形,P 在弧BC 上,求证:PA=PB+PC
14. 已知:四边形ABCD 内接于以AD 为直径的圆O ,且AD=4,AB=CB=1,求CD 的长。

9.∆ABC 内接于⊙O ,P 为弧AC 的中点,PQ//AB ,点Q 在BC 上,QR//PA ,点R 在AB 上,求证:AR=BQ
10.A ,B ,M ,N 是⊙O 上四点,由点M 引弦MA 1和MB 1,它们分别与直线NB 和NA 垂直。

求证:AA 1//BB 1。

相关文档
最新文档