燃料电池质子交换膜燃料电池详解PPT课件
合集下载
燃料电池质子交换膜简介演示

化学稳定性
质子交换膜应具有良好的化学稳定性,以应对燃料电池运行过程中可能发生的化学 反应和腐蚀。
膜的材料和结构是影响其化学稳定性的关键因素。
高质量的质子交换膜应具有出色的化学稳定性,以确保在燃料电池运行过程中的稳 定性和耐久性。
06
质子交换膜在燃料电池领Hale Waihona Puke 的 应用前景及挑战应用前景
01 02
环保能源
最后,电子从阳极通过外部电路流向阴 极,完成电流的产生。
在电化学反应步骤中,氢气和氧气通过 催化剂的作用被分解成电子、质子和氧 离子。
氢气供应是指氢气从外部通过管道或压 力容器供应给燃料电池的阳极。
氧化剂供应是指氧气从外部通过管道或 压力容器供应给燃料电池的阴极。
燃料电池的类型
根据使用不同的电解质,燃料电池可以 分为质子交换膜燃料电池(PEMFC) 、碱性燃料电池(AFC)、磷酸燃料电 池(PAFC)、熔融碳酸盐燃料电池(
定制化质子交换膜
定制化质子交换膜是根据特定应用 需求,定制加工的具有特殊性能和 用途的质子交换膜。
03
质子交换膜在燃料电池中的作 用
质子交换膜作为隔膜的作用
阻隔反应气体
质子交换膜作为燃料电池的隔膜 ,能够将阳极和阴极隔开,防止 反应气体混合,确保电池的安全 运行。
传递质子
质子交换膜具有传导质子的能力 ,能够让阳极产生的质子传递到 阴极,实现电化学反应的连续进 行。
的商业化进程不断加快,市场规模不断扩大。
挑战与问题
技术成熟度
尽管质子交换膜燃料电池具有许多优点,但其技术成熟度 还有待进一步提高,尤其是在膜电极组件、双极板等关键 部件的设计和制造方面。
运行稳定性
质子交换膜燃料电池的运行稳定性还需要进一步提高,尤 其是在高温、高湿度等恶劣环境下,需要保证其长期稳定 运行。
质子交换膜 PPT

1.0 1.0
含水率/%
—— 33 —— —— 38 87
电导率与水含量
全氟磺酸膜具有力学强度高,化学稳定性好,质子电导 率大(水含量大时)等优点的同时,也有其局限性。这类膜 的离子电导强烈地依赖于水含量,在水含量较低或温度 较高,特别是温度高于100 ℃时,电导率明显下降。
下图为Nafion117的电导率与水含量的关系
感谢您的聆听!
质子交换膜
新能源:质子交换膜的应用
质子交换膜(Proton Exchange Membrane Fuel, PEM)是PEMFC的核心部件。PEMFC质子交换 膜燃料电池已成为汽油内燃机动力最具竞争力的 洁净取代动力源。在燃料电池内部,质子交换膜 为质子的迁移和输送提供通道,使得质子经过膜 从阳极到达阴极,与外电路的电子转移构成回路, 向外界提供电流,因此质子交换膜的性能对燃料 电池的性能起着非常重要的作用,它的好坏直接 影响电池的使用寿命。
现在在世界上拥有的PEM大致有: 全氟磺酸型质子交 换膜;nafion重铸膜;非氟聚合物质子交换膜;新型复合质 子交换膜等等
但迄今最常用的质子交换膜(PEMFC)仍然是美国杜邦 公司的Nafion®膜(全氟磺酸型质子交换膜)。
全氟磺酸质子交换膜是一种固体聚合物电解质, 具有化学稳定性和热稳定性好、电压降低、电 导率高、机械强度高等优点,可在强酸、强碱、 强氧化剂介质和高温等苛刻条件下使用。
接下来将详细讲述全氟磺酸质子交换膜
全氟磺酸型质子交换膜
1962年美国Dupont公司研制成功全氟磺酸型质子交换膜,1966 年首次用于氢氧燃料电池,为研制长寿命、高比功率的PEMFC 打下了坚实的物质基础。
制备过程:
制备全氟磺酸型质子交换膜,首先用聚四氟乙烯作原料合成 全氟磺酰氟烯醚单体。该单体再与聚四氟乙烯聚合制备全氟 磺酰氟树脂,最后用该树脂制膜。
含水率/%
—— 33 —— —— 38 87
电导率与水含量
全氟磺酸膜具有力学强度高,化学稳定性好,质子电导 率大(水含量大时)等优点的同时,也有其局限性。这类膜 的离子电导强烈地依赖于水含量,在水含量较低或温度 较高,特别是温度高于100 ℃时,电导率明显下降。
下图为Nafion117的电导率与水含量的关系
感谢您的聆听!
质子交换膜
新能源:质子交换膜的应用
质子交换膜(Proton Exchange Membrane Fuel, PEM)是PEMFC的核心部件。PEMFC质子交换 膜燃料电池已成为汽油内燃机动力最具竞争力的 洁净取代动力源。在燃料电池内部,质子交换膜 为质子的迁移和输送提供通道,使得质子经过膜 从阳极到达阴极,与外电路的电子转移构成回路, 向外界提供电流,因此质子交换膜的性能对燃料 电池的性能起着非常重要的作用,它的好坏直接 影响电池的使用寿命。
现在在世界上拥有的PEM大致有: 全氟磺酸型质子交 换膜;nafion重铸膜;非氟聚合物质子交换膜;新型复合质 子交换膜等等
但迄今最常用的质子交换膜(PEMFC)仍然是美国杜邦 公司的Nafion®膜(全氟磺酸型质子交换膜)。
全氟磺酸质子交换膜是一种固体聚合物电解质, 具有化学稳定性和热稳定性好、电压降低、电 导率高、机械强度高等优点,可在强酸、强碱、 强氧化剂介质和高温等苛刻条件下使用。
接下来将详细讲述全氟磺酸质子交换膜
全氟磺酸型质子交换膜
1962年美国Dupont公司研制成功全氟磺酸型质子交换膜,1966 年首次用于氢氧燃料电池,为研制长寿命、高比功率的PEMFC 打下了坚实的物质基础。
制备过程:
制备全氟磺酸型质子交换膜,首先用聚四氟乙烯作原料合成 全氟磺酰氟烯醚单体。该单体再与聚四氟乙烯聚合制备全氟 磺酰氟树脂,最后用该树脂制膜。
PEMFC——燃料电池课件.

由图可知,构成 PEMFC 的关键材料与部件 为电催化剂、电极 ( 阴极与阳极 ) 、质子交换 膜和双极板。
PEMFC 中的电极反应类同于其他酸性电解质燃料电 池。阳极催化层中的氢气在催化剂作用下发生电极反 应: 阳极反应: H 2 2H 2e 该电极反应产生的电子经外电路到达阴极,氢离子则 经质子交换膜到达阴极。氧气与氢离子及电子在阴极 发生反应生成水。生成的水不稀释电解质,而是通过 电极随反应尾气排出。
2.电池组: 电池组的主体为MEA,双极板及相应 可兼作电流导出 板,为电池组的正极;另一端为阳单极板,也可兼作 电流导入板,为电池组的负极,与这两块导流板相邻 的是电池组端板,也称为夹板。在它上面除布有反应 气与冷却液进出通道外,周围还布置有一定数目的圆 孔,在组装电池时,圆孔内穿入螺杆,给电池组施加 一定的组装力。 若两块端板用金属(如不锈钢、铁板、超硬铝等)制作, 还需在导流板与端板之间加入由工程塑料制备的绝缘 板。
质子交换膜燃料电池
1 工作原理
质 子 交 换 膜 型 燃 料 电 池 (Proton exchange membrane fuel cells,PEMFC)以全氟磺酸型固体 聚合物为电解质,铂 / 炭或铂 - 钌 / 炭为电催化剂, 氢或净化重整气为燃料,空气或纯氧为氧化剂, 带有气体流动通道的石墨或表面改性的金属板为 双极板。 下图为PEMFC的工作原理示意图。
流场结够对 PEMFC 电池组至关重要,而且与反应 气纯度、电池系统的流程密切相关。 因此,在设计电池组结构时,需根据具体条件,如 反应气纯度、流程设计(如有无尾气回流,如有, 回流比是多少等)进行化工设计,各项参数均要达 到设计要求,并经单电池实验验证可行后方可确定。
电池组密封: 要求是按照设计的密封结构,在电池组组装力的 作用下,达到反应气、冷却液不外漏,燃料、氧 化剂和冷却液不互窜。
质子交换膜燃料电池PPT课件

05
PEMFC性能评价与测试方 法
PEMFC性能评价指标
输出功率密度
单位面积或单位体积电池的输出 功率,反映电池的能量转换效率
。
开路电压
电池在开路状态下的电压,与电 池内部的电化学反应有关。
电流密度
单位面积电池的输出电流,影响 电池的输出功率和效率。
温度特性
电池在不同温度下的性能表现, 包括启动、运行和关机过程中的 温度变化对电池性能的影响。
笔记本电脑、手机等
PEMFC应用领域及前景
固定式电源
家庭、数据中心等
降低成本
通过研发新材料和工艺,降低 PEMFC成本
PEMFC应用领域及前景
固定式电源
家庭、数据中心等
降低成本
通过研发新材料和工艺,降低 PEMFC成本
PEMFC应用领域及前景
提高耐久性
改进电池结构和材料,提高电池寿命 和稳定性
燃料电池类型及特点
碱性燃料电池(AFC)
采用氢氧化钾溶液作为电解质,具有高效率、低污染等优点,但需要纯净的氢气和 氧气作为燃料和氧化剂,且对二氧化碳敏感。
燃料电池类型及特点
碱性燃料电池(AFC)
采用氢氧化钾溶液作为电解质,具有高效率、低污染等优点,但需要纯净的氢气和 氧气作为燃料和氧化剂,且对二氧化碳敏感。
01
燃料电池概述
01
燃料电池概述
燃料电池定义与原理
燃料电池定义
燃料电池是一种将燃料和氧化剂的化学能直接转换成电能的发电装置。其基本原理是电解水的逆过程,通过向燃 料电池堆输入氢气和氧气(或空气),在催化剂的作用下,经过电化学反应生成水并对外输出电能。
燃料电池工作原理
燃料电池的核心部件是质子交换膜,它只允许质子通过而阻止电子和气体通过。在阳极,氢气在催化剂的作用下 分解成质子和电子,质子通过质子交换膜传递到阴极,而电子则通过外电路传递到阴极,形成电流。在阴极,氧 气与质子和电子结合生成水。
车用质子交换膜燃料电池快速入门.ppt

铂微粒固定在相对较大的炭粉 粒子上,催化剂一般为铂,目 前,用量为0.2mg/cm2,
8
4 .双极板 实现燃料电池内部连接的一个方法,是采用双极板, 同一块双极板的两个侧面,分别与相邻燃料电池的阴 极和阳极接触,同时双极板还起到把氢送到阳极,和 把氧或空气送到阴极的作用
9
5. 质子交换膜燃料电池的水管理问题 质子交换膜中的电解质必须含有足够的水,才能 保证有良好的离子传导性,但水也不能太多,否 则它会涌入并堵塞电极或气体扩散层中的孔通道 燃料电池里的水来自:一是氢氧反应产生的水,另一 是对反应气体加湿将水带进来,下图为几种加湿方法
15
环境压力燃料电池的基本结构
* 阳极直接加水, 电解膜充分含水
* 对阴极供应大流 量干空气流
* 用空气流直接蒸 发阴极侧的水来 冷却燃料电池
* 系统效率高
16
环境压力燃料电池电压--电流曲线
17
两种燃料电池系统的比较
18
8. 燃料电池发动机 燃料电池发动机,是指包括:燃料电池系统、 行走电机、电机控制器和传统内燃发动机所带 的附件等合在一起的系统或装置
10
6. 加压燃料电池系统 传统燃料电池系统通过提高压力的方法来增加它的功率密度, 此时系统中要有一个压缩机 空气中氮含量约占80%,在对空气进行压缩时,大部分压缩功率, 被用来压缩不起作用的氮上,氧利用率(OUR)取得越大,压缩 机消耗功率越大,燃料电池输出的净功率减小,效率降低
11
用于氢再循环的射流泵结构
12
加压燃料电池系统里,一个十分关键的部件是“压缩 -膨胀机”。可以选用的压缩机类型很多,有双螺杆 式、罗茨转子式、叶片式等。膨胀器用来回收排出空 气中的能量。图为压缩膨胀器一例。
13
8
4 .双极板 实现燃料电池内部连接的一个方法,是采用双极板, 同一块双极板的两个侧面,分别与相邻燃料电池的阴 极和阳极接触,同时双极板还起到把氢送到阳极,和 把氧或空气送到阴极的作用
9
5. 质子交换膜燃料电池的水管理问题 质子交换膜中的电解质必须含有足够的水,才能 保证有良好的离子传导性,但水也不能太多,否 则它会涌入并堵塞电极或气体扩散层中的孔通道 燃料电池里的水来自:一是氢氧反应产生的水,另一 是对反应气体加湿将水带进来,下图为几种加湿方法
15
环境压力燃料电池的基本结构
* 阳极直接加水, 电解膜充分含水
* 对阴极供应大流 量干空气流
* 用空气流直接蒸 发阴极侧的水来 冷却燃料电池
* 系统效率高
16
环境压力燃料电池电压--电流曲线
17
两种燃料电池系统的比较
18
8. 燃料电池发动机 燃料电池发动机,是指包括:燃料电池系统、 行走电机、电机控制器和传统内燃发动机所带 的附件等合在一起的系统或装置
10
6. 加压燃料电池系统 传统燃料电池系统通过提高压力的方法来增加它的功率密度, 此时系统中要有一个压缩机 空气中氮含量约占80%,在对空气进行压缩时,大部分压缩功率, 被用来压缩不起作用的氮上,氧利用率(OUR)取得越大,压缩 机消耗功率越大,燃料电池输出的净功率减小,效率降低
11
用于氢再循环的射流泵结构
12
加压燃料电池系统里,一个十分关键的部件是“压缩 -膨胀机”。可以选用的压缩机类型很多,有双螺杆 式、罗茨转子式、叶片式等。膨胀器用来回收排出空 气中的能量。图为压缩膨胀器一例。
13
燃料电池简介 ppt课件

阐述电化学反应产生的电流随活化过电势的变化。
PPT课件
11
Butler-Volmer方程函数曲线
由图可以看出,如 果我们想从电池中 获得更多电流,就 必须以损失电压为 代价
PPT课件
12
影响燃料电池性能的因素
PPT课件
活化过电势对燃料电池性能的影响
13
如何改善动力学性能
PPT课件
14Βιβλιοθήκη 71.4燃料电池的优点
发电效率高 环境污染小 比能量高 噪音低 燃料范围广 负载调节灵活,可靠性高
PPT课件
8
2.燃料电池反应动力学
定义:对燃料电池反应过程的研究。 目的:解释燃料电池的反应过程如何导致性能损失。
PPT课件
9
活化能垒
PPT课件
10
Butler-Volmer方程
PPT课件
17
4.燃料电池的应用
2017年10月12日,陆地方舟新型氢电混合燃料电池客 车在第十二届深圳国际物流与交通运输博览会(简称 “物博会”)上正式发布,新车为8.3米考斯特车型, 加氢5分钟,充电12分钟,续航可达550km,该车也 是我国发布的首台8米考斯特车型氢燃料电池客车。
PPT课件
燃料电池
PPT课件
1
1.燃料电池的概述
燃料电池(full Cell)是一种将持续供给的燃料和氧 化剂中的化学能连续不断地直接转化为电能的电化 学装置。
燃料电池在原理和结构上和普通电池(battery)完 全不同。燃料电池的活性物质是存储在电池之外, 只要不断地供给燃料和氧化物就一直能发电,因而 容量是无限的。而电池的容量是有限的,活性物质 一旦消耗完,电池的寿命就终止。
PPT课件
11
Butler-Volmer方程函数曲线
由图可以看出,如 果我们想从电池中 获得更多电流,就 必须以损失电压为 代价
PPT课件
12
影响燃料电池性能的因素
PPT课件
活化过电势对燃料电池性能的影响
13
如何改善动力学性能
PPT课件
14Βιβλιοθήκη 71.4燃料电池的优点
发电效率高 环境污染小 比能量高 噪音低 燃料范围广 负载调节灵活,可靠性高
PPT课件
8
2.燃料电池反应动力学
定义:对燃料电池反应过程的研究。 目的:解释燃料电池的反应过程如何导致性能损失。
PPT课件
9
活化能垒
PPT课件
10
Butler-Volmer方程
PPT课件
17
4.燃料电池的应用
2017年10月12日,陆地方舟新型氢电混合燃料电池客 车在第十二届深圳国际物流与交通运输博览会(简称 “物博会”)上正式发布,新车为8.3米考斯特车型, 加氢5分钟,充电12分钟,续航可达550km,该车也 是我国发布的首台8米考斯特车型氢燃料电池客车。
PPT课件
燃料电池
PPT课件
1
1.燃料电池的概述
燃料电池(full Cell)是一种将持续供给的燃料和氧 化剂中的化学能连续不断地直接转化为电能的电化 学装置。
燃料电池在原理和结构上和普通电池(battery)完 全不同。燃料电池的活性物质是存储在电池之外, 只要不断地供给燃料和氧化物就一直能发电,因而 容量是无限的。而电池的容量是有限的,活性物质 一旦消耗完,电池的寿命就终止。
质子交换膜燃料电池PPT课件

阴极催化剂中毒等。
改性全氟磺酸膜
增强型复合质子交换膜
聚四氟乙烯/全氟磺酸复合膜(美国Gore公司) 玻璃纤维/全氟磺酸复合膜(英国Johnson Matthery公司、武汉 理工)
高温型复合质子交换膜
杂多酸/全氟磺酸复合膜(磷钨酸、硅钨酸(STA)、磷钼酸、磷
锡酸)(加拿大蒙特利尔大学工学院、,美国普林斯顿大学)
金属板
优点:比石墨具有更好的导电及导热性, 具有极高的气体不透过性,良好的机加 工特性。
缺点:耐腐蚀性能差,表面钝化。
改进:表面处理,表面涂层(石墨粉、 氧化铅、碳化硅等)。
复合双极板
综合了纯石墨板和金属双极板的优点,具 有耐腐蚀、质量轻、强度高等特点,包括:
(1)金属基复合双极板; (2)碳基复合材料双极板。
写在最后
成功的基础在于好的学习习惯
The foundation of success lies in good habits
38
谢谢聆听
·学习就是为了达到一定目的而努力去干, 是为一个目标去 战胜各种困难的过程,这个过程会充满压力、痛苦和挫折
Learning Is To Achieve A Certain Goal And Work Hard, Is A Process To Overcome Various Difficulties For A Goal
CO在催化剂表面的吸附远强于氢,因此催 化剂上吸附氢的活性位会被CO所占据,从而对 氢的电氧化反应造成阻碍,实验结果表明,即使 氢气中CO的浓度低至10-5也会导致严重的阳极极 化现象,使电池的性能严重下降。
由于价格因素和储氢的困难,一般多使用重 整气制氢用于燃料电池的燃料,这些气体中大多 都含有CO。
改性全氟磺酸膜
增强型复合质子交换膜
聚四氟乙烯/全氟磺酸复合膜(美国Gore公司) 玻璃纤维/全氟磺酸复合膜(英国Johnson Matthery公司、武汉 理工)
高温型复合质子交换膜
杂多酸/全氟磺酸复合膜(磷钨酸、硅钨酸(STA)、磷钼酸、磷
锡酸)(加拿大蒙特利尔大学工学院、,美国普林斯顿大学)
金属板
优点:比石墨具有更好的导电及导热性, 具有极高的气体不透过性,良好的机加 工特性。
缺点:耐腐蚀性能差,表面钝化。
改进:表面处理,表面涂层(石墨粉、 氧化铅、碳化硅等)。
复合双极板
综合了纯石墨板和金属双极板的优点,具 有耐腐蚀、质量轻、强度高等特点,包括:
(1)金属基复合双极板; (2)碳基复合材料双极板。
写在最后
成功的基础在于好的学习习惯
The foundation of success lies in good habits
38
谢谢聆听
·学习就是为了达到一定目的而努力去干, 是为一个目标去 战胜各种困难的过程,这个过程会充满压力、痛苦和挫折
Learning Is To Achieve A Certain Goal And Work Hard, Is A Process To Overcome Various Difficulties For A Goal
CO在催化剂表面的吸附远强于氢,因此催 化剂上吸附氢的活性位会被CO所占据,从而对 氢的电氧化反应造成阻碍,实验结果表明,即使 氢气中CO的浓度低至10-5也会导致严重的阳极极 化现象,使电池的性能严重下降。
由于价格因素和储氢的困难,一般多使用重 整气制氢用于燃料电池的燃料,这些气体中大多 都含有CO。
燃料电池课件PPT(47页)

采用非铂系催化剂
化学性质稳定
缺点:
氧化剂中必须不含有CO2。 燃料中必须不含CO2 电池电化学反应生成的水必须及时排出,维持水
平衡。
磷酸盐燃料电池(PAFC)
PAFC 是一种以磷酸为电解质的燃料电池 。 PAFC采用重整天然气作燃料,空气作氧化剂, 浸有浓磷酸的SiC 微孔膜作电解质 , Pt/C 作 催化剂 ,工作温度 200℃ 。
具体做法是将全氟磺酸树脂玻璃化温度下施加一定压力,将以加入全氟磺酸树脂的氢电极( 阳极 )、隔膜( 全氟磺酸型质 子交换膜) 和 已加入全氟磺酸树脂的氧电极(阴极)压和在一起,形成了电极-膜-电极三合一组 件 ,
200℃左右 ,能量 SOFC的电解质是固体氧化物 , 如 ZrO2 、 Bi2O3 等 , 其阳 极是Ni-YSZ陶瓷 , 阴 极目前主要采用 锰酸镧 (LSM,La1-xSrxMnO3 ) 材料。
碱性燃料电池的工作温度大约80℃。
碱性燃料电池工作示意图
AFC电极的制备工艺
AFC的电极设计要求电极具有高度稳定性的气、液、 固三相界面。
双孔结构电极 电极分两层,粗孔层和细孔层,粗孔层与 气室相连,细孔层与电解质接触。电极工作时,粗孔层 内充满反应气体,细孔层内填满电解液。细 孔层的电解 液浸润粗孔层,液气界面形成并发生电化学反应,离子 和水在电解液中传递,而电子则在构成粗孔层和细孔层 的合金骨架内传导 。
黏结型电极 是将亲水的导电体( 如电催化剂材料铂 / 碳 )与具有粘结能力的防水剂 ( 如聚四氟乙烯乳液 ) 按比例混合制成电极。 它在微观尺度上是相互交错的两 相体系,由防水剂构成的疏水网络为反应气体提供内部 的扩散通道;由电催化剂构成 的亲水网络可以被电解液 充满浸润,它为水和OH- 提供通道的同时,也为电子的 传导提供通道。
化学性质稳定
缺点:
氧化剂中必须不含有CO2。 燃料中必须不含CO2 电池电化学反应生成的水必须及时排出,维持水
平衡。
磷酸盐燃料电池(PAFC)
PAFC 是一种以磷酸为电解质的燃料电池 。 PAFC采用重整天然气作燃料,空气作氧化剂, 浸有浓磷酸的SiC 微孔膜作电解质 , Pt/C 作 催化剂 ,工作温度 200℃ 。
具体做法是将全氟磺酸树脂玻璃化温度下施加一定压力,将以加入全氟磺酸树脂的氢电极( 阳极 )、隔膜( 全氟磺酸型质 子交换膜) 和 已加入全氟磺酸树脂的氧电极(阴极)压和在一起,形成了电极-膜-电极三合一组 件 ,
200℃左右 ,能量 SOFC的电解质是固体氧化物 , 如 ZrO2 、 Bi2O3 等 , 其阳 极是Ni-YSZ陶瓷 , 阴 极目前主要采用 锰酸镧 (LSM,La1-xSrxMnO3 ) 材料。
碱性燃料电池的工作温度大约80℃。
碱性燃料电池工作示意图
AFC电极的制备工艺
AFC的电极设计要求电极具有高度稳定性的气、液、 固三相界面。
双孔结构电极 电极分两层,粗孔层和细孔层,粗孔层与 气室相连,细孔层与电解质接触。电极工作时,粗孔层 内充满反应气体,细孔层内填满电解液。细 孔层的电解 液浸润粗孔层,液气界面形成并发生电化学反应,离子 和水在电解液中传递,而电子则在构成粗孔层和细孔层 的合金骨架内传导 。
黏结型电极 是将亲水的导电体( 如电催化剂材料铂 / 碳 )与具有粘结能力的防水剂 ( 如聚四氟乙烯乳液 ) 按比例混合制成电极。 它在微观尺度上是相互交错的两 相体系,由防水剂构成的疏水网络为反应气体提供内部 的扩散通道;由电催化剂构成 的亲水网络可以被电解液 充满浸润,它为水和OH- 提供通道的同时,也为电子的 传导提供通道。
质子交换膜PPT课件

2
现在在世界上拥有的PEM大致有: 全氟磺酸型质子交 换膜;nafion重铸膜;非氟聚合物质子交换膜;新型复合质 子交换膜等等
但迄今最常用的质子交换膜(PEMFC)仍然是美国杜邦 公司的Nafion®膜(全氟磺酸型质子交换膜)。
全氟磺酸质子交换膜是一种固体聚合物电解质, 具有化学稳定性和热稳定性好、电压降低、电 导率高、机械强度高等优点,可在强酸、强碱、 强氧化剂介质和高温等苛刻条件下使用。
0.91 0.91
1.0 1.0
1.0 1.0
含水率/%
—— 33 —— —— 38 87
6
电导率与水含量
全氟磺酸膜具有力学强度高,化学稳定性好,质子电导 率大(水含量大时)等优点的同时,也有其局限性。这类膜 的离子电导强烈地依赖于水含量,在水含量较低或温度 较高,特别是温度高于100 ℃时,电导率明显下降。 下图为Nafion117的电导率与水含量的关系
水含量与温度
下图为膜的水含量与温度的关系:
8
写在最后
成功的基础在于好的学习习惯
The foundation of success lies in good habits
9
谢谢聆听
·学习就是为了达到一定目的而努力去干, 是为一个目标去 战胜各种困难的过程,这个过程会充满压力、痛苦和挫折
Learning Is To Achieve A Certain Goal And Work Hard, Is A Process To Overcome Various Difficulties For A Goal
接下来将详细讲述全氟磺酸质子交换膜
3
全氟磺酸型质子交换膜
1962年美国Dupont公司研制成功全氟磺酸型质子交换膜,1966 年首次用于氢氧燃料电池,为研制长寿命、高比功率的PEMFC 打下了坚实的物质基础。
现在在世界上拥有的PEM大致有: 全氟磺酸型质子交 换膜;nafion重铸膜;非氟聚合物质子交换膜;新型复合质 子交换膜等等
但迄今最常用的质子交换膜(PEMFC)仍然是美国杜邦 公司的Nafion®膜(全氟磺酸型质子交换膜)。
全氟磺酸质子交换膜是一种固体聚合物电解质, 具有化学稳定性和热稳定性好、电压降低、电 导率高、机械强度高等优点,可在强酸、强碱、 强氧化剂介质和高温等苛刻条件下使用。
0.91 0.91
1.0 1.0
1.0 1.0
含水率/%
—— 33 —— —— 38 87
6
电导率与水含量
全氟磺酸膜具有力学强度高,化学稳定性好,质子电导 率大(水含量大时)等优点的同时,也有其局限性。这类膜 的离子电导强烈地依赖于水含量,在水含量较低或温度 较高,特别是温度高于100 ℃时,电导率明显下降。 下图为Nafion117的电导率与水含量的关系
水含量与温度
下图为膜的水含量与温度的关系:
8
写在最后
成功的基础在于好的学习习惯
The foundation of success lies in good habits
9
谢谢聆听
·学习就是为了达到一定目的而努力去干, 是为一个目标去 战胜各种困难的过程,这个过程会充满压力、痛苦和挫折
Learning Is To Achieve A Certain Goal And Work Hard, Is A Process To Overcome Various Difficulties For A Goal
接下来将详细讲述全氟磺酸质子交换膜
3
全氟磺酸型质子交换膜
1962年美国Dupont公司研制成功全氟磺酸型质子交换膜,1966 年首次用于氢氧燃料电池,为研制长寿命、高比功率的PEMFC 打下了坚实的物质基础。
燃料电池培训课件(ppt 47页)

将原料碳纸多次浸入聚四氟乙烯 (PTFE ) 乳液中,用 称重法记录浸入的聚四氟乙烯乳液的量。
焙烧处理
在 330~ 340℃的温度下,焙烧浸好的碳纸,排出其中浸 入的聚四氟乙烯乳液所含的表面活性剂,同时使聚四氟 乙烯热熔烧结并均匀分散在碳纸的纤维上,实现憎水。
整平处理
将水或水+乙醇的混合液作溶剂,加入炭黑与 PTFE配成 的质 量比为1:1的溶液,用超声波将溶剂与溶液振荡均 匀。当混合物静止沉淀后,弃去上清液,取其沉降物涂 到憎水处理的碳纸上,实现其表面平整。
Pt/C催化剂是PAFC常用的电极活性材料。
铂和过渡金属(V、Cr、Co等)和合金
电极结构
双极板
扩散层 平整层 催化层
电解质材料
浓磷酸溶液
隔膜材料
双极板的作用是分隔氢气和 氧气,并传导电流,使两极 导通。双极板材料是玻璃态 的碳板,表面平整无滑,以 利于电池各部件接触均匀。
PAFC是目前单机发电量最大的一种燃料电池。
PAFC的工作原理
阴极反应: 阳极:
1/C2HO4阳2++22极HH2+O反+2→e应4-→H:H2H2+→2COO2H2 ++2eCH3HOH2→+H22OH→++32He2+- CO2
阴极反应: 1/2O2+2H++2e- →H2O
总反应 1/2O2+2H2 →H2O
燃料电池的组成
燃料电池是一个复杂的系统,由燃料和氧化 剂供给系统,水管理系统,热管理系统以及 控制系统等几个子系统组成。
燃料电池的种类
碱性燃料电池(AFC)(alkaline fuel cell) 磷酸型燃料电池(PAFC) (phosphorous acid
焙烧处理
在 330~ 340℃的温度下,焙烧浸好的碳纸,排出其中浸 入的聚四氟乙烯乳液所含的表面活性剂,同时使聚四氟 乙烯热熔烧结并均匀分散在碳纸的纤维上,实现憎水。
整平处理
将水或水+乙醇的混合液作溶剂,加入炭黑与 PTFE配成 的质 量比为1:1的溶液,用超声波将溶剂与溶液振荡均 匀。当混合物静止沉淀后,弃去上清液,取其沉降物涂 到憎水处理的碳纸上,实现其表面平整。
Pt/C催化剂是PAFC常用的电极活性材料。
铂和过渡金属(V、Cr、Co等)和合金
电极结构
双极板
扩散层 平整层 催化层
电解质材料
浓磷酸溶液
隔膜材料
双极板的作用是分隔氢气和 氧气,并传导电流,使两极 导通。双极板材料是玻璃态 的碳板,表面平整无滑,以 利于电池各部件接触均匀。
PAFC是目前单机发电量最大的一种燃料电池。
PAFC的工作原理
阴极反应: 阳极:
1/C2HO4阳2++22极HH2+O反+2→e应4-→H:H2H2+→2COO2H2 ++2eCH3HOH2→+H22OH→++32He2+- CO2
阴极反应: 1/2O2+2H++2e- →H2O
总反应 1/2O2+2H2 →H2O
燃料电池的组成
燃料电池是一个复杂的系统,由燃料和氧化 剂供给系统,水管理系统,热管理系统以及 控制系统等几个子系统组成。
燃料电池的种类
碱性燃料电池(AFC)(alkaline fuel cell) 磷酸型燃料电池(PAFC) (phosphorous acid
燃料电池质子交换膜燃料电池详解PPT课件

共健康成就之一
大量、生成不溶CaF2、低血钙症 4g NaF、0.2g Na2SiF6、致命
.
13
电催化剂
电催化:使电极与电解质界面上的电荷转移反应 得以加速的催化作用,是多相催化的一个分支。
特点:
电催化反应速度不仅由电催化剂的活性决定,还与双 电层内电场及电解质溶液的本性有关。
由于双电层内的电场强度很高,对参加电化学反应的 分子或离子具有明显的活化作用,反应所需的活化能 大大降低,所以,大部分电催化反应均可在远比通常 化学反应低得多的温度下进行。
直接甲酸燃料电池 未反应 燃料
60-90oC
HCOOH
CO2
cathode 氧化剂
空气/O2
O2
O2
O2
O2
未反应 氧化剂
.
11
质子交换膜
( CF2 CF2 )n CF2 CF O (CF2 CF)mO CF2 CF2 SO3H CF3
n 制备全氟磺酸型质子交换膜,首先用聚四氟乙烯聚合制备
全氟磺酰氟树脂,最后用该树脂制膜
.
32
不同催化层电极性能比较
薄层 厚层
厚层 薄层
E1:厚层憎水电极,厚40µm, 0.3mgPt/cm2 E3:薄层亲水电极,厚<5µm, 0.02mgPt/cm2
厚层憎水与薄层亲水电极
以纯氢及53ppm CO/H2时的电池性能
.
33
2.4 双层催化层电极设计
Ø多孔介质中的传质速度:H2 > CO, ØPt-Ru/C 电 催 化 剂 上 的 吸 附 : CO > H2
进一步提高了的PEMFC性能; ➢ Pt担量降低。目前商用MEA Pt担量为
0.4mg/cm2左右,实验室制备MEA Pt担量已经 降低到0.1mg/cm2以下; ➢ 厚度减薄,实验室制备<1μm。
大量、生成不溶CaF2、低血钙症 4g NaF、0.2g Na2SiF6、致命
.
13
电催化剂
电催化:使电极与电解质界面上的电荷转移反应 得以加速的催化作用,是多相催化的一个分支。
特点:
电催化反应速度不仅由电催化剂的活性决定,还与双 电层内电场及电解质溶液的本性有关。
由于双电层内的电场强度很高,对参加电化学反应的 分子或离子具有明显的活化作用,反应所需的活化能 大大降低,所以,大部分电催化反应均可在远比通常 化学反应低得多的温度下进行。
直接甲酸燃料电池 未反应 燃料
60-90oC
HCOOH
CO2
cathode 氧化剂
空气/O2
O2
O2
O2
O2
未反应 氧化剂
.
11
质子交换膜
( CF2 CF2 )n CF2 CF O (CF2 CF)mO CF2 CF2 SO3H CF3
n 制备全氟磺酸型质子交换膜,首先用聚四氟乙烯聚合制备
全氟磺酰氟树脂,最后用该树脂制膜
.
32
不同催化层电极性能比较
薄层 厚层
厚层 薄层
E1:厚层憎水电极,厚40µm, 0.3mgPt/cm2 E3:薄层亲水电极,厚<5µm, 0.02mgPt/cm2
厚层憎水与薄层亲水电极
以纯氢及53ppm CO/H2时的电池性能
.
33
2.4 双层催化层电极设计
Ø多孔介质中的传质速度:H2 > CO, ØPt-Ru/C 电 催 化 剂 上 的 吸 附 : CO > H2
进一步提高了的PEMFC性能; ➢ Pt担量降低。目前商用MEA Pt担量为
0.4mg/cm2左右,实验室制备MEA Pt担量已经 降低到0.1mg/cm2以下; ➢ 厚度减薄,实验室制备<1μm。
燃料电池学习ppt完美版

燃料电池发电厂没有火力发电厂那样的噪声源,因而工作环境非常安静;
电导率越大则导电性能越强,反之越小。
电池是能量储存装置。 金属/空气电池的历史几乎就是空气电极的历史。
燃料电池的环境友好性是使其具有极强生命力和长远发展潜力的主要原因。
1970年,科尔迪什开发了第一辆燃料电池小汽车。
1896年,雅克研制成功第一个数百瓦(大约300瓦)的煤燃料电池;
1899年,施密特发明第一个空气扩散电极; 1959年,培根和弗洛斯特研制成功6KW碱性燃料电池系 统,并用来驱动叉车、圆盘锯和电焊机; 1959年,艾丽斯-查尔莫斯公司开发出第一辆碱性燃料电 池拖拉机,可以推动3000lb(1lb=0.4536kg)的重物;
(2) 燃料电池发展过程中的重大事件
1960年,通用电气公司开发成功质子交换膜燃料电池; 1962年,质子交换膜燃料电池应用于双子星座飞船; 1965年,碱性燃料电池用于阿波罗登月飞船; 1967年,通用汽车开发成功第一辆碱性燃料电池电动汽 车Electrovan; 1970年,科尔地什组装了第一辆碱性燃料电池-铅酸电池 混合动力轿车; 1972年,杜邦公司和格罗特发明了全氟磺酸质子交换膜; 1979年,在美国纽约完成了4.5MW磷酸燃料电池电厂的 测试; 1986年,洛斯阿拉莫斯国家实验室(LANL)开发成功第 一辆磷酸燃料电池公共汽车;
(2) 燃料电池发展过程中的重大事件
1986年,洛斯阿拉莫斯国家实验室开发成功第一辆磷酸燃 料电池公共汽车;
1988年,第一艘碱性燃料电池潜艇在德国出现; 1991年,日本千叶县的11MW磷酸燃料电池试验电厂达 到设计功率; 1993年,巴拉德电力系统公司开发成功第一辆质子交换膜 燃料电池公共汽车; 1996年,美国加利福尼亚州的2MW 熔融碳酸盐燃料电池 试验电厂开始供电;
PEMFC——燃料电池PPT课件

电极结构示意图
-
催化层 扩散层
9
(一)扩散层 功能:
1)起支撑作用,为此要求扩散层适于担载催化层,扩 散层与催化层的接触电阻要小;催化层主要成分是Pt/C 电催化剂,故扩散层一般选炭材制备; 2)反应气需经扩散层才能到达催化层参与电化学反应, 因此扩散层应具备高孔隙率和适宜的孔分布,有利于 传质。
⑤因为PEMFC电池组效率一般在50%左右,双权板材 料必须是热的良导体,以利于电池组废热的排出。
为降低电池组的成本,制备双极板的材料必须易于 加工(如加工流场),最优的材料是适于用批量生产工 艺加工的材料。
至今,制备PEMFC双极板广泛采用的材料是石墨和 金属板。
-
18
1.石墨双极板:
厚度为2~5mm, 机加 工共用通道, 利用电 脑刻绘机在其表面上 加工流场。这种工艺 费时,价高,不易批 量生产。
这种复合双极板技术的关键是尽量减少多孔石墨流 场板与薄金属分隔板间的接触电阻。
-
23
(四)流场:作用是引导反应气流动方向,确保反 应气均匀分配到电极各处,经扩散层到达催化层参 与电化学反应。
流场主要有:网状,多孔,平行沟槽,蛇形和交指 状等。
流场设计是至关重要的,而且很多是高度保密的专 有技术。
-
但在美国航天飞机用电源的竞争中未能中标,让位于 石棉膜型碱性氢氧燃料电池(AFC),造成PEMFC的研 究长时间内处于低谷。
-
5
1983年,加拿大国防部资助了巴拉德动力公司进行 PEMFC的研究。在加拿大、美国等国科学家的共 同努力下,FEMFC取得了突破性进展。
采用薄的(50-150m)高电导率的Nafion和Dow全氟 磺酸膜,使电池性能提高数倍。
全氟磺酸型质子交换膜传导质子必须要有水存在 才行,其传导率与膜的含水率呈线性关系。
质子交换膜燃料电池 ppt课件

100~200 重整气
空气 建分散电站运行可靠度高, 高度发展,适用于特殊需求、区域性 但启动时间长,成本高,余 分散电站。 热利用价值低。
熔融碳酸盐 燃料电池 (MCFC)
固体氧化物 燃料电池 (SOFC)
600~700
净化煤 气 重整气 天然气
800~100 净化煤
0
气
天然气
空气 具有建立分散电站的优势, 适宜建区域性分散电站,正在进行现
❖燃料电池是由含催化剂的阳极、阴 极和离子导电的电解质构成。燃料 在阳极氧化,氧化剂在阴极复原, 电子从阳极经过负载流向阴极构成 电回路,产生电能而驱动负载任务。
燃料电池的优点
❖ 燃料电池与常规电池不同在于,它任务时需 求延续不断地向电池内输入燃料和氧化剂经 过电化学反响生成水,并释放出电能;只需 坚持燃料供应,电池就会不断任务提供电能。 燃料电池有它独特的优势,污染少,高效节 能,可靠性好,比能量和比功率高等,这些 优势让它成为继火力发电、水力发电和核能 发电技术之后的第四代化学能发电技术,将 会有宽广的开展和运用前景。
❖ ①合金催化剂
❖ ②金属氧化物催化剂
❖ ③有机螯合物催化剂
那么目前,燃料电池电催化剂的 选择与设计经过那些途径来实现
呢?
第一个途径
❖ 基于活化方式的思索.与普通多相催化一样反响物分 子在电催化剂外表进展有效的化学吸附是电催化过 程分子活化的前提。化学吸附分为缔合吸附和解离 吸附两种类型,如H2,分子在金属催化剂外表处于 一定温度F可以解离吸附,解离后的原子氢可在金 属外表有挪动自在度。研讨阐明,在阳极外表有效 范围,特别是在高比外表积的Pt电催化剂上,许多 有机物分于可以产生解离吸附,生成一个或数个吸 附氢原子,是反响物分子活化的卞要途径。
1质子交换膜燃料电池PPT课件

33
膜电极(MEA)的制备
❖ 膜电极的组成: 质子交换膜 电催化剂 气体扩散层
34
膜电极的特性
❖ 最大限度的减小气体的传输阻力,使反应气体顺 利由扩散层到达催化层发生电化学反应,须具备 适当的疏水性。
❖ 形成良好的离子通道,降低离子传输阻力,能在 催化层内建立质子通道。
❖ 形成良好的电子通道。 ❖ 保证良好的机械强度及导热性。 ❖ 具有高的质子传导性能很好隔绝反应气体互窜,
19
金属板
❖ 金属不仅强韧性好,而且机械加工性能、导 电性、导热性、致密性均较好,可以用来制 作很薄的PEMFC双极板。
❖ 但金属板存在腐蚀,腐蚀金属离子对催化剂 产生毒化作用,金属离子还与质子交换膜发 生离子交换,金属板表面腐蚀形成钝化层, 使电极与双极板间的接触电阻增大,降低电 池输出功率。
20
1改性的过酸碱络合形成的高分子质子交换膜全氟型磺酸膜性质作为电解质还充当电极反应的介质铂催化剂在膜中的催化活性高缺水是电导率很低水字处理问题一氧化碳的中毒效应冷却和热的回收利用用非水或低挥发性溶剂溶胀的全氟型磺酸膜含聚四氟乙烯的超薄膜含有吸湿性氧化物的复合膜含有固体无机质子导体的复合膜非全氟高分子材料的类型非全氟高分子材料的磺化磺酸膜的性质有机无机复合膜有两种方法
化剂在膜中的催化活性高 ❖ 高的机械强度和低的气体透气率 ❖ 价格昂贵 ❖ 缺水是电导率很低
24
使用全氟膜的燃料电池存在的问题
❖ 水字处理问题 ❖ 一氧化碳的中毒效应 ❖ 冷却和热的回收利用
25
全氟型磺酸膜的改性
❖ 用非水或低挥发性溶剂溶胀的全 氟型磺酸膜
❖ 含聚四氟乙烯的超薄膜 ❖ 含有吸湿性氧化物的复合膜 ❖ 含有固体无机质子导体的复合膜
复合板
膜电极(MEA)的制备
❖ 膜电极的组成: 质子交换膜 电催化剂 气体扩散层
34
膜电极的特性
❖ 最大限度的减小气体的传输阻力,使反应气体顺 利由扩散层到达催化层发生电化学反应,须具备 适当的疏水性。
❖ 形成良好的离子通道,降低离子传输阻力,能在 催化层内建立质子通道。
❖ 形成良好的电子通道。 ❖ 保证良好的机械强度及导热性。 ❖ 具有高的质子传导性能很好隔绝反应气体互窜,
19
金属板
❖ 金属不仅强韧性好,而且机械加工性能、导 电性、导热性、致密性均较好,可以用来制 作很薄的PEMFC双极板。
❖ 但金属板存在腐蚀,腐蚀金属离子对催化剂 产生毒化作用,金属离子还与质子交换膜发 生离子交换,金属板表面腐蚀形成钝化层, 使电极与双极板间的接触电阻增大,降低电 池输出功率。
20
1改性的过酸碱络合形成的高分子质子交换膜全氟型磺酸膜性质作为电解质还充当电极反应的介质铂催化剂在膜中的催化活性高缺水是电导率很低水字处理问题一氧化碳的中毒效应冷却和热的回收利用用非水或低挥发性溶剂溶胀的全氟型磺酸膜含聚四氟乙烯的超薄膜含有吸湿性氧化物的复合膜含有固体无机质子导体的复合膜非全氟高分子材料的类型非全氟高分子材料的磺化磺酸膜的性质有机无机复合膜有两种方法
化剂在膜中的催化活性高 ❖ 高的机械强度和低的气体透气率 ❖ 价格昂贵 ❖ 缺水是电导率很低
24
使用全氟膜的燃料电池存在的问题
❖ 水字处理问题 ❖ 一氧化碳的中毒效应 ❖ 冷却和热的回收利用
25
全氟型磺酸膜的改性
❖ 用非水或低挥发性溶剂溶胀的全 氟型磺酸膜
❖ 含聚四氟乙烯的超薄膜 ❖ 含有吸湿性氧化物的复合膜 ❖ 含有固体无机质子导体的复合膜
复合板
燃料电池的工作原理PPT培训课件

• 碱性燃料电池的特点
• (1) AFC具有较高的效率(50%~55%);
• (2) 工作温度大约80℃,启动很快,但其电力密度却比质子交换 膜燃料电池的密度低十几倍;
• (3) 性能可靠,可用非贵金属作催化剂;
• (4) 是燃料电池中生产成本最低的一种电池;
• (5) 是技术发展最快的一种电池,主要为空间任务,包括航天飞 机提供动力和饮用水,用于交通工具,具有一定的发展和应用 前景;
• (6) 使用具有腐蚀性的液态电解质,具有一定的危险性和容易造 成环境污染。
1. 质子交换膜燃料电池的基本结构
1)质子交换膜:兼有隔膜和电解质的作用,且是选择 通过性膜,只允许H+穿过,其他粒子、气体及液体不 能通过。 2)电催化剂:气体扩散电极上都有一定量的催化剂, 有铂系和非铂系两类。
3)电极:多孔扩散电极,由扩散层和催化层构成。
•熔融碳酸盐燃料电池的工作原理 •燃料电池工作过程实质上是燃料的氧化和氧化剂的还原过程。
式中,a、c分别表示阳极、 阴极; e—表示电子; E0—表示基本发电量; Q0—表尔基本放热量。
•熔融碳酸盐燃料电池的特点
•MCFC是一种高温电池(600~700℃),具有效率较高(高于 40%)、噪音低、无污染、燃料多样化(氢气、煤气、天然气 和生物燃料等)、余热利用价值高和电池构造材料价廉等诸多 优点,是未来的绿色电站。
• 磷酸燃料电池的结构 • PAFC的电池片由基材及肋
条板触媒层所组成的燃料 极、保持磷酸的电解质层、 与燃料极具有相同构造的 空气极构成。
• 磷酸燃料电池的工作原理
• PAEC使用液体磷酸为电解质,通常位于碳化硅基质中。当以氢气为 燃料,氧气为氧化剂时,在电池内发生电化学反应。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
碳酸锂、碳酸钾碱性碳酸盐、 腐蚀性
•
不受二氧化碳的影响
SOFC: 1000oC、不需催化剂
• 工作噪声低, 可靠性高 氧化锆、氧化钇、氧化钙电解质
• 内部构造简单, 电池模块呈堆垒式层叠 结构使得电池组组装和维护很方便
PEMFC存在的问题: 稳定性(寿命) 可用性(CO中毒) 成本问题(膜和催化剂)
质子交换膜燃料电池
Proton exchange membrane fuel cell-----PEMFC
主要内容
1
PEMFC分类及其工作原理
2
电极的分类及其制作
3
非氟聚合物质子交换膜
1. 质子交换膜燃料电池
• 氢氧燃料电池------- hydrogen oxygen fuel cell • 直接甲醇燃料电池------- direct methanol fuel cell • 直接乙醇燃料电池 --------direct ethanol fuel cell • 直接甲酸燃料电池---------direct formic acid fuel cell
电极要求
高活性催化剂 质子通道 电子通道 反应气通道 生成水通道 热的良导体 一定机械强度 工作条件下稳定
降低 担持量
合理 分配
2.1 厚层憎水催化层电极
厚层憎水催化层电极工艺流程
四种传递通道
Pt/C 电催化剂
气体传递
PTFE水传递ຫໍສະໝຸດ Nafion树脂共健康成就之一
大量、生成不溶CaF2、低血钙症 4g NaF、0.2g Na2SiF6、致命
电催化剂
• 电催化:使电极与电解质界面上的电荷转移反应 得以加速的催化作用,是多相催化的一个分支。
• 特点:
–电催化反应速度不仅由电催化剂的活性决定,还与双 电层内电场及电解质溶液的本性有关。
–由于双电层内的电场强度很高,对参加电化学反应的 分子或离子具有明显的活化作用,反应所需的活化能 大大降低,所以,大部分电催化反应均可在远比通常 化学反应低得多的温度下进行。
PEMFC中催化剂电极的制备工艺:
• 多孔气体扩散电极 • 由扩散层和催化层组成
----扩散层的作用是支撑催化层,收 集电流,并为电化学反应提供电子通道, 气体通道和排水通道
----催化层则是发生电化学反应的场 所是电极的核心部分
• 电极扩散层一般
–由碳纸或碳布制作 –厚度为0.2-0.3mm
• 制备方法为:
• 阴极以Pt/C为催化剂、空气或纯氧为氧化 剂,并以带有气体流动通道的石墨或表面 改性金属板为双极板
重整气,CO、~10-4 V/V 60-100oC、 ~ 10-6 V/V CO、Pt中毒失效
electrolyte
燃料 anode
电解液
氢氧燃料电池 H2
H+
直接甲醇燃料电池 CH3OH
膜
直接乙醇燃料电池 CH3CH2OH
-SO2R → - SO3H
Dupont公司生产的Nafion系列膜,m=1, Dow公司试制高电导的全氟磺酸膜,m=0
优点:
具有高化学稳定性和高质子传导率
缺点:
• 需要很高的水含量才能有足够的导质子能力, 但 是由于其吸水能力有限, 需要连续对膜进行增湿, 增加了燃料电池系统设计的复杂性;
2H++ 2e-
阳极反应: 1/2O2+2H++2e总反应: 1/2O2+2H2
H2O H2O
由于质子交换膜只能传导质子, 因此氢质子可直接穿过质子交换膜到达阴极, 而电子通过外电路到达阴极,产生直流电。
• 以部分氟化或全氟磺酸型固体聚合物为电 解质
• 阳极以Pt/C或Pt-Ru/C为电催化剂涂覆在碳 纤维纸上,以氢或净化重整气为燃料
直接甲酸燃料电池 未反应 燃料
60-90oC
HCOOH
CO2
cathode 氧化剂
空气/O2
O2
O2
O2
O2
未反应 氧化剂
质子交换膜
( CF2 CF2 )n CF2 CF O (CF2 CF)mO CF2 CF2 SO3H
CF3
制备全氟磺酸型质子交换膜,首先用聚四氟乙烯聚合制备
全氟磺酰氟树脂,最后用该树脂制膜
–例如在铂黑电催化剂上可使丙烷于150-200oC完全氧化 为CO2和水。
PEMFC电催化剂的研发方向
• 降低铂的载量 • 提高铂的利用率 • 开发非铂高催化活性的催化剂 • 提高催化剂的抗CO中毒性能
H2的脱附、氧化
H2O的氧化分解
H+的还原、H2析出
O2的还原峰
• 电化学反应必须在适宜的电解质溶液中进 行,在电极与电解质的界面上会吸附大量 的溶剂分子和电解质,使电极过程与溶剂 及电解质本性的关系极为密切。这一点导 致电极过程比多相催化反应更加复杂。
• 由于脱水, 很难在高于100度以上操作, 这限制了 电池性能进一步提高和余热的充分利用
• 用于直接甲醇燃料电池时, 甲醇渗透率过高 • 价格昂贵, 且含有氟元素, 降解时产生对环境有
害的物质
聚四氟乙烯:化学惰性、无毒。 260 oC以上、变性 350 oC 以上、分解
F-、H2SiF6、Na2SiF6、HF NaF、少量、预防龋齿,20世纪10大公
–将碳纸与碳布多次浸入聚四氟乙烯乳液 (PTFE)进行憎水处理
–用称重法确定浸入的PFTE量 –将浸好PTFE的碳纸置于温度330-340度的烘
箱内进行热处理
• 使得均匀分散在碳纸的纤维上 • 达到优良的憎水效果
2. 电极的分类及其制作
厚层憎水催化层电极 薄层亲水催化层电极 超薄催化层电极 双层催化层电极
AFC: Ag、Ni,催化剂价低
PEMFC的优点 高纯H2,低温运行, CO2、KOH,K2CO3
工作温度低 启动快
PAFC: 150-220oC高温、余热利用率高 100%磷酸、Pt催化剂
能量密度高
PEMFC:唯一液体、水,无腐蚀性
寿命长 重量轻 无腐蚀性
MCFC: 多孔Ni催化剂、600-700oC、透 明液体电解质
开发性能优良、 价格低廉的膜材 料成为燃料电池 的主要研究方向
质子交换膜燃料电池的构造
如右图示一个单电池 • 质子交换膜 • 电催化剂 • 碳纤维纸扩散层
外电路
PEMFC工作原理
总反应:H2 + 1/2O2 H2O
外电路
2e
2e
电解质
膜 氢气
氧气
阳极
阴极
质子交换膜型PEMFC,反应式如下:
阳极反应: H2
•
不受二氧化碳的影响
SOFC: 1000oC、不需催化剂
• 工作噪声低, 可靠性高 氧化锆、氧化钇、氧化钙电解质
• 内部构造简单, 电池模块呈堆垒式层叠 结构使得电池组组装和维护很方便
PEMFC存在的问题: 稳定性(寿命) 可用性(CO中毒) 成本问题(膜和催化剂)
质子交换膜燃料电池
Proton exchange membrane fuel cell-----PEMFC
主要内容
1
PEMFC分类及其工作原理
2
电极的分类及其制作
3
非氟聚合物质子交换膜
1. 质子交换膜燃料电池
• 氢氧燃料电池------- hydrogen oxygen fuel cell • 直接甲醇燃料电池------- direct methanol fuel cell • 直接乙醇燃料电池 --------direct ethanol fuel cell • 直接甲酸燃料电池---------direct formic acid fuel cell
电极要求
高活性催化剂 质子通道 电子通道 反应气通道 生成水通道 热的良导体 一定机械强度 工作条件下稳定
降低 担持量
合理 分配
2.1 厚层憎水催化层电极
厚层憎水催化层电极工艺流程
四种传递通道
Pt/C 电催化剂
气体传递
PTFE水传递ຫໍສະໝຸດ Nafion树脂共健康成就之一
大量、生成不溶CaF2、低血钙症 4g NaF、0.2g Na2SiF6、致命
电催化剂
• 电催化:使电极与电解质界面上的电荷转移反应 得以加速的催化作用,是多相催化的一个分支。
• 特点:
–电催化反应速度不仅由电催化剂的活性决定,还与双 电层内电场及电解质溶液的本性有关。
–由于双电层内的电场强度很高,对参加电化学反应的 分子或离子具有明显的活化作用,反应所需的活化能 大大降低,所以,大部分电催化反应均可在远比通常 化学反应低得多的温度下进行。
PEMFC中催化剂电极的制备工艺:
• 多孔气体扩散电极 • 由扩散层和催化层组成
----扩散层的作用是支撑催化层,收 集电流,并为电化学反应提供电子通道, 气体通道和排水通道
----催化层则是发生电化学反应的场 所是电极的核心部分
• 电极扩散层一般
–由碳纸或碳布制作 –厚度为0.2-0.3mm
• 制备方法为:
• 阴极以Pt/C为催化剂、空气或纯氧为氧化 剂,并以带有气体流动通道的石墨或表面 改性金属板为双极板
重整气,CO、~10-4 V/V 60-100oC、 ~ 10-6 V/V CO、Pt中毒失效
electrolyte
燃料 anode
电解液
氢氧燃料电池 H2
H+
直接甲醇燃料电池 CH3OH
膜
直接乙醇燃料电池 CH3CH2OH
-SO2R → - SO3H
Dupont公司生产的Nafion系列膜,m=1, Dow公司试制高电导的全氟磺酸膜,m=0
优点:
具有高化学稳定性和高质子传导率
缺点:
• 需要很高的水含量才能有足够的导质子能力, 但 是由于其吸水能力有限, 需要连续对膜进行增湿, 增加了燃料电池系统设计的复杂性;
2H++ 2e-
阳极反应: 1/2O2+2H++2e总反应: 1/2O2+2H2
H2O H2O
由于质子交换膜只能传导质子, 因此氢质子可直接穿过质子交换膜到达阴极, 而电子通过外电路到达阴极,产生直流电。
• 以部分氟化或全氟磺酸型固体聚合物为电 解质
• 阳极以Pt/C或Pt-Ru/C为电催化剂涂覆在碳 纤维纸上,以氢或净化重整气为燃料
直接甲酸燃料电池 未反应 燃料
60-90oC
HCOOH
CO2
cathode 氧化剂
空气/O2
O2
O2
O2
O2
未反应 氧化剂
质子交换膜
( CF2 CF2 )n CF2 CF O (CF2 CF)mO CF2 CF2 SO3H
CF3
制备全氟磺酸型质子交换膜,首先用聚四氟乙烯聚合制备
全氟磺酰氟树脂,最后用该树脂制膜
–例如在铂黑电催化剂上可使丙烷于150-200oC完全氧化 为CO2和水。
PEMFC电催化剂的研发方向
• 降低铂的载量 • 提高铂的利用率 • 开发非铂高催化活性的催化剂 • 提高催化剂的抗CO中毒性能
H2的脱附、氧化
H2O的氧化分解
H+的还原、H2析出
O2的还原峰
• 电化学反应必须在适宜的电解质溶液中进 行,在电极与电解质的界面上会吸附大量 的溶剂分子和电解质,使电极过程与溶剂 及电解质本性的关系极为密切。这一点导 致电极过程比多相催化反应更加复杂。
• 由于脱水, 很难在高于100度以上操作, 这限制了 电池性能进一步提高和余热的充分利用
• 用于直接甲醇燃料电池时, 甲醇渗透率过高 • 价格昂贵, 且含有氟元素, 降解时产生对环境有
害的物质
聚四氟乙烯:化学惰性、无毒。 260 oC以上、变性 350 oC 以上、分解
F-、H2SiF6、Na2SiF6、HF NaF、少量、预防龋齿,20世纪10大公
–将碳纸与碳布多次浸入聚四氟乙烯乳液 (PTFE)进行憎水处理
–用称重法确定浸入的PFTE量 –将浸好PTFE的碳纸置于温度330-340度的烘
箱内进行热处理
• 使得均匀分散在碳纸的纤维上 • 达到优良的憎水效果
2. 电极的分类及其制作
厚层憎水催化层电极 薄层亲水催化层电极 超薄催化层电极 双层催化层电极
AFC: Ag、Ni,催化剂价低
PEMFC的优点 高纯H2,低温运行, CO2、KOH,K2CO3
工作温度低 启动快
PAFC: 150-220oC高温、余热利用率高 100%磷酸、Pt催化剂
能量密度高
PEMFC:唯一液体、水,无腐蚀性
寿命长 重量轻 无腐蚀性
MCFC: 多孔Ni催化剂、600-700oC、透 明液体电解质
开发性能优良、 价格低廉的膜材 料成为燃料电池 的主要研究方向
质子交换膜燃料电池的构造
如右图示一个单电池 • 质子交换膜 • 电催化剂 • 碳纤维纸扩散层
外电路
PEMFC工作原理
总反应:H2 + 1/2O2 H2O
外电路
2e
2e
电解质
膜 氢气
氧气
阳极
阴极
质子交换膜型PEMFC,反应式如下:
阳极反应: H2