中考数学选择填空压轴题专题(含答案)

合集下载

(完整版)九年级数学选择、填空压轴题训练(含答案),推荐文档

(完整版)九年级数学选择、填空压轴题训练(含答案),推荐文档

九年级数学综合训练一、选择题(本大题共9 小题,共27.0 分)1.如图,在平面直角坐标系中2 条直线为l1:y=-3x+3,l2:y=-3x+9,直线l1交x 轴于点A,交y 轴于点B,直线l2交x 轴于点D,过点B 作x 轴的平行线交l2于点C,点A、E 关于y 轴对称,抛物线y=ax2+bx+c 过E、B、C 三点,下列判断中:①a-b+c=0;②2a+b+c=5;③抛物线关于直线x=1 对称;④抛物线过点(b,c);⑤S 四边形ABCD=5,其中正确的个数有()A. 5B. 4C. 3D. 22.如图,10 个不同的正偶数按下图排列,箭头上方的每个数都等于其下方两数的和,如,表示a1=a2+a3,则a1的最小值为()A.32B.36C.38D.403.如图,直线y= ��x -6 分别交x 轴,y 轴于A,B,M 是反比例函数y=�(x>0)的图象上位于直线上方的一点,MC∥x 轴交AB 于C,MD⊥MC 交AB 于D,AC•BD=43,则k 的值为()A. ‒ 3B. ‒ 4C. ‒ 5D. ‒ 64.在平面直角坐标系xOy 中,将一块含有45°角的直角三角板如图放置,直角顶点C 的坐标为(1,0),顶点A 的坐标为(0,2),顶点B 恰好落在第一象限的双曲线上,现将直角三角板沿x 轴正方向平移,当顶点A 恰好落在该双曲线上时停止运动,则此时点C 的对应点C′的坐标为()(3,0) (2,0) (5,0) (3,0)A. 2B.C. 2D.5.如图,在矩形ABCD 中,AB<BC,E 为CD 边的中点,将△ADE 绕点E 顺时针旋转180°,点D 的对应点为C,点A 的对应点为F,过点E 作ME⊥AF 交BC 于点M,连接AM、BD 交于点N,现有下列结论:35 ①AM =AD +MC ;②AM =DE +BM ;③DE 2=AD •CM ;④点 N 为△ABM 的外心. 其中正确的个数为()A. 1 个B. 2 个C. 3 个D. 4 个6. 规定:如果关于 x 的一元二次方程 ax 2+bx +c =0(a ≠0)有两个实数根,且其中一个根是另一个根的 2倍,则称这样的方程为“倍根方程”.现有下列结论:①方程 x 2+2x -8=0 是倍根方程;②若关于 x 的方程 x 2+ax +2=0 是倍根方程,则 a =±3;③若关于 x 的方程 ax 2-6ax +c =0(a ≠0)是倍根方程,则抛物线 y =ax 2-6ax +c 与 x 轴的公共点的坐标是 (2,0)和(4,0); 4 ④若点(m ,n )在反比例函数 y =x 的图象上,则关于 x 的方程 mx 2+5x +n =0 是倍根方程. 上述结论中正确的有( )A. ①②B. ③④C. ②③D. ②④7. 如图,六边形 ABCDEF 的内角都相等,∠DAB =60°,AB =DE ,则下列结论成立的个数是() ①AB ∥DE ;②EF ∥AD ∥BC ;③AF =CD ;④四边形 ACDF 是平行四边形;⑤六边形 ABCDEF 既是中心对称图形,又是轴对称图形.A. 2B. 3C. 4D. 58. 如图,在 Rt △ABC 中,∠C =90°,以△ABC 的一边为边画等腰三角形,使得它的第三个顶点在△ABC 的其他边上,则可以画出的不同的等腰三角形的个数最多为( )A. 4B. 5C. 6D. 79. 如图,矩形 ABCD 中,AE ⊥BD 于点 E ,CF 平分∠BCD ,交 EA 的延长线于点 F ,且 BC =4,CD =2,给出下列结论:①∠BAE =∠CAD ;4②∠DBC =30°;③AE =5 5;④AF =2 ,其中正确结论的个数有( )A. 1 个B. 2 个C. 3 个D. 4 个二、填空题(本大题共 10 小题,共 30.0 分)10.如图,在Rt△ABC 中,∠BAC=30°,以直角边AB 为直径作半圆交AC 于点D,以AD 为边作等边△ADE,延长ED 交BC 于点F,BC=2 3,则图中阴影部分的面积为.(结果不取近似值)11.如图,在6×6 的网格内填入1 至6 的数字后,使每行、每列、每个小粗线宫中的数字不重复,则a×c=.12.如图,正方形ABCD 中,BE=EF=FC,CG=2GD,BG 分别交AE,AF 于M,N.下列结论:4 �M 3 1①AF⊥BG;②BN=3NF;③M G=8;④S 四边形CGNF=2S 四边形ANGD.其中正确的结论的序号是.13.已知:如图,在△AOB 中,∠AOB=90°,AO=3cm,BO=4cm.将△AOB 绕顶点O,按顺时针方向旋转到△A1OB1处,此时线段OB1与AB 的交点D 恰好为AB 的中点,则线段B1D= cm.14.如图,边长为4 的正六边形ABCDEF 的中心与坐标原点O 重合,AF∥x 轴,将正六边形ABCDEF 绕原点O 顺时针旋转n 次,每次旋转60°.当n=2017 时,顶点A 的坐标为.15.如图,在Rt△ABC 中,BC=2,∠BAC=30°,斜边AB 的两个端点分别在相互垂直的射线OM、ON 上滑动,下列结论:①若C、O 两点关于AB 对称,则OA=2 3;②C、O 两点距离的最大值为4;③若AB 平分CO,则AB⊥CO;�④斜边AB 的中点D 运动路径的长为2;其中正确的是(把你认为正确结论的序号都填上).16.如图,∠AOB 的边OB 与x 轴正半轴重合,点P 是OA 上的一动点,点N(3,0)是OB 上的一定点,点M 是ON 的中点,∠AOB=30°,要使PM+PN 最小,则点P 的坐标为.17.在一条笔直的公路上有A、B、C 三地,C 地位于A、B 两地之间,甲车从A地沿这条公路匀速驶向C 地,乙车从B 地沿这条公路匀速驶向A 地,在甲车出发至甲车到达C 地的过程中,甲、乙两车各自与C 地的距离y(km)与甲车行驶时间t(h)之间的函数关系如图所示.下列结论:①甲车出发2h 时,两车相遇;②乙车出发1.5h 时,两车相距170km;③乙车出5发27h 时,两车相遇;④甲车到达C 地时,两车相距40km.其中正确的是(填写所有正确结论的序号).�18.如图,在平面直角坐标系中,OA=AB,∠OAB=90°,反比例函数y=x(x>0)的图象经过A,B 两点.若点A 的坐标为(n,1),则k 的值为.19.如图,在平面直角坐标系中,△ABC 的顶点坐标分别为A(-1,1),B(0,-2),C(1,0),点P(0,2)绕点A 旋转180°得到点P1,点P1绕点B 旋转180°得到点P2,点P2绕点C 旋转180°得到点P3,点P3绕点A 旋转180°得到点P4,…,按此作法进行下去,则点P2017的坐标为.答案和解析1.【答案】C【解析】解:∵直线l1:y=-3x+3 交x 轴于点A,交y 轴于点B,∴A(1,0),B(0,3),∵点A、E 关于y 轴对称,∴E(-1,0).∵直线l2:y=-3x+9 交x 轴于点D,过点B 作x 轴的平行线交l2 于点C,∴D(3,0),C 点纵坐标与B 点纵坐标相同都是3,把y=3 代入y=-3x+9,得3=-3x+9,解得x=2,∴C(2,3).∵抛物线y=ax2+bx+c 过E、B、C 三点,∴,解得,∴y=-x2+2x+3.①∵抛物线y=ax2+bx+c 过E(-1,0),∴a-b+c=0,故①正确;②∵a=-1,b=2,c=3,∴2a+b+c=-2+2+3=3≠5,故②错误;③∵抛物线过B(0,3),C(2,3)两点,∴对称轴是直线x=1,∴抛物线关于直线x=1 对称,故③正确;④∵b=2,c=3,抛物线过C(2,3)点,∴抛物线过点(b,c),故④正确;⑤∵直线l1∥l2,即AB∥CD,又BC∥AD,∴四边形ABCD 是平行四边形,∴S 四边形ABCD=BC•OB=2×3=6≠5,故⑤错误.综上可知,正确的结论有3个.故选:C.根据直线l1的解析式求出A(1,0),B(0,3),根据关于y 轴对称的两点坐标特征求出E(- 1,0).根据平行于x 轴的直线上任意两点纵坐标相同得出C 点纵坐标与B 点纵坐标相同都是3,再根据二次函数图象上点的坐标特征求出C(2,3).利用待定系数法求出抛物线的解析式为y=-x2+2x+3,进而判断各选项即可.本题考查了抛物线与x 轴的交点,一次函数、二次函数图象上点的坐标特征,关于y 轴对称的两点坐标特征,平行于x 轴的直线上任意两点坐标特征,待定系数法求抛物线的解析式,平行四边形的判定及面积公式,综合性较强,求出抛物线的解析式是解题的关键.2.【答案】D【解析】解:∵a1=a2+a3=a4+a5+a5+a6=a7+a8+a8+a9+a8+a9+a9+a10=a7+3(a8+a9)+a10,∴要使a1 取得最小值,则a8+a9 应尽可能的小,取a8=2、a9=4,∵a5=a8+a9=6,则a7、a10 中不能有6,若a7=8、a10=10,则a4=10=a10,不符合题意,舍去;若a7=10、a10=8,则a4=12、a6=4+8=12,不符合题意,舍去;若a7=10、a10=12,则a4=10+2=12、a6=4+12=16、a2=12+6=18、a3=6+16=22、a1=18+22=40,符合题意;综上,a1的最小值为40,故选:D.由a1=a7+3(a8+a9)+a10 知要使a1 取得最小值,则a8+a9 应尽可能的小,取a8=2、a9=4,根据a5=a8+a9=6,则a7、a10 中不能有6,据此对于a7、a8,分别取8、10、12 检验可得,从而得出答案.本题主要考查数字的变化类,根据题目要求得出a1取得最小值的切入点是解题的关键.3.【答案】A【解析】解:过点D 作DE⊥y 轴于点E,过点C 作CF⊥x 轴于点F,令x=0 代入y= x-6,∴y=-6,∴B(0,-6),∴OB=6,令y=0 代入y= x-6,∴x=2 ,∴(2 ,0),∴OA=2 ,∴勾股定理可知:AB=4 ,∴sin∠OAB= = ,cos∠OAB= =设M(x,y),∴CF=-y,ED=x,∴sin∠OAB= ,∴AC=- y,∵cos∠OAB=cos∠EDB= ,∴BD=2x,∵AC•BD=4,∴- y×2x=4 ,∴xy=-3,∵M 在反比例函数的图象上,∴k=xy=-3,故选(A)过点D 作DE⊥y 轴于点E,过点C 作CF⊥x 轴于点F,然后求出OA 与OB 的长度,即可求出∠OAB 的正弦值与余弦值,再设M(x,y),从而可表示出BD 与AC 的长度,根据AC•BD=4列出即可求出k 的值.本题考查反比例函数与一次函数的综合问题,解题的关键是根据∠OAB 的锐角三角函数值求出BD、AC,本题属于中等题型.4.【答案】C【解析】解:过点B 作BD⊥x 轴于点D,∵∠ACO+∠BCD=90°,∠OAC+∠ACO=90°,∴∠OAC=∠BCD,在△ACO 与△BCD 中,∴△ACO➴△BCD(AAS)∴OC=BD,OA=CD,∵A(0,2),C(1,0)∴OD=3,BD=1,∴B(3,1),∴设反比例函数的解析式为y= ,将B(3,1)代入y= ,∴k=3,∴y= ,∴把y=2 代入y= ,∴x= ,当顶点A 恰好落在该双曲线上时,此时点A 移动了个单位长度,∴C 也移动了个单位长度,此时点C 的对应点C′的坐标为(,0)故选:C.过点B 作BD⊥x 轴于点D,易证△ACO➴△BCD(AAS),从而可求出B 的坐标,进而可求出反比例函数的解析式,根据解析式与 A 的坐标即可得知平移的单位长度,从而求出 C 的对应点.本题考查反比例函数的综合问题,涉及全等三角形的性质与判定,反比例函数的解析式,平移的性质等知识,综合程度较高,属于中等题型.5.【答案】B【解析】解:∵E 为CD 边的中点,∴DE=CE,又∵∠D=∠ECF=90°,∠AED=∠FEC,∴△ADE➴△FCE,∴AD=CF,AE=FE,又∵ME⊥AF,∴ME 垂直平分AF,∴AM=MF=MC+CF,∴AM=MC+AD,故①正确;如图,延长CB 至G,使得∠BAG=∠DAE,由AM=MF,AD∥BF,可得∠DAE=∠F=∠EAM,可设∠BAG=∠DAE=∠EAM=α,∠BAM=β,则∠AED=∠EAB=∠GAM=α+β,由∠BAG=∠DAE,∠ABG=∠ADE=90°,可得△ABG∽△ADE,∴∠G=∠AED=α+β,∴∠G=∠GAM,∴AM=GM=BG+BM,由△ABG∽△ADE,可得= ,而AB<BC=AD,∴BG<DE,∴BG+BM<DE+BM,即AM<DE+BM,∴AM=DE+BM 不成立,故②错误;∵ME⊥FF,EC⊥MF,∴EC2=CM×CF,又∵EC=DE,AD=CF,∴DE2=AD•CM,故③正确;∵∠ABM=90°,∴AM 是△ABM 的❧➓圆的直径,∵BM<AD,∴当BM∥AD 时,= <1,∴N 不是AM 的中点,∴点N 不是△ABM 的❧心,故④错误.综上所述,正确的结论有2 个,故选:B.根据全等三角形的性质以及线段垂直平分线的性质,即可得出AM=MC+AD;根据△ABG∽△ ADE,且AB<BC,即可得出BG<DE,再根据AM=GM=BG+BM,即可得出AM=DE+BM 不成立;根据ME⊥FF,EC⊥MF,运用射影定理即可得出EC2=CM×CF,据此可得DE2=AD•CM 成立;根据N 不是AM 的中点,可得点N 不是△ABM 的❧心.本题主要考查了相似三角形的判定与性质,全等三角形的判定与性质,矩形的性质以及旋转的性质的综合应用,解决问题的关键是运用全等三角形的对应边相等以及相似三角形的对应边成比例进行推导,解题时注意:三角形❧➓圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的❧心,故❧心到三角形三个顶点的距离相等.6.【答案】C【解析】解:①由x2-2x-8=0,得(x-4)(x+2)=0,解得x1=4,x2=-2,∵x1≠2x2,或x2≠2x1,1 1 ∴方程 x 2-2x-8=0 不是倍根方程. 故①错误;②关于 x 的方程 x 2+ax+2=0 是倍根方程,∴设 x 2=2x 1,∴x 1•x 2=2x 2=2,∴x 1=±1,当 x 1=1 时 ,x 2=2,当 x 1=-1 时 ,x 2=-2,∴x 1+x 2=-a=±3,∴a=±3,故②正确;③关于 x 的方程 ax 2-6ax+c=0(a≠0)是倍根方程,∴x 2=2x 1,∵抛物线 y=ax 2-6ax+c 的对称轴是直线 x=3,∴抛物线 y=ax 2-6ax+c 与 x 轴的交点的坐标是(2,0)和(4,0),故③正确;④∵点(m ,n )在反比例函数 y= 的图象上,∴mn=4,解 mx 2+5x+n=0 得 x 1=- ,x 2=- ,∴x 2=4x 1,∴关于 x 的方程 mx 2+5x+n=0 不是倍根方程;故选:C .①通过解方程得到该方程的根,结合“倍根方程”的定义进行判断;②设 x 2=2x 1,得到 x 1•x 2=2x 2=2,得到当 x 1=1 时,x 2=2,当 x 1=-1 时,x 2=-2,于是得到结论;③根据“倍根方程”的定义即可得到结论;④若点(m,n)在反比例函数y= 的图象上,得到mn=4,然后解方程mx2+5x+n=0 即可得到正确的结论;本题考查了反比例函数图象上点的坐标特征,根与系数的关系,正确的理解倍根方程的定义是解题的关键.7.【答案】D【解析】解:∵六边形ABCDEF 的内角都相等,∴∠EFA=∠FED=∠FAB=∠ABC=120°,∵∠DAB=60°,∴∠DAF=60°,∴∠EFA+∠DAF=180°,∠DAB+∠ABC=180°,∴AD∥EF∥CB,故②正确,∴∠FED+∠EDA=180°,∴∠EDA=∠ADC=60°,∴∠EDA=∠DAB,∴AB∥DE,故①正确,∵∠FAD=∠EDA,∠CDA=∠BAD,EF∥AD∥BC,∴四边形EFAD,四边形BCDA 是等腰梯形,∴AF=DE,AB=CD,∵AB=DE,∴AF=CD,故③正确,连➓CF 与AD 交于点O,连➓DF、AC、AE、DB、BE.∵∠CDA=∠DAF,∴AF∥CD,AF=CD,∴四边形AFDC 是平行四边形,故④正确,同法可证四边形AEDB 是平行四边形,∴AD 与CF,AD 与BE 互相平分,∴OF=OC,OE=OB,OA=OD,∴六边形ABCDEF 既是中心对称图形,故⑤正确,故选D.根据六边形ABCDEF 的内角都相等,∠DAB=60°,平行线的判定,平行四边形的判定,中心对称图形的定义一一判断即可.本题考查平行四边形的判定和性质、平行线的判定和性质、轴对称图形、中心对称图形等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.8.【答案】D【解析】解:如图:故选:D.①以B 为圆心,BC 长为半径画弧,交AB 于点D,△BCD 就是等腰三角形;②以A 为圆心,AC 长为半径画弧,交AB 于点E,△ACE 就是等腰三角形;③以C 为圆心,BC 长为半径画弧,交AC 于点F,△BCF 就是等腰三角形;④以C 为圆心,BC 长为半径画弧,交AB 于点K,△BCK 就是等腰三角形;⑤作AB 的垂直平分线交AC 于G,则△AGB 是等腰三角形;➅作BC 的垂直平分线交AB 于I,则△BCI 和△ACI 是等腰三角形.本题考查了等腰三角形的判定的应用,主要考查学生的理解能力和动手操作能力.9.【答案】C【解析】解:在矩形ABCD 中,∵∠BAD=90°,∵AE⊥BD,∴∠AED=90°,∴∠ADE+∠DAE=∠DAE+∠BAE=90°,∴∠BAE=∠ADB,∵∠CAD=∠ADB,∴∠BAE=∠CAD,故①正确;∵BC=4,CD=2,∴tan∠DBC= = ,∴∠DBC≠30°,故②错误;∵BD= =2 ,∵AB=CD=2,AD=BC=4,∵△ABE∽△DBA,∴,即,∴AE= ;故③正确;∵CF 平分∠BCD,∴∠BCF=45°,∴∠ACF=45°-∠ACB,∵AD∥BC,∴∠DAC=∠BAE=∠ACB,∴∠EAC=90°-2∠ACB,∴∠EAC=2∠ACF,∵∠EAC=∠ACF+∠F,∴∠ACF=∠F,∴AF=AC,∵AC=BD=2 ,∴AF=2 ,故④正确;故选C.根据余角的性质得到∠BAE=∠ADB,等量代换得到∠BAE=∠CAD,故①正确;根据三角函数的定义得到tan∠DBC= = ,于是得到∠DBC≠30°,故②错误;由勾股定理得到BD==2 ,根据相似三角形的性质得到AE= ;故③正确;根据角平分线的定义得到∠BCF=45°,求得∠ACF=45°-∠ACB,推出∠EAC=2∠ACF,根据❧角的性质得到∠EAC=∠ACF+∠F,得到∠ACF=∠F,根据等腰三角形的判定得到AF=AC,于是得到AF=2 ,故④正确.本题考查了矩形的性质,相似三角形的判定和性质,三角形的❧角的性质,角平分线的定义,熟练掌握相似三角形的判定和性质是解题的关键.10.【答案】3【解析】3 3-2π解:如图所示:设半圆的圆心为O,连➓DO,过D 作DG⊥AB 于点G,过D 作DN⊥CB 于点N,∵在Rt△ABC 中,∠BAC=30°,∴∠ACB=60°,∠ABC=90°,∵以AD 为边作等边△ADE,∴∠EAD=60°,∴∠EAB=60°+30°=90°,可得:AE∥BC,则△ADE∽△CDF,∴△CDF 是等边三角形,∵在Rt△ABC 中,∠BAC=30°,BC=2 ,∴AC=4 ,AB=6,∠DOG=60°,则AO=BO=3,故DG=DO•sin60°=,则AD=3 ,DC=AC-AD= ,故DN=DC•sin60°=×= ,则S 阴影=S△ABC-S△AOD-S 扇形DOB-S△DCF= ×2 ×6- ×3×- - × ×=3 - π.故答案为:3 - π.根据题意结合等边三角形的性质分别得出AB,AC,AD,DC 的长,进而利用S 阴影=S△ABC-S△AOD-S 扇形DOB-S△DCF 求出答案.此题主要考查了扇形面积求法以及等边三角形的性质和锐角三角函数关系等知识,正确分割图形是解题关键.11.【答案】2【解析】解:对各个小宫格编号如下:先看己:已经有了数字3、5、6,缺少1、2、4;观察发现:4 不能在第四列,2 不能在第五列,而2 不能在第六列;所以2 只能在第六行第四列,即a=2;则b 和c 有一个是1,有一个是4,不确定,如下:观察上图发现:第四列已经有数字2、3、4、6,缺少1 和5,由于5 不能在第二行,所以5 在第四行,那么1 在第二行;如下:再看乙部分:已经有了数字1、2、3,缺少数字4、5、6,观察上图发现:5 不能在第六列,所以5在第五列的第一行;4 和6 在第六列的第一行和第二行,不确定,分两种情况:①当4 在第一行时,6 在第二行;那么第二行第二列就是4,如下:再看甲部分:已经有了数字1、3、4、5,缺少数字2、6,观察上图发现:2 不能在第三列,所以2 在第二列,则6 在第三列的第一行,如下:观察上图可知:第三列少1 和4,4 不能在第三行,所以4 在第五行,则1 在第三行,如下:观察上图可知:第五行缺少1 和2,1 不能在第1 列,所以1 在第五列,则2 在第一列,即c=1,所以b=4,如下:观察上图可知:第六列缺少1 和2,1 不能在第三行,则在第四行,所以2 在第三行,如下:再看戊部分:已经有了数字2、3、4、5,缺少数字1、6,观察上图发现:1 不能在第一列,所以1 在第二列,则6 在第一列,如下:观察上图可知:第一列缺少3 和4,4 不能在第三行,所以4 在第四行,则3 在第三行,如下:观察上图可知:第二列缺少5 和6,5 不能在第四行,所以5 在第三行,则6 在第四行,如下:观察上图可知:第三行第五列少6,第四行第五列少3,如下:所以,a=2,c=1,ac=2;②当6 在第一行,4 在第二行时,那么第二行第二列就是6,如下:再看甲部分:已经有了数字1、3、5、6,缺少数字2、4,观察上图发现:2 不能在第三列,所以2 在第2 列,4 在第三列,如下:观察上图可知:第三列缺少数字1 和6,6 不能在第五行,所以6 在第三行,则1 在第五行,所以c=4,b=1,如下:观察上图可知:第五列缺少数字3 和6,6 不能在第三行,所以6 在第四行,则3 在第三行,如下:观察上图可知:第六列缺少数字1 和2,2 不能在第四行,所以2 在第三行,则1 在第四行,如下:观察上图可知:第三行缺少数字1 和5,1 和5 都不能在第一列,所以此种情况不成立;综上所述:a=2,c=1,a×c=2;故答案为:2.粗线把这个数独分成了6 块,为了便于解答,对各部分进行编号:甲、乙、丙、丁、戊、己,先从各部分中数字最多的己出发,找出其各个小方格里面的数,再根据每行、每列、每小宫格都不出现重复的数字进行推算.本题是六阶数独,比较复杂,关键是找出突破口,先推算出一个区域或者一行、一列,再逐步的进行推算.12.【答案】①③【解析】解:①∵四边形ABCD 为正方形,∴AB=BC=CD,∵BE=EF=FC,CG=2GD,∴BF=CG,∵在△ABF 和△BCG 中,,∴△ABF➴△BCG,∴∠BAF=∠CBG,∵∠BAF+∠BFA=90°,∴∠CBG+∠BFA=90°,即AF⊥BG;①正确;②∵在△BNF 和△BCG 中,,∴△BNF∽△BCG,∴ = = ,∴BN= NF;②错误;③作EH⊥AF,令AB=3,则BF=2,BE=EF=CF=1,AF= = ,∵S△ABF= AF•BN=AB•BF,∴BN= ,NF= BN= ,∴AN=AF-NF= ,∵E 是BF 中点,∴EH 是△BFN 的中位线,∴EH= ,NH= ,BN∥EH,∴AH= , = ,解得:MN= ,∴BM=BN-MN= ,MG=BG-BM= ,∴ = ;③正确;④连➓AG,FG,根据③中结论,则NG=BG-BN= ,∵S 四边形CGNF=S△CFG+S△GNF= CG•CF+NF•NG=1+= ,S 四边形ANGD=S△ANG+S△ADG= AN•GN+AD•DG= + = ,∴S 四边形CGNF≠S 四边形ANGD,④错误;故答案为①③.①易证△ABF➴△BCG,即可解题;②易证△BNF∽△BCG,即可求得的值,即可解题;③作EH⊥AF,令AB=3,即可求得MN,BM 的值,即可解题;④连➓AG,FG,根据③中结论即可求得S 四边形CGNF 和S 四边形ANGD,即可解题.本题考查了全等三角形的判定和性质,考查了相似三角形的判定和对应边成比例的性质,本题中令AB=3 求得AN,BN,NG,NF 的值是解题的关键.13.【答案】1.5【解析】解:∵在△AOB 中,∠AOB=90°,AO=3cm,BO=4cm,∴AB= =5cm,∵点D 为AB 的中点,∴OD= AB=2.5cm.∵将△AOB 绕顶点O,按顺时针方向旋转到△A1OB1 处,∴OB1=OB=4cm,∴B1D=OB1-OD=1.5cm.故答案为1.5.先在直角△AOB 中利用勾股定理求出AB= =5cm,再利用直角三角形斜边上的中线等于斜边的一半得出OD= AB=2.5cm.然后根据旋转的性质得到OB1=OB=4cm,那么B1D=OB1-OD=1.5cm.本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了直角三角形斜边上的中线等于斜边的一半的性质以及勾股定理.14.【答案】(2,2 3)【解析】解:2017×60°÷360°=336…1,即与正六边形ABCDEF 绕原点O 顺时针旋转1 次时点A 的坐标是一样的.当点A 按顺时针旋转60°时,与原F 点重合.连➓OF,过点F 作FH⊥x 轴,垂足为H;由已知EF=4,∠FOE=60°(正六边形的性质),∴△OEF 是等边三角形,∴OF=EF=4,∴F(2,2 ),即旋转2017 后点A 的坐标是(2,2 ),故答案是:(2,2 ).将正六边形ABCDEF 绕原点O 顺时针旋转2017 次时,点A 所在的位置就是原F 点所在的位置.此题主要考查了正六边形的性质,坐标与图形的性质-旋转.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.15.【答案】①②③【解析】解:在Rt△ABC 中,∵BC=2,∠BAC=30°,∴AB=4,AC= =2 ,①若C、O 两点关于AB 对称,如图1,∴AB 是OC 的垂直平分线,则OA=AC=2 ;所以①正确;②如图1,取AB 的中点为E,连➓OE、CE,∵∠AOB=∠ACB=90°,∴OE=CE= AB=2,当OC 经过点E 时,OC 最大,则C、O 两点距离的最大值为4;所以②正确;③如图2,同理取AB 的中点E,则OE=CE,∵AB 平分CO,∴OF=CF,∴AB⊥OC,所以③正确;④如图3,斜边AB 的中点D 运动路径是:以O 为圆心,以2 为半径的圆周的,则:=π.所以④不正确;综上所述,本题正确的有:①②③;故答案为:①②③.①先根据直角三角形30°的性质和勾股定理分别求AC 和AB,由对称的性质可知:AB 是OC 的垂直平分线,所以OA=AC;②当OC 经过AB 的中点E 时,OC 最大,则C、O 两点距离的最大值为4;③如图2,根据等腰三角形三线合一可知:AB⊥OC;④如图3,半径为2,圆心角为90°,根据弧长公式进行计算即可.本题是三角形的综合题,考查了直角三角形30°的性质、直角三角形斜边中线的性质、等腰三角形的性质、轴对称的性质、线段垂直平分线的性质、动点运动路径问题、弧长公式,熟练掌握直角三角形斜边中线等于斜边一半是本题的关键,难度适中.3 316.【答案】(2, 2 )【解析】解:作N 关于OA 的对称点N′,连➓N′M 交OA 于P,则此时,PM+PN 最小,∵OA 垂直平分NN′,∴ON=ON′,∠N′ON=2∠AON=60°,∴△NON′是等边三角形,∵点M 是ON 的中点,∴N′M⊥ON,∵点N(3,0),∴ON=3,∵点M 是ON 的中点,∴OM=1.5,∴PM= ,∴P(,).故答案为:(,).作N 关于OA 的对称点N′,连➓N′M 交OA 于P,则此时,PM+PN 最小,由作图得到ON=ON′,∠N′ON=2∠AON=60°,求得△NON′是等边三角形,根据等边三角形的性质得到N′M⊥ON,解直角三角形即可得到结论.本题考查了轴对称-最短路线问题,等边三角形的判定和性质,解直角三角形,关键是确定P 的位置.17.【答案】②③④【解析】解:①观察函数图象可知,当t=2 时,两函数图象相交,∵C 地位于A、B 两地之间,∴交点代表了两车离C 地的距离相等,并不是两车相遇,结论①错误;②甲车的速度为240÷4=60(km/h),乙车的速度为200÷(3.5-1)=80(km/h),∵(240+200-60-170)÷(60+80)=1.5(h),∴乙车出发1.5h 时,两车相距170km,结论②正确;③∵(240+200-60)÷(60+80)=2 (h),∴乙车出发2 h 时,两车相遇,结论③正确;④∵80×(4-3.5)=40(km),∴甲车到达C 地时,两车相距40km,结论④正确.综上所述,正确的结论有:②③④.故答案为:②③④.①观察函数图象可知,当t=2 时,两函数图象相交,结合交点代表的意义,即可得出结论①错误;②根据速度=路程÷时间分别求出甲、乙两车的速度,再根据时间=路程÷速度和可求出乙车出发1.5h 时,两车相距170km,结论②正确;③根据时间=路程÷速度和可求出乙车出发2 h 时,两车相遇,结论③正确;④结合函数图象可知当甲到C 地时,乙车离开C 地0.5 小时,根据路程=速度×时间,即可得出结论④正确.综上即可得出结论.本题考查了一次函数的应用,根据函数图象逐一分析四条结论的正误是解题的关键.18.【答案】【解析】5 ‒ 1 2解:作AE⊥x 轴于E,BF⊥x 轴于F,过B 点作BC⊥y 轴于C,交AE 于G,如图所示:则AG⊥BC,∵∠OAB=90°,∴∠OAE+∠BAG=90°,∵∠OAE+∠AOE=90°,∴∠AOE=∠GAB ,在△AOE 和△BAG 中,,∴△AOE ➴△BAG (AAS ),∴OE=AG ,AE=BG ,∵点 A (n ,1),∴AG=OE=n ,BG=AE=1,∴B (n+1,1-n ),∴k=n×1=(n+1)(1-n ),整理得:n 2+n-1=0,解得:n= ∴n=,(负值舍去), ∴k=故答案为: ;.作 AE ⊥x 轴于 E ,BF ⊥x 轴于 F ,过 B 点作 BC ⊥y 轴于 C ,交 AE 于 G ,则 AG ⊥BC ,先求得△ AOE ➴△BAG ,得出 AG=OE=n ,BG=AE=1,从而求得 B (n+1,1-n ),根据 k=n×1=(n+1)(1-n )得出方程,解方程即可.本题考查了全等三角形的判定与性质、反比例函数图象上点的坐标特征、解方程等知识;熟练掌握反比例函数图象上点的坐标特征,证明三角形全等是解决问题的关键.19.【答案】(-2,0)【解析】解:如图所示,P 1(-2,0),P 2(2,-4),P 3(0,4),P 4(-2,-2),P 5(2,-2),P 6(0,2),发现 6 次一个循环,∵2017÷6=336…1,∴点 P 2017 的坐标与 P 1 的坐标相同,即 P 2017(-2,0),故答案为(-2,0).画出P1~P6,寻找规律后即可解决问题.本题考查坐标与图形的性质、点的坐标等知识,解题的关键是循环探究问题的方法,属于中考常考题型.“”“”At the end, Xiao Bian gives you a passage. Minand once said, "people who learn to learn are very happy people.". In every wonderful life, learning is an eternal theme. As a professional clerical and teaching position, I understand the importance of continuous learning, "life is diligent, nothing can be gained", only continuous learning can achieve better self. Only by constantly learning and mastering the latest relevant knowledge, can employees from all walks of life keep up with the pace of enterprise development and innovate to meet the needs of the market. This document is also edited by my studio professionals, there may be errors in the document, if there are errors, please correct, thank you!。

初三中考数学选择填空压轴题

初三中考数学选择填空压轴题

中考数学选择填空压轴题一、动点问题1.如图,C为⊙O直径AB上一动点,过点C的直线交⊙O于D、E两点,且∠ACD=45°,DF⊥AB于点F,EG⊥AB于点G,当点C在AB上运动时,设AF=x,DE=y,下列中图象中,能表示y与x的函数关系式的图象大致是()2.如图,A,B,C,D为圆O的四等分点,动点P从圆心O出发,沿O—C—D—O路线作匀速运动,设运动时间为x(s).∠APB=y(°),右图函数图象表示y与x之间函数关系,则点M的横坐标应为.3.如图,AB是⊙O的直径,且AB=10,弦MN的长为8,若弦MN的两端在圆上滑动时,始终与AB相交,记点A、B到MN的距离分别为h1,h2,则|h1-h2| 等于()A、5B、6C、7D、84.如图,已知Rt△ABC的直角边AC=24,斜边AB=25,一个以点P为圆心、半径为1的圆在△ABC内部沿顺时针方向滚动,且运动过程中⊙P一直保持与△ABC的边相切,当点P第一次回到它的初始位置时所经过路径的长度是()A.563B. 25C.1123D. 565.在ABC△中,12cm6cmAB AC BC D===,,为BC的中点,动点P从B点出发,以每秒1cm的速度沿B A C→→的方向运动.设运动时间为t,那么当t=秒时,过D、P两点的直线将ABC△的周长分成两个部分,使其中一部分是另一部分的2倍.6.如图,正方形ABCD 的边长为2,将长为2的线段QR 的两端放在正方形的相邻的两边上同时滑动.如果Q 点从A 点出发,沿图中所示方向按A→B→C→D→A 滑动到A 止,同时点R 从B 点出发,沿图中所示方向按B→C→D→A→B 滑动到B 止,在这个过程中,线段QR 的中点M 所经过的路线围成的图形的面积为( ) A .2 B .4π- C .π D .π1-7.如图,矩形ABCD 中,3AB =cm ,6AD =cm ,点E 为AB 边上的任意一点,四边形EFGB 也是矩形,且2EF BE =,则AFC S =△( )2cm .A .8B .9C .8 3D .9 38.△ABC 是⊙O 的内接三角形,∠BAC =60°,D 是的中点,AD =a,则四边形ABDC 的面积为 .9.如图,在梯形ABCD 中,90614AD BC ABC AD AB BC ∠====∥,°,,,点M 是线段BC 上一定点,且MC =8.动点P 从C 点出发沿C D A B →→→的路线运动,运动到点B 停止.在点P 的运动过程中,使PMC △为等腰三角形的点P 有 个 10.如图在边长为2的正方形ABCD 中,E ,F ,O 分别是AB ,CD ,AD 的中点,以O 为圆心,以OE 为半径画弧EF .P 是上的一个动点,连结OP ,并延长OP 交线段BC 于点K ,过点P 作⊙O 的切线,分别交射线AB 于点M ,交直线BC 于点G . 若3=BMBG,则BK ﹦ .A BCQRMDADCEF GB DPAODBFKEG MC二、面积与长度问题1.如图,△ABC 是直角边长为a 的等腰直角三角形,直角边AB 是半圆O 1的直径,半圆 O 2过C 点且与半圆O 1相切,则图中阴影部分的面积是( ) A .2367a π-B .2365a π- C .2367a D .2365a2.如图,在x 轴上有五个点,它们的横坐标依次为l ,2,3,4,5.分别过这些点作x 轴的垂线与三条直线y=ax ,y=(a+1)x ,y=(a+2)x 相交,其中a>0.则图中阴影部分的面积是( ) A .12.5 B .25 C .12.5a D .25a 3.如图,在反比例函数2y x=(0x >)的图象上,有点1234P P P P ,,,,它们的横坐标依次为1,2,3,4.分别过这些点作x 轴与y 轴的垂线,图中所构成的阴影部分的面积从左到右依次为123S S S ,,,则123S S S ++= .4.已知, A 、B 、C 、D 、E 是反比例函数16y x=(x>0)图象上五个整数点(横、纵坐标均为整数),分别以这些点向横轴或纵轴作垂线段,由垂线段所在的正方形边长为半径作四分之一圆周的两条弧,组成如图5所示的五个橄榄形(阴影部分),则这五个橄榄形的面积总和是 (用含π的代数式表示)5.如图,在x 轴的正半轴上依次截取112233445OA A A A A A A A A ====, 过点A 1、A 2、A 3、A 4、A 5分别作x 轴的垂线与反比例函数()20y x x =≠的图象相交于点P 1、P 2、P 3、P 4、P 5,得直角三角形(阴影部分)并设 其面积分别为12345S S S S S 、、、、,则5S 的值为 .2y x =xyOP 1 P 2P 3 P 4 1234yxO P 1P 2P 3P 4 P 5A 1 A 2 A 3 A 4 A 52y x=ADEPBCABCDN M6.如图,把一个棱长为3的正方体的每个面等分成9个小正方形,然后沿每个面正中心的一个正方形向里挖空(相当于挖去了7个小正方体),所得到的几何体的表面积是( ) A .78 B .72C .54D .487.如图,平行于y 轴的直线l 被抛物线y =2112x +、y =2112x -所截.当直线l 向右平移3 个单位时,直线l 被两条抛物线所截得的线段扫过的图形面积为 平方单位.8.如图,在Rt ABC △中,9042C AC BC ===∠°,,,分别以AC 、BC 为直径画半圆,则图中阴影部分的面积为 .(结果保留π)9.如图,Rt ABC △中,90ACB ∠=,30CAB ∠=,2BC =,O H ,分别为边AB AC , 的中点,将ABC △绕点B 顺时针旋转120到11A BC △的位置,则整个旋转过程中线段OH 所扫过部分的面积(即阴影部分面积)为( )A .77π338-B .47π338+C .πD .4π33+ 10.如图,正方形ABCD 的面积为12,ABE △是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一点P ,使PD PE +的和最小,则这个最小值为( ) A .23 B .26 C .3D .6AH BOC1O 1H1A1C11.如图,在锐角ABC△中,4245AB BAC=∠=,°,BAC∠的平分线交BC于点D M N,、分别是AD和AB上的动点,则BM MN+的最小值是___________ .12.如图,在矩形ABCD中,AB=3,AD=4,点P在AD上,PE⊥AC于E,PF⊥BD于F,则PE+PF等于()A.75B.125C.135D.14513.正方形ABCD中,E是BC边上一点,以E为圆心、EC为半径的半圆与以A为圆心,AB为半径的圆弧外切,则sin EAB∠的值为()A.43B.34C.45D.3514.在Rt△ABC内有边长分别为,,a b c的三个正方形,则,,a b c满足关系式.15.一张等腰三角形纸片,底边长l5cm,底边上的高长22.5cm.现沿底边依次从下往上裁剪宽度均为3cm的矩形纸条,如图所示.已知剪得的纸条中有一张是正方形,则这张正方形纸条是( )A.第4张 B.第5张 C.第6张 D.第7张16.如图,等腰△ABC中,底边aBC=,︒=∠36A,ABC∠的平分线交AC于D,BCD∠的平分线交BD于E,设215-=k,则=DE()A.ak2B.ak3C.2kaD.3ka17.如图,直径分别为CD、CE的两个半圆相切于点C,大半圆M的弦AB与小半圆N相切于A DB CE FPADCEBA D FCBOEEFDCBA 点F ,且AB ∥CD ,AB=4,设弧CD 、弧CE 的长分别为x 、y ,线段ED 的长为z ,则z (x+y )= .三、多结论问题1.如图,在Rt △ABC 中,AB AC =,D 、E 是斜边BC 上两点,且∠DAE =45°,将△ADC 绕点A 顺时针旋转90︒后,得到△AFB ,连接EF ,下列结论: ①△AED ≌△AEF ; ②△ABE ∽△ACD ; ③BE DC DE +=; ④222BE DC DE +=其中一定正确的是( ) A .②④ B .①③ C .②③ D .①④2.如图,在等腰Rt △ABC 中,∠C =90º,AC =8,F 是AB 边上的中点,点D 、E 分别在AC 、BC 边上运动,且保持AD =CE ,连接DE 、DF 、EF 。

中考数学---几何选择填空压轴题精选1

中考数学---几何选择填空压轴题精选1

中考数学---几何选择填空压轴题精选1一.选择题:1.如下图1,点O为正方形ABCD的中心,BE平分∠DBC交DC于点E,延长BC到点F,使FC=EC,连接DF交BE的延长线于点H,连接OH交DC于点G,连接HC.则以下四个结论中正确结论的个数为()①OH=BF;②∠CHF=45°;③GH=BC;④DH2=HE•HB.A. 1个B. 2个C. 3个D. 4个2、如上图2,梯形ABCD中,AD∥BC,,∠ABC=45°,AE⊥BC于点E,BF⊥AC于点F,交AE于点G,AD=BE,连接DG、CG.以下结论:①△BEG≌△AEC;②∠GAC=∠GCA;③DG=DC;④G为AE中点时,△AGC的面积有最大值.其中正确的结论有()A. 1个B. 2个C. 3个D. 4个3.如上图3,正方形ABCD中,在AD的延长线上取点E,F,使DE=AD,DF=BD,连接BF分别交CD,CE于H,G下列结论:①EC=2DG;②∠GDH=∠GHD;③S△CDG=S▭DHGE;④图中有8个等腰三角形.其中正确的是()A.①③ B.②④ C.①④ D.②③4.如下图1,矩形ABCD的面积为5,它的两条对角线交于点O1,以AB,AO1为两邻边作平行四边形ABC1O1,平行四边形ABC1O1的对角线交BD于点02,同样以AB,AO2为两邻边作平行四边形ABC2O2.…,依此类推,则平行四边形ABC2009O2009的面积为()A.B. C. D.5、如上图2,在△ABC中∠A=60°,BM⊥AC于点M,CN⊥AB于点N,P为BC边的中点,连接PM,PN,则下列结论:①PM=PN;②;③△PMN为等边三角形;④当∠ABC=45°时,BN=PC.其中正确的个数是()A.1个 B.2个 C.3个 D.4个6.Rt△ABC中,AB=AC,点D为BC中点.∠MDN=90°,∠MDN绕点D旋转,DM、DN分别与边AB、AC交于E、F两点.下图1,下列结论:①(BE+CF)=BC;②S△AEF ≤S△ABC;③S四边形AEDF=AD•EF;④AD≥EF;⑤AD与EF可能互相平分,其中正确结论的个数是()A.1个B.2个C.3个D.4个7.如上图2,在正方形纸片ABCD中,对角线AC、BD交于点O,折叠正方形纸片ABCD,使AD落在BD上,点A恰好与BD上的点F重合,展开后折痕DE分别交AB、AC于点E、G,连接GF.下列结论①∠ADG=22.5°;②tan∠AED=2;③S△AGD =S△OGD;④四边形AEFG是菱形;⑤BE=2OG.其中正确的结论有()A.①④⑤B.①②④C.③④⑤D.②③④8.如上图3,正方形ABCD中,O为BD中点,以BC为边向正方形内作等边△BCE,连接并延长AE 交CD于F,连接BD分别交CE、AF于G、H,下列结论:①∠CEH=45°;②GF∥DE;③2OH+DH=BD;④BG=DG;⑤.其中正确的结论是()A.①②③B.①②④C.①②⑤D.②④⑤9.如下图1,在正方形ABCD中,AB=4,E为CD上一动点,AE交BD于F,过F作FH⊥AE于H,过H作GH⊥BD于G,下列有四个结论:①AF=FH,②∠HAE=45°,③BD=2FG,④△CEH的周长为定值,其中正确的结论有()A.①②③B.①②④C.①③④D.①②③④10.正方形ABCD、正方形BEFG和正方形RKPF的位置如上图2所示,点G在线段DK上,正方形BEFG 的边长为4,则△DEK的面积为()A. 10B. 12C. 14D. 16二.填空题1.如下图1,观察图中菱形的个数:图1中有1个菱形,图2中有5个菱形,图3中有14个菱形, 图4中有30个菱形…,则第6个图中菱形的个数是 个.2.如下图2,在△ABC 中,∠A=α.∠ABC 与∠ACD 的平分线交于点A 1,得∠A 1; ∠A 1BC 与∠A 1CD 的平分线相交于点A 2,得∠A 2; …;∠A 2011BC 与∠A 2011CD 的平分线相交于点A 2012,得∠A 2012,则∠A 2012= .3.如下图1,已知Rt △ABC 中,AC=3,BC=4,过直角顶点C 作CA 1⊥AB ,垂足为A 1,再过A 1作A 1C 1⊥BC ,垂足为C 1,过C 1作C 1A 2⊥AB ,垂足为A 2,再过A 2作A 2C 2⊥BC ,垂足为C 2,…,这样一直做下去,得到了一组线段CA 1,A 1C 1,C 1A 2,…,则CA 1= ,= .4、如上图2,点A 1,A 2,A 3,A 4,…,A n 在射线OA 上,点B 1,B 2,B 3,…,B n ﹣1在射线OB 上, 且A 1B 1∥A 2B 2∥A 3B 3∥…∥A n ﹣1B n ﹣1,A 2B 1∥A 3B 2∥A 4B 3∥…∥A n B n ﹣1,△A 1A 2B 1,△A 2A 3B 2,…,△A n ﹣1A n B n ﹣1为阴影三角形,若△A 2B 1B 2,△A 3B 2B 3的面积分别为1、4,则△A 1A 2B 1的面为 ; 面积小于2011的阴影三角形共有 个. 5、如下图1,已知点A 1(a ,1)在直线l :上,以点A 1为圆心,以为半径画弧,交x 轴于点B 1、B 2,过点B 2作A 1B 1的平行线交直线l 于点A 2,在x 轴上取一点B 3,使得A 2B 3=A 2B 2,再过点B 3作A 2B 2的平行线交直线l 于点A 3,在x 轴上取一点B 4,使得A 3B 4=A 3B 3,按此规律继续作下去, 则①a= ;②△A 4B 4B 5的面积是 .6、如下图,在梯形ABCD中,AD∥BC,EA⊥AD,M是AE上一点,F、G分别是AB、CM的中点,且∠BAE=∠MCE,∠MBE=45°,则给出以下五个结论:①AB=CM;②A E⊥BC;③∠BMC=90°;④EF=EG;⑤△BMC是等腰直角三角形.上述结论中始终正确的序号有.7、如图,边长为1的菱形ABCD中,∠DAB=60度.连接对角线AC,以AC为边作第二个菱形ACC1D1,使∠D1AC=60°;连接AC1,再以AC1为边作第三个菱形AC1C2D2,使∠D2AC1=60°;…,按此规律所作的第n个菱形的边长为.8、如图,将矩形ABCD的四个角向内折起,恰好拼成一个既无缝隙又无重叠的四边形EFGH,若EH=3,EF=4,那么线段AD与AB的比等于.9.如图,E、F分别是平行四边形ABCD的边AB、CD上的点,AF与DE相交于点P,BF与CE相交于点Q,若S△APD =15cm2,S△BQC=25cm2,则阴影部分的面积为cm2.中考数学---几何选择填空压轴题精选1答案一.选择题:1、解:作EJ⊥BD于J,连接EF①∵BE平分∠DBC ∴EC=EJ,∴△DJE≌△ECF ∴DE=FE∴∠HEF=45°+22.5°=67.5°∴∠HFE==22.5°∴∠EHF=180°﹣67.5°﹣22.5°=90°∵DH=HF,OH是△DBF的中位线∴OH∥BF ∴OH=BF②∵四边形ABCD是正方形,BE是∠DBC的平分线,∴BC=CD,∠BCD=∠DCF,∠EBC=22.5°,∵CE=CF,∴Rt△BCE≌Rt△DCF,∴∠EBC=∠CDF=22.5°,∴∠BFH=90°﹣∠CDF=90°﹣22.5°=67.5°,∵OH是△DBF的中位线,CD⊥AF,∴OH是CD的垂直平分线,∴DH=CH,∴∠CDF=∠DCH=22.5°,∴∠HCF=90°﹣∠DCH=90°﹣22.5°=67.5°,∴∠CHF=180°﹣∠HCF﹣∠BFH=180°﹣67.5°﹣67.5°=45°,故②正确;③∵OH是△BFD的中位线,∴DG=CG=BC,GH=CF,∵CE=CF,∴GH=CF=CE∵CE<CG=BC,∴GH<BC,故此结论不成立;④∵∠DBE=45°,BE是∠DBF的平分线,∴∠DBH=22.5°,由②知∠HBC=∠CDF=22.5°,∴∠DBH=∠CDF,∵∠BHD=∠BHD,∴△DHE∽△BHD,∴=∴DH=HE•HB,故④成立;所以①②④正确.故选C.(第5题图)2、解:根据BE=AE,∠GBE=∠CAE,∠BEG=∠CEA可判定①△BEG≌△AEC;用反证法证明②∠GAC≠∠GCA,假设∠GAC=∠GCA,则有△AGC为等腰三角形,F为AC的中点,又BF⊥AC,可证得AB=BC,与题设不符;由①知△BEG≌△AEC 所以GE=CE 连接ED、四边形ABED为平行四边形,∵∠ABC=45°,AE⊥BC于点E,∴∠GED=∠CED=45°,∴△GED≌△CED,∴DG=DC;④设AG为X,则易求出GE=EC=2﹣X 因此,S△AGC =SAEC﹣SGEC=﹣+x=﹣(x2﹣2x)=﹣(x2﹣2x+1﹣1)=﹣(x﹣1)2+,当X取1时,面积最大,所以AG等于1,所以G是AE中点,故G为AE中点时,GF最长,故此时△AGC的面积有最大值.故正确的个数有3个.故选C.3、解:∵DF=BD,∴∠DFB=∠DBF,∵AD∥BC,DE=BC,∴∠DEC=∠DBC=45°,∴∠DEC=2∠EFB,∴∠EFB=22.5°,∠CGB=∠CBG=22.5°,∴CG=BC=DE,∵DE=DC,∴∠DEG=∠DCE,∵∠GHC=∠CDF+∠DFB=90°+22.5°=112.5°,∠DGE=180°﹣(∠BGD+∠EGF)=180°﹣(∠BGD+∠BGC),=180°﹣(180°﹣∠DCG)÷2=180°﹣(180°﹣45°)÷2=112.5°,∴∠GHC=∠DGE,∴△CHG≌△EGD,∴∠EDG=∠CGB=∠CBF,∴∠GDH=∠GHD,∴S△CDG =S▭DHGE.故选D.4、解:∵矩形ABCD的对角线互相平分,面积为5,∴平行四边形ABC1O1的面积为,∵平行四边形ABC1O1的对角线互相平分,∴平行四边形ABC2O2的面积为×=,…,依此类推,平行四边形ABC2009O2009的面积为.故选B.5、解:①∵BM⊥AC于点M,CN⊥AB于点N,P为BC边的中点,∴PM=BC,PN=BC,∴PM=PN,正确;②在△ABM与△ACN中,∵∠A=∠A,∠AMB=∠ANC=90°,∴△ABM∽△ACN,∴,正确;③∵∠A=60°,BM⊥AC于点M,CN⊥AB于点N,∴∠ABM=∠ACN=30°,在△ABC中,∠BCN+∠CBM═180°﹣60°﹣30°×2=60°,∵点P是BC的中点,BM⊥AC,CN⊥AB,∴PM=PN=PB=PC,∴∠BPN=2∠BCN,∠CPM=2∠CBM,∴∠BPN+∠CPM=2(∠BCN+∠CBM)=2×60°=120°,∴∠MPN=60°,∴△PMN是等边三角形,正确;(见上图)④当∠ABC=45°时,∵CN⊥AB于点N,∴∠BNC=90°,∠BCN=45°,∴BN=CN,∵P为BC边的中点,∴PN⊥BC,△BPN为等腰直角三角形;∴BN=PB=PC,正确.故选D.6、解:∵Rt△ABC中,AB=AC,点D为BC中点,∴∠C=∠BAD=45°,AD=BD=CD,∵∠MDN=90°,∴∠ADE+∠ADF=∠ADF+∠CDF=90°,∴∠ADE=∠CDF.在△AED与△CFD中,∵,∴△AED≌△CFD(ASA),∴AE=CF,在Rt△ABD中,BE+CF=BE+AE=AB==BD=BC.故①正确;设AB=AC=a,AE=CF=x,则AF=a﹣x.∵S△AEF =AE•AF=x(a﹣x)=﹣(x﹣a)2+a2,∴当x=a时,S△AEF有最大值a2,又∵S△ABC =×a2=a2,∴S△AEF≤S△ABC.故②正确;EF2=AE2+AF2=x2+(a﹣x)2=2(x﹣a)2+a2,∴当x=a时,EF2取得最小值a2,∴EF≥a(等号当且仅当x=a时成立),而AD=a,∴EF≥AD.故④错误;由①的证明知△AED≌△CFD,∴S四边形AEDF =S△AED+S△ADF=S△CFD+S△ADF=S△ADC=AD2,∵EF≥AD,∴AD•EF≥AD2,∴AD•EF>S四边形AEDF故③错误;当E、F分别为AB、AC的中点时,四边形AEDF为正方形,此时AD与EF互相平分.故⑤正确.综上所述,正确的有:①②⑤,共3个.故选C.7、解:∵四边形ABCD是正方形,∴∠GAD=∠ADO=45°,由折叠的性质可得:∠ADG=∠ADO=22.5°,故①正确.∵tan∠AED=,由折叠的性质可得:AE=EF,∠EFD=∠EAD=90°,∴AE=EF<BE,∴AE<AB,∴tan∠AED=>2,故②错误.∵∠AOB=90°,∴AG=FG>OG,△AGD与△OGD同高,∴S△AGD >S△OGD,故③错误.∵∠EFD=∠AOF=90°,∴EF∥AC,∴∠FEG=∠AGE,∵∠AGE=∠FGE,∴∠FEG=∠FGE,∴EF=GF,∵AE=EF,∴AE=GF,故④正确.∵AE=EF=GF,AG=GF,∴AE=EF=GF=AG,∴四边形AEFG是菱形,∴∠OGF=∠OAB=45°,∴EF=GF=OG,∴BE=EF=×OG=2OG.故⑤正确.∴其中正确结论的序号是:①④⑤.故选:A.8、解:①由∠ABC=90°,△BEC为等边三角形,△ABE为等腰三角形,∠AEB+∠BEC+∠CEH=180°,可求得∠CEH=45°,此结论正确;②由△EGD≌△DFE,EF=GD,再由△HDE为等腰三角形,∠DEH=30°,得出△HGF为等腰三角形,∠HFG=30°,可求得GF∥DE,此结论正确;③由图可知2(OH+HD)=2OD=BD,所以2OH+DH=BD此结论不正确;④如图,过点G作GM⊥CD垂足为M,GN⊥BC垂足为N,设GM=x,则GN=x,进一步利用勾股定理求得GD=x,BG=x,得出BG=GD,此结论不正确;⑤由图可知△BCE和△BCG同底不等高,它们的面积比即是两个三角形的高之比,由④可知△BCE的高为(x+x)和△BCG的高为x,因此S△BCE :S△BCG=(x+x):x=,此结论正确;故正确的结论有①②⑤.故选C.9、解:(1)连接FC,延长HF交AD于点L,∵BD为正方形ABCD的对角线,∴∠ADB=∠CDF=45°.∵AD=CD,DF=DF,∴△ADF≌△CDF.∴FC=AF,∠ECF=∠DAF.∵∠ALH+∠LAF=90°,∴∠LHC+∠DAF=90°.∵∠ECF=∠DAF,∴∠FHC=∠FCH,∴FH=FC.∴FH=AF.(上图2)(2)∵FH⊥AE,FH=AF,∴∠HAE=45°.(3)连接AC交BD于点O,可知:BD=2OA,(上图3)∵∠AFO+∠GFH=∠GHF+∠GFH,∴∠AFO=∠GHF.∵AF=HF,∠AOF=∠FGH=90°,∴△AOF≌△FGH.∴OA=GF.∵BD=2OA,∴BD=2FG.(4)延长AD至点M,使AD=DM,过点C作CI∥HL,则:LI=HC,根据△MEC≌△CIM,(见下图2)可得:CE=IM,同理,可得:AL=HE,∴HE+HC+EC=AL+LI+IM=AM=8.∴△CEH的周长为8,为定值.故(1)(2)(3)(4)结论都正确.故选D.10、解:如下图1,连DB,GE,FK,则DB∥GE∥FK,在梯形GDBE中,S△DGE =S△GEB(同底等高的两三角形面积相等),同理S△GKE=S△GFE.∴S阴影=S△DGE+S△GKE=S△GEB+S△GEF=S正方形GBEF=4×4=16 故选D.二.填空题:1、解:观察图形,发现规律:图1中有1个菱形,图2中有1+22=5个菱形,图3中有5+32=14个菱形,图4中有14+42=30个菱形,则第5个图中菱形的个数是30+52=55,第6个图中菱形的个数是55+62=91个.故答案为91.2、解:∵∠ABC与∠ACD的平分线交于点A1,∴∠A1BC=∠ABC,∠A1CD=∠ACD,根据三角形的外角性质,∠A+∠ABC=∠ACD,∠A1+∠A1BC=∠A1CD,∴∠A1+∠A1BC=∠A1+∠ABC=(∠A+∠ABC),整理得,∠A1=∠A=,同理可得,∠A2=∠A1=×=,…,∠A2012=.故答案为:.3、解:在Rt△ABC中,AC=3,BC=4,∴AB=,又因为CA1⊥AB,∴AB•CA1=AC•BC,即CA1===.∵C4A5⊥AB,∴△BA5C4∽△BCA,∴,∴==.所以应填和.4、解:由题意得,△A2B1B2∽△A3B2B3,∴==,==,又∵A1B1∥A2B2∥A3B3,∴===,==,∴OA1=A1A2,B1B2=B2B3继而可得出规律:A1A2=A2A3=A3A4…;B1B2=B2B3=B3B4…又△A2B1B2,△A3B2B3的面积分别为1、4,∴S△A1B1A2=,S△A2B2A3=2,继而可推出S△A3B3A4=8,S△A4B4A5=32,S△A5B5A6=128,S△A6B6A7=512,S△A7B7A8=2048,故可得小于2011的阴影三角形的有:△A1B1A2,△A2B2A3,△A3B3A4,△A4B4A5,△A5B5A6,△A6B6A7,共6个.故答案是:;6.5、解:如图所示:①将点A1(a,1)代入直线1中,可得,所以a=.②△A1B1B2的面积为:S==;因为△OA1B1∽△OA2B2,所以2A1B1=A2B2,又因为两线段平行,可知△A1B1B2∽△A2B2B3,所以△A2B2B3的面积为S1=4S;以此类推,△A4B4B5的面积等于64S=.6、解:∵梯形ABCD中,AD∥BC,EA⊥AD,∴AE⊥BC,即②正确.∵∠MBE=45°,∴BE=ME.在△ABE与△CME中,∵∠BAE=∠MCE,∠AEB=∠CEM=90°,BE=ME,∴△ABE≌△CME,∴AB=CM,即①正确.∵∠MCE=∠BAE=90°﹣∠ABE<90°﹣∠MBE=45°,∴∠MCE+∠MBC<90°,∴∠BMC>90°,即③⑤错误.∵∠AEB=∠CEM=90°,F、G分别是AB、CM的中点,∴EF=AB,EG=CM.又∵AB=CM,∴EF=EG,即④正确.故正确的是①②④.7、解:连接DB,∵四边形ABCD是菱形,∴AD=AB.AC⊥DB,∵∠DAB=60°,∴△ADB是等边三角形,∴DB=AD=1,∴BM=,∴AM==,∴AC=,同理可得AC1=AC=()2,AC2=AC1=3=()3,按此规律所作的第n个菱形的边长为()n﹣1故答案为()n﹣1.8、解:∵∠1=∠2,∠3=∠4,∴∠2+∠3=90°,∴∠HEF=90°,(见上图3)同理四边形EFGH的其它内角都是90°,∴四边形EFGH是矩形.∴EH=FG(矩形的对边相等);又∵∠1+∠4=90°,∠4+∠5=90°,∴∠1=∠5(等量代换),同理∠5=∠7=∠8,∴∠1=∠8,∴Rt△AHE≌Rt△CFG,∴AH=CF=FN,又∵HD=HN,∴AD=HF,在Rt△HEF中,EH=3,EF=4,根据勾股定理得HF=,∴HF=5,又∵HE•EF=HF•EM,∴EM=,又∵AE=EM=EB(折叠后A、B都落在M点上),∴AB=2EM=,∴AD:AB=5:=.故答案为:.9、解:如图,连接EF;∵△ADF与△DEF同底等高,∴S△ADF =S△DEF即S△ADF﹣S△DPF=S△DEF﹣S△DPF,即S△APD =S△EPF=15cm2,同理可得S△BQC=S△EFQ=25cm2,∴阴影部分的面积为S△EPF+S△EFQ=15+25=40cm2.故答案为40.。

2020年中考数学5.几何综合选择填空压轴题(含解析)

2020年中考数学5.几何综合选择填空压轴题(含解析)

几何综合-填空选择压轴题51、以正方形ABCD勺边AD作等边△ ADE则/ BEC勺度数是 __________2、如图.在厶ABC中, / ACB=60 , AC=1, D是边AB的中点,E是边BC上一点.若DE平分△ ABC的周长,则DE的长是 ____ .3、已知CD是△ ABC的边AB上的高,若CD・3,AD=1AB=2AC则BC的长为__4、如图,将面积为32V2的矩形ABCC沿对角线BD折叠,点A的对应点为点P,连接AP交BC于点E.若BE=J,贝U AP的长为____ .p5、如图,△ ABC是等边三角形,△ ABD是等腰直角三角形,/ BAD=90 , AE L BD 于点E,连CD分别交AE AB于点F, G过点A作AH L CD交BD于点H.则下列结论:①/ ADC=15 :② AF=AG ③ AH=DF ④厶AF3A CBQ ⑤AF= (V3 - 1)EF.其中正确结论的个数为()A. 5 B . 4 C . 3 D . 26 已知O 0的半径为10cm AB CD是O O的两条弦,AB// CD AB=16cm CD=12cm则弦AB和CD之间的距离是cm513 13 13 7 77、如图,将矩形ABCD 沿 EF 折叠,使点B 落在AD 边上的点G 处,点C 落在点H 处,已知/ DGH=30,连接BG 则/ AGB ________ .8、如图,?ABCD 勺对角线相交于点 0,且A 》CD 过点0作OM L AC,交AD 于点 M.如果△ CDM 勺周长为8,那么?ABCD 勺周长是 _____ .9、如图,由四个全等的直角三角形围成的大正方形的面积是169,小正方形的面积为 49,则 sin a - COS a =( ) A 13 B10、如图,P是厶ABC的内心,连接PA PB PC, △ PAB △ PBG △ PAC的面积分别为S、S、S.则Si ____ S2+S3.(填“v” 或“二”或“〉”)11、如图,△ ABC中, AB=AC AD L BC 于D点,DEL AB 于点E, BF 丄AC 于点F,DE=3cryi 则BF= ______ cm12、如图,已知半圆O与四边形ABCD勺边AD AB BC都相切,切点分别为DE、C,半径OC=1 则AE?BE=_.13、《九章算术》是我国古代数学名著,书中有下列问题:“今有勾五步,股十二步,问勾中容方几何?”其意思为:“今有直角三角形,勾(短直角边)长为5步,股(长直角边)长为12步,冋该直角二角形能容纳的正方形边长最大是多少步?”该问题的答案是____________ 步.14、如图,以AB为直径的。

2020江苏省中考数学选择填空压轴题专题:《四边形的综合问题》(含答案)

2020江苏省中考数学选择填空压轴题专题:《四边形的综合问题》(含答案)

专题:四边形的综合问题例1.如图,△APB中,AB=2 2 ,∠APB=90°,在AB的同侧作正△ABD、正△APE和△BPC,则四边形PCDE面积的最大值是__________.同类题型1.1 如图,△APB中,AP=4,BP=3,在AB的同侧作正△ABD、正△APE和正△BPC,则四边形PCDE面积的最大值是___________.同类题型1.2 如图,在□ABCD中,分别以AB、AD为边向外作等边△ABE、△ADF,延长CB交AE于点G,点G在点A、E之间,连接CE、CF,EF,则以下四个结论一定正确的是()①△CDF≌△EBC;②∠CDF=∠EAF;③△ECF是等边三角形;④CG⊥AE.A.只有①② B.只有①②③ C.只有③④ D.①②③④同类题型1.3 如图,四边形ABCD是平行四边形,点E是边CD上的一点,且BC=EC,CF⊥BE交AB于点F,P是EB延长线上一点,下列结论:①BE平分∠CBF;②CF平分∠DCB;③BC=FB;④PF=P C.其中正确的有______________.(填序号)同类题型1.4 如图,在□ABCD中,∠DAB的平分线交CD于点E,交BC的延长线于点G,∠ABC的平分线交CD于点F,交AD的延长线于点H,AG与BH交于点O,连接BE,下列结论错误的是()A.BO=OH B.DF=CE C.DH=CG D.AB=AE例2.图甲是小明设计的带菱形图案的花边作品.该作品由形如图乙的矩形图案拼接而成(不重叠、无缝隙).图乙中ABBC =67,EF=4cm,上下两个阴影三角形的面积之和为54cm2,其内部菱形由两组距离相等的平行线交叉得到,则该菱形的周长为____________.同类题型2.1 如图,在菱形ABCD中,AB=4cm,∠ADC=120°,点E、F同时由A、C两点出发,分别沿AB、CB方向向点B匀速移动(到点B为止),点E的速度为1cm/s,点F的速度为2cm/s,经过t秒△DEF 为等边三角形,则t的值为____________.同类题型2.2 如图,在边长为2的菱形ABCD中,∠A=60°,M是AD边的中点,N是AB边上的一动点,将△AMN沿MN所在直线翻折得到△A′MN,连接A′C,则A′C长度的最小值是____________.同类题型2.3 如图,在菱形ABCD中,边长为10,∠A=60°.顺次连接菱形ABCD各边中点,可得四边形A1B1C1D1;顺次连接四边形A1B1C1D1各边中点,可得四边形A2B2C2D2;顺次连接四边形A2B2C2D2各边中点,可得四边形A3B3C3D3;按此规律继续下去…,则四边形A2017B2017C2017D2017的周长是______________.例3.如图,在矩形ABCD中,点E为AB的中点,EF⊥EC交AD于点F,连接CF(AD>AE),下列结论:①∠AEF =∠BCE ;②S △CEF =S △EAF +S △CBE ;③AF +BC >CF ; ④若BC CD = 32,则△CEF ≌△CDF .其中正确的结论是____________.(填写所有正确结论的序号)同类题型3.1 如图,在矩形ABCD 中,AD = 2 AB ,∠B AD 的平分线交BC 于点E ,DH ⊥AE 于点H ,连接BH 并延长交CD 于点F ,连接DE 交BF 于点O ,下列结论:①AED =∠CED ;②AB =HF ,③BH =HF ;④BC -CF =2HE ;⑤OE =OD ;其中正确结论的序号是____________.同类题型3.2 如图,在矩形ABCD 中,BC = 2 AB ,∠ADC 的平分线交边BC 于点E ,AH ⊥DE 于点H ,连接CH 并延长交AB 边于点F ,连接AE 交CF 于点O ,给出下列命题:①AD =DE ②DH =2 2 EH ③△AEH ∽△CFB ④HO =12AE 其中正确命题的序号是________________(填上所有正确命题的序号)同类题型3.3 如图,在矩形ABCD 中,点E 是边BC 的中点,AE ⊥BD ,垂足为F ,则tan ∠BDE 的值是( )A .24B .14C .13D .23例4.已知:如图,在正方形ABCD 外取一点E ,连接AE ,BE ,DE .过点A 作AE 的垂线AP 交DE 于点P .若AE =AP =1,PB = 6 ,下列结论:①△APD ≌△AEB ;②点B 到直线AE 的距离为 2 ;③EB ⊥ED ;④S △APD +S △APB =1+ 6 .⑤S 正方形ABCD =4+ 6.其中正确结论的序号是___________________.同类题型4.1 如图,正方形ABCD 的边长为2,将长为2的线段QR 的两端放在正方形的相邻的两边上同时滑动.如果点Q 从点A 出发,沿图中所示方向按A →B →C →D →A 滑动到A 止,同时点R 从点B 出发,沿图中所示方向按B →C →D →A →B 滑动到B 止.点N 是正方形ABCD 内任一点,把N 点落在线段QR 的中点M 所经过的路线围成的图形内的概率记为P ,则P =( )A .4-π4B .π4C .14D .π-14同类题型4.2 如图,边长为2的正方形ABCD 中,AE 平分∠DAC ,AE 交CD 于点F ,CE ⊥AE ,垂足为点E ,EG ⊥CD ,垂足为点G ,点H 在边BC 上,BH =DF ,连接AH 、FH ,FH 与AC 交于点M ,以下结论:①FH =2BH ;②AC ⊥FH ;③S △ACF =1;④CE = 12AF ;⑤EG 2 =FG ﹒DG ,其中正确结论的个数为( ) A .2 B .3 C .4 D .5同类题型4.3 如图,边长为1的正方形ABCD 的对角线AC 、BD 相交于点O .有直角∠MPN ,使直角顶点P 与点O 重合,直角边PM 、PN 分别与OA 、OB 重合,然后逆时针旋转∠MPN ,旋转角为θ(0°<θ<90°),PM 、PN 分别交AB 、BC 于E 、F 两点,连接EF 交OB 于点G ,则下列结论中正确的是 ______________.(1)EF = 2 OE ;(2)S 四边形OEBF :S 正方形ABCD =1:4;(3)BE +BF = 2 OA ;(4)在旋转过程中,当△BEF 与△COF 的面积之和最大时,AE = 34;(5)OG ﹒BD =AE 2+CF 2 .同类题型4.4 如图,四边形ABHK 是边长为6的正方形,点C 、D 在边AB 上,且AC =DB =1,点P 是线段CD 上的动点,分别以AP 、PB 为边在线段AB 的同侧作正方形AMNP 和正方形BRQP ,E 、F 分别为MN 、QR 的中点,连接EF ,设EF 的中点为G ,则当点P 从点C 运动到点D时,点G 移动的路径长为 _____________.参考答案例1.如图,△APB 中,AB =2 2 ,∠APB =90°,在AB 的同侧作正△ABD 、正△APE 和△BPC ,则四边形PCDE 面积的最大值是__________.解:如图,延长EP 交BC 于点F ,∵∠APB =90°,∠APE =∠BPC =60°,∴∠EPC =150°,∴∠CPF =180°-150°=30°,∴PF 平分∠BPC ,又∵PB =PC ,∴PF ⊥BC ,设Rt △ABP 中,AP =a ,BP =b ,则CF =12CP =12b ,a 2+b 2 =8, ∵△APE 和△ABD 都是等边三角形,∴AE =AP ,AD =AB ,∠EAP =∠DAB =60°,∴∠EAD =∠PAB ,∴△EAD ≌△PAB (SAS ),∴ED =PB =CP ,同理可得:△APB ≌△DCB (SAS ),∴EP =AP =CD ,∴四边形CDEP 是平行四边形,∴四边形CDEP 的面积=EP ×CF =a ×12b =12ab , 又∵(a -b )2=a 2-2ab +b 2 ≥0,∴2ab ≤a 2+b 2 =8,∴12ab ≤2, 即四边形PCDE 面积的最大值为2.同类题型1.1 如图,△APB 中,AP =4,BP =3,在AB 的同侧作正△ABD 、正△APE 和正△BPC ,则四边形PCDE 面积的最大值是___________.解:∵△APE 和△ABD 是等边三角形,∴AE =AP =4,AB =AD ,∠EAP =∠DAB =60°,∴∠EAD =∠PAB =60°-∠DAP ,在△EAD 和△PAB 中⎩⎪⎨⎪⎧AE =AP∠EAD =∠PAB AD =AB∴△EAD ≌△PAB (SAS ),∴DE =BP ,同理△DBC ≌△ABP ,∴DC =AP ,∵△APE 和△BPC 是等边三角形,∴EP =AP ,BP =CP ,∴DE =CP =3,DC =PE =4,∴四边形PCDE 是平行四边形,当CP ⊥EP 时,四边形PCDE 的面积最大,最大面积是3×4=12.同类题型1.2 如图,在□ABCD 中,分别以AB 、AD 为边向外作等边△ABE 、△ADF ,延长CB 交AE 于点G ,点G 在点A 、E 之间,连接CE 、CF ,EF ,则以下四个结论一定正确的是( )①△CDF ≌△EBC ;②∠CDF =∠EAF ;③△ECF 是等边三角形;④CG ⊥AE .A .只有①②B .只有①②③C .只有③④D .①②③④解:∵△ABE 、△ADF 是等边三角形∴FD=AD,BE=AB∵AD=BC,AB=DC∴FD=BC,BE=DC∵∠B=∠D,∠FDA=∠ABE∴∠CDF=∠EBC∴△CDF≌△EBC,故①正确;∵∠FAE=∠FAD+∠EAB+∠BAD=60°+60°+(180°-∠CDA)=300°-∠CDA,∠FDC=360°-∠FDA-∠ADC=300°-∠CDA,∴∠CDF=∠EAF,故②正确;同理可得:∠CBE=∠EAF=∠CDF,∵BC=AD=AF,BE=AE,∴△EAF≌△EBC,∴∠AEF=∠BEC,∵∠AEF+∠FEB=∠BEC+∠FEB=∠AEB=60°,∴∠FEC=60°,∵CF=CE,∴△ECF是等边三角形,故③正确;在等边三角形ABE中,∵等边三角形顶角平分线、底边上的中线、高和垂直平分线是同一条线段∴如果CG⊥AE,则G是AE的中点,∠ABG=30°,∠ABC=150°,题目缺少这个条件,CG⊥AE不能求证,故④错误.选B.同类题型1.3 如图,四边形ABCD是平行四边形,点E是边CD上的一点,且BC=EC,CF⊥BE交AB于点F,P是EB延长线上一点,下列结论:①BE平分∠CBF;②CF平分∠DCB;③BC=FB;④PF=P C.其中正确的有______________.(填序号)解:证明:∵BC=EC,∴∠CEB=∠CBE,∵四边形ABCD是平行四边形,∴DC∥AB,∴∠CEB=∠EBF,∴∠CBE=∠EBF,∴①BE平分∠CBF,正确;∵BC=EC,CF⊥BE,∴∠ECF=∠BCF,∴②CF平分∠DCB,正确;∵DC∥AB,∴∠DCF=∠CFB,∵∠ECF=∠BCF,∴∠CFB=∠BCF,∴BF=BC,∴③正确;∵FB=BC,CF⊥BE,∴B点一定在FC的垂直平分线上,即PB垂直平分FC,∴PF=PC,故④正确.答案为①②③④.同类题型1.4 如图,在□ABCD中,∠DAB的平分线交CD于点E,交BC的延长线于点G,∠ABC的平分线交CD于点F,交AD的延长线于点H,AG与BH交于点O,连接BE,下列结论错误的是()A.BO=OH B.DF=CE C.DH=CG D.AB=AE解:∵四边形ABCD是平行四边形,∴AH∥BG,AD=BC,∴∠H=∠HBG,∵∠HBG=∠HBA,∴∠H=∠HBA,∴AH=AB,同理可证BG=AB,∴AH=BG,∵AD=BC,∴DH=CG,故C正确,∵AH=AB,∠OAH=∠OAB,∴OH=OB,故A正确,∵DF∥AB,∴∠DFH=∠ABH,∵∠H=∠ABH,∴∠H=∠DFH,∴DF=DH,同理可证EC=CG,∵DH=CG,∴DF=CE,故B正确,无法证明AE =AB ,选D .例2.图甲是小明设计的带菱形图案的花边作品.该作品由形如图乙的矩形图案拼接而成(不重叠、无缝隙).图乙中ABBC = 67,EF =4cm ,上下两个阴影三角形的面积之和为54cm 2 ,其内部菱形由两组距离相等的平行线交叉得到,则该菱形的周长为____________.解:如图乙,H 是CF 与DN 的交点,取CD 的中点G ,连接HG ,,设AB =6a cm ,则BC =7a cm ,中间菱形的对角线HI 的长度为x cm ,∵BC =7a cm ,MN =EF =4cm ,∴CN =7a +42, ∵GH ∥BC , ∴GH CN =DG DC, ∴7a -x27a +42=12, ∴x =3.5a -2…(1); ∵上下两个阴影三角形的面积之和为54cm 2 ,∴6a ﹒(7a -x )÷2=54,∴a (7a -x )=18…(2);由(1)(2),可得a =2,x =5,∴CD =6×2=12(cm ),CN =7a +42=7×2+42=9(cm) , ∴DN =122+92 =15(cm ), 又∵DH =DG 2+GH 2=62+(7×2-52)2 =7.5(cm ), ∴HN =15-7.5=7.5(cm ), ∵AM ∥FC ,∴KN HK =MN CM =49-4=45 , ∴HK =54+5×7.5=256(cm) , ∴该菱形的周长为:256×4=503(cm ).同类题型2.1 如图,在菱形ABCD 中,AB =4cm ,∠ADC =120°,点E 、F 同时由A 、C 两点出发,分别沿AB 、CB 方向向点B 匀速移动(到点B 为止),点E 的速度为1cm/s ,点F 的速度为2cm/s ,经过t 秒△DEF 为等边三角形,则t 的值为____________.解:延长AB 至M ,使BM =AE ,连接FM ,∵四边形ABCD 是菱形,∠ADC =120°∴AB =AD ,∠A =60°,∵BM =AE ,∴AD =ME ,∵△DEF 为等边三角形,∴∠DAE =∠DFE =60°,DE =EF =FD ,∴∠MEF +∠DEA ═120°,∠ADE +∠DEA =180°-∠A =120°,∴∠MEF =∠ADE ,∴在△DAE 和△EMF 中,⎩⎪⎨⎪⎧AD =ME∠MEF =∠ADE DE =EF∴△DAE ≌EMF (SAS ),∴AE =MF ,∠M =∠A =60°,又∵BM =AE ,∴△BMF 是等边三角形,∴BF =AE ,∵AE =t ,CF =2t ,∴BC =CF +BF =2t +t =3t ,∵BC =4,∴3t =4,∴t =43. 同类题型2.2 如图,在边长为2的菱形ABCD 中,∠A =60°,M 是AD 边的中点,N 是AB 边上的一动点,将△AMN 沿MN 所在直线翻折得到△A ′MN ,连接A ′C ,则A ′C 长度的最小值是____________.解:如图所示:∵MA ′是定值,A ′C 长度取最小值时,即A ′在MC 上时,过点M 作MF ⊥DC 于点F ,∵在边长为2的菱形ABCD 中,∠A =60°,M 为AD 中点,∴2MD =AD =CD =2,∠FDM =60°,∴∠FMD =30°,∴FD =12MD =12 , ∴FM =DM ×cos30°=32, ∴MC =FM 2+CF 2=7 ,∴A ′C =MC -MA ′=7 -1.同类题型2.3 如图,在菱形ABCD 中,边长为10,∠A =60°.顺次连接菱形ABCD 各边中点,可得四边形A 1B 1C 1D 1 ;顺次连接四边形A 1B 1C 1D 1 各边中点,可得四边形A 2B 2C 2D 2 ;顺次连接四边形A 2B 2C 2D 2 各边中点,可得四边形A 3B 3C 3D 3 ;按此规律继续下去…,则四边形A 2017B 2017C 2017D 2017 的周长是______________.解:∵菱形ABCD 中,边长为10,∠A =60°,顺次连结菱形ABCD 各边中点,∴△AA 1D 1 是等边三角形,四边形A 2B 2C 2D 2 是菱形,∴A 1D 1 =5,C 1D 1=12AC =5 3 ,A 2B 2=C 2D 2=C 2B 2=A 2D 2 =5, 同理可得出:A 3D 3=5×12 ,C 3D 3=12C 1D 1=12×5 3 , A 5D 5=5×(12)2 ,C 5D 5=12C 3D 3=(12)2×5 3 , …∴四边形A 2015B 2015C 2015D 2015 的周长是:5+5321007 .例3. 如图,在矩形ABCD 中,点E 为AB 的中点,EF ⊥EC 交AD 于点F ,连接CF (AD >AE ),下列结论:①∠AEF =∠BCE ;②S △CEF =S △EAF +S △CBE ;③AF +BC >CF ; ④若BC CD = 32,则△CEF ≌△CDF .其中正确的结论是____________.(填写所有正确结论的序号)解:延长CB ,FE 交于点G ,∵∠AEF +∠BEC =90°,∠BEC +∠BCE =90°,∴∠AEF =∠BCE ,①正确;在△AEF 和△BEG 中,⎩⎪⎨⎪⎧∠FAE =∠GBE =90°AE =BE∠AEF =∠BEG, ∴△AEF ≌△BEG (ASA ),∴AF =BG ,EF =EG ,∵CE ⊥EG ,∴S △CEG =S △CEF ,CG =CF ,∴S △CEF =S △EAF +S △CBE ,②正确;∴AF +BC =BG +BC =CG =CF ,③错误;∵BC CD =32, ∴∠BCE =30°,∴∠FCE =∠FCD =30°,在△CEF 和△CDF 中,⎩⎪⎨⎪⎧∠D =∠FEC =90°∠DCF =∠ECFCF =CF, ∴△CEF ≌△CDF (AAS ),④正确.同类题型3.1 如图,在矩形ABCD 中,AD = 2 AB ,∠BAD 的平分线交BC 于点E ,DH ⊥AE 于点H ,连接BH 并延长交CD 于点F ,连接DE 交BF 于点O ,下列结论:①AED =∠CED ;②AB =HF ,③BH =HF ;④BC -CF =2HE ;⑤OE =OD ;其中正确结论的序号是____________.解:∵在矩形ABCD 中,AE 平分∠BAD ,∴∠BAE =∠DAE =45°,∴△ABE 是等腰直角三角形,∴AE= 2 AB ,∵AD= 2 AB ,∴AE =AD ,在△ABE 和△AHD 中,⎩⎪⎨⎪⎧∠BAE =∠DAE∠ABE =∠AHD =90°AE =AD, ∴△ABE ≌△AHD (AAS ),∴BE =DH ,∴AB =BE =AH =HD ,∴∠ADE =∠AED =12(180°-45°)=67.5°,∴∠CED =180°-45°-67.5°=67.5°,∴∠AED =∠CED ,故①正确;∵∠AHB=12 (180°-45°)=67.5°,∠OHE =∠AHB (对顶角相等), ∴∠OHE =∠AED ,∴OE =OH ,∵∠DOH =90°-67.5°=22.5°,∠ODH =67.5°-45°=22.5°,∴∠DOH =∠ODH ,∴OH =OD ,∴OE =OD =OH ,故⑤正确;∵∠EBH =90°-67.5°=22.5°,∴∠EBH =∠OHD ,又∵BE =DH ,∠AEB =∠HDF =45°在△BEH 和△HDF 中⎩⎪⎨⎪⎧∠EBH =∠OHDBE =DH ∠AEB =∠HDF∴△BEH ≌△HDF (ASA ),∴BH =HF ,HE =DF ,故③正确;由上述①、②、③可得CD =BE 、DF =EH =CE ,CF =CD -DF ,∴BC -CF =(CD +HE )-(CD -HE )=2HE ,所以④正确;∵AB =AH ,∠BAE =45°,∴△ABH 不是等边三角形,∴AB ≠BH ,∴即AB ≠HF ,故②错误;综上所述,结论正确的是①③④⑤.同类题型3.2 如图,在矩形ABCD 中,BC = 2 AB ,∠ADC 的平分线交边BC 于点E ,AH ⊥DE 于点H ,连接CH 并延长交AB 边于点F ,连接AE 交CF 于点O ,给出下列命题:①AD =DE ②DH =2 2 EH ③△AEH ∽△CFB ④HO =12AE 其中正确命题的序号是________________(填上所有正确命题的序号)解:在矩形ABCD 中,AD =BC =2AB = 2 CD ,∵DE 平分∠ADC ,∴∠ADE =∠CDE =45°,∵AD ⊥DE ,∴△ADH 是等腰直角三角形,∴AD = 2 AB ,∴AH =AB =CD ,∵△DEC 是等腰直角三角形,∴DE = 2 CD ,∴AD =DE ,∴∠AED =67.5°,∴∠AEB =180°-45°-67.5°=67.5°,∴∠AED =∠AEB ,∵AD ∥BC ,∴∠DAE =∠AEB ,∴∠DAE =∠AED ,∴AD =DE ,故①正确;设DH =1,则AH =DH =1,AD =DE = 2 ,∴HE = 2 ,∴22HE =22≠1,故②错误;∵∠AEH =67.5°,∴∠EAH =22.5°,∵DH =CD ,∠EDC =45°,∴∠DHC =67.5°,∴∠OHA =22.5°,∴∠OAH =∠OHA ,∴OA =OH ,∴∠AEH =∠OHE =67.5°,∴OH =OE ,∴OH =12 AE ,故④正确;∵AH =DH ,CD =CE ,在△AFH 与△CHE 中,⎩⎪⎨⎪⎧∠AHF =∠HCE =22.5°∠FAH =∠HEC =45°AH =CE, ∴△AFH ≌△CHE ,∴∠AHF =∠HCE ,∵AO =OH ,∴∠HAO =∠AHO ,∴∠HAO =∠BCF ,∵∠B =∠AH E =90°,∴△AEH ∽△CFB ,故③正确.答案为:①③④.同类题型3.3 如图,在矩形ABCD 中,点E 是边BC 的中点,AE ⊥BD ,垂足为F ,则tan ∠BDE 的值是()A .24 B .14 C .13 D .23解:∵四边形ABCD 是矩形,∴AD =BC ,AD ∥BC ,∵点E 是边BC 的中点,∴BE =12BC =12 AD ,∴△BEF ∽△DAF ,∴EFAF =BEAD =12 ,∴EF =12 AF ,∴EF =13 AE , ∵点E 是边BC 的中点,∴由矩形的对称性得:AE =DE ,∴EF =13DE ,设EF =x ,则DE =3x , ∴DF =DE 2-EF 2=2 2 x ,∴tan ∠BDE =EF DF =x 22x =24; 选A .例4.已知:如图,在正方形ABCD 外取一点E ,连接AE ,BE ,DE .过点A 作AE 的垂线AP 交DE 于点P .若AE =AP =1,PB = 6 ,下列结论:①△APD ≌△AEB ;②点B 到直线AE 的距离为 2 ;③EB ⊥ED ;④S △APD +S △APB =1+ 6 .⑤S 正方形ABCD =4+ 6.其中正确结论的序号是___________________.解:①∵∠EAB +∠BAP =90°,∠PAD +∠BAP =90°,∴∠EAB =∠PAD ,又∵AE =AP ,AB =AD ,∵在△APD 和△AEB 中,⎩⎪⎨⎪⎧AE =AP∠EAB =∠PAD AB =AD, ∴△APD ≌△AEB (SAS );故此选项成立;③∵△APD ≌△AEB ,∴∠APD =∠AEB ,∵∠AEB =∠AEP +∠BEP ,∠APD =∠AEP +∠PAE ,∴∠BEP =∠PAE =90°,∴EB ⊥ED ;故此选项成立;②过B 作BF ⊥AE ,交AE 的延长线于F ,∵AE =AP ,∠EAP =90°,∴∠AEP =∠APE =45°,又∵③中EB ⊥ED ,BF ⊥AF ,∴∠FEB =∠FBE =45°,又∵BE =BP 2-PE 2 =2,∴BF =EF = 2 ,故此选项正确;④如图,连接BD ,在Rt △AEP 中,∵AE =AP =1, ∴EP = 2 , 又∵PB = 6 ,∴BE =2,∵△APD ≌△AEB ,∴PD =BE =2, ∴S △ABP +S △ADP =S △ABD -S △BDP =12 S 正方形ABCD -12×DP ×BE =12×(4+6)-12×2×2=62. 故此选项不正确.⑤∵EF =BF = 2 ,AE =1,∴在Rt △ABF 中,AB 2=(AE +EF )2+BF 2=5+2 2 ,∴S 正方形ABCD =AB 2=5+22,故此选项不正确.答案为:①②③.同类题型4.1 如图,正方形ABCD 的边长为2,将长为2的线段QR 的两端放在正方形的相邻的两边上同时滑动.如果点Q 从点A 出发,沿图中所示方向按A →B →C →D →A 滑动到A 止,同时点R 从点B 出发,沿图中所示方向按B →C →D →A →B 滑动到B 止.点N 是正方形ABCD 内任一点,把N 点落在线段QR 的中点M 所经过的路线围成的图形内的概率记为P ,则P =( )A .4-π4B .π4C .14D .π-14解:根据题意得点M 到正方形各顶点的距离都为1,点M 所走的运动轨迹为以正方形各顶点为圆心,以1为半径的四个扇形,∴点M 所经过的路线围成的图形的面积为正方形ABCD 的面积减去4个扇形的面积.而正方形ABCD 的面积为2×2=4,4个扇形的面积为4×90π×12360=π, ∴点M 所经过的路线围成的图形的面积为4-π,∴把N 点落在线段QR 的中点M 所经过的路线围成的图形内的概率记为P ,则P =4-π4. 选:A .同类题型4.2 如图,边长为2的正方形ABCD 中,AE 平分∠DAC ,AE 交CD 于点F ,CE ⊥AE ,垂足为点E ,EG ⊥CD ,垂足为点G ,点H 在边BC 上,BH =DF ,连接AH 、FH ,FH 与AC 交于点M ,以下结论:①FH =2BH ;②AC ⊥FH ;③S △ACF =1;④CE = 12AF ;⑤EG 2 =FG ﹒DG ,其中正确结论的个数为( ) A .2 B .3 C .4 D .5解:①②如图1,∵四边形ABCD 是正方形,∴AB =AD ,∠B =∠D =90°,∠BAD =90°,∵AE 平分∠DAC ,∴∠FAD =∠CAF =22.5°,∵BH =DF ,∴△ABH ≌△ADF ,∴AH =AF ,∠BAH =∠FAD =22.5°,∴∠HAC =∠FAC ,∴HM =FM ,AC ⊥FH ,∵AE 平分∠DAC ,∴DF =FM ,∴FH =2DF =2BH ,故选项①②正确;③在Rt △FMC 中,∠FCM =45°,∴△FMC 是等腰直角三角形,∵正方形的边长为2,∴AC =2 2 ,MC =DF =2 2 -2,∴FC =2-DF =2-(22-2)=4-2 2 , S △AFC =12CF ﹒AD ≠1, 所以选项③不正确;④AF =AD 2+DF 2=22+(22-2)2=24-2 2 ,∵△ADF ∽△CEF ,∴AD CE =AF FC , ∴2CE =24-224-22 ,∴CE =4-2 2 ,∴CE =12AF , 故选项④正确;⑤延长CE 和AD 交于N ,如图2,∵AE⊥CE,AE平分∠CAD,∴CE=EN,∵EG∥DN,∴CG=DG,在Rt△FEC中,EG⊥FC,∴EG 2=FG﹒CG,∴EG 2=FG﹒DG,故选项⑤正确;本题正确的结论有4个,故选C.同类题型4.3 如图,边长为1的正方形ABCD的对角线AC、BD相交于点O.有直角∠MPN,使直角顶点P 与点O重合,直角边PM、PN分别与OA、OB重合,然后逆时针旋转∠MPN,旋转角为θ(0°<θ<90°),PM、PN分别交AB、BC于E、F两点,连接EF交OB于点G,则下列结论中正确的是 ______________.(1)EF= 2 OE;(2)S四边形OEBF:S正方形ABCD=1:4;(3)BE+BF= 2 OA;(4)在旋转过程中,当△BEF与△COF的面积之和最大时,AE=34;(5)OG﹒BD=AE2+CF2.解:(1)∵四边形ABCD是正方形,∴OB=OC,∠OBE=∠OCF=45°,∠BOC=90°,∴∠BOF+∠COF=90°,∵∠EOF=90°,∴∠BOF+∠COE=90°,∴∠BOE=∠COF,在△BOE和△COF中,⎩⎪⎨⎪⎧∠BOE =∠COFOB =OC∠OBE =∠OCF, ∴△BOE ≌△COF (ASA ),∴OE =OF ,BE =CF , ∴EF = 2 OE ;故正确; (2)∵S 四边形OEBF =S △BOE +S △BOE =S △BOE +S △COF =S △BOC =14S 正方形ABCD , ∴S 四边形OEBF :S 正方形ABCD =1:4;故正确;(3)∴BE +BF =BF +CF =BC = 2 OA ;故正确;(4)过点O 作OH ⊥BC ,∵BC =1,∴OH =12BC =12, 设AE =x ,则BE =CF =1-x ,BF =x ,∴S △BEF +S △COF =12BE ﹒BF +12CF ﹒OH =12x (1-x )+12(1-x )×12=-12(x -14)2+932, ∵a =-12<0, ∴当x =14时,S △BEF +S △COF 最大; 即在旋转过程中,当△BEF 与△COF 的面积之和最大时,AE =14;故错误;(5)∵∠EOG =∠BOE ,∠OEG =∠OBE =45°,∴△OEG ∽△OBE ,∴OE :OB =OG :OE ,∴OG ﹒OB =OE 2 ,∵OB =12 BD ,OE =22EF , ∴OG ﹒BD =EF 2 ,∵在△BEF 中,EF 2=BE 2+BF 2 ,∴EF 2=AE 2+CF 2 ,∴OG ﹒BD =AE 2+CF 2 .故正确.故答案为:(1),(2),(3),(5).同类题型4.4 如图,四边形ABHK 是边长为6的正方形,点C 、D 在边AB 上,且AC =DB =1,点P 是线段CD 上的动点,分别以AP 、PB 为边在线段AB 的同侧作正方形AMNP 和正方形BRQP ,E 、F 分别为MN 、QR 的中点,连接EF ,设EF 的中点为G ,则当点P 从点C 运动到点D时,点G 移动的路径长为 _____________.解:如图,设KH 的中点为S ,连接PE ,PF ,SE ,SF ,PS , ∵E 为MN 的中点,S 为KH 的中点,∴A ,E ,S 共线,F 为QR 的中点,S 为KH 的中点,∴B 、F 、S 共线,由△AME ∽△PQF ,得∠SAP =∠FPB ,∴ES ∥PF ,△PNE ∽△BRF ,得∠EPA =∠FBP ,∴PE ∥FS ,则四边形PESF 为平行四边形,则G 为PS 的中点, ∴G 的轨迹为△CSD 的中位线,∵CD =AB -AC -BD =6-1-1=4,∴点G 移动的路径长12 ×4=2.。

中考数学填空题压轴题(含答案)

中考数学填空题压轴题(含答案)

根据考试大纲,填空压轴题仍将以探究规律类型题为主要考察方向。

题型一:数字规律【例1】一组按一定规律排列的式子:-,,-,,…,(0a ≠),则第n 个式子是 (n为正整数).【答案】【例2】按一定规律排列的一列数依次为:,916,79,54,31 ……,按此规律排列下去,这列数中的第5个数是 ,第n 个数是 .【答案】1125,122+n n【例3】一组按规律排列的整数5,7,11,19,…,第6个整数为____ _,根据上述规律,第n 个整数为____ (n 为正整数).【答案】67;32+n (n 为正整数)【例4】将除去零以外的自然数按以下规律排列,根据第一列的奇数行的数的规律,写出第一列第9行的数为 ,再结合第一行的偶数列的数的规律,判断2011所在的位置是第 行第 列.【答案】81;第45行第15列2a 52a 83a 114a 31(1)n na n --例题精讲填空题压轴题【例5】某些植物发芽有这样一种规律:当年所发新芽第二年不发芽,老芽在以后每年都发芽.发芽规律见下表(设第一年前的新芽数为a )第n 年 1 2 3 4 5 … 老芽率 a a 2a 3a 5a … 新芽率 0 a a 2a 3a … 总芽率a2 a3a5a8a…照这样下去,第8年老芽数与总芽数的比值为 .【解析】由规律可以看出,从第3年开始,老芽率、新芽率,总芽率都分别是前两年之和,因此,第8年的老芽为21,总芽为34,因此答案为2134. 【解析】2134题型二:多边形上存在的点数【例6】如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第n 个图形需要黑色棋子的个数是 .【解析】此类型题首先要找到边数的特点,然后找每条边上点的数目,第n 个图形是2n +边形,而且每个边上有n 个点。

【答案】(2)n n +或22n n +或2(1)1n +-【例7】用棋子摆出下列一组“口”字,按照这种方法摆下去,则摆第n 个“口”字需用棋子___________【答案】4n【例8】用“O”摆出如图所示的图案,若按照同样的方式构造图案,则第10个图案需要 个“O”.① ② ③ ④ 【答案】181第2个“口”第1个“口” 第3个“口”第n 个“口”………………第1个图形第2个图形第3个图形第4个图形题型三:藏头露尾型【例9】如下图是一组有规律的图案,第1个 图案由4个基础图形组成,第2个图案由7个基础图形组成,……,第n (n 是正整数)个图案中由 个基础图形组成.【解析】此类问题重点要找到“头是谁”“尾是谁”,①13+;②132+⨯;③133+⨯,……第n 个31n + 【答案】31n +【例10】搭建如图①的单顶帐篷需要17根钢管,这样的帐篷按图②,图③的方式串起来搭建,则串7顶这样的帐篷需要 根钢管.图1 图2 图3【答案】83.题型四:成倍数变化型【例11】如图,ABC ∆中,90ACB ∠=︒,1AC BC ==,取斜边的中点,向斜边做垂线,画出一个新的等腰直角三角形,如此继续下去,直到所画直角三角形的斜边与ABC ∆的BC 边重叠为止,此时这个三角形的斜边长为_____.【解析】注意每一次变化所变化的倍数 【答案】81;11(2)2n n - 【例12】如图,以边长为1的正方形的四边中点为顶点作四边形,再以所得四边形四边中点为顶点作四边形,......依次作下去,图中所作的第三个四边形的周长为________; 所作的第n 个四边形的周长为_________________.【答案】2,24()2n【例13】如图,在ABC ∆中,A α∠=,ABC ∠的平分线与ACD ∠的平分线交于点1A ,得1A ∠,则1______A ∠=.1A BC ∠的平分线与1ACD ∠的平分线交于点2A ,得2A ∠,……,2009A BC ∠的平分线与2009A CD ∠的平分线交于点2010A ,得2010A ∠,则2010A ∠= .【答案】2α,20102α(1)(2)(3)……A 2A 1DC A【例14】如图,小正方形ABCD 的面积为1,把它的各边延长一倍得到新正方形1111A B C D ,正方形1111A B C D 的面积为 ; 再把正方形1111A B C D 的各边延长一倍得到正方形2222A B C D , 如此进行下去,正方形n n n n D C B A 的面积为 . (用含有n 的式子表示,n 为正整数)【答案】5,n5【例15】把一个正三角形分成四个全等的三角形,第一次挖去中间的一个小三角形,对剩下的三个小正三角形再重复以上做法……一直到第n 次挖去后剩下的三角形有 个.第一次 第二次 第三次 第四次【答案】3n题型五:相似与探究规律【例16】已知ABC AB AC m ∆==中,,72ABC ∠=︒,1BB 平分ABC ∠交AC 于1B ,过1B 作12B B //BC交AB 于2B ,作23B B 平分21AB B ∠,交AC 于3B ,过3B 作34//B B BC ,交AB 于4B ……依次进行下去,则910B B 线段的长度用含有m 的代数式可以表示为 .【答案】m 6215⎪⎪⎭⎫⎝⎛-【例17】如图,矩形纸片ABCD 中,6,10AB BC ==.第一次将纸片折叠,使点B 与点D 重合,折痕与BD交于点1O ;设1O D 的中点为1D ,第二次将纸片折叠使 点B 与点1D 重合,折痕与BD 交于点2O ;设21O D 的中点 为2D ,第三次将纸片折叠使点B 与点2D 重合,折痕与BD 交于点3O ,… .按上述方法折叠,第n 次折叠后的折痕与BD 交于点n O ,则1BO = ,n BO = .第一次折叠 第二次折叠 第三次折叠【答案】2;12332n n -- B AD C 1O 1O 2O 1D 1D 2D 1O 2O 3O B AD C B ADCBA DC【例18】如图,直线x y 33=,点1A 坐标为(1,0),过点1A 作x 轴的垂线交直线于点1B ,以原点O 为圆心,1OB 长为半径画弧交x 轴于点2A ;再过点2A 作x 轴的垂线 交直线于点2B ,以原点O 为圆心,2OB 长为半径画弧交x 轴于 点3A ,…,按此做法进行下去,点4A 的坐标为( , ); 点n A ( , ).【答案】(938,0)(1)332(-n ,0) 【例19】如图,以等腰三角形AOB 的斜边为直角边向外作第2个等腰直角三角形1ABA ,再以等腰直角三角形1ABA 的斜边为直角边向外作第3个等腰直角三角形11A BB ,……,如此作下去,若1OA OB ==,则第n 个等腰直角三角形的面积n S = ________(n 为正整数).【解析】由题干可知:123124 (222)S S S ===,,可知22n n S -=【答案】22n -【例20】如图,n +1个边长为2的等边三角形有一条边在同一直线上,设211B D C ∆的面积为1S ,322B D C ∆的面积为2S ,…,1n n n B D C +∆的面积为n S ,则2S = ;n S =____ (用含n 的式子表示).【答案】233,31nn + 【例21】如图,P 为ABC ∆的边BC 上的任意一点,设BC a =,当1B 、1C 分别为AB 、AC 的中点时,1112B C a =,当2B 、2C 分别为1BB 、1CC 的中点时,2234B C a =,当3B 、3C 分别为2BB 、2CC 的中点时,3378B C a =,当4B 、4C 分别为3BB 、3CC 的中点时,441516B C a =当5B 、5C 分别为4BB 、4CC 的中点时,55_____B C =当n B 、n C 分别为1n BB -、1n CC -的中点时,则n n B C = ;设ABC ∆中BC 边上的高为h ,则n n PB C ∆的面积为______(用含a 、h 的式子表示).【答案】a 3231,a n n 212-, ah n n 12212+-D 4D 3D 2D 1C 5C 4C 3C 2C 1B 5B 4B 3B 2B 1A……B 2B 1A 1BOAC 3B 3B 2C 2C 1B 1CBA【例22】如图,在梯形ABCD 中,AB CD ∥,AB a =,CD b =,E 为边AD 上的任意一点,EF AB ∥,且EF 交BC 于点F .若E 为边AD 上的中点,则______EF =(用含有a ,b 的式子表示);若E 为边AD 上距点A 最近的n 等分点(2n ≥,且n 为整数),则______EF =(用含有n ,a ,b 的式子表示).【答案】2a b +;(1)b n an+-【例23】已知在ABC ∆中,BC a =.如图1,点1B 、1C 分别是AB 、AC 的中点,则线段11B C 的长是_______; 如图2,点1B 、2B ,1C 、2C 分别是AB 、AC 的三等分点,则线段1122B C B C +的值是__________;如图3, 点12......、、、n B B B ,12......、、、n C C C 分别是AB 、AC 的(1)n +等分点,则线段1122n n B C B C B C ++⋅⋅⋅+的值是 ______.【答案】1,2a a ,12na 【例24】已知:如图,在Rt ABC ∆中,点1D 是斜边AB 的中点,过点1D 作11D E AC ⊥于点1E ,连接1BE 交1CD 于点2D ;过点2D 作22D E AC ⊥于点2E ,连接2BE ,交1CD 于点3D ;过点3D 作33D E AC ⊥于点3E ,如此继续,可以依次得到点4D 、5D 、…n D , 分别记11BD E ∆、22BD E ∆、33BD E ∆、…n n BD E ∆的面积 为1S 、2S 、3S …n S .设ABC ∆的面积是1,则1______S =, ______n S =(用含n 的代数式表示).【答案】14,21(1)n +题型六:折叠与探究规律【例25】如图,将正方形纸片ABCD 折叠,使点B 落在CD 边上一点E (不与点C ,D 重合),压平后得到折痕MN .设2AB =,当12CE CD =时,则________AMBN=. 若1CE CD n =(n 为整数),则_______AM BN=.(用含n 的式子表示) 【答案】15;1)1(22+-n n【例26】如图,正方形ABCD ,E 为AB 上的动点,(E 不与A 、B 重合)连接DE ,作DE 的中垂线,交图3图2图12n-1B 2C 2A BCB 1C 1C 1B 1CBA FE D CBANMFEDCBAB321AD 于点F .⑴若E 为AB 中点,则______DFAE= ⑵若E 为AB 的n 等分点(靠近点A ),则________DFAE= 【答案】251,42n n+题型七:其他类型【例27】图1是一个八角星形纸板,图中有八个直角,八个相等的钝角,每条边都相等.如图2将纸板沿虚线进行切割,无缝隙无重叠的拼成图3所示的大正方形,其面积为8+3中线段AB 的长为 .图1 图2 图31+【例28】如图,1P 是一块半径为1的半圆形纸板,在1P 的左下端剪去一个半径为12的半圆后得到图形2P ,然后依次剪去一个更小的半圆(其直径为前一个被剪掉半圆的半径)得图形34,,,,n P P P ,记纸板n P 的面积为n S ,试计算求出=-23S S ;并猜想得到1n n S S --=()2n ≥【答案】1)41(2,32---n ππ【例29】如图,图①是一块边长为1,周长记为1P 的正三角形纸板,沿图①的底边剪去一块边长为12的正三角形纸板后得到图②,然后沿同一底边依次剪去一块更小的正三角形纸板(即其边长为前一块被剪掉正三角形纸板边长的21)后,得图③,④,…,记第)3(≥n n 块纸板的周长为n P ,则=-34P P ;1--n n P P = .P 3P 2P 1【答案】81,121-⎪⎭⎫⎝⎛n【例30】已知一个面积为S 的等边三角形,现将其各边n (n 为大于2的整数)等分,并以相邻等分点为顶点向外作小等边三角形(如图所示).当8n =时,共向外作出了 个小等边三角形;当n k =时,共向外作出了 个小等边三角形,这些小等边三角形的面积和是 (用含k 的式子表示).【答案】18; 【例31】在平面直角坐标系中,正方形ABCD 的位置如图所示,点A 的坐标为(10),,点D 的坐标为(02),.延长CB 交x 轴于点1A ,作正方形111A B C C ;延长11C B 交x 轴于点2A ,作正方形2221A B C C …按这样 的规律进行下去,第3个正方形的面积为________;第n 个正方形的面积为___________(用含n 的代数式表示).【答案】4235)(,22235-⎪⎭⎫ ⎝⎛n【例32】如图所示,111()P x y ,、222()P x y ,,……()n n n P x y ,在函数4y x=(0x >)的图象上,11OP A ∆,212P A A ∆,323P A A ∆…1n n n P A A -∆都是等腰三角形,斜边1OA 、12A A …1n n A A -,都在x 轴上, 则1_____y =,12______n y y y ++⋅⋅⋅+=【答案】2 , 2n【例33】如图所示,直线1+=x y 与y 轴交于点1A ,以1OA 为边作正方形111OA B C ,然后延长11C B 与直线1+=x y 交于点2A ,得到第一个梯形112AOC A ;再以12C A 为边作正方形1222C A B C ,同样延长22C B 与直线1+=x y 交于点3A 得到第二个梯形2123A C C A ;,再以23C A 为边作正方形2333C A B C ,延长33C B ,得到第三个梯形;……则第2个梯形2123A C C A 的面积是 ;第n (n 是正整数)个梯形的面积是 (用含n 的式子表示).3(-2)k 23(2)k s k-n =3n =5……n =4① ② ③ ④C 2B 2A 2C 1B 1A 1DC B AO yx【答案】6;2n 2223-⨯或1n 423-⨯【例34】在平面直角坐标系中,我们称边长为1且顶点的横纵坐标均为整数的正方形为单位格点 正方形,如图,菱形ABCD 的四个顶点坐标分别是(80)-,,(04),,(80),,(04)-,,则菱形ABCD 能覆盖的单位格点正方形的个数是_______个;若菱形n n n n A B C D 的四个顶点坐标分别为(20)-,n , (0),n ,(20),n ,(0)-,n (n 为正整数), 则菱形n n n n A B C D 能覆盖的单位格点正方形的 个数为_________(用含有n 的式子表示).【答案】单位格点个数为48,单位格点个数为n n 442-【例35】在平面直角坐标系中,横坐标、纵坐标都为整数的点称为整点.请你观察图中正方形1111A B C D 、2222A B C D 、3333A B C D 每个正方形四条边上的整点的个数.按此规律推算出正方形10101010A B C D 四条边上的整点共有 个.【答案】80【例36】对于每个正整数n ,抛物线2211(1)(1)n n n n n y x x +++=-+与x 轴交于n A ,n B 两点,若n n A B 表示这两点间的距离,则n n A B = (用含n 的代数式表示);112220112011A B A B A B +++的值为 .【答案】()20122011,11+n nyxOD 1D 2D 3C 1C 2C 3B 1B 2B 3A 3A 2A 1123-1-2-3-3-2-1321-8-448ODC BAyx。

江苏省无锡地区中考数学选择填空压轴题专题1代数式的求值问题(含答案)62

江苏省无锡地区中考数学选择填空压轴题专题1代数式的求值问题(含答案)62

专题06四边形的综合问题例1.如图,△APB中,AB=22,∠APB=90°,在AB的同侧作正△ABD、正△APE和△BPC,那么四边形PCDE面积的最大值是__________.同类题型:如图,△APB中,AP=4,BP=3,在AB的同侧作正△ABD、正△APE和正△BPC,那么四边形PCDE面积的最大值是___________.同类题型:如图,在□ABCD中,分别以AB、AD为边向外作等边△ABE、△ADF,延伸CB交AE于点G,点G在点A、E之间,连结CE、CF,EF,那么以下四个结论必定正确的选项是〔〕①△CDF≌△EBC;②∠CDF=∠EAF;③△ECF是等边三角形;④CG⊥AE.A.只有①② B.只有①②③C.只有③④ D.①②③④同类题型:如图,四边形ABCD是平行四边形,点E是边CD上的一点,且BC=EC,CF⊥BE交AB于点F,P是EB延伸线上一点,以下结论:①BE均分∠CBF;②CF均分∠DCB;③BC=FB;④PF =PC.此中正确的有______________.〔填序号〕同类题型:如图,在□ABCD中,∠DAB的均分线交CD于点E,交BC的延伸线于点G,∠ABC的均分线交CD于点F,交AD的延伸线于点H,AG与BH交于点O,连结BE,以下结论错误的选项是〔〕A.BO=OH B.DF=CE C.DH=CG D.AB=AE例2.图甲是小明设计的带菱形图案的花边作品.该作品由形如图乙的矩形图案拼接而成〔不重叠、无空隙〕.图乙中AB6=,EF=4cm,上下两个暗影三角形BC72,其内部菱形由两组距离相等的平行线交错获得,那么该菱的面积之和为54cm形的周长为____________.同类题型:如图,在菱形ABCD中,AB=4cm,∠ADC=120°,点E、F同时由A、C两点出发,分别沿AB、CB方向向点B匀速挪动〔到点B为止〕,点E的速度为1cm/s,点F的速度为2cm/s,经过t秒△DEF为等边三角形,那么t的值为____________.同类题型:如图,在边长为2的菱形ABCD中,∠A=60°,M是AD边的中点,N是AB边上的一动点,将△AMN沿MN所在直线翻折获得△A′MN,连结A′C,那么A′C长度的最小值是____________.同类题型:如图,在菱形ABCD中,边长为10,∠A=60°.按序连结菱形ABCD各边中点,可得四边形A1B1C1D1;按序连结四边形A1B1C1D1各边中点,可得四边形A2B2C2D2;按序连结四边形A2B2C2D2各边中点,可得四边形A3B3C3D3;按此规律持续下去,那么四边形A2021B2021C2021D2021的周长是______________.例3.如图,在矩形ABCD中,点E为AB的中点,EF⊥EC交AD于点F,连结CF〔AD>AE〕,以下结论:①∠AEF=∠BCE;②S△CEF=S△EAF+S△CBE;③AF+BC>CF;④假定BC3=,那么△CEF≌△CDF.此中正确的结论是CD2____________.〔填写全部正确结论的序号〕同类题型:如图,在矩形ABCD中,AD=2AB,∠BAD的均分线交BC于点E,DH⊥AE于点H,连结BH并延伸交CD于点F,连结DE交BF于点O,以下结论:①AED=∠CED;②AB=HF,③BH=HF;④BC-CF=2HE;⑤OE=OD;此中正确结论的序号是____________.同类题型:如图,在矩形ABCD中,BC=2AB,∠ADC的均分线交边BC于点E,AH⊥DE于点H,连结CH并延伸交AB边于点F,连结AE交CF于点O,给出以下命题:1AD=DE②DH=22EH③△AEH∽△CFB④HO=2AE此中正确命题的序号是________________〔填上全部正确命题的序号〕同类题型:如图,在矩形ABCD中,点E是边BC的中点,AE⊥BD,垂足为F,那么tan∠BDE的值是〔〕2112A.4B.4C.3D.3例4.:如图,在正方形ABCD外取一点E,连结AE,BE,DE.过点A作AE的垂线AP交DE于点P.假定AE=AP=1,PB=6,以下结论:①△APD≌△AEB;②点B到直线AE的距离为2;③EB⊥ED;④S△APD+S△APB=1+6.⑤S正方形ABCD=4+6.此中正确结论的序号是___________________.同类题型:如图,正方形ABCD的边长为2,将长为2的线段QR的两头放在正方形的相邻的两边上同时滑动.假如点Q从点A出发,沿图中所示方向按A→B→C→D→A滑动到A止,同时点R从点B出发,沿图中所示方向按B→C→D→A→B滑动到B止.点N是正方形ABCD内任一点,把N点落在线段QR的中点M所经过的路线围成的图形内的概率记为P,那么P=〔〕4-ππ1π-1A.4B.4C.4D.4同类题型:如图,边长为2的正方形ABCD中,AE均分∠DAC,AE交CD于点F,CE⊥AE,垂足为点E,EG⊥CD,垂足为点G,点H在边BC上,BH=DF,连结AH、FH,FH与AC交于点M,以下结论:①FH=2BH;②AC⊥FH;③S△ACF=1;④CE=12AF;⑤EG=FG﹒DG,此中2正确结论的个数为〔〕A.2B.3C.4D.5同类题型:如图,边长为1的正方形ABCD的对角线AC、BD订交于点O.有直角∠MPN,使直角极点P与点O重合,直角边PM、PN分别与OA、OB重合,而后逆时针旋转∠MPN,旋转角为θ〔0°<θ<90°〕,PM、PN分别交AB、BC于E、F两点,连结EF交OB于点G,那么以下结论中正确的选项是______________.〔1〕EF=2OE;〔2〕S四边形OEBF:S正方形ABCD=1:4;〔3〕BE+BF=2 OA;〔4〕在旋转过程中,当△BEF与△COF的面积之和最大时,AE=3224;〔5〕OG﹒BD=AE+CF.同类题型:如图,四边形ABHK是边长为6的正方形,点C、D在边AB上,且AC=DB=1,点P是线段CD上的动点,分别以AP、PB为边在线段AB的同侧作正方形AMNP和正方形BRQP,E、F分别为MN、QR的中点,连结EF,设EF的中点为G,那么当点P从点C运动到点D时,点G挪动的路径长为_____________.参照答案例1.如图,△APB中,AB=22,∠APB=90°,在AB的同侧作正△ABD、正△APE和△BPC,那么四边形PCDE面积的最大值是__________.解:如图,延伸EP交BC于点F,∵∠APB=90°,∠APE=∠BPC=60°,∴∠EPC=150°,∴∠CPF=180°-150°=30°,PF均分∠BPC,又∵PB=PC,PF⊥BC,设Rt△ABP中,AP=a,BP=b,那么CF=1CP=1b,a2+b2=8,∴22∴∵△APE和△ABD都是等边三角形,AE=AP,AD=AB,∠EAP=∠DAB=60°,∴∠EAD=∠PAB,12 ∴△EAD ≌△PAB 〔SAS 〕,3 ED =PB =CP ,4 同理可得:△APB ≌△DCB 〔SAS 〕,5 EP =AP =CD ,6 ∴四边形CDEP 是平行四边形,1∴四边形CDEP 的面积=EP ×CF =a ×2b =2ab , 又∵〔a -b 〕2=a 2-2ab +b 2≥0, 2ab ≤a 2+b 2=8,1 2ab ≤2,即四边形PCDE 面积的最大值为2.同类题型:如图,△APB 中,AP =4,BP =3,在AB 的同侧作正△ABD 、正△APE 和正△BPC ,那么四边形PCDE 面积的最大值是___________.解:∵△APE 和△ABD 是等边三角形,AE =AP =4,AB =AD ,∠EAP =∠DAB =60°,∴∠EAD =∠PAB =60°-∠DAP , 在△EAD 和△PAB 中 AE =AP∠EAD =∠PAB AD =AB∴△EAD ≌△PAB 〔SAS 〕, DE =BP ,同理△DBC ≌△ABP ,DC=AP,∵△APE和△BPC是等边三角形,EP=AP,BP=CP,DE=CP=3,DC=PE=4,∴四边形PCDE是平行四边形,当CP⊥EP时,四边形PCDE的面积最大,最大面积是3×4=12.同类题型:如图,在□ABCD中,分别以AB、AD为边向外作等边△ABE、△ADF,延伸CB交AE于点G,点G在点A、E之间,连结CE、CF,EF,那么以下四个结论必定正确的选项是〔〕①△CDF≌△EBC;②∠CDF=∠EAF;③△ECF是等边三角形;④CG⊥AE.A.只有①②B.只有①②③ C.只有③④D.①②③④解:∵△ABE、△ADF是等边三角形FD=AD,BE=ABAD=BC,AB=DCFD=BC,BE=DC∵∠B=∠D,∠FDA=∠ABE∴∠CDF=∠EBC∴△CDF≌△EBC,故①正确;∵∠FAE=∠FAD+∠EAB+∠BAD=60°+60°+〔180°-∠CDA〕=300°-∠CDA,FDC=360°-∠FDA-∠ADC=300°-∠CDA,∴∠CDF=∠EAF,故②正确;同理可得:∠CBE=∠EAF=∠CDF,∵BC=AD=AF,BE=AE,∴△EAF≌△EBC,∴∠AEF=∠BEC,∵∠AEF+∠FEB=∠BEC+∠FEB=∠AEB=60°,∴∠FEC=60°,∵CF=CE,∴△ECF是等边三角形,故③正确;在等边三角形ABE中,∵等边三角形顶角均分线、底边上的中线、高和垂直均分线是同一条线段∴假如CG⊥AE,那么G是AE的中点,∠ABG=30°,∠ABC=150°,题目缺乏这个条件,CG⊥AE不可以求证,故④错误.选B.同类题型:如图,四边形ABCD是平行四边形,点E是边CD上的一点,且BC=EC,CF⊥BE交AB于点F,P是EB延伸线上一点,以下结论:①BE均分∠CBF;②CF均分∠DCB;③BC=FB;④PF=P C.此中正确的有______________.〔填序号〕解:证明:∵BC=EC,∴∠CEB=∠CBE,∵四边形ABCD是平行四边形,DC∥AB,∴∠CEB=∠EBF,∴∠CBE=∠EBF,∴①BE均分∠CBF,正确;BC=EC,CF⊥BE,∴∠ECF=∠BCF,∴②CF均分∠DCB,正确;DC∥AB,∴∠DCF=∠CFB,∵∠ECF=∠BCF,∴∠CFB=∠BCF,BF=BC,∴③正确;∵FB=BC,CF⊥BE,B点必定在FC的垂直均分线上,即PB垂直均分FC,PF=PC,故④正确.答案为①②③④.同类题型:如图,在□ABCD中,∠DAB的均分线交CD于点E,交BC的延伸线于点G,∠ABC的均分线交CD于点F,交AD的延伸线于点H,AG与BH交于点O,连结BE,以下结论错误的选项是〔〕A.BO=OH B.DF=CE C.DH=CG D.AB=AE∴解:∵四边形ABCD是平行四边形,∴∴∴∴∴∴∴∴∴∴∴AH∥BG,AD=BC,∴∴∠H=∠HBG,∴∵∠HBG=∠HBA,∴∴∠H=∠HBA,∴AH=AB,同理可证BG=AB,∴AH=BG,∵AD=BC,∴DH=CG,故C正确,∴AH=AB,∠OAH=∠OAB,∴∴OH=OB,故A正确,∴DF∥AB,∴∴∠DFH=∠ABH,∴∵∠H=∠ABH,∴∴∠H=∠DFH,∴DF=DH,同理可证EC=CG,∵DH=CG,DF=CE,故B正确,没法证明AE=AB,选D .例2.图甲是小明设计的带菱形图案的花边作品. 该作品由形如图乙的矩形图案拼接而成〔不重叠、无空隙〕.图乙中AB6 =,EF =4cm ,上下两个暗影三角形BC72 ,其内部菱形由两组距离相等的平行线交错获得,那么该菱的面积之和为54cm形的周长为____________.解:如图乙,H 是CF 与DN 的交点,取CD 的中点G ,连结HG ,,设AB =6a cm ,那么BC =7a cm ,中间菱形的对角线HI 的长度为x cm , ∵BC =7a cm ,MN =EF =4cm ,∴CN = 7a +4,2GH ∥BC , GHDG∴ =,2 CNDC 37a -x 4 17a +4=2,2∴x =a -2〔1〕;∵上下两个暗影三角形的面积之和为 2,54cm∴6a ﹒〔7a -x 〕÷2=54,∴a〔7a-x〕=18〔2〕;由〔1〕〔2〕,可得a=2,x=5,∴CD=6×2=12〔cm〕,CN=7a+47×2+4,2=2=9(cm)DN=122+92=15〔cm〕,又∵DH=2227×2-52=〔cm〕,DG+GH=6+()2HN=15-=〔cm〕,∵AM∥FC,KNMN44∴===,HKCM9-4552525HK=4+5×=6(cm),2650∴该菱形的周长为:6×4=3〔cm〕.同类题型:如图,在菱形ABCD中,AB=4cm,∠ADC=120°,点E、F同时由A、C两点出发,分别沿AB、CB方向向点B匀速挪动〔到点B为止〕,点E的速度为1cm/s,点F的速度为2cm/s,经过t秒△DEF为等边三角形,那么t的值为____________.解:延伸AB至M,使BM=AE,连结FM,∵四边形ABCD是菱形,∠ADC=120°AB=AD,∠A=60°,∵BM=AE,AD=ME,∵△DEF为等边三角形,∴∠DAE=∠DFE=60°,DE=EF=FD,∴∠MEF+∠DEA═120°,∠ADE+∠DEA=180°-∠A=120°,∴∠MEF=∠ADE,∴在△DAE和△EMF中,AD=ME∠MEF=∠ADEDE=EF∴△DAE≌EMF〔SAS〕,AE=MF,∠M=∠A=60°,又∵BM=AE,∴△BMF是等边三角形,BF=AE,AE=t,CF=2t,BC=CF+BF=2t+t=3t,∵BC=4,3t=4,4∴t=3.同类题型:如图,在边长为2的菱形ABCD 中,∠A =60°,M 是AD 边的中点,N 是AB 边上的一动点,将△AMN 沿MN 所在直线翻折获得△A ′MN ,连结A ′C ,那么A ′C 长度的最小值是____________.解:以下列图:∵MA ′是定值,A ′C 长度取最小值时,即 A ′在MC 上时,1 过点M 作MF ⊥DC 于点F ,2 ∵在边长为2的菱形ABCD 中,∠A =60°,M 为AD 中点, 32MD =AD =CD =2,∠FDM =60°,∴∠FMD =30°, 1FD =2MD =2, 32FM =DM ×cos30°=2, 3 2MC =FM +CF =7,A ′C =MC -MA ′=7-1.同类题型: 如图,在菱形ABCD 中,边长为10,∠A =60°.按序连结菱形ABCD 各边中点,可得四边形A 1B 1C 1D 1;按序连结四边形A 1B 1C 1D 1各边中点,可得四边形ABCD ;按序连结四边形ABCD 各边中点,可得四边形 2 2222222A 3B 3C 3D 3;按此规律持续下去,那么四边形A 2021B 2021C 2021D2021的周长是______________.解:∵菱形ABCD中,边长为10,∠A=60°,按序连结菱形ABCD各边中点,∴△AAD是等边三角形,四边形ABCD是菱形,1122221A1D1=5,C1D1=2AC=53,A2B2=C2D2=C2B2=A2D2=5,111同理可得出:A3D3=5×2,C3D3=2C1D1=2×53,111A5D5=5×〔2〕2,C5D5=2C3D3=〔2〕2×53,5+53.∴四边形A2021B2021C2021D2021的周长是:21007例3.如图,在矩形ABCD中,点E为AB的中点,EF⊥EC交AD于点F,连结CF〔AD>AE〕,以下结论:①∠AEF=∠BCE;②S△=S△+S△;③CEF EAF CBEAF+BC>CF;④假定BC3=,那么△CEF≌△CDF.此中正确的结论是CD2____________.〔填写全部正确结论的序号〕解:延伸CB,FE交于点G,∵∠AEF+∠BEC=90°,∠BEC+∠BCE=90°,∴∠AEF=∠BCE,①正确;在△AEF和△BEG中,∠FAE=∠GBE=90°AE=BE,∠AEF=∠BEG∴△AEF≌△BEG〔ASA〕,AF=BG,EF=EG,∵CE⊥EG,S△CEG=S△CEF,CG=CF,S△CEF=S△EAF+S△CBE,②正确;AF+BC=BG+BC=CG=CF,③错误;BC3∵=,CD2∴∠BCE=30°,∴∠FCE=∠FCD=30°,在△CEF和△CDF中,∠D=∠FEC=90°∠DCF=∠ECF,CF=CF∴△CEF≌△CDF〔AAS〕,④正确.同类题型:如图,在矩形ABCD中,AD=2AB,∠BAD的均分线交BC于点E,DH⊥AE于点H,连结BH并延伸交CD于点F,连结DE交BF于点O,以下结论:①AED=∠CED;②AB=HF,③BH=HF;④BC-CF=2HE;⑤OE=OD;此中正确结论的序号是____________.解:∵在矩形ABCD中,AE均分∠BAD,∴∠BAE=∠DAE=45°,∴△ABE是等腰直角三角形,AE=2AB,AD=2AB,∴AE=AD,BAE=∠DAE在△ABE和△AHD中,∠ABE=∠AHD=90°,AE=AD∴△ABE≌△AHD〔AAS〕,BE=DH,AB=BE=AH=HD,1∴∠ADE=∠AED=2〔180°-45°〕=°,∴∠CED=180°-45°-°=°,∴∠AED=∠CED,故①正确;1∴∵∠AHB=〔180°-45°〕=°,∠OHE=∠AHB〔对顶角相等〕,2∴∴∠OHE=∠AED,∴OE=OH,∴∵∠DOH=90°-°=°,∠ODH=°-45°=°,∴∴∠DOH=∠ODH,∴OH=OD,OE=OD=OH,故⑤正确;∵∠EBH=90°-°=°,∴∠EBH=∠OHD,又∵BE=DH,∠AEB=∠HDF=45°∠EBH=∠OHD在△BEH和△HDF中BE=DH∠AEB=∠HDF∴△BEH≌△HDF〔ASA〕,∴BH=HF,HE=DF,故③正确;由上述①、②、③可得CD=BE、DF=EH=CE,CF=CD-DF,BC-CF=〔CD+HE〕-〔CD-HE〕=2HE,因此④正确;∵AB=AH,∠BAE=45°,∴△ABH不是等边三角形,AB≠BH,∴即AB≠HF,故②错误;综上所述,结论正确的选项是①③④⑤.同类题型:如图,在矩形ABCD中,BC=2AB,∠ADC的均分线交边BC于点E,AH⊥DE于点H,连结CH并延伸交AB边于点F,连结AE交CF于点O,给出以下命题:1AD=DE②DH=22EH③△AEH∽△CFB④HO=2AE此中正确命题的序号是________________〔填上全部正确命题的序号〕∵解:在矩形ABCD中,AD=BC=2AB=2CD,∵D E均分∠ADC,∴∠ADE=∠CDE=45°,AD⊥DE,∴△ADH是等腰直角三角形,AD=2AB,AH=AB=CD,∵△DEC是等腰直角三角形,DE=2CD,AD=DE,∴∠AED=°,∴∠AEB=180°-45°-°=°,∴∠AED=∠AEB,AD∥BC,∴∠DAE=∠AEB,∴∠DAE=∠AED,AD=DE,故①正确;设DH=1,那么AH=DH=1,AD=DE=2,HE=2,22HE=22≠1,故②错误;∵∠AEH=°,∴∠EAH=°,∵DH=CD,∠EDC=45°,∴∠DHC=°,∴∠OHA=°,∴∠OAH=∠OHA,OA=OH,∴∠AEH=∠OHE=°,OH=OE,1OH=2AE,故④正确;∵AH=DH,CD=CE,在△AFH与△CHE中,∠AHF=∠HCE=°∠FAH=∠HEC=45°,AH=CE∴△AFH≌△CHE,∴∠AHF=∠HCE,AO=OH,∴∠HAO=∠AHO,∴∠HAO=∠BCF,∵∠B=∠AHE=90°,∴△AEH∽△CFB,故③正确.答案为:①③④.同类题型:如图,在矩形ABCD中,点E是边BC的中点,AE⊥BD,垂足为F,那么tan∠BDE的值是〔〕2112A.4B.4C.3D.3∴解:∵四边形ABCD是矩形,∴A D=BC,AD∥BC,12∵点E是边BC的中点,3 1BE=2BC=2AD,∴△BEF∽△DAF,EF BE1∴==,AF AD21EF=2AF,1EF=3AE,∵点E是边BC的中点,∴由矩形的对称性得:AE=DE,12EF=3DE,设EF=x,那么DE=3x,3 2DF=DE-EF=22x,EF x2∴tan∠BDE===;DF22x4选A.例4.:如图,在正方形ABCD外取一点E,连结AE,BE,DE.过点A作AE 的垂线AP交DE于点P.假定AE=AP=1,PB=6,以下结论:①△APD≌△AEB;②点B到直线AE的距离为2;③EB⊥ED;④S+S=1+6.⑤S=4+6.△APD△APB正方形ABCD此中正确结论的序号是___________________.解:①∵∠EAB+∠BAP=90°,∠PAD+∠BAP=90°,∴∠EAB=∠PAD,又∵AE=AP,AB=AD,∵在△APD和△AEB中,AE=AP∠EAB=∠PAD,AB=AD∴△APD≌△AEB〔SAS〕;故此选项建立;③∵△APD≌△AEB,∴∠APD=∠AEB,∵∠AEB=∠AEP+∠BEP,∠APD=∠AEP+∠PAE,∴∠BEP=∠PAE=90°,EB⊥ED;故此选项建立;②过B作BF⊥AE,交AE的延伸线于F,∵AE=AP,∠EAP=90°,∴∠AEP=∠APE=45°,又∵③中EB⊥ED,BF⊥AF,∴∠FEB=∠FBE=45°,22又∵BE=BP-PE=2,BF=EF=2,故此选项正确;④如图,连结BD,在Rt△AEP中,AE=AP=1,∴EP=2,又∵PB=6,BE=2,∵△APD≌△AEB,PD=BE=2,111 S△ABP+S△ADP=S△ABD-S△BDP=2S正方形ABCD-2×DP×BE=2×〔4+166〕-2×2×2=2.故此选项不正确.⑤∵EF=BF=2,AE=1,2222,∴在Rt△ABF中,AB=〔AE+EF〕+BF=5+2∴S22,=AB=5+2正方形ABCD故此选项不正确.答案为:①②③.同类题型:如图,正方形ABCD的边长为2,将长为2的线段QR的两头放在正方形的相邻的两边上同时滑动.假如点Q从点A出发,沿图中所示方向按A→B→C→D→A滑动到A止,同时点R从点B出发,沿图中所示方向按B→C→D→A→B滑动到B止.点N是正方形ABCD内任一点,把N点落在线段QR的中点M所经过的路线围成的图形内的概率记为P,那么P=〔〕4-ππ1π-1A.4B.4C.4D.4解:依据题意得点M到正方形各极点的距离都为1,点M所走的运动轨迹为以正方形各极点为圆心,以1为半径的四个扇形,∴点M所经过的路线围成的图形的面积为正方形ABCD的面积减去4个扇形的面积.290π×1而正方形ABCD的面积为2×2=4,4个扇形的面积为4×360=π,∴点M所经过的路线围成的图形的面积为4-π,∴把N点落在线段QR的中点M所经过的路线围成的图形内的概率记为P,那么P=4-π.4选:A.同类题型:如图,边长为2的正方形ABCD中,AE均分∠DAC,AE交CD于点F,CE⊥AE,垂足为点E,EG⊥CD,垂足为点G,点H在边BC上,BH=DF,连结AH、FH,FH与AC交于点M,以下结论:①FH=2BH;②AC⊥FH;③S△ACF=1;④CE=12AF;⑤EG=FG﹒DG,此中2正确结论的个数为〔〕A.2B.3C.4D.5解:①②如图1,∵四边形ABCD是正方形,AB=AD,∠B=∠D=90°,∠BAD=90°,∵AE均分∠DAC,∴∠FAD=∠CAF=°,∵BH=DF,∴△ABH≌△ADF,AH=AF,∠BAH=∠FAD=°,∴∠HAC=∠FAC,HM=FM,AC⊥FH,∵AE均分∠DAC,DF=FM,FH=2DF=2BH,应选项①②正确;③在Rt△FMC中,∠FCM=45°,∴△FMC是等腰直角三角形,∵正方形的边长为2,AC=22,MC=DF=22-2,FC=2-DF=2-〔22-2〕=4-22,1S△AFC=2CF﹒AD≠1,因此选项③不正确;222+(224-22,④AF=AD+DF=22-2)=2∵△ADF∽△CEF,ADAF∴=,CEFC224-22∴=4-2,CE2∴CE=4-22,1CE=2AF,应选项④正确;⑤延伸CE和AD交于N,如图2,AE⊥CE,AE均分∠CAD,∴CE=EN,EG∥DN,CG=DG,在Rt△FEC中,EG⊥FC,2∴EG2∴EG FG﹒CG,FG﹒DG,应选项⑤正确;本题正确的结论有4个,应选C.同类题型:如图,边长为1的正方形ABCD的对角线AC、BD订交于点O.有直角∠MPN,使直角极点P与点O重合,直角边PM、PN分别与OA、OB重合,而后逆时针旋转∠MPN,旋转角为θ〔0°<θ<90°〕,PM、PN分别交AB、BC于E、F两点,连结EF交OB于点G,那么以下结论中正确的选项是______________.〔1〕EF=2OE;〔2〕S四边形OEBF:S正方形ABCD=1:4;〔3〕BE+BF=2 OA;〔4〕在旋转过程中,当△BEF与△COF的面积之和最大时,322AE=4;〔5〕OG﹒BD=AE+CF.解:〔1〕∵四边形ABCD是正方形,OB=OC,∠OBE=∠OCF=45°,∠BOC=90°,∴∠BOF+∠COF=90°,∵∠EOF=90°,∴∠BOF+∠COE=90°,∴∠BOE=∠COF,在△BOE和△COF中,∠BOE=∠COFOB=OC,∠OBE=∠OCF∴△BOE≌△COF〔ASA〕,OE=OF,BE=CF,EF=2OE;故正确;〔2〕∵1∴S四边形OEBF=S△BOE+S△BOE=S△BOE+S△COF=S△BOC=4S正方形ABCD,S四边形OEBF:S正方形ABCD=1:4;故正确;〔3〕∴BE+BF=BF+CF=BC=2OA;故正确;124〕过点O作OH⊥BC,∵BC=1,3 1OH=2BC=2,设AE=x,那么BE=CF=1-x,BF=x,∴错误!,1∵a=-2<0,1∴当x=4时,S△BEF+S△COF最大;1即在旋转过程中,当△BEF与△COF的面积之和最大时,AE=4;故错误;5〕∵∠EOG=∠BOE,∠OEG=∠OBE=45°,∴△OEG∽△OBE,∴OE:OB=OG:OE,2∴OG﹒OB=OE,12OB=2BD,OE=2EF,2∴OG﹒BD=EF,222∵在△BEF中,EF=BE+BF,2=2+2,∴2EFAECF3 2OG﹒BD=AE+CF.故正确.故答案为:〔1〕,〔2〕,〔3〕,〔5〕.同类题型:如图,四边形ABHK是边长为6的正方形,点C、D在边AB上,且AC=DB=1,点P是线段CD上的动点,分别以AP、PB为边在线段AB的同侧作正方形AMNP和正方形BRQP,E、F分别为MN、QR的中点,连结EF,设EF的中点为G,那么当点P从点C运动到点D时,点G挪动的路径长为_____________.解:如图,设KH的中点为S,连结PE,PF,SE,SF,PS,∵E为MN的中点,S 为KH的中点,∴A,E,S共线,F为QR的中点,S为KH的中点,∴B、F、S共线,由△AME∽△PQF,得∠SAP=∠FPB,ES∥PF,PNE∽△BRF,得∠EPA=∠FBP,∴PE∥FS,那么四边形PESF为平行四边形,那么G为PS的中点,∴G 的轨迹为△CSD的中位线,∵CD=AB-AC-BD=6-1-1=4,1∴点G挪动的路径长2×4=2.。

九年级数学选择、填空压轴题训练(含答案)解析

九年级数学选择、填空压轴题训练(含答案)解析

九年级数学综合训练一、选择题(本大题共9小题,共27.0分)1.如图,在平面直角坐标系中2条直线为l1:y=-3x+3,l2:y=-3x+9,直线l1交x轴于点A,交y轴于点B,直线l2交x轴于点D,过点B作x轴的平行线交l2于点C,点A、E关于y轴对称,抛物线y=ax2+bx+c 过E、B、C三点,下列判断中:①a-b+c=0;②2a+b+c=5;③抛物线关于直线x=1对称;④抛物线过点(b,c);⑤S四边形ABCD=5,其中正确的个数有()A. 5B. 4C. 3D. 22.如图,10个不同的正偶数按下图排列,箭头上方的每个数都等于其下方两数的和,如,表示a1=a2+a3,则a1的最小值为()A. 32B. 36C. 38D. 403.如图,直线y=√3x-6分别交x轴,y轴于A,B,M是反比例函数y=kx(x>0)的图象上位于直线上方的一点,MC∥x轴交AB于C,MD⊥MC交AB于D,AC•BD=4√3,则k的值为()A. −3B. −4C. −5D. −64.在平面直角坐标系xOy中,将一块含有45°角的直角三角板如图放置,直角顶点C的坐标为(1,0),顶点A的坐标为(0,2),顶点B恰好落在第一象限的双曲线上,现将直角三角板沿x轴正方向平移,当顶点A恰好落在该双曲线上时停止运动,则此时点C的对应点C′的坐标为()A. (32,0) B. (2,0) C. (52,0) D. (3,0)5.如图,在矩形ABCD中,AB<BC,E为CD边的中点,将△ADE绕点E顺时针旋转180°,点D的对应点为C,点A的对应点为F,过点E作ME⊥AF交BC于点M,连接AM、BD交于点N,现有下列结论:①AM=AD+MC;②AM=DE+BM;③DE2=AD•CM;④点N为△ABM的外心.其中正确的个数为()A. 1个B. 2个C. 3个D. 4个6.规定:如果关于x的一元二次方程ax2+bx+c=0(a≠0)有两个实数根,且其中一个根是另一个根的2倍,则称这样的方程为“倍根方程”.现有下列结论:①方程x2+2x-8=0是倍根方程;②若关于x的方程x2+ax+2=0是倍根方程,则a=±3;③若关于x 的方程ax 2-6ax +c =0(a ≠0)是倍根方程,则抛物线y =ax 2-6ax +c 与x 轴的公共点的坐标是(2,0)和(4,0);④若点(m ,n )在反比例函数y =4x 的图象上,则关于x 的方程mx 2+5x +n =0是倍根方程.上述结论中正确的有( ) A. ①② B. ③④ C. ②③ D. ②④7. 如图,六边形ABCDEF 的内角都相等,∠DAB =60°,AB =DE ,则下列结论成立的个数是( )①AB ∥DE ;②EF ∥AD ∥BC ;③AF =CD ;④四边形ACDF 是平行四边形;⑤六边形ABCDEF 既是中心对称图形,又是轴对称图形.A. 2B. 3C. 4D. 58. 如图,在Rt △ABC 中,∠C =90°,以△ABC 的一边为边画等腰三角形,使得它的第三个顶点在△ABC 的其他边上,则可以画出的不同的等腰三角形的个数最多为( )A. 4B. 5C. 6D. 79. 如图,矩形ABCD 中,AE ⊥BD 于点E ,CF 平分∠BCD ,交EA 的延长线于点F ,且BC =4,CD =2,给出下列结论:①∠BAE =∠CAD ;②∠DBC =30°;③AE =45√5;④AF =2√5,其中正确结论的个数有( ) A. 1个 B. 2个 C. 3个 D. 4个二、填空题(本大题共10小题,共30.0分)10. 如图,在Rt △ABC 中,∠BAC =30°,以直角边AB 为直径作半圆交AC 于点D ,以AD 为边作等边△ADE ,延长ED 交BC 于点F ,BC =2√3,则图中阴影部分的面积为______ .(结果不取近似值)11. 如图,在6×6的网格内填入1至6的数字后,使每行、每列、每个小粗线宫中的数字不重复,则a ×c = ______ .12. 如图,正方形ABCD 中,BE =EF =FC ,CG =2GD ,BG 分别交AE ,AF 于M ,N .下列结论:①AF ⊥BG ;②BN =43NF ;③BM MG =38;④S 四边形CGNF =12S 四边形ANGD .其中正确的结论的序号是______.13. 已知:如图,在△AOB 中,∠AOB =90°,AO =3cm ,BO =4cm .将△AOB 绕顶点O ,按顺时针方向旋转到△A 1OB 1处,此时线段OB 1与AB 的交点D 恰好为AB 的中点,则线段B 1D = ______ cm .14.如图,边长为4的正六边形ABCDEF的中心与坐标原点O重合,AF∥x轴,将正六边形ABCDEF绕原点O顺时针旋转n次,每次旋转60°.当n=2017时,顶点A的坐标为______.15.如图,在Rt△ABC中,BC=2,∠BAC=30°,斜边AB的两个端点分别在相互垂直的射线OM、ON上滑动,下列结论:①若C、O两点关于AB对称,则OA=2√3;②C、O两点距离的最大值为4;③若AB平分CO,则AB⊥CO;;④斜边AB的中点D运动路径的长为π2其中正确的是______(把你认为正确结论的序号都填上).16.如图,∠AOB的边OB与x轴正半轴重合,点P是OA上的一动点,点N(3,0)是OB上的一定点,点M是ON的中点,∠AOB=30°,要使PM+PN最小,则点P的坐标为______.17.在一条笔直的公路上有A、B、C三地,C地位于A、B两地之间,甲车从A地沿这条公路匀速驶向C地,乙车从B地沿这条公路匀速驶向A地,在甲车出发至甲车到达C地的过程中,甲、乙两车各自与C地的距离y(km)与甲车行驶时间t(h)之间的函数关系如图所示.下列结论:①甲车出发2h时,h时,两车两车相遇;②乙车出发1.5h时,两车相距170km;③乙车出发257相遇;④甲车到达C地时,两车相距40km.其中正确的是______ (填写所有正确结论的序号).18.如图,在平面直角坐标系中,OA=AB,∠OAB=90°,反比例函数y=k(x>0)的图象经过A,B两点.若x点A的坐标为(n,1),则k的值为______.19.如图,在平面直角坐标系中,△ABC的顶点坐标分别为A(-1,1),B(0,-2),C(1,0),点P(0,2)绕点A旋转180°得到点P1,点P1绕点B旋转180°得到点P2,点P2绕点C旋转180°得到点P3,点P3绕点A旋转180°得到点P4,…,按此作法进行下去,则点P2017的坐标为______ .答案和解析1.【答案】C【解析】解:∵直线l1:y=-3x+3交x轴于点A,交y轴于点B,∴A(1,0),B(0,3),∵点A、E关于y轴对称,∴E(-1,0).∵直线l2:y=-3x+9交x轴于点D,过点B作x轴的平行线交l2于点C,∴D(3,0),C点纵坐标与B点纵坐标相同都是3,把y=3代入y=-3x+9,得3=-3x+9,解得x=2,∴C(2,3).∵抛物线y=ax2+bx+c过E、B、C三点,∴,解得,∴y=-x2+2x+3.①∵抛物线y=ax2+bx+c过E(-1,0),∴a-b+c=0,故①正确;②∵a=-1,b=2,c=3,∴2a+b+c=-2+2+3=3≠5,故②错误;③∵抛物线过B(0,3),C(2,3)两点,∴对称轴是直线x=1,∴抛物线关于直线x=1对称,故③正确;④∵b=2,c=3,抛物线过C(2,3)点,∴抛物线过点(b,c),故④正确;⑤∵直线l1∥l2,即AB∥CD,又BC∥AD,∴四边形ABCD是平行四边形,∴S四边形ABCD=BC•OB=2×3=6≠5,故⑤错误.综上可知,正确的结论有3个.故选:C.根据直线l1的解析式求出A(1,0),B(0,3),根据关于y轴对称的两点坐标特征求出E(-1,0).根据平行于x轴的直线上任意两点纵坐标相同得出C点纵坐标与B点纵坐标相同都是3,再根据二次函数图象上点的坐标特征求出C(2,3).利用待定系数法求出抛物线的解析式为y=-x2+2x+3,进而判断各选项即可.本题考查了抛物线与x轴的交点,一次函数、二次函数图象上点的坐标特征,关于y轴对称的两点坐标特征,平行于x轴的直线上任意两点坐标特征,待定系数法求抛物线的解析式,平行四边形的判定及面积公式,综合性较强,求出抛物线的解析式是解题的关键.2.【答案】D【解析】解:∵a1=a2+a3=a4+a5+a5+a6=a7+a8+a8+a9+a8+a9+a9+a10=a7+3(a8+a9)+a10,∴要使a1取得最小值,则a8+a9应尽可能的小,取a8=2、a9=4,∵a5=a8+a9=6,则a7、a10中不能有6,若a7=8、a10=10,则a4=10=a10,不符合题意,舍去;若a7=10、a10=8,则a4=12、a6=4+8=12,不符合题意,舍去;若a7=10、a10=12,则a4=10+2=12、a6=4+12=16、a2=12+6=18、a3=6+16=22、a1=18+22=40,符合题意;综上,a1的最小值为40,故选:D.由a1=a7+3(a8+a9)+a10知要使a1取得最小值,则a8+a9应尽可能的小,取a8=2、a9=4,根据a5=a8+a9=6,则a7、a10中不能有6,据此对于a7、a8,分别取8、10、12检验可得,从而得出答案.本题主要考查数字的变化类,根据题目要求得出a1取得最小值的切入点是解题的关键.3.【答案】A【解析】解:过点D作DE⊥y轴于点E,过点C作CF⊥x轴于点F,令x=0代入y=x-6,∴y=-6,∴B(0,-6),∴OB=6,令y=0代入y=x-6,∴x=2,∴(2,0),∴OA=2,∴勾股定理可知:AB=4,∴sin∠OAB==,cos∠OAB==设M(x,y),∴CF=-y,ED=x,∴sin∠OAB=,∴AC=-y,∵cos∠OAB=cos∠EDB=,∴BD=2x,∵AC•BD=4,∴-y×2x=4,∴xy=-3,∵M在反比例函数的图象上,∴k=xy=-3,故选(A)过点D作DE⊥y轴于点E,过点C作CF⊥x轴于点F,然后求出OA与OB的长度,即可求出∠OAB的正弦值与余弦值,再设M(x,y),从而可表示出BD与AC的长度,根据AC•BD=4列出即可求出k的值.本题考查反比例函数与一次函数的综合问题,解题的关键是根据∠OAB的锐角三角函数值求出BD、AC,本题属于中等题型.4.【答案】C【解析】解:过点B作BD⊥x轴于点D,∵∠ACO+∠BCD=90°,∠OAC+∠ACO=90°,∴∠OAC=∠BCD,在△ACO与△BCD中,∴△ACO≌△BCD(AAS)∴OC=BD,OA=CD,∵A(0,2),C(1,0)∴OD=3,BD=1,∴B(3,1),∴设反比例函数的解析式为y=,将B(3,1)代入y=,∴k=3,∴y=,∴把y=2代入y=,∴x=,当顶点A恰好落在该双曲线上时,此时点A移动了个单位长度,∴C也移动了个单位长度,此时点C的对应点C′的坐标为(,0)故选:C.过点B作BD⊥x轴于点D,易证△ACO≌△BCD(AAS),从而可求出B的坐标,进而可求出反比例函数的解析式,根据解析式与A的坐标即可得知平移的单位长度,从而求出C的对应点.本题考查反比例函数的综合问题,涉及全等三角形的性质与判定,反比例函数的解析式,平移的性质等知识,综合程度较高,属于中等题型.5.【答案】B【解析】解:∵E为CD边的中点,∴DE=CE,又∵∠D=∠ECF=90°,∠AED=∠FEC,∴△ADE≌△FCE,∴AD=CF,AE=FE,又∵ME⊥AF,∴ME垂直平分AF,∴AM=MF=MC+CF,∴AM=MC+AD,故①正确;如图,延长CB至G,使得∠BAG=∠DAE,由AM=MF,AD∥BF,可得∠DAE=∠F=∠EAM,可设∠BAG=∠DAE=∠EAM=α,∠BAM=β,则∠AED=∠EAB=∠GAM=α+β,由∠BAG=∠DAE,∠ABG=∠ADE=90°,可得△ABG∽△ADE,∴∠G=∠AED=α+β,∴∠G=∠GAM,∴AM=GM=BG+BM,由△ABG∽△ADE,可得=,而AB<BC=AD,∴BG<DE,∴BG+BM<DE+BM,即AM<DE+BM,∴AM=DE+BM不成立,故②错误;∵ME⊥FF,EC⊥MF,∴EC2=CM×CF,又∵EC=DE,AD=CF,∴DE2=AD•CM,故③正确;∵∠ABM=90°,∴AM是△ABM的外接圆的直径,∵BM<AD,∴当BM∥AD时,=<1,∴N不是AM的中点,∴点N不是△ABM的外心,故④错误.综上所述,正确的结论有2个,故选:B.根据全等三角形的性质以及线段垂直平分线的性质,即可得出AM=MC+AD;根据△ABG∽△ADE,且AB<BC,即可得出BG<DE,再根据AM=GM=BG+BM,即可得出AM=DE+BM不成立;根据ME⊥FF,EC⊥MF,运用射影定理即可得出EC2=CM×CF,据此可得DE2=AD•CM成立;根据N不是AM的中点,可得点N不是△ABM的外心.本题主要考查了相似三角形的判定与性质,全等三角形的判定与性质,矩形的性质以及旋转的性质的综合应用,解决问题的关键是运用全等三角形的对应边相等以及相似三角形的对应边成比例进行推导,解题时注意:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心,故外心到三角形三个顶点的距离相等.6.【答案】C【解析】解:①由x2-2x-8=0,得(x-4)(x+2)=0,解得x1=4,x2=-2,∵x1≠2x2,或x2≠2x1,∴方程x2-2x-8=0不是倍根方程.故①错误;②关于x的方程x2+ax+2=0是倍根方程,∴设x2=2x1,∴x1•x2=2x12=2,∴x1=±1,当x1=1时,x2=2,当x1=-1时,x2=-2,∴x1+x2=-a=±3,∴a=±3,故②正确;③关于x的方程ax2-6ax+c=0(a≠0)是倍根方程,∴x2=2x1,∵抛物线y=ax2-6ax+c的对称轴是直线x=3,∴抛物线y=ax2-6ax+c与x轴的交点的坐标是(2,0)和(4,0),故③正确;④∵点(m,n)在反比例函数y=的图象上,∴mn=4,解mx2+5x+n=0得x1=-,x2=-,∴x2=4x1,∴关于x的方程mx2+5x+n=0不是倍根方程;故选:C.①通过解方程得到该方程的根,结合“倍根方程”的定义进行判断;②设x2=2x1,得到x1•x2=2x12=2,得到当x1=1时,x2=2,当x1=-1时,x2=-2,于是得到结论;③根据“倍根方程”的定义即可得到结论;④若点(m,n)在反比例函数y=的图象上,得到mn=4,然后解方程mx2+5x+n=0即可得到正确的结论;本题考查了反比例函数图象上点的坐标特征,根与系数的关系,正确的理解倍根方程的定义是解题的关键.7.【答案】D【解析】解:∵六边形ABCDEF的内角都相等,∴∠EFA=∠FED=∠FAB=∠ABC=120°,∵∠DAB=60°,∴∠DAF=60°,∴∠EFA+∠DAF=180°,∠DAB+∠ABC=180°,∴AD∥EF∥CB,故②正确,∴∠FED+∠EDA=180°,∴∠EDA=∠ADC=60°,∴∠EDA=∠DAB,∴AB∥DE,故①正确,∵∠FAD=∠EDA,∠CDA=∠BAD,EF∥AD∥BC,∴四边形EFAD,四边形BCDA是等腰梯形,∴AF=DE,AB=CD,∵AB=DE,∴AF=CD,故③正确,连接CF与AD交于点O,连接DF、AC、AE、DB、BE.∵∠CDA=∠DAF,∴AF∥CD,AF=CD,∴四边形AFDC是平行四边形,故④正确,同法可证四边形AEDB是平行四边形,∴AD与CF,AD与BE互相平分,∴OF=OC,OE=OB,OA=OD,∴六边形ABCDEF既是中心对称图形,故⑤正确,故选D.根据六边形ABCDEF的内角都相等,∠DAB=60°,平行线的判定,平行四边形的判定,中心对称图形的定义一一判断即可.本题考查平行四边形的判定和性质、平行线的判定和性质、轴对称图形、中心对称图形等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.8.【答案】D【解析】解:如图:故选:D.①以B为圆心,BC长为半径画弧,交AB于点D,△BCD就是等腰三角形;②以A为圆心,AC长为半径画弧,交AB于点E,△ACE就是等腰三角形;③以C为圆心,BC长为半径画弧,交AC于点F,△BCF就是等腰三角形;④以C为圆心,BC长为半径画弧,交AB于点K,△BCK就是等腰三角形;⑤作AB的垂直平分线交AC于G,则△AGB是等腰三角形;⑥作BC的垂直平分线交AB于I,则△BCI和△ACI是等腰三角形.本题考查了等腰三角形的判定的应用,主要考查学生的理解能力和动手操作能力.9.【答案】C【解析】解:在矩形ABCD中,∵∠BAD=90°,∵AE⊥BD,∴∠AED=90°,∴∠ADE+∠DAE=∠DAE+∠BAE=90°,∴∠BAE=∠ADB,∵∠CAD=∠ADB,∴∠BAE=∠CAD,故①正确;∵BC=4,CD=2,∴tan∠DBC==,∴∠DBC≠30°,故②错误;∵BD==2,∵AB=CD=2,AD=BC=4,∵△ABE∽△DBA,∴,即,∴AE=;故③正确;∵CF平分∠BCD,∴∠BCF=45°,∴∠ACF=45°-∠ACB,∵AD∥BC,∴∠DAC=∠BAE=∠ACB,∴∠EAC=90°-2∠ACB,∴∠EAC=2∠ACF,∵∠EAC=∠ACF+∠F,∴∠ACF=∠F,∴AF=AC,∵AC=BD=2,∴AF=2,故④正确;故选C.根据余角的性质得到∠BAE=∠ADB,等量代换得到∠BAE=∠CAD,故①正确;根据三角函数的定义得到tan∠DBC==,于是得到∠DBC≠30°,故②错误;由勾股定理得到BD= =2,根据相似三角形的性质得到AE=;故③正确;根据角平分线的定义得到∠BCF=45°,求得∠ACF=45°-∠ACB,推出∠EAC=2∠ACF,根据外角的性质得到∠EAC=∠ACF+∠F,得到∠ACF=∠F,根据等腰三角形的判定得到AF=AC,于是得到AF=2,故④正确.本题考查了矩形的性质,相似三角形的判定和性质,三角形的外角的性质,角平分线的定义,熟练掌握相似三角形的判定和性质是解题的关键.10.【答案】3√3-3π2【解析】解:如图所示:设半圆的圆心为O,连接DO,过D作DG⊥AB于点G,过D作DN⊥CB于点N,∵在Rt△ABC中,∠BAC=30°,∴∠ACB=60°,∠ABC=90°,∵以AD为边作等边△ADE,∴∠EAD=60°,∴∠EAB=60°+30°=90°,可得:AE∥BC,则△ADE∽△CDF,∴△CDF是等边三角形,∵在Rt△ABC中,∠BAC=30°,BC=2,∴AC=4,AB=6,∠DOG=60°,则AO=BO=3,故DG=DO•sin60°=,则AD=3,DC=AC-AD=,故DN=DC•sin60°=×=,则S阴影=S△ABC-S△AOD-S扇形DOB-S△DCF=×2×6-×3×--××=3-π.故答案为:3-π.根据题意结合等边三角形的性质分别得出AB,AC,AD,DC的长,进而利用S阴影=S△ABC-S△AOD-S扇形DOB-S△DCF求出答案.此题主要考查了扇形面积求法以及等边三角形的性质和锐角三角函数关系等知识,正确分割图形是解题关键.11.【答案】2【解析】解:对各个小宫格编号如下:先看己:已经有了数字3、5、6,缺少1、2、4;观察发现:4不能在第四列,2不能在第五列,而2不能在第六列;所以2只能在第六行第四列,即a=2;则b和c有一个是1,有一个是4,不确定,如下:观察上图发现:第四列已经有数字2、3、4、6,缺少1和5,由于5不能在第二行,所以5在第四行,那么1在第二行;如下:再看乙部分:已经有了数字1、2、3,缺少数字4、5、6,观察上图发现:5不能在第六列,所以5在第五列的第一行;4和6在第六列的第一行和第二行,不确定,分两种情况:①当4在第一行时,6在第二行;那么第二行第二列就是4,如下:再看甲部分:已经有了数字1、3、4、5,缺少数字2、6,观察上图发现:2不能在第三列,所以2在第二列,则6在第三列的第一行,如下:观察上图可知:第三列少1和4,4不能在第三行,所以4在第五行,则1在第三行,如下:观察上图可知:第五行缺少1和2,1不能在第1列,所以1在第五列,则2在第一列,即c=1,所以b=4,如下:观察上图可知:第六列缺少1和2,1不能在第三行,则在第四行,所以2在第三行,如下:再看戊部分:已经有了数字2、3、4、5,缺少数字1、6,观察上图发现:1不能在第一列,所以1在第二列,则6在第一列,如下:观察上图可知:第一列缺少3和4,4不能在第三行,所以4在第四行,则3在第三行,如下:观察上图可知:第二列缺少5和6,5不能在第四行,所以5在第三行,则6在第四行,如下:观察上图可知:第三行第五列少6,第四行第五列少3,如下:所以,a=2,c=1,ac=2;②当6在第一行,4在第二行时,那么第二行第二列就是6,如下:再看甲部分:已经有了数字1、3、5、6,缺少数字2、4,观察上图发现:2不能在第三列,所以2在第2列,4在第三列,如下:观察上图可知:第三列缺少数字1和6,6不能在第五行,所以6在第三行,则1在第五行,所以c=4,b=1,如下:观察上图可知:第五列缺少数字3和6,6不能在第三行,所以6在第四行,则3在第三行,如下:观察上图可知:第六列缺少数字1和2,2不能在第四行,所以2在第三行,则1在第四行,如下:观察上图可知:第三行缺少数字1和5,1和5都不能在第一列,所以此种情况不成立;综上所述:a=2,c=1,a×c=2;故答案为:2.粗线把这个数独分成了6块,为了便于解答,对各部分进行编号:甲、乙、丙、丁、戊、己,先从各部分中数字最多的己出发,找出其各个小方格里面的数,再根据每行、每列、每小宫格都不出现重复的数字进行推算.本题是六阶数独,比较复杂,关键是找出突破口,先推算出一个区域或者一行、一列,再逐步的进行推算.12.【答案】①③【解析】解:①∵四边形ABCD为正方形,∴AB=BC=CD,∵BE=EF=FC,CG=2GD,∴BF=CG,∵在△ABF和△BCG中,,∴△ABF≌△BCG,∴∠BAF=∠CBG,∵∠BAF+∠BFA=90°,∴∠CBG+∠BFA=90°,即AF⊥BG;①正确;②∵在△BNF和△BCG中,,∴△BNF∽△BCG,∴==,∴BN=NF;②错误;③作EH⊥AF,令AB=3,则BF=2,BE=EF=CF=1,AF==,∵S△ABF=AF•BN=AB•BF,∴BN=,NF=BN=,∴AN=AF-NF=,∵E是BF中点,∴EH是△BFN的中位线,∴EH=,NH=,BN∥EH,∴AH=,=,解得:MN=,∴BM=BN-MN=,MG=BG-BM=,∴=;③正确;④连接AG,FG,根据③中结论,则NG=BG-BN=,∵S四边形CGNF=S△CFG+S△GNF=CG•CF+NF•NG=1+=,S四边形ANGD=S△ANG+S△ADG=AN•GN+AD•DG=+=,∴S四边形CGNF≠S四边形ANGD,④错误;故答案为①③.①易证△ABF≌△BCG,即可解题;②易证△BNF∽△BCG,即可求得的值,即可解题;③作EH⊥AF,令AB=3,即可求得MN,BM的值,即可解题;④连接AG,FG,根据③中结论即可求得S四边形CGNF和S四边形ANGD,即可解题.本题考查了全等三角形的判定和性质,考查了相似三角形的判定和对应边成比例的性质,本题中令AB=3求得AN,BN,NG,NF的值是解题的关键.13.【答案】1.5【解析】解:∵在△AOB中,∠AOB=90°,AO=3cm,BO=4cm,∴AB==5cm,∵点D为AB的中点,∴OD=AB=2.5cm.∵将△AOB绕顶点O,按顺时针方向旋转到△A1OB1处,∴OB1=OB=4cm,∴B1D=OB1-OD=1.5cm.故答案为1.5.先在直角△AOB中利用勾股定理求出AB==5cm,再利用直角三角形斜边上的中线等于斜边的一半得出OD=AB=2.5cm.然后根据旋转的性质得到OB1=OB=4cm,那么B1D=OB1-OD=1.5cm.本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了直角三角形斜边上的中线等于斜边的一半的性质以及勾股定理.14.【答案】(2,2√3)【解析】解:2017×60°÷360°=336…1,即与正六边形ABCDEF绕原点O顺时针旋转1次时点A的坐标是一样的.当点A按顺时针旋转60°时,与原F点重合.连接OF,过点F作FH⊥x轴,垂足为H;由已知EF=4,∠FOE=60°(正六边形的性质),∴△OEF是等边三角形,∴OF=EF=4,∴F(2,2),即旋转2017后点A的坐标是(2,2),故答案是:(2,2).将正六边形ABCDEF绕原点O顺时针旋转2017次时,点A所在的位置就是原F点所在的位置.此题主要考查了正六边形的性质,坐标与图形的性质-旋转.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.15.【答案】①②③【解析】解:在Rt△ABC中,∵BC=2,∠BAC=30°,∴AB=4,AC==2,①若C、O两点关于AB对称,如图1,∴AB是OC的垂直平分线,则OA=AC=2;所以①正确;②如图1,取AB的中点为E,连接OE、CE,∵∠AOB=∠ACB=90°,∴OE=CE=AB=2,当OC经过点E时,OC最大,则C、O两点距离的最大值为4;所以②正确;③如图2,同理取AB的中点E,则OE=CE,∵AB平分CO,∴OF=CF,∴AB⊥OC,所以③正确;④如图3,斜边AB的中点D运动路径是:以O为圆心,以2为半径的圆周的,则:=π.所以④不正确;综上所述,本题正确的有:①②③;故答案为:①②③.①先根据直角三角形30°的性质和勾股定理分别求AC 和AB ,由对称的性质可知:AB 是OC 的垂直平分线,所以OA=AC ;②当OC 经过AB 的中点E 时,OC 最大,则C 、O 两点距离的最大值为4;③如图2,根据等腰三角形三线合一可知:AB ⊥OC ;④如图3,半径为2,圆心角为90°,根据弧长公式进行计算即可. 本题是三角形的综合题,考查了直角三角形30°的性质、直角三角形斜边中线的性质、等腰三角形的性质、轴对称的性质、线段垂直平分线的性质、动点运动路径问题、弧长公式,熟练掌握直角三角形斜边中线等于斜边一半是本题的关键,难度适中.16.【答案】(32,√32) 【解析】解:作N 关于OA 的对称点N′,连接N′M 交OA 于P ,则此时,PM+PN 最小,∵OA 垂直平分NN′,∴ON=ON′,∠N′ON=2∠AON=60°, ∴△NON′是等边三角形,∵点M 是ON 的中点,∴N′M ⊥ON ,∵点N (3,0),∴ON=3,∵点M 是ON 的中点,∴OM=1.5,∴PM=, ∴P (,).故答案为:(,).作N关于OA的对称点N′,连接N′M交OA于P,则此时,PM+PN最小,由作图得到ON=ON′,∠N′ON=2∠AON=60°,求得△NON′是等边三角形,根据等边三角形的性质得到N′M⊥ON,解直角三角形即可得到结论.本题考查了轴对称-最短路线问题,等边三角形的判定和性质,解直角三角形,关键是确定P的位置.17.【答案】②③④【解析】解:①观察函数图象可知,当t=2时,两函数图象相交,∵C地位于A、B两地之间,∴交点代表了两车离C地的距离相等,并不是两车相遇,结论①错误;②甲车的速度为240÷4=60(km/h),乙车的速度为200÷(3.5-1)=80(km/h),∵(240+200-60-170)÷(60+80)=1.5(h),∴乙车出发1.5h时,两车相距170km,结论②正确;③∵(240+200-60)÷(60+80)=2(h),∴乙车出发2h时,两车相遇,结论③正确;④∵80×(4-3.5)=40(km),∴甲车到达C地时,两车相距40km,结论④正确.综上所述,正确的结论有:②③④.故答案为:②③④.①观察函数图象可知,当t=2时,两函数图象相交,结合交点代表的意义,即可得出结论①错误;②根据速度=路程÷时间分别求出甲、乙两车的速度,再根据时间=路程÷速度和可求出乙车出发1.5h时,两车相距170km,结论②正确;③根据时间=路程÷速度和可求出乙车出发2h时,两车相遇,结论③正确;④结合函数图象可知当甲到C地时,乙车离开C地0.5小时,根据路程=速度×时间,即可得出结论④正确.综上即可得出结论.本题考查了一次函数的应用,根据函数图象逐一分析四条结论的正误是解题的关键.18.【答案】√5−12【解析】解:作AE⊥x轴于E,BF⊥x轴于F,过B点作BC⊥y轴于C,交AE于G,如图所示:则AG⊥BC,∵∠OAB=90°,∴∠OAE+∠BAG=90°,∵∠OAE+∠AOE=90°,∴∠AOE=∠GAB,在△AOE和△BAG中,,∴△AOE≌△BAG(AAS),∴OE=AG,AE=BG,∵点A(n,1),∴AG=OE=n,BG=AE=1,∴B(n+1,1-n),∴k=n×1=(n+1)(1-n),整理得:n2+n-1=0,解得:n=(负值舍去),∴n=,∴k=;故答案为:.作AE⊥x轴于E,BF⊥x轴于F,过B点作BC⊥y轴于C,交AE于G,则AG⊥BC,先求得△AOE≌△BAG,得出AG=OE=n,BG=AE=1,从而求得B(n+1,1-n),根据k=n×1=(n+1)(1-n)得出方程,解方程即可.本题考查了全等三角形的判定与性质、反比例函数图象上点的坐标特征、解方程等知识;熟练掌握反比例函数图象上点的坐标特征,证明三角形全等是解决问题的关键.19.【答案】(-2,0)【解析】解:如图所示,P1(-2,0),P2(2,-4),P3(0,4),P4(-2,-2),P5(2,-2),P6(0,2),发现6次一个循环,∵2017÷6=336…1,∴点P2017的坐标与P1的坐标相同,即P2017(-2,0),故答案为(-2,0).画出P1~P6,寻找规律后即可解决问题.本题考查坐标与图形的性质、点的坐标等知识,解题的关键是循环探究问题的方法,属于中考常考题型.。

2020年中考数学4.几何综合选择填空压轴题(含解析)

2020年中考数学4.几何综合选择填空压轴题(含解析)

几何综合-填空选择压轴题41、如图,在菱形ABCD中,AB=2,∠B是锐角,AE⊥BC于点E,M是AB的中点,连结MD,ME.若∠EMD=90°,则cosB的值为.2、如图,AC是⊙O的直径,弦BD⊥AO于E,连接BC,过点O作OF⊥BC于F,若BD=8cm,AE=2cm,则OF的长度是()A.3cm B.√6cm C.2.5cm D.√5cm3、定义:在平面直角坐标系中,一个图形先向右平移a个单位,再绕原点按顺时针方向旋转θ角度,这样的图形运动叫作图形的γ(a,θ)变换.如图,等边△ABC的边长为1,点A在第一象限,点B与原点O重合,点C在x轴的正半轴上.△A1B1C1就是△ABC经γ(1,180°)变换后所得的图形.若△ABC经γ(1,180°)变换后得△A1B1C1,△A1B1C1经γ(2,180°)变换后得△A2B2C2,△A2B2C2经γ(3,180°)变换后得△A3B3C3,依此类推……△An﹣1Bn﹣1Cn﹣1经γ(n,180°)变换后得△AnBnCn,则点A1的坐标是,点A2018的坐标是.4、我国古代伟大的数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的直角三角形,得到一个恒等式.后人借助这种分割方法所得的图形证明了勾股定理,如图所示的矩形由两个这样的图形拼成,若a=3,b=4,则该矩形的面积为()A.20 B.24 C.994D.5325、如图,直线y=﹣√33x+4与x轴、y轴分别交于A,B两点,C是OB的中点,D 是AB上一点,四边形OEDC是菱形,则△OAE的面积为.6、小明发现相机快门打开过程中,光圈大小变化如图1所示,于是他绘制了如图2所示的图形.图2中六个形状大小都相同的四边形围成一个圆的内接正六边形和一个小正六边形,若PQ所在的直线经过点M,PB=5cm,小正六边形的面积为49√3cm2,则该圆的半径为cm.27、如图,在矩形ABCD中,AB=4,AD=2,点E在CD上,DE=1,点F是边AB上一动点,以EF为斜边作Rt△EFP.若点P在矩形ABCD的边上,且这样的直角三角形恰好有两个,则AF的值是.8、如图,AB是⊙O的直径,弦CD交AB于点P,AP=2,BP=6,∠APC=30°,则CD的长为()A.√15 B.2√5 C.2√15 D.89、如图,在矩形ABCD中,点E是边BC的中点,AE⊥BD,垂足为F,则tan∠BDE 的值是()A.√24 B.14C.13D.√2310、如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,AF平分∠CAB,交CD于点E,交CB于点F.若AC=3,AB=5,则CE的长为()A.32B.43C.53D.8511、如图,在正方形ABCD中,AD=2√3,把边BC绕点B逆时针旋转30°得到线段BP,连接AP并延长交CD于点E,连接PC,则三角形PCE的面积为.12、如图,P为等边三角形ABC内的一点,且P到三个顶点A,B,C的距离分别为3,4,5,则△ABC的面积为()A.9+25√34 B.9+25√32C.18+25√3 D.18+25√3213、如图,点O 是▱ABCD 的对称中心,AD >AB ,E 、F 是AB 边上的点,且EF=12AB ;G 、H 是BC 边上的点,且GH=13BC ,若S 1,S 2分别表示△EOF 和△GOH 的面积,则S 1与S 2之间的等量关系是 .14、如图,已知∠POQ=30°,点A 、B 在射线OQ 上(点A 在点O 、B 之间),半径长为2的⊙A 与直线OP 相切,半径长为3的⊙B 与⊙A 相交,那么OB 的取值范围是( )A .5<OB <9 B .4<OB <9C .3<OB <7D .2<OB <715、如图,在矩形ABCD 中,按以下步骤作图:①分别以点A 和C 为圆心,以大于12AC 的长为半径作弧,两弧相交于点M 和N ;②作直线MN 交CD 于点E .若DE=2,CE=3,则矩形的对角线AC 的长为 .16、如图,在菱形ABCD中,tanA=43,M,N分别在边AD,BC上,将四边形AMNB沿MN翻折,使AB的对应线段EF经过顶点D,当EF⊥AD时,BNCN的值为.17、如图,△ABC的周长为19,点D,E在边BC上,∠ABC的平分线垂直于AE,垂足为N,∠ACB的平分线垂直于AD,垂足为M,若BC=7,则MN的长度为()A.32B.2 C.52D.318、如图,E,F是平行四边形ABCD对角线AC上两点,AE=CF=14AC.连接DE,DF并延长,分别交AB,BC于点G,H,连接GH,则S△ADGS△BGH的值为()A.12B.23C.34D.119、如图,平面直角坐标系中,矩形OABC的顶点A(﹣6,0),C(0,2√3).将矩形OABC绕点O顺时针方向旋转,使点A恰好落在OB上的点A1处,则点B的对应点B1的坐标为.20、如图,Rt△ABC中,∠C=90°,AC=2,BC=5,点D是BC边上一点且CD=1,点P是线段DB上一动点,连接AP,以AP为斜边在AP的下方作等腰Rt△AOP.当P从点D出发运动至点B停止时,点O的运动路径长为.21、如图,点O为正六边形ABCDEF的中心,点M为AF中点,以点O为圆心,以OM的长为半径画弧得到扇形MON,点N在BC上;以点E为圆心,以DE的长为半径画弧得到扇形DEF,把扇形MON的两条半径OM,ON重合,围成圆锥,将此圆锥的底面半径记为r1;将扇形DEF以同样方法围成的圆锥的底面半径记为r2,则r 1:r2= .22、对角线长分别为6和8的菱形ABCD如图所示,点O为对角线的交点,过点O 折叠菱形,使B,B′两点重合,MN是折痕.若B'M=1,则CN的长为()A.7 B.6 C.5 D.423、如图,一艘渔船正以60海里/小时的速度向正东方向航行,在A处测得岛礁P在东北方向上,继续航行1.5小时后到达B处,此时测得岛礁P在北偏东30°方向,同时测得岛礁P正东方向上的避风港M在北偏东60°方向.为了在台风到来之前用最短时间到达M处,渔船立刻加速以75海里/小时的速度继续航行小时即可到达.(结果保留根号)24、如图,点A1的坐标为(2,0),过点A1作x轴的垂线交直线l:y=√3x于点B 1,以原点O为圆心,OB1的长为半径画弧交x轴正半轴于点A2;再过点A2作x轴的垂线交直线l于点B2,以原点O为圆心,以OB2的长为半径画弧交x轴正半轴于点A3;….按此作法进行下去,则A2019B2018̂的长是.25、如图,正方形ABCD的边长为8,M是AB的中点,P是BC边上的动点,连结PM,以点P为圆心,PM长为半径作⊙P.当⊙P与正方形ABCD的边相切时,BP 的长为.26、如图,正方形ABCD的边长为1,点A与原点重合,点B在y轴的正半轴上,点D在x轴的负半轴上,将正方形ABCD绕点A逆时针旋转30°至正方形AB'C′D′的位置,B'C′与CD相交于点M,则点M的坐标为.27、如图,在△ABC中,已知AC=3,BC=4,点D为边AB的中点,连结CD,过点A作AE⊥CD于点E,将△ACE沿直线AC翻折到△ACE′的位置.若CE′∥AB,则CE′=.。

中考数学几何选择填空压轴题四边形难题(含答案))

中考数学几何选择填空压轴题四边形难题(含答案))

1、 《求长度》 (答案)1、(容易)如图1的矩形ABCD 中,有一点E 在AD 上,今以BE 为折线将A 点往右折,如图2所示,再作过A 点且与CD 垂直的直线,交CD 于F 点,如图3所示,若AB= 36,BC=13,∠BEA=60°,则图3中AF 的长度为 4【解】作AH ⊥BC 于H2、(难)如图,矩形ABCD 与菱形EFGH 的对角线均交于点O ,且EG ∥BC ,将矩形折叠,使点C 与点O 重合,折痕MN 恰好过点G 若AB=6,EF=2,∠H=120°,则DN 的长为36-【解】长EG 交DC 于P 点,连接GC 、FH ;如图所示: 则CP=DP=21CD=26,△GCP 为直角三角形,∵四边形EFGH 是菱形,∠EHG=120°,∴GH=EF=2,∠OHG=60°,EG ⊥FH ,∴OG=GH•sin60°=2×23=3,由折叠的性质得:CG=OG=3,OM=CM ,∠MOG=∠MCG ,∴PG==26,∵OG ∥CM ,∴∠MOG+∠OMC=180°,∴∠MCG+∠OMC=180°,∴OM ∥CG ,∴四边形OGCM 为平行四边形,∵OM=CM ,∴四边形OGCM 为菱形,∴CM=OG=3,根据题意得:PG 是梯形MCDN 的中位线,∴DN+CM=2PG=6,∴DN=36-3、(中等)如图,△ABC 的周长为19,点D ,E 在边BC 上,∠ABC 的平分线垂直于AE ,垂足为N ,∠ACB 的平分线垂直于AD ,垂足为M ,若BC=7,则MN 的长度为25【解】△BNA ≅△BNE∴BA=BE ,∴△BAE 是等腰三角形,同理△CAD 是等腰三角形,∴点N 是AE 中点,点M 是AD 中点(三线合一),∴MN 是△ADE 的中位线, ∵BE+CD=AB+AC=19-BC=19-7=12,∴DE=BE+CD-BC=5,∴MN=21DE=25.4、(难度)如图,在菱形ABCD 中,∠ABC=120°,将菱形折叠,使点A 恰好落在对角线BD 上的点G 处(不与B 、D 重合),折痕为EF ,若DG=2,BG=6,则BE 的长为______2.8【解】作EH ⊥BD ,设BE=x在Rt △EHG 中,EG 2=EH 2+GH 2,即(8-x )2=(23x )2+(6-21x )2,解得,x =2.8,即BE=2.8, 故答案为:2.85、如图,▱ABCD 中,AB=7,BC=3,连接AC ,分别以点A 和点C 为圆心,大于21AC 的长为半径作弧, 两弧相交于点M ,N ,作直线MN ,交CD 于点E ,连接AE ,则△AED 的周长是_____ 10.6、(容易)如图,ABCD 的对角线相交于点O ,且AD CD ,过点O 作OM AC ,交AD 于点M .如果CDM 的周长为8,那么ABCD 的周长是_ 16【解】∵四边形ABCD 是平行四边形,∴OA=OC ,∵OM ⊥AC ,∴AM=CM ,∵△CDM 的周长为8, ∴CM+DM+CD=AM+DM+CD=AD+CD=8,∴平行四边形ABCD 的周长是:2×8=16.7、(中等)如图,正方形ABCD 的边长为12,点E 在边AB 上,BE=8,过点E 作EF ∥BC ,分别交BD 、CD 于G 、F 两点.若点P 、Q 分别为DG 、CE 的中点,则PQ 的长为_____ 1328、(难度)如图,在平行四边形ABCD 中,对角线AC 、BD 相交于点O ,AB=OB ,点E 、点F 分别是OA 、OD 的中点,连接EF ,∠CEF=45°,EM ⊥BC 于点M ,EM 交BD 于点N ,FN=,则线段BC 的长为_____249、(难度)如图,平行四边形ABCD 中,AM ⊥BC 于M ,AN ⊥CD 于N ,已知AB =10,BM =6,MC =3,则MN 的长为___________5734【方法】将目标量置入直角三角形中10、(容易)如上图,在矩形ABCD 中,AB =6,BC =8,点E 是BC 中点,点F 是边CD 上的任意一点,当△AEF 的周长最小时,则DF 的长为 4【解】以CD 为对称轴作对称变换11、如图,在矩形ABCD 中,E 是BC 边上的点,连接AE 、DE ,将△DEC 沿线段DE 翻折,点C 恰好落在线段AE 上的点F 处.若AB =6,BE : EC =4 : 1,则线段DE 的长为 ____102_______.【方法】AD = AE=10;勾股定理12、如图,矩形ABCD 中,AB =8,BC =4.点E 在边AB 上,点F 在边CD 上,点G 、H 在对角线AC 上.若四边形EGFH 是菱形,则AE 的长是 [5【解】连接EF 交AC 于O ,∵四边形EGFH 是菱形,∴EF ⊥AC ,OE =OF , ∵四边形ABCD 是矩形,∴∠B =∠D =90°,AB ∥CD ,∴∠ACD =∠CAB , 在△CFO 与△AOE 中,,∴△CFO ≌△AOE ,∴AO =CO ,A BDCM NAE BDC F∵AC ==4,∴AO =21AC =2,∵∠CAB =∠CAB ,∠AOE =∠B =90°,∴△AOE ∽△ABC ,∴,∴,∴AE =5.13、(难度)如图,矩形ABCD 中,AB =2,AD =2.点E 是BC 边上的一个动点,连接AE ,过点D 作DF ⊥AE 于点F .当△CDF 是等腰三角形时,BE 的长为 1、2、22-【解】①CF =CD 时,过点C 作CM ⊥DF ,垂足为点M ,则CM ∥AE ,DM =MF ,延长CM 交AD 于点G ,∴AG =GD =1,∴CE =1, ∵CG ∥AE ,AD ∥BC ,∴四边形AGCE 是平行四边形,∴CE =AG =1,∴BE =1 ∴当BE =1时,△CDF 是等腰三角形;②DF =DC 时,则DC =DF =2,∵DF ⊥AE ,AD =2,∴∠DAE =45°,则BE =2, ∴当BE =2时,△CDF 是等腰三角形;③FD =FC 时,则点F 在CD 的垂直平分线上,故F 为AE 中点. ∵AB =2,BE =x ,∴AE =,AF =,∵△ADF ∽△EAB ,∴=,,x 2﹣4x +2=0,解得:x =2±2,∴当BE =22-时,△CDF 是等腰三角形.综上,当BE =1、2、22-时,△CDF 是等腰三角形.14、如图,边长为1的菱形ABCD 中,∠DAB=60度.连接对角线AC ,以AC 为边作第二个菱形ACC 1D 1,使∠D 1AC=60°;连接AC 1,再以AC 1为边作第三个菱形AC 1C 2D 2,使∠D 2AC 1=60°;…,按此规律所作的第n 个菱形的边长为 1)3(-n .解:连接DB ,∵四边形ABCD 是菱形,∴AD=AB .AC ⊥DB , ∵∠DAB=60°,∴△ADB 是等边三角形,∴DB=AD=1,∴BM=21, ∴AM==23,∴AC=3,同理AC 1=3AC=(3)2,AC 2=3AC 1=33=(3)3, 按此规律所作的第n 个菱形的边长为1)3(-n15、如图,以Rt △ABC 的斜边BC 为一边在△ABC 的同侧作正方形BCEF ,设正方形的中心为O ,连接AO ,如果AB=4,AO=26,那么AC 的长等于 16 .【解】如图,过O 点作OG 垂直AC ,G 点是垂足.∵∠BAC=∠BOC=90°,∴ABCO 四点共圆,∴∠OAG=∠OBC=45° ∴△AGO 是等腰直角三角形,∴2AG 2=2GO 2=AO 2=2)26(=72, ∴OG=AG=6,∵∠BAH=∠OGH=90°,∠AHB=∠OHG ,∴△ABH ∽△GOH ,∴AB/OG=AH/(AG ﹣AH ),∵AB=4,OG=AG=6,∴AH=2.4 在直角△OHC 中,∵HG=AG ﹣AH=6﹣2.4=3.6,OG 又是斜边HC 上的高, ∴OG 2=HG×GC ,而OG=6,GH=3.6,∴GC=10.∴AC=AG+GC=6+10=16. 故AC 边的长是16.16、如图,在梯形ABCD 中,AD ∥BC ,∠B=90°,AD=2,BC=5,E 为DC 中点,tanC=34.则AE 的长度为265【解】过点E 作BC 的垂线交BC 于点F ,交AD 的延长线于点M , 在梯形ABCD 中,AD ∥BC ,E 是DC 的中点,∴∠M=∠MFC ,DE=CE ;在△MDE 和△FCE 中,∠M=∠MFC ,∠DEM=∠CEF ,DE=CE ;∴△MDE ≌△FCE ,∴EF=ME ,DM=CF . ∵AD=2,BC=5,∴DM=CF=23, 在Rt △FCE 中,tanC=CFEF =34,∴EF=ME=2,在Rt △AME 中,AE=265)232(222=++ 17、如图,平行四边形ABCD 中,AE 平分∠BAD 交BC 边于E ,EF ⊥AE 交CD 边于F ,延长BA 到点G ,使AG = CF ,连接GF .若BC = 7,DF = 3,tan ∠AEB =3 ,则GF 的长为 23【解】连接AC ,羊场AE 与DC 延长线交于一点H18、(容易)如图,梯形ABCD 中,AD ∥BC ,AB = 3,BC=4,连结BD ,∠BAD 的平分线交BD 于 点E ,且AE ∥CD ,则AD 的长为1DG ABCDEMABC DEF【解】构造平行四边形。

2020江苏省中考数学选择填空压轴题专题:《函数的动点问题》(含答案)

2020江苏省中考数学选择填空压轴题专题:《函数的动点问题》(含答案)

专题: 函数的动点问题例1.如图①,在平行四边形ABCD中,AD=9cm,动点P从A点出发,以1cm/s的速度沿着A→B→C→A的方向移动,直到点P到达点A后才停止.已知△PAD的面积y(单位:cm 2)与点P移动的时间x(单位:s)之间的函数关系如图②所示,图②中a与b的和为___________.同类题型1.1 如图,已知正方形ABCD的边长为4,E是BC边上的一个动点,AE⊥EF,EF交DC于点F,设BE=x,FC=y,则当点E从点B运动到点C时,y关于x的函数图象是()A. B.C.D.同类题型1.2如图,在矩形ABCD中,AB=2,AD=3,点E是BC边上靠近点B的三等分点,动点P从点A 出发,沿路径A→D→C→E运动,则△APE的面积y与点P经过的路径长x之间的函数关系用图象表示大致是()A.B.C.D.同类题型1.3 如图,菱形ABCD的边长为2,∠A=60°,一个以点B为顶点的60°角绕点B旋转,这个角的两边分别与线段AD的延长线及CD的延长线交于点P、Q,设DP=x,DQ=y,则能大致反映y与x的函数关系的图象是()A .B .C .D .例2.如图,等边△ABC 的边长为2cm ,点P 从点A 出发,以1cm/s 的速度沿AC 向点C 运动,到达点C 停止;同时点Q 从点A 出发,以2cm/s 的速度沿AB -BC 向点C 运动,到达点C 停止,设△APQ 的面积为y (cm 2),运动时间为x (s ),则下列最能反映y 与x 之间函数关系的图象是 ( )A .B .C .D . 同类题型2.1 如图1,E 为矩形ABCD 边AD 上的一点,点P 从点B 沿折线BE -ED -DC 运动到点C 时停止,点Q 从点B 沿BC 运动到点C 时停止,它们运动的速度都是2cm/s .若P 、Q 同时开始运动,设运动时间为t (s ),△BPQ 的面积为y (cm 2),已知y 与t 的函数关系图象如图2,则下列结论错误的是( )A .AE =12cmB .sin ∠EBC =74C .当0<t ≤8时,y =72t 2 D .当t =9s 时,△PBQ 是等腰三角形 同类题型2.2 矩形ABCD 中,AB =6,BC =8,动点P 从点B 出发以每秒2个单位长的速度沿BA -AD -DCD 的方向运动到C 点停止,动点Q 以每秒1个单位的速度沿BC 方向运动到C 点停止,假设P 、两点同时出发,运动时间是t 秒,y =S △PBQ ,则y 与t 的函数图象大致是 ( )A .B .C .D .同类题型2.3 如图,矩形ABCD 中,AB =8cm ,AD =12cm ,AC 与BD 交于点O ,M 是BC 的中点.P 、Q 两点沿着B →C →D 方向分别从点B 、点M 同时出发,并都以1cm/s 的速度运动,当点Q 到达D 点时,两点同时停止运动.在P 、Q 两点运动的过程中,与△OPQ 的面积随时间t 变化的图象最接近的是( )A.B.C.D.例3.如图,正六边形ABCDEF的边长为6cm,P是对角线BE上一动点,过点P作直线l与BE垂直,动点P从B点出发且以1cm/s的速度匀速平移至E点.设直线l扫过正六边形ABCDEF区域的面积为S(cm2),点P的运动时间为t(s),下列能反映S与t之间函数关系的大致图象是()A. B.C. D.同类题型3.1 如图,在平面直角坐标系中,四边形OBCD是边长为4的正方形,平行于对角线BD的直线l 从O出发,沿x轴正方向以每秒1个单位长度的速度运动,运动到直线l与正方形没有交点为止.设直线l扫过正方形OBCD的面积为S,直线l运动的时间为t(秒),下列能反映S与t之间函数关系的图象是()A .B .C .D .同类题型3.2(2015秋﹒荆州校级月考)如图,△ABC 中,∠ACB =90°,∠A =30°,AB =16.点P 是斜边AB 上一点.过点P 作PQ ⊥AB ,垂足为P ,交边AC (或边CB )于点Q .设AP =x ,当△APQ 的面积为14 3 时,则x 的值为 ( )A .2 21B .2 21 或14C .2或2 21 或14D .2或14同类题型3.3 如图1,在平面直角坐标系中,将▱ABCD 放置在第一象限,且AB ∥x 轴.直线y =-x 从原点出发沿x 轴正方向平移,在平移过程中直线被平行四边形截得的线段长度l 与直线在x 轴上平移的距离m 的函数图象如图2所示,那么AD 的长为____________.例4.如图,△ABC 为直角三角形,∠C =90°,BC =2cm ,∠A =30°,四边形DEFG 为矩形,DE =2 3 cm ,EF =6cm ,且点C 、B 、E 、F 在同一条直线上,点B 与点E 重合.Rt △ABC 以每秒1cm 的速度沿矩形DEFG 的边EF 向右平移,当点C 与点F 重合时停止.设Rt △ABC 与矩形DEFG 的重叠部分的面积为y cm 2,运动时间xs .能反映y cm 2与xs 之间函数关系的大致图象是 ( )A .B .C .D .同类题型4.1 如图,菱形ABCD 的边长为1,菱形EFGH 的边长为2,∠BAD =∠FEH =60°点C 与点E 重合,点A ,C (E ),G 在同一条直线上,将菱形ABCD 沿C ⇒G 方向平移至点A 与点G 重合时停止,设点C 、E 之间的距离为x ,菱形ABCD 与菱形EFGH 重叠部分的面积为y ,则能大致反映y 与x 之间函数关系的图象是 ( )A. B.C.D.同类题型4.2 如图,等边△ABC的边AB与正方形DEFG的边长均为2,且AB与DE在同一条直线上,开始时点B与点D重合,让△ABC沿这条直线向右平移,直到点B与点E重合为止,设BD的长为x,△ABC与正方形DEFG重叠部分(图中阴影部分)的面积为y,则y与x之间的函数关系的图象大致是()A.B.C.D.同类题型4.3 如图,四边形ABCD是边长为1的正方形,四边形EFGH是边长为2的正方形,点D与点F重合,点B,D(F),H在同一条直线上,将正方形ABCD沿F⇒H方向平移至点B与点H重合时停止,设点D、F之间的距离为x,正方形ABCD与正方形EFGH重叠部分的面积为y,则能大致反映y与x之间函数关系的图象是()A.B.C.D.参考答案例1.如图①,在平行四边形ABCD中,AD=9cm,动点P从A点出发,以1cm/s的速度沿着A→B→C→A的方向移动,直到点P到达点A后才停止.已知△PAD的面积y(单位:cm 2)与点P移动的时间x(单位:s)之间的函数关系如图②所示,图②中a与b的和为___________.解:由图②可知点P从A点运动到B点的时间为10s,又因为P点运动的速度为1cm/s,所以AB=10×1=10(cm),由AD=9可知点P在边BC上的运动时间为9s,所以a=10+9=19;分别过B点、C两点作BE⊥AD于E,CF⊥AD于F.由图②知S△ABD=36,则12×9×BE=36,解得BE=8,在直角△ABE中,由勾股定理,得AE=AB 2-BE2=6.易证△BAE≌△CDF,则BE=CF=8,AE=DF=6,AF=AD+DF=9+6=15.在直角△ACF中,由勾股定理,得CA=AF 2+CF2=17,则点P在CA边上从C点运动到A点的时间为17s,所以b=19+17=36,a+b=19+36=55.同类题型1.1 如图,已知正方形ABCD的边长为4,E是BC边上的一个动点,AE⊥EF,EF交DC于点F,设BE=x,FC=y,则当点E从点B运动到点C时,y关于x的函数图象是()A .B .C .D .解:∵AE ⊥EF ,∴∠AEB +∠FCE =90°∵四边形ABCD 是正方形,∴∠B =∠C =90° AB =BC =4, ∴∠BAE +∠AEB =90°,∴∠BAE =∠FCE , ∴△ABE ∽△ECF ,∴AB EC =BEFC, ∵BE =x ,FC =y ,∴EC =4-x ,则有44-x =xy,整理后得y =-14x 2 +x 配方后得到y =-14(x -2)2+1从而得到图象为抛物线,开口朝下,顶点坐标为(2,1). 选C .同类题型1.2如图,在矩形ABCD 中,AB =2,AD =3,点E 是BC 边上靠近点B 的三等分点,动点P 从点A 出发,沿路径A →D →C →E 运动,则△APE 的面积y 与点P 经过的路径长x 之间的函数关系用图象表示大致是( )A .B .C .D .解:∵在矩形ABCD 中,AB =2,AD =3, ∴CD =AB =2,BC =AD =3,∵点E 是BC 边上靠近点B 的三等分点,∴CE =23×3=2,①点P 在AD 上时,△APE 的面积y =12x ﹒2=x (0≤x ≤3),②点P 在CD 上时,S △APE =S _(梯形AECD )-S _(△ADP )-S _(△CEP ), =12(2+3)×2-12×3×(x -3)-12 ×2×(3+2-x ), =5-32x +92 -5+x ,=-12x +92,∴y =-12x +92(3<x ≤5),③点P 在CE 上时,S △APE =12×(3+2+2-x )×2=-x +7,∴y =-x +7(5<x ≤7), 选A .同类题型1.3 如图,菱形ABCD 的边长为2,∠A =60°,一个以点B 为顶点的60°角绕点B 旋转,这个角的两边分别与线段AD 的延长线及CD 的延长线交于点P 、Q ,设DP =x ,DQ =y ,则能大致反映y 与x 的函数关系的图象是( )A .B .C .D .解:∵四边形ABCD 是菱形,∠A =60°,∴∠ABD =∠CBD =∠ADB =∠BDC =60°, ∴∠BDQ =∠BDP =120°, ∵∠QBP =60°, ∴∠QBD =∠PBC , ∵AP ∥BC , ∴∠P =∠PBC , ∴∠QBD =∠P , ∴△BDQ ∽△PDB , ∴DQ BD =BD PD ,即y 2=2x , ∴xy =4,∴y 与x 的函数关系的图象是双曲线, 选A .例2.如图,等边△ABC 的边长为2cm ,点P 从点A 出发,以1cm/s 的速度沿AC 向点C 运动,到达点C 停止;同时点Q 从点A 出发,以2cm/s 的速度沿AB -BC 向点C 运动,到达点C 停止,设△APQ 的面积为y (cm 2),运动时间为x (s ),则下列最能反映y 与x 之间函数关系的图象是( )A .B .C .D .解:由题得,点Q 移动的路程为2x ,点P 移动的路程为x , ∠A =∠C =60°,AB =BC =2,①如图,当点Q 在AB 上运动时,过点Q 作QD ⊥AC 于D ,则 AQ =2x ,DQ = 3 x ,AP =x ,∴△APQ 的面积y =12×x ×3x =32x 2(0<x ≤1),即当0<x ≤1时,函数图象为开口向上的抛物线的一部分,故A 、B 排除;②如图,当点Q 在BC 上运动时,过点Q 作QE ⊥AC 于E ,则CQ =4-2x ,EQ =23- 3 x ,AP =x ,∴△APQ 的面积y =12×x ×(23-3x )=-32x 2+ 3 x (1<x ≤2),即当1<x ≤2时,函数图象为开口向下的抛物线的一部分,故C 排除,而D 正确; 选D .同类题型2.1 如图1,E 为矩形ABCD 边AD 上的一点,点P 从点B 沿折线BE -ED -DC 运动到点C 时停止,点Q 从点B 沿BC 运动到点C 时停止,它们运动的速度都是2cm/s .若P 、Q 同时开始运动,设运动时间为t (s ),△BPQ 的面积为y (cm 2),已知y 与t 的函数关系图象如图2,则下列结论错误的是( )A .AE =12cmB .sin ∠EBC =74C .当0<t ≤8时,y =72t 2 D .当t =9s 时,△PBQ 是等腰三角形解:A 、分析函数图象可知,当点Q 到达点C 时,点P 到达点E 处, ∴BC =BE =2×8=16cm ,ED =2×2=4cm ,∴AE =AD -ED =BC -ED =16-4=12cm ,故A 正确; B 、作EF ⊥BC 于点F ,如图,由函数图象可知,BC =BE =16cm ,BF =AE =12cm , 由勾股定理得,EF =47 cm ,∴sin ∠EBC =EF BE =4716=74,故B 正确;C 、作PM ⊥BQ 于点M ,如图,∵BQ =BP =2t ,∴y =S △BPQ =12BQ ﹒PM =12BQ ﹒BP ﹒sin ∠EBC =12×2t ﹒2t ﹒74=72t 2.故C 正确;D 、当t =9s 时,点Q 与点C 重合,点P 运动到ED 的中点,设为N ,如图所示,连接NB ,N C . 此时AN =14,ND =2,由勾股定理求得:NB =211 ,NC =229 , ∵BC =16,∴△BCN 不是等腰三角形,即此时△PBQ 不是等腰三角形.故D 错误; 选D .同类题型2.2 矩形ABCD 中,AB =6,BC =8,动点P 从点B 出发以每秒2个单位长的速度沿BA -AD -DCD 的方向运动到C 点停止,动点Q 以每秒1个单位的速度沿BC 方向运动到C 点停止,假设P 、两点同时出发,运动时间是t 秒,y=S △PBQ ,则y 与t 的函数图象大致是( )A .B .C .D . 解:①当0<t ≤3时,△PBQ 是Rt △,y =12×t ×2t =t 2;②当3<t ≤7时,y =12 ×t ×6=3t ;③当7<t ≤8时,y =12t (20-2t )=-t 2+10t ;④当8<t ≤10时,y =12×8(20-2t )=80-8t ;观察各选项可知,y 与t 的函数图象大致是选项D . 选D .同类题型2.3 如图,矩形ABCD 中,AB =8cm ,AD =12cm ,AC 与BD 交于点O ,M 是BC 的中点.P 、Q 两点沿着B →C →D 方向分别从点B 、点M 同时出发,并都以1cm/s 的速度运动,当点Q 到达D 点时,两点同时停止运动.在P 、Q 两点运动的过程中,与△OPQ 的面积随时间t 变化的图象最接近的是( )A .B .C .D .解:∵矩形ABCD 中,AB =8cm ,AD =12cm ,AC 与BD 交于点O ,∴点O 到BC 的距离=12 AB =4,到CD 的距离=12AD =6, ∵点M 是BC 的中点,∴CM =12BC =6, ∴点Q 到达点C 的时间为6÷1=6秒,点P 到达点C 的时间为12÷1=12秒,点Q 到达点D 的时间为(6+8)÷1=14秒,①0≤t ≤6时,点P 、Q 都在BC 上,PQ =6,△OPQ 的面积=12×6×4=12; ②6<t ≤12时,点P 在BC 上,点Q 在CD 上,C P =12-t ,CQ =t -6,S △OPQ =S △COP +S △COQ -S △PCQ ,=12×(12-t )×4+12×(t -6)×6-12×(12-t )×(t -6), =12t 2 -8t +42, =12(t -8)2 +10, ③12<t ≤14时,PQ =6,△OPQ 的面积=12×6×6=18; 纵观各选项,只有B 选项图形符合.选B .例3.如图,正六边形ABCDEF 的边长为6cm ,P 是对角线BE 上一动点,过点P 作直线l 与BE 垂直,动点P 从B 点出发且以1cm/s 的速度匀速平移至E 点.设直线l 扫过正六边形ABCD EF 区域的面积为S (cm 2 ),点P 的运动时间为t (s ),下列能反映S 与t 之间函数关系的大致图象是( )A .B .C .D .解:由题意得:BP =t ,如图1,连接AC ,交BE 于G ,Rt △ABG 中,AB =6,∠ABG =60°,∴∠BAG =30°,∴BG =12 AB =3,由勾股定理得:AG =62-32=3 3 ,∴AC =2AG =6 3 ,当0≤t ≤3时,PM = 3 t ,∴MN =2 3 t ,S =S △BMN =12MN ﹒PB =12﹒3t 2=32t 2,所以选项A 和B 不正确;如图2,当9≤t ≤12时,PE =12-t ,∵∠MEP =60°,∴tan ∠MEP =PM PE , ∴PM = 3 (12-t ),∴MN =2PM =2 3 (12-t ),∴S =S _(正六边形)-S _(△EMN ),=2×12(AF +BE )×AG -12MN ﹒PE , =(6+12)×33-12×2 3 (12-t )(12-t ), =543-3(144-24t +t 2 ),=-3t 2+243t -90 3 ,此二次函数的开口向下,所以选项C 正确,选项D 不正确;选C .同类题型3.1 如图,在平面直角坐标系中,四边形OBCD 是边长为4的正方形,平行于对角线BD 的直线l 从O 出发,沿x 轴正方向以每秒1个单位长度的速度运动,运动到直线l 与正方形没有交点为止.设直线l 扫过正方形OBCD 的面积为S ,直线l 运动的时间为t (秒),下列能反映S 与t 之间函数关系的图象是( )A .B .C .D .解:①当0≤t ≤4时,S =12×t ×t =12t 2 ,即S =12t 2 .该函数图象是开口向上的抛物线的一部分.故B 、C 错误;②当4<t ≤8时,S =16-12×(8-t )×(8-t )=-12t 2 +8t -16. 该函数图象是开口向下的抛物线的一部分.故A 错误.选D .同类题型3.2(2015秋﹒荆州校级月考)如图,△ABC 中,∠ACB =90°,∠A =30°,AB =16.点P 是斜边AB 上一点.过点P 作PQ ⊥AB ,垂足为P ,交边AC (或边CB )于点Q .设AP =x ,当△APQ 的面积为14 3 时,则x 的值为( )A .2 21B .2 21 或14C .2或2 21 或14D .2或14解:当点Q 在AC 上时,∵∠A =30°,AP =x ,∴PQ =x tan30°=33x , ∴S =12×AP ×PQ =12×x ×33=36x 2=14 3 解得:x =221 或x =-221 (舍去),当点Q 在BC 上时,如下图所示:∵AP =x ,AB =16,∠A =30°,∴BP =16-x ,∠B =60°,∴PQ =BP ﹒tan60°= 3 (16-x ).∴S =12AP ×PQ =32x 2+83x =14 3 , 解得:x =2(舍去)或x =14.选B .同类题型3.3 如图1,在平面直角坐标系中,将▱ABCD 放置在第一象限,且AB ∥x 轴.直线y =-x 从原点出发沿x 轴正方向平移,在平移过程中直线被平行四边形截得的线段长度l 与直线在x 轴上平移的距离m 的函数图象如图2所示,那么AD 的长为____________.解:①当AB >4时如图1,由图可知:OE =4,OF =8,DG =3 2 ,∴EF =AG =OF -OE =4∵直线解析式为:y =-x∴∠AGD =∠EFD =45°∴△AGD 是等腰直角三角形∴DH =GH =22DG =22×3 2 =3, ∴AH =AG -GH =4-3=1,∴AD =DH 2+AH 2=32+12=10 ;②当AB =4时,如图2,由图可知:OI =4,OJ =8,KB =3 2 ,OM =9,∴IJ =AB =4,IM =AN =5,∵直线解析式为:y =-x , ∴△KLB 是等腰直角三角形, ∴KL =BL =22KB =3, ∵AB =4,∴AL =AB -BL =1,T 同①得,DM =MN ,∴过K 作KM ∥IM ,∴tan ∠DAN =KL AL =3,∴AM =DM tan ∠DAN =DM 3, ∴AN =AM +MN =43DM =5, ∴DM =MN =154, ∴AM =AN -MN =5-154=54, ∴AD =AM 2+DM 2=5104,故答案为10 或5104.例4.如图,△ABC 为直角三角形,∠C =90°,BC =2cm ,∠A =30°,四边形DEFG 为矩形,DE =2 3 cm ,EF =6cm ,且点C 、B 、E 、F 在同一条直线上,点B 与点E 重合.Rt △ABC 以每秒1cm 的速度沿矩形DEFG 的边EF 向右平移,当点C 与点F 重合时停止.设Rt △ABC 与矩形DEFG 的重叠部分的面积为y cm 2 ,运动时间xs .能反映y cm 2 与xs 之间函数关系的大致图象是( )A .B .C. D .解:已知∠C =90°,BC =2cm ,∠A =30°,∴AB =4,由勾股定理得:AC =2 3 ,∵四边形DEFG 为矩形,∠C =90,∴DE =GF =2 3 ,∠C =∠DEF =90°,∴AC ∥DE ,此题有三种情况:(1)当0<x <2时,AB 交DE 于H ,如图∵DE ∥AC ,∴EHAC =BEBC ,即EH 23=x ﹒12 ,解得:EH = 3 x ,所以y =12﹒3x ﹒x =32x 2,∵x y 之间是二次函数,所以所选答案C 错误,答案D 错误,∵a =32 >0,开口向上;(2)当2≤x ≤6时,如图,此时y =12×2×23=2 3 , (3)当6<x ≤8时,如图,设△ABC 的面积是s 1 ,△FNB 的面积是s 2 ,BF =x -6,与(1)类同,同法可求FN =3X -6 3 ,∴y =s 1-s 2 ,=12×2×23-12×(x -6)×(3X -6 3 ), =-32x 2+63x -16 3 , ∵-32<0, ∴开口向下,所以答案A 正确,答案B 错误,选A .同类题型4.1 如图,菱形ABCD 的边长为1,菱形EFGH 的边长为2,∠BAD =∠FEH =60°点C 与点E 重合,点A ,C (E ),G 在同一条直线上,将菱形ABCD 沿C ⇒G 方向平移至点A 与点G 重合时停止,设点C 、E 之间的距离为x ,菱形ABCD 与菱形EFGH 重叠部分的面积为y ,则能大致反映y 与x 之间函数关系的图象是( )A .B .C .D .解:由菱形ABCD 、EFGH 边长为1,2可得:AC =2AB ×sin30°= 3 ,EG =2 3(1)当菱形ABCD 移动到点A 与点E 重合的过程,即0≤x ≤ 3 时,重合部分的菱形的两条对角线长度分别为:x ,2×x 2×tan30°=3x 3∴y =12﹒x ﹒3x 3=36x 2(2)当菱形ABCD 移动到点C 与点G 重合的过程,重合部分的菱形面积不变,即3<x ≤2 3 时,y =S 菱形ABCD =12×1×3=32; (3)当菱形ABCD 移动到点A 与点G 重合的过程,即23<x ≤33时,重合部分的菱形的两条对角线长度分别为: 3 -x ,2×3-x 2×tan30°=3(3-x )3y =12×(3-x )×3(3-x )3=36(3-x )2 . 由(1)(2)(3)可以看出图象应该是y =36x 2 图上像0≤x ≤ 3 时的部分,y =32 图象上3<x ≤2 3 时的部分,y =36(3-x )2 图象上23<x ≤33时的部分组成. 选D .同类题型4.2 如图,等边△ABC 的边AB 与正方形DEFG 的边长均为2,且AB 与DE 在同一条直线上,开始时点B 与点D 重合,让△ABC 沿这条直线向右平移,直到点B 与点E 重合为止,设BD 的长为x ,△ABC 与正方形DEFG 重叠部分(图中阴影部分)的面积为y ,则y 与x 之间的函数关系的图象大致是( )A .B .C .D .解:设BD 的长为x ,△ABC 与正方形DEFG 重合部分(图中阴影部分)的面积为y ,当B 从D 点运动到DE 的中点时,即0≤x ≤1时,y =12×x ×3x =32x 2 . 当B 从DE 中点运动到E 点时,即1<x ≤2时,y =3-12(2-x )×3(2-x )=-32x 2+23x - 3 由函数关系式可看出D 中的函数图象与所求的分段函数对应.选D .同类题型4.3 如图,四边形ABCD 是边长为1的正方形,四边形EFGH 是边长为2的正方形,点D 与点F 重合,点B ,D (F ),H 在同一条直线上,将正方形ABCD 沿F ⇒H 方向平移至点B 与点H 重合时停止,设点D 、F 之间的距离为x ,正方形ABCD 与正方形EFGH 重叠部分的面积为y ,则能大致反映y 与x 之间函数关系的图象是( )A .B .C .D .解:DF =x ,正方形ABCD 与正方形EFGH 重叠部分的面积为y y =12DF 2=12x 2(0≤x < 2 );②y =1(2≤x <2 2 );③∵BH =3 2 -x∴y =12BH 2=12x 2-32x +9(22≤x <3 2 ).综上可知,图象是选B .。

中考数学复习《填空压轴题——最短路径问题》专项测试卷(含参考答案)

中考数学复习《填空压轴题——最短路径问题》专项测试卷(含参考答案)

中考数学复习《填空压轴题——最短路径问题》专项测试卷(含参考答案)学校:___________班级:___________姓名:___________考号:___________1.如图所示,某乡镇A、B、C、D、E五个村庄位于同一条笔直的公路边,相邻两个村庄的距离分别为AB =1千米,BC=3千米,CD=2千米,DE=1.5千米.乡村扶贫改造期间,该乡镇打算在此间新建一个便民服务点M,使得五个村庄到便民服务点的距离之和最小,则这个最小值为千米.2.如图,A、B两个小集镇在河流CD的同侧,分别到河的距离为AC=10千米,BD=30千米,且CD=30千米,现在要在河边建一自来水厂,向A、B两镇供水,铺设水管的费用为每千米3万元,若在河流CD上选择水厂的位置M,使铺设水管的费用最节省,则总费用是万元.3.已知点A(2,-4),直线y=-x-2与y轴交于点B,在x轴上找一点P,使得P A+PB的值最小,则点P的坐标为.4.如图,长方体的长、宽、高分别为8、4、5,一只蚂蚁沿长方体表面从顶点A爬到顶点B,则它走过的路程最短为.5.如图,圆柱的底面半径为4cm,高为7cm,蚂蚁在圆柱侧面爬行,从A点到B点,最短的路程是厘米.(保留π)6.如图,在等腰△ABC中AB=AC=6,∠ACB=75°,AD⊥BC于D,点M、N分别是线段AB、AD上的动点,则MN+BN的最小值是.7.如图,在矩形ABCD中AB=4,AD=6点P在边AD上,点Q在边BC上,且AP=CQ,连接CP,QD则PC+QD 的最小值等于.8.如图,已知正方形ABCD的边长为4,点E是AB边上一动点,连接ED,将ED绕点E顺时针旋转90°到EF,连接DF,CF则DF+CF的最小值是.9.如图,在平行四边形ABCD中AB=6,BC=8,∠ABC=60°,在线段AD上取一点E,使得DE=2,连接BQ的最小值为.BE,在线段AE,BE上分别取一点P,Q,则PQ+1210.如图,在菱形ABCD中AB=4 ∠DAB=60° 点E是对角线AC上一个动点点F是边AB上一个动点连接EF EB则EB+EF的最小值为.11.等腰直角∠ABC中∠C=90° AC=BC=6 D为线段AC上一动点连接BD过点C作CH∠BD于H连接AH则AH的最小值为.12.如图1 一只蚂蚁从圆锥底端点A出发绕圆锥表面爬行一周后回到点A将圆锥沿母线OA剪开其侧面展开图如图2所示若∠AOA′=120° OA=√3则蚂蚁爬行的最短距离是.13.如图已知⊙O中直径AB=8√3半径OC⊥AB点D是半圆AB的三等分点点P是半径OC上的动点当PB+PD的值最小时PO的长为.14.如图矩形OABC在平面直角坐标系中的位置如图所示点B的坐标为(3,4)D是OA的中点点E在AB上当△CDE的周长最小时则点E的坐标为.15.如图等边△ABC和等边△A′B′C的边长都是4 点B,C,B′在同一条直线上点P在线段A′C上则AP+BP的最小值为.16.如图∠ABC=20∘点D E分别在射线BC BA上且BD=3BE=3点M N分别是射线BA BC上的动点求DM+MN+NE的最小值为.17.如图直线y=x+1与x轴y轴分别相交于点A和点B若点P(1 m)使得P A+PB的值最小点Q(1 n)使得|QA−QB|的值最大则m+n=.18.如图已知A(1 1)B(3 9)是抛物线y=x2上的两点在y轴上有一动点P当△P AB的周长最小时则此时△P AB的面积为.19.如图在四边形ABCD中∠BAD=∠B=∠D=90° AD=AB=4 E是AD中点M是边BC上的一个动点N是边CD上的一个动点则AM+MN+EN的最小值是.20.已知如图:抛物线y=12x2−32x−2与x轴的交点为A B.与y轴的交点为C.以AB为直径的⊙P交y轴于C D.点M为线段AB上一动点点N为线段BC一动点则MC+MN的最小值是.参考答案1.解:当便民服务点在A或E时由A E为两端点可知此时五个村庄到便民服务点的距离之和最长;当便民服务点M在B时五个村庄到便民服务点的距离之和为AB+BC+BD+BE=1+3+(3+2)+(3+2+1.5) =15.5千米;当便民服务点M在C时五个村庄到便民服务点的距离之和为AC+BC+CD+CE=(1+3)+3+2+ (2+1.5)=12.5千米;当便民服务点M在D时五个村庄到便民服务点的距离之和为AD+BD+CD+DE=(1+3+2)+(3+2) +2+1.5=14.5千米.综上可知当便民服务点M在C时五个村庄到便民服务点的距离之和最小最小值为12.5千米.故答案为:12.5.2.解:作点A关于CD的对称点A′连接A′B与CD交于点M过点A′作A′K⊥BD交BD延长线于点K∠A′C=AC=10千米AM=A′M∠AM+BM=A′M+BM≥A′B即AM+BM的最小值为A′B的长此时铺设水管的费用最节省∠BD⊥CD,AA′⊥CD,A′C⊥A′K∠∠A′CD=∠CDK=∠CA′K=90°∠四边形A′CDK是矩形∠DK=A ′C=10千米 A ′K=CD=30千米∠BK=BD+DK=40千米∠A ′B=√302+402=50千米∠此时总费用为50×3=150万元.故答案为:1503.解:作点B 关于x 轴的对称点B ′ 连接AB ′ 交x 轴于P 连接PB 此时P A +PB 的值最小.当x =2时 y =﹣2-2=﹣4∠点A (2 ﹣4)在直线y =﹣x -2上当x =0时,y =﹣2∠点B 的坐标是(0 ﹣2)∠点B ′的坐标是(0 2)设直线AB ′的解析式为y =kx +b把A (2 ﹣4) B ′(0 2)代入得到{b =22k +b =−4解得{k =−3b =2∠直线AB ′的解析式为y =﹣3x +2令y =0 得到x =23 ∠P (23 0)故答案为:(23 0).4.解:第一种情况:把我们所看到的前面和右面组成一个平面则这个长方形的长和宽分别是12和5则所走的最短线段是√122+52=13;第二种情况:把我们看到的右面与上面组成一个长方形则这个长方形的长和宽分别是13和4所以走的最短线段是√132+42=√185;第三种情况:把我们所看到的上面和后面组成一个长方形则这个长方形的长和宽分别是9和8所以走的最短线段是√92+82=√145;三种情况比较而言第三种情况最短.故答案为:√145.5.解:沿过A点和过B点的母线剪开展成平面连接AB则A B的长是蚂蚁在圆柱表面从A点爬到B点的最短路程×2×4π=4πcm BC = 7cm∠AC = 12∠AB=√AC2+BC2=√(4π)2+72=√49+16π2故答案为:√49+16π26.解:如图作BH⊥AC垂足为H交AD于N′点过N′点作M′N′⊥AB垂足为M′则BN′+M′N′为所求的最小值.∠AB=AC=6AD⊥BC∠AD是∠BAC的平分线∠N′H=M′N′∠BN′+M′N′=BN′+N′H=BH∠BH⊥AC∠BH是点B到直线AC的最短距离∠AB=AC=6∠ACB=75°∠∠ABC=∠ACB=75°∠∠BAC=180°−∠ABC−∠ACB=30°∠BH=12AB=12×6=3.∠MN+BN的最小值是3.故答案为:3.7.解:如图连接BP在矩形ABCD中AD∥BC AD=BC=6∠AP=CQ∠AD−AP=BC−CQ∠DP=QB DP∥BQ∠四边形DPBQ是平行四边形∠PB∥DQ PB=DQ则PC+QD=PC+PB则PC+QD的最小值转化为PC+PB的最小值在BA的延长线上截取AE=AB=4 连接PE则BE=2AB=8∠P A∠BE∠P A是BE的垂直平分线∠PB=PE∠PC+PB=PC+PE连接CE则PC+QD=PC+PB=PC+PE≥CE∠CE=√BE2+BC2=√82+62=10∠PC+PB的最小值为10即PC+QD的最小值为10故答案为:10.8.解:连接BF过点F作FG⊥AB交AB延长线于点G∵EF⊥DE ∴∠AED+∠FEG=90°∵∠AED+∠EDA=90°∴∠EDA=∠FEG在△AED和△GFE中{∠A=∠FGE∠EDA=∠FEGDE=EF∴ΔAED≌ΔGFE∴FG=AE ∴F点在射线BF上运动作点C关于BF的对称点C′∵EG=DA FG=AE∴AE=BG∴BG=FG∴∠FBG=45°∴∠CBF=45°∴C′点在AB的延长线上当D F C′三点共线时DF+CF=DC′最小在RtΔADC′中AD=4AC′=AB+BC′=AB+BC=8∴DC′=4√5∴DF+CF的最小值为4√5.故答案为:4√5.9.解:在平行四边形ABCD中AD∠BC AD=BC∠∠AEB=∠EBC∠AB=6 BC=8 DE=2∠AE=8-2=6∠AE=AB∠∠AEB=∠ABE∠∠ABE=∠EBC∠∠ABC=60°∠∠EBC=30°过点Q作QM∠BC于点M过点P作PN∠BC于点N过点A作AH∠BC于点H如图所示:BQ则QM=12BQ最小值即为PN的长∠PQ+12∠AD∠BC∠PN=AH∠∠BAH=30° AB=6∠BH=3根据勾股定理可得AH=PN=3√3BQ的最小值为3√3∠PQ+12故答案为:3√3.10.解:连接DE DF.∠四边形ABCD是菱形∠DE=BE∠EB+EF=ED+EF当D E F在同一直线上且DF⊥AB时EB+EF最短∠AB=4 ∠DAB=60°∠AFD=90°∠∠ADF=30°AD=2∠AF=12∠DF=√AD2−AF2=√42−22=2√3即EB+EF的最小值为2√3.故答案为:2√3.11.解:如图以BC为直径作圆∠CH∠BD∠CHB=90°∠点H在圆上OA=√62+32=3√5OH=3当点O,H,A三点共线时AH最小为OA−OH=3√5−3故答案为:3√5−312.解:如图连接AA′作OB⊥AA′于点B∠AA′即为蚂蚁爬行的最短距离∠OA =OA′ ∠AOA′=120°∠∠OAB =30°在△OAB 中OB ⊥AA′ ∠OAB =30°∠OB =12OA =12×√3=√32 ∠AB =√OA 2−OB 2=√(√3)2−(√32)2=32在△AOA′中OA =OA′ OB ⊥AA′∠AB =A′B∠AA′=2AB =2×32=3. ∠蚂蚁爬行的最短距离为3.故答案为:313.解:连接DO ,DA ,DA 与OC 交于点P∠OC ⊥AB 点O 为AB 的中点∠点B 关于OC 的对称点是点A∠DA 与OC 的交点P 使得PB +PD 的值最小∠点D 是半圆AB ⏜的三等分点∠∠DOB =60°∠∠DAB =30°∠∠AOP =90°,OA =12AB AB =8√3 ∠PAO =30°∠OA =4√3∠OP=OA·tan30°=4√3×√33=4故答案为:4.14.解:如图作点D关于直线AB的对称点H连接CH与AB的交点为E此时△CDE的周长最小.∠点B的坐标为(3,4)D OH=是OA的中点∠A(3,0)D(32,0)C(0,4)∠OH=3+32=92∠H(92,0)设直线CH的解析式为y=kx+4把H(92,0)代入得0=92k+4∠k=−89∠直线CH的解析式为y=−89x+4∠x=3时y=43∠点E坐标(3,43)故答案为:(3,43).15.解:如图连接PB′∠△ABC和△A′B′C都是边长为4的等边三角形∠AC=B′C,∠ACB=∠A′CB′=60°∠∠ACA′=60°∠∠ACA′=∠A′CB′在△ACP和△B′CP中{AC=B′C∠ACA′=∠A′CB′CP=CP∠△ACP≌△B′CP(SAS)∠AP=B′P∠AP+BP=BP+B′P∠当点P与点C重合时点A与点B′关于A′C对称AP+BP的值最小正好等于BB′的长∠AP+BP的最小值为4+4=8故答案为:8.16.解:如图所示:作点D关于AB的对称点G作点E关于BC的对称点H连接GH交AB于点M交BC于点N连接DM EN此时DM+MN+NE的值最小.根据对称的性质可知:DB=BG=3∠GBE=∠DBE=20°BH=BE=3∠HBD=∠EBD=20°∠∠GBH=60°∠ΔBGH是等边三角形∠GH=GB=HB=3∠DM+MN+NE的最小值为3.故答案为:3.17.解:过点(1 0)作x轴的垂线l则点P(1 m)点Q(1 n)在直线l上直线l交直线AB于点Q此时|QA-QB|=AB的值最大∠直线AB 的解析式为y =x +1令x =1 则y =2∠Q 的坐标为(1 2)∠n =2作出A 点关于x 轴的对称点A ′ 连接A ′B 交直线l 于点P 此时P A +PB 的值最小; 设直线A ′B 的解析式为y =kx +b∠直线AB 的解析式为y =x +1∠A (-1 0) B (0 1)∠A ′(3 0)∠{3k +b =0b =1 解得{k =13b =1∠直线A ′B 的解析式为y =-13x +1 令x =1 则y =23∠P 的坐标为(1 23). ∠m =23 ∠m +n =2+23=83. 故答案为:83.18.解:如图 作出B 关于y 轴的对称点B ′ 则BB ′∠y 轴于点H 连接AB ′交y 轴于P则点P 就是使△P AB 的周长最小时的位置.∠抛物线y =x 2的对称轴是y 轴 B B ′关于y 轴对称∠点P 在抛物线y =x 2上 且PB =PB ′∠PA +PB =PA +PB ′=AB ′∠此时△P AB 的周长最小∠B (3 9)∠B ′(﹣3 9)∠BB ′=6 点H 的坐标是(0 9)∠A (1 1)∠点A 到BB ′的距离为9-1=8设直线A B ′的直线方程为y =kx +b 把点A 和点B ′的坐标代入后得到 ∠{−3k +b =9k +b =1解得{k =−2b =3∠直线A B ′的解析式为y =﹣2x +3当x =0时 y =3∠P 点的坐标为(0 3)∠PH =OH -OP =6此时S △PAB =S △ABB ′−S △PBB ′=12×6×8−12×6×6=6即△P AB 的面积为6故答案为:6.19.解:如图 作A 点关于BC 的对称点A 1 连接A 1M 作E 点关于DC 的对称点E 1连接E 1N∠∠B =∠D =90° 点A 和点A 1关于BC 对称 点E 和点E 1关于DC 对称 ∠AM =A 1M EN =E 1N∠AM +MN +EN =A 1M +MN +E 1N ≥A 1E 1∠AM +MN +EN 的最小值是A 1E 1∠AD=AB=4 E是AD中点∠AB=A1B=4ED=E1D=2∠AA1=8AE1=6∠∠BAD=90°∠A1E1=√62+82=10故答案为:10.20.解:当y=0时12x2−32x−2=0解得x1=−1x2=4∠A(−1,0)B(4,0)当x=0时y=−2∠C(0,−2)∠AB⊥CD∠OD=OC=2∠BC=√22+42=2√5过点D作DN′⊥BC于N′交AB于M′连接BD如图∠AB⊥CD∠M′C=M′D∠M′C+M′N′=M′D+M′N′=DN′此时MC+MN的值最小∠1 2BC·DN′=12CD·OB∠DN′=2√5=8√55即MC+MN的最小值为8√55故答案为:8√55.。

2021年中考数学压轴题题型组合卷(四)【含答案】

2021年中考数学压轴题题型组合卷(四)【含答案】

2021年中考数学压轴题题型组合卷(四)(满分:30分)一、选择、填空题(共2小题,每小题3分,共6分)1.在平面直角坐标系中,将抛物线y=x2+2x+3绕着它与y轴的交点旋转180°,所得抛物线的解析式是()A.y=﹣(x+1)2+2B.y=﹣(x﹣1)2+4C.y=﹣(x﹣1)2+2D.y=﹣(x+1)2+42.如图所示,在菱形ABCD中,AB=4,∠BAD=120°,△AEF为正三角形,点E、F分别在菱形的边BC、CD上滑动,且E、F不与B、C、D重合.当点E、F在BC、CD上滑动时,则△CEF的面积最大值是.二、解答题(共2小题,每小题12分,共24分)3.如图,在平面直角坐标系xOy中,将抛物线y=x2平移,使平移后的抛物线经过点A(﹣3,0)、B(1,0).(1)求平移后的抛物线的表达式.(2)设平移后的抛物线交y轴与点C,在平移后的抛物线的对称轴上有一动点P,当BP与CP之和最小时,P 点坐标又是多少?(3)若y=x2与平移后的抛物线对称轴交于D点,那么,在平移后的抛物线的对称轴上,是否存在一点M,使得以M、O、D为顶点的三角形△BOD相似?若存在,求点M坐标;若不存在,说明理由.4.如图,在△ABC中,已知AB=AC=5,BC=6,且△ABC≌△DEF,将△DEF与△ABC重合在一起,△ABC不动,△DEF运动,并满足:点E在边BC上沿B到C的方向运动,且DE始终经过点A,EF与AC交于M点.(1)求证:△ABE∽△ECM;(2)探究:在△DEF运动过程中,重叠部分能否构成等腰三角形?若能,求出BE的长;若不能,请说明理由;(3)当线段AM最短时,求重叠部分的面积.参考答案一、选择、填空题(共2小题,每小题3分,共6分)1.在平面直角坐标系中,将抛物线y=x2+2x+3绕着它与y轴的交点旋转180°,所得抛物线的解析式是()A.y=﹣(x+1)2+2B.y=﹣(x﹣1)2+4C.y=﹣(x﹣1)2+2D.y=﹣(x+1)2+4【分析】先将原抛物线化为顶点式,易得出与y轴交点,绕与y轴交点旋转180°,那么根据中心对称的性质,可得旋转后的抛物线的顶点坐标,即可求得解析式.【解答】解:由原抛物线解析式可变为:y=(x+1)2+2,∴顶点坐标为(﹣1,2),与y轴交点的坐标为(0,3),又由抛物线绕着它与y轴的交点旋转180°,∴新的抛物线的顶点坐标与原抛物线的顶点坐标关于点(0,3)中心对称,∴新的抛物线的顶点坐标为(1,4),∴新的抛物线解析式为:y=﹣(x﹣1)2+4.故选:B.【点评】本题主要考查了抛物线一般形式及于y轴交点,同时考查了旋转180°后二次项的系数将互为相反数,难度适中.2.如图所示,在菱形ABCD中,AB=4,∠BAD=120°,△AEF为正三角形,点E、F分别在菱形的边BC、CD上滑动,且E、F不与B、C、D重合.当点E、F在BC、CD上滑动时,则△CEF的面积最大值是.【分析】先求证AB=AC,进而求证△ABC、△ACD为等边三角形,得∠4=60°,AC=AB进而求证△ABE≌△ACF,可得S△ABE=S△ACF,故根据S四边形AECF=S△AEC+S△ACF=S△AEC+S△ABE=S△ABC即可解题;当正三角形AEF的边AE与BC垂直时,边AE最短.△AEF的面积会随着AE的变化而变化,且当AE最短时,正三角形AEF 的面积会最小,又根据S△CEF=S四边形AECF﹣S△AEF,则△CEF的面积就会最大.【解答】解:如图,连接AC,∵四边形ABCD为菱形,∠BAD=120°,∠1+∠EAC=60°,∠3+∠EAC=60°,∴∠1=∠3,∵∠BAD=120°,∴∠ABC=60°,∴△ABC和△ACD为等边三角形,∴∠4=60°,AC=AB,∴在△ABE和△ACF中,,∴△ABE≌△ACF(ASA),∴S△ABE=S△ACF,∴S四边形AECF=S△AEC+S△ACF=S△AEC+S△ABE=S△ABC,是定值,作AH⊥BC于H点,则BH=2,∴S四边形AECF=S△ABC=BC•AH=BC•=4,由“垂线段最短”可知:当正三角形AEF的边AE与BC垂直时,边AE最短,∴△AEF的面积会随着AE的变化而变化,且当AE最短时,正三角形AEF的面积会最小,又∵S△CEF=S四边形AECF﹣S△AEF,则此时△CEF的面积就会最大,∴S△CEF=S四边形AECF﹣S△AEF=4﹣×2×=.故答案为:【点评】本题主要考查了菱形的性质、全等三角形判定与性质及三角形面积的计算,根据△ABE≌△ACF,得出四边形AECF的面积是定值是解题的关键.二、解答题(共2小题,每小题12分,共24分)3.如图,在平面直角坐标系xOy中,将抛物线y=x2平移,使平移后的抛物线经过点A(﹣3,0)、B(1,0).(1)求平移后的抛物线的表达式.(2)设平移后的抛物线交y轴与点C,在平移后的抛物线的对称轴上有一动点P,当BP与CP之和最小时,P点坐标又是多少?(3)若y=x2与平移后的抛物线对称轴交于D点,那么,在平移后的抛物线的对称轴上,是否存在一点M,使得以M、O、D为顶点的三角形△BOD相似?若存在,求点M坐标;若不存在,说明理由.【分析】(1)设平移后抛物线的表达式为y=a(x+3)(x﹣1).由题意可知平后抛物线的二次项系数与原抛物线的二次项系数相同,从而可求得a的值,于是可求得平移后抛物线的表达式;(2)先根据平移后抛物线解析式求得其对称轴,从而得出点C关于对称轴的对称点C′坐标,连接BC′,与对称轴交点即为所求点P,再求得直线BC′解析式,联立方程组求解可得;(3)先求得点D的坐标,由点O、B、E、D的坐标可求得OB、OE、DE、BD的长,从而可得到△EDO为等腰三角直角三角形,从而可得到∠MDO=∠BOD=135°,故此当=或=时,以M、O、D为顶点的三角形与△BOD相似.由比例式可求得MD的长,于是可求得点M的坐标.【解答】解:(1)设平移后抛物线的表达式为y=a(x+3)(x﹣1).∵由平移的性质可知原抛物线与平移后抛物线的开口大小与方向都相同,∴平移后抛物线的二次项系数与原抛物线的二次项系数相同.∴平移后抛物线的二次项系数为1,即a=1.∴平移后抛物线的表达式为y=(x+3)(x﹣1),整理得:y=x2+2x﹣3.(2)∵y=x2+2x﹣3=(x+1)2﹣4,∴抛物线对称轴为直线x=﹣1,与y轴的交点C(0,﹣3),则点C关于直线x=﹣1的对称点C′(﹣2,﹣3),如图1,连接B,C′,与直线x=﹣1的交点即为所求点P,由B(1,0),C′(﹣2,﹣3)可得直线BC′解析式为y=x﹣1,则,解得,所以点P坐标为(﹣1,﹣2);(3)如图2,由得,即D(﹣1,1),则DE=OE=1,∴△DOE为等腰直角三角形,∴∠DOE=∠ODE=45°,∠BOD=135°,OD=,∵BO=1,∴BD=,∵∠BOD=135°,∴点M只能在点D上方,∵∠BOD=∠ODM=135°,∴当=或=时,以M、O、D为顶点的三角形△BOD相似,①若=,则=,解得DM=2,此时点M坐标为(﹣1,3);②若=,则=,解得DM=1,此时点M坐标为(﹣1,2);综上,点M坐标为(﹣1,3)或(﹣1,2).【点评】本题主要考查的是二次函数的综合应用,解答本题主要应用了平移的性质、翻折的性质、二次函数的图象和性质、待定系数法求二次函数的解析式、等腰直角三角形的性质、相似三角形的判定,证得∠ODM=∠BOD =135°是解题的关键.4.如图,在△ABC中,已知AB=AC=5,BC=6,且△ABC≌△DEF,将△DEF与△ABC重合在一起,△ABC不动,△DEF运动,并满足:点E在边BC上沿B到C的方向运动,且DE始终经过点A,EF与AC交于M点.(1)求证:△ABE∽△ECM;(2)探究:在△DEF运动过程中,重叠部分能否构成等腰三角形?若能,求出BE的长;若不能,请说明理由;(3)当线段AM最短时,求重叠部分的面积.【分析】(1)由AB=AC,根据等边对等角,可得∠B=∠C,又由△ABC≌△DEF与三角形外角的性质,易证得∠CEM=∠BAE,则可证得:△ABE∽△ECM;(2)首先由∠AEF=∠B=∠C,且∠AME>∠C,可得AE≠AM,然后分别从AE=EM与AM=EM去分析,注意利用全等三角形与相似三角形的性质求解即可求得答案;(3)首先设BE=x,由△ABE∽△ECM,根据相似三角形的对应边成比例,易得CM=﹣+x=﹣(x﹣3)2+,继而求得AM的值,利用二次函数的性质,即可求得线段AM的最小值,继而求得重叠部分的面积.【解答】(1)证明:∵AB=AC,∴∠B=∠C,∵△ABC≌△DEF,∴∠AEF=∠B,又∵∠AEF+∠CEM=∠AEC=∠B+∠BAE,∴∠CEM=∠BAE,∴△ABE∽△ECM;(2)能.解:∵∠AEF=∠B=∠C,且∠AME>∠C,∴∠AME>∠AEF,∴AE≠AM;当AE=EM时,则△ABE≌△ECM,∴CE=AB=5,∴BE=BC﹣EC=6﹣5=1,当AM=EM时,则∠MAE=∠MEA,∴∠MAE+∠BAE=∠MEA+∠CEM,即∠CAB=∠CEA,又∵∠C=∠C,∴△CAE∽△CBA,∴,∴CE=,∴BE=6﹣=;∴BE=1或.(3)解:设BE=x,又∵△ABE∽△ECM,∴,即:,∴CM=﹣+x=﹣(x﹣3)2+,∴AM=5﹣CM═(x﹣3)2+,∴当x=3时,AM最短为,又∵当BE=x=3=BC时,∴点E为BC的中点,∴AE⊥BC,∴AE==4,此时,EF⊥AC,∴EM==,S△AEM=.【点评】此题考查了相似三角形的判定与性质、全等三角形的判定与性质以及二次函数的最值问题.此题难度较大,注意数形结合思想、分类讨论思想与函数思想的应用是解此题的关键.。

2020江苏省中考数学选择填空压轴题专题:《三角形综合问题》(含答案)

2020江苏省中考数学选择填空压轴题专题:《三角形综合问题》(含答案)

专题: 三角形综合问题例1.如图所示,矩形ABCD 中,AB =4,BC =4 3 ,点E 是折线ADC 上的一个动点(点E 与点A 不重合),点P 是点A 关于BE 的对称点.在点E 运动的过程中,使△PCB 为等腰三角形的点E 的位置共有( )A .2个B .3个C .4个D .5个同类题型1.1 如图,在钝角△ABC 中,分别以AB 和AC 为斜边向△ABC 的外侧作等腰直角三角形ABE 和等腰直角三角形ACF ,EM 平分∠AEB 交AB 于点M ,取BC 中点D ,AC 中点N ,连接DN 、DE 、DF .下列结论:①EM =DN ;②S △CDN =13S 四边形ABDN ;③DE =DF ;④DE ⊥DF .其中正确的结论的个数是( )A .1个B .2个C .3个D .4个同类题型1.2 如图,D ,E 分别是△ABC 的边BC ,AC 上的点,若∠B =∠C ,∠ADE =∠AED ,则( )A .当∠B 为定值时,∠CDE 为定值 B .当∠1为定值时,∠CDE 为定值C .当∠2为定值时,∠CDE 为定值D .当∠3为定值时,∠CDE 为定值同类题型1.3 如图,在△ABC 中,AB =AC =2 3 ,∠BAC =120°,点D 、E 都在边BC 上,∠DAE =60°.若BD =2CE ,则DE 的长为______________.例2.如图,在直角梯形ABCD 中,AD ∥BC ,∠ABC =90°,AB =BC ,E 为AB 边上一点,∠BCE =15°,且AE =A D .连接DE 交对角线AC 于H ,连接BH .下列结论: ①ACD ≌△ACE ;②△CDE 为等边三角形;③EH =2EB ;④S △AEH S △CEH = EHCD.其中正确的结论是________.同类题型2.1 如图所示,已知:点A(0,0),B( 3 ,0),C(0,1)在△ABC内依次作等边三角形,使一边在x轴上,另一个顶点在BC边上,作出的等边三角形分别是第1个△AA1B1,第2个△B1A2B2,第3个△B2A3B3,…,则第n个等边三角形的边长等于____________.同类题型2.2 如图,点P在等边△ABC的内部,且PC=6,PA=8,PB=10,将线段PC绕点C顺时针旋转60°得到P'C,连接AP',则sin∠PAP'的值为_________.例3.如图,在△ABC中,∠ABC和∠ACB的平分线相交于点O,过点O作EF∥BC交AB于E,交AC于F,过点O作OD⊥AC于D.下列四个结论:①∠BOC=90°+12∠A;②以E为圆心、BE为半径的圆与以F为圆心、CF为半径的圆外切;③EF是△ABC的中位线;④设OD=m,AE+AF=n,则S△AEF=12mn.其中正确的结论是()A.①②③B.①③④C.②③④D.①②④同类题型3.1 如图所示,四边形ABCD中,DC∥AB,BC=1,AB=AC=AD=2.则BD的长为()A.14 B.15 C.3 2 D.2 3同类题型3.2 如图,在Rt △ABC 中,BC =2,∠BAC =30°,斜边AB 的两个端点分别在相互垂直的射线OM 、ON 上滑动,下列结论:①若C 、O 两点关于AB 对称,则OA =23;②C 、O 两点距离的最大值为4; ③若AB 平分CO ,则AB ⊥CO ;④斜边AB 的中点D 运动路径的长为π2 ;其中正确的是______________(把你认为正确结论的序号都填上).同类题型3.3 如图,直角△ABC 中,∠B =30°,点O 是△ABC 的重心,连接CO 并延长交AB 于点E ,过点E 作EF ⊥AB 交BC 于点F ,连接AF 交CE 于点M ,则MOMF的值为( )A .12B .54C .23D .33例4.如图,在△ABC 中,4AB =5AC ,AD 为△ABC 的角平分线,点E 在BC 的延长线上,EF ⊥AD 于点F ,点G 在AF 上,FG =FD ,连接EG 交AC 于点H .若点H 是AC 的中点,则AGFD的值为________.同类题型4.1 如图,已知CO 1 是△ABC 的中线,过点O 1 作O 1E 1 ∥AC 交BC 于点E 1 ,连接AE 1 交CO 1 于点O 2 ;过点O 2 作O 2E 2 ∥AC 交BC 于点E 2 ,连接AE 2 交CO 1 于点O 3 ;过点O 3 作O 3E 3 ∥AC 交BC 于点E 3 ,…,如此继续,可以依次得到点O 4 ,O 5 ,…,O n 和点E 4 ,E 5 ,…,E n ,则O 2016E 2016 =_________A C .同类题型4.2 如图,过锐角△ABC 的顶点A 作DE ∥BC ,AB 恰好平分∠DAC ,AF 平分∠EAC 交BC 的延长线于点F .在AF 上取点M ,使得AM = 13 AF ,连接CM 并延长交直线DE 于点H .若AC =2,△AMH 的面积是112,则1tan ∠ACH的值是___________.例5. 如图,△ABC 的面积为S .点P 1 ,P 2 ,P 3 ,…,P n -1 是边BC 的n 等分点(n ≥3,且n 为整数),点M ,N 分别在边AB ,AC 上,且AM AB= AN AC = 1n,连接MP 1 ,MP 2 ,MP 3 ,…,MP n -1 ,连接NB ,NP 1 ,NP 2 ,…,NP n -1 ,线段MP 1 与NB 相交于点D 1 ,线段MP 2 与NP 1 相交于点D 2 ,线段MP 3 与NP 2 相交于点D 3 ,…,线段MP n -1 与NP n -2 相交于点D n -1 ,则△ND 1P 1 ,△ND 2P 2 ,△ND 3P 3 ,…,△ND n -1P n -1 的面积和是 ____________.(用含有S 与n 的式子表示)同类题型5.1如图,四边形ABCD 是边长为9的正方形纸片,将其沿MN 折叠,使点B 落在CD 边上的B ′处,点A 对应点为A ′,且B ′C =3,则AM 的长是 ( )A .1.5B .2C .2.25D .2.5同类题型5.2 如图,△ABC 中,∠BAC =90°,AB =3,AC =4,点D 是BC 的中点,将△ABD 沿AD 翻折得到△AED ,连CE ,则线段CE 的长等于 ( )A .2B .54C .53D .75同类题型5.3 如图,在Rt △ABC 中,∠A =90°,AB =AC ,BC = 2 +1,点M ,N 分别是边BC ,AB 上的动点,沿MN 所在的直线折叠∠B ,使点B 的对应点B ′始终落在边AC 上,若△MB ′C 为直角三角形,则BM 的长为____________.同类题型5.4 如图,在矩形ABCD 中,∠B 的平分线BE 与AD 交于点E ,∠BED 的平分线EF 与DC 交于点F ,若AB=9,DF=2FC,则BC=_________________.(结果保留根号)参考答案例1.如图所示,矩形ABCD中,AB=4,BC=4 3 ,点E是折线ADC上的一个动点(点E与点A不重合),点P是点A关于BE的对称点.在点E运动的过程中,使△PCB为等腰三角形的点E的位置共有()A.2个 B.3个 C.4个 D.5个解:①BP为等腰三角形一腰长时,符合点E的位置有2个,是BC的垂直平分线与以B为圆心BA为半径的圆的交点即是点P;②BP为底边时,C为顶点时,符合点E的位置有2个,是以B为圆心BA为半径的圆与以C为圆心BC为半径的圆的交点即是点P;③以PC为底边,B为顶点时,这样的等腰三角形不存在,因为以B为圆心BA为半径的圆与以B为圆心BC 为半径的圆没有交点.选C.同类题型1.1 如图,在钝角△ABC中,分别以AB和AC为斜边向△ABC的外侧作等腰直角三角形ABE和等腰直角三角形ACF,EM平分∠AEB交AB于点M,取BC中点D,AC中点N,连接DN、DE、DF.下列结论:①EM=DN;②S△CDN=13S四边形ABDN;③DE=DF;④DE⊥DF.其中正确的结论的个数是()A.1个 B.2个 C.3个 D.4个解:∵D是BC中点,N是AC中点,∴DN 是△ABC 的中位线, ∴DN ∥AB ,且DN =12AB ;∵三角形ABE 是等腰直角三角形,EM 平分∠AEB 交AB 于点M , ∴M 是AB 的中点, ∴EM =12 AB ,又∵DN =12 AB ,∴EM =DN , ∴结论①正确;∵DN ∥AB , ∴△CDN ∽ABC , ∵DN =12 AB ,∴S △CDN =14S △ABC ,∴S △CDN =13 S _(四边形ABDN ),∴结论②正确;如图1,连接MD 、FN ,∵D 是BC 中点,M 是AB 中点, ∴DM 是△AB C 的中位线, ∴DM ∥AC ,且DM =12AC ;∵三角形ACF 是等腰直角三角形,N 是AC 的中点, ∴FN =12 AC ,又∵DM =12AC ,∴DM =FN ,∵DM ∥AC ,DN ∥AB ,∴四边形AMDN 是平行四边形, ∴∠AMD =∠AND ,又∵∠EMA =∠FNA =90°, ∴∠EMD =∠DNF , 在△EMD 和△DNF 中,⎩⎪⎨⎪⎧EM =DN∠EMD =∠DNF MD =NF ,∴△EMD ≌△DNF , ∴DE =DF , ∴结论③正确;如图2,连接MD ,EF ,NF ,∵三角形ABE 是等腰直角三角形,EM 平分∠AEB , ∴M 是AB 的中点,EM ⊥AB ,∴EM =MA ,∠EMA =90°,∠AEM =∠EAM =45°,∴EM EA =sin45°=22, ∵D 是BC 中点,M 是AB 中点, ∴DM 是△ABC 的中位线,∴DM ∥AC ,且DM =12AC ;∵三角形ACF 是等腰直角三角形,N 是AC 的中点, ∴FN =12 AC ,∠FNA =90°,∠FAN =∠AFN =45°,又∵DM =12 AC ,∴DM =FN =22FA , ∵∠EMD =∠EMA +∠AMD =90°+∠AMD , ∠EAF =360°-∠EAM -∠FAN -∠BAC =360°-45°-45°-(180°-∠AMD ) =90°+∠AMD ∴∠EMD =∠EAF ,在△EMD 和△∠EAF 中,⎩⎪⎨⎪⎧EM EA =DM FA =22∠EMD =∠EAF∴△EMD ∽△∠EAF , ∴∠MED =∠AEF ,∵∠MED +∠AED =45°, ∴∠AED +∠AEF =45°, 即∠DEF =45°, 又∵DE =DF , ∴∠DFE =45°,∴∠EDF =180°-45°-45°=90°, ∴DE ⊥DF , ∴结论④正确.∴正确的结论有4个:①②③④. 选D .同类题型1.2 如图,D ,E 分别是△ABC 的边BC ,AC 上的点,若∠B =∠C ,∠ADE =∠AED ,则( ) A .当∠B 为定值时,∠CDE 为定值 B .当∠1为定值时,∠CDE 为定值 C .当∠2为定值时,∠CDE 为定值 D .当∠3为定值时,∠CDE 为定值解:在△CDE 中,由三角形的外角性质得,∠AED =∠CDE +∠C ,在△ABD 中,由三角形的外角性质得,∠B +∠1=∠ADC =∠ADE +∠CDE , ∵∠B =∠C ,∠ADE =∠AED ,∴∠B +∠1=∠CDE +∠C +∠CDE =2∠CDE +∠B , ∴∠1=2∠CDE ,∴当∠1为定值时,∠CDE 为定值. 选B .同类题型1.3 如图,在△ABC 中,AB =AC =2 3 ,∠BAC =120°,点D 、E 都在边BC 上,∠DAE =60°.若BD =2CE ,则DE 的长为______________.解:将△ABD 绕点A 逆时针旋转120°得到△ACF ,取CF 的中点G ,连接EF 、EG ,如图所示.∵AB =AC =2 3 ,∠BAC =120°, ∴∠ACB =∠B =∠ACF =30°, ∴∠ECG =60°. ∵CF =BD =2CE , ∴CG =CE ,∴△CEG 为等边三角形, ∴EG =CG =FG ,∴∠EFG =∠FEG =12∠CGE =30°,∴△CEF 为直角三角形.∵∠BAC =120°,∠DAE =60°, ∴∠BAD +∠CAE =60°,∴∠FAE =∠FAC +∠CAE =∠BAD +∠CAE =60°.在△ADE 和△AFE 中,⎩⎪⎨⎪⎧AD =AF∠DAE =∠FAE =60°AE =AE,∴△ADE ≌△AFE (SAS ),∴DE =FE .设EC =x ,则BD =CD =2x ,DE =FE =6-3x , 在Rt △CEF 中,∠CEF =90°,CF =2x ,EC =x ,EF =CF 2-EC 2= 3 x ,∴6-3x = 3 x , x =3- 3 ,∴DE =3x =3 3 -3.例2.如图,在直角梯形ABCD 中,AD ∥BC ,∠ABC =90°,AB =BC ,E 为AB 边上一点,∠BCE =15°,且AE =A D .连接DE 交对角线AC 于H ,连接BH .下列结论: ①ACD ≌△ACE ;②△CDE 为等边三角形;③EH =2EB ;④S △AEH S △CEH = EHCD.其中正确的结论是________.解:①∵∠ABC =90°,AB =BC , ∴∠BAC =∠ACB =45°, 又∵∠BAD =90°, ∴∠BAC =∠DAC , 在△ACD 和△ACE 中,⎩⎪⎨⎪⎧AD =AE∠EAC =∠DAC AC =AC ,∴△ACD ≌△ACE (SAS );故①正确;②同理∠AED =45°,∠BEC =90°-∠BCE =90°-15°=75°, ∴∠DEC =60°, ∵△ACD ≌△ACE , ∴CD =CE ,∴△CDE 为等边三角形.故②正确.③∵△CHE 为直角三角形,且∠HEC =60° ∴EC =2EH∵∠ECB =15°, ∴EC ≠4EB ,∴EH ≠2EB ;故③错误. ④∵AE =AD ,CE =CD ,∴点A 与C 在DE 的垂直平分线上, ∴AC 是DE 的垂直平分线, 即AC ⊥DE , ∴CE >CH , ∵CD =CE , ∴CD >CH ,∵∠BAC =45°, ∴AH =EH ,∵S △AEH S △CEH =AH CH =EH CH, ∴S △AEH S △CEH >EHCD,故④错误. 答案为:①②.同类题型2.1 如图所示,已知:点A (0,0),B ( 3 ,0),C (0,1)在△ABC 内依次作等边三角形,使一边在x 轴上,另一个顶点在BC 边上,作出的等边三角形分别是第1个△AA 1B 1 ,第2个△B 1A 2B 2 ,第3个△B 2A 3B 3 ,…,则第n 个等边三角形的边长等于____________.解:∵OB = 3 ,OC =1, ∴BC =2,∴∠OBC =30°,∠OCB =60°.而△AA 1B 1 为等边三角形,∠A 1AB 1 =60°, ∴∠COA 1 =30°,则∠CA 1 O =90°. 在Rt △CAA 1 中,AA 1=32OC =32, 同理得:B 1A 2=12A 1B 1=322,依此类推,第n 个等边三角形的边长等于32n.同类题型2.2 如图,点P 在等边△ABC 的内部,且PC =6,PA =8,PB =10,将线段PC 绕点C 顺时针旋转60°得到P 'C ,连接AP ',则sin ∠PAP '的值为_________.解:连接PP ′,如图,∵线段PC 绕点C 顺时针旋转60°得到P 'C ,∴CP =CP ′=6,∠PCP ′=60°,∴△CPP ′为等边三角形,∴PP ′=PC =6,∵△ABC 为等边三角形,∴CB =CA ,∠ACB =60°,∴∠PCB =∠P ′CA ,在△PCB 和△P ′CA 中⎩⎪⎨⎪⎧PC =P ′C∠PCB =∠P ′CA CB =CA, ∴△PCB ≌△P ′CA ,∴PB =P ′A =10,∵62+82=102 ,∴PP ′2+AP 2=P ′A 2 ,∴△APP ′为直角三角形,∠APP ′=90°,∴sin ∠PAP ′=PP ′P ′A =610=35.同类题型2.4例3.如图,在△ABC 中,∠ABC 和∠ACB 的平分线相交于点O ,过点O 作EF ∥BC 交AB 于E ,交AC 于F ,过点O 作OD ⊥AC 于D .下列四个结论:①∠BOC =90°+ 12∠A ; ②以E 为圆心、BE 为半径的圆与以F 为圆心、CF 为半径的圆外切;③EF 是△ABC 的中位线;④设OD =m ,AE +AF =n ,则S △AEF = 12mn . 其中正确的结论是( )A .①②③B .①③④C .②③④D .①②④解:∵在△ABC 中,∠ABC 和∠ACB 的平分线相交于点O ,∴∠OBC =12 ∠ABC ,∠OCB =12 ∠ACB ,∠A +∠ABC +∠ACB =180°,∴∠OBC +∠OCB =90°-12 ∠A ,∴∠BOC =180°-(∠OBC +∠OCB )=90°+12 ∠A ;故①正确;过点O 作OM ⊥AB 于M ,作ON ⊥BC 于N ,连接OA ,∵在△ABC 中,∠ABC 和∠ACB 的平分线相交于点O ,∴ON =OD =OM =m ,∴S △AEF =S △AOE +S △AOF =12AE ﹒OM +12AF ﹒OD =12OD ﹒(AE +AF )=12 mn ;故④正确;∵在△ABC 中,∠ABC 和∠ACB 的平分线相交于点O ,∴∠EBO =∠OBC ,∠FCO =∠OCB ,∵EF ∥BC ,∴∠EOB =∠OBC ,∠FOC =∠OCB ,∴∠EBO =∠EOB ,∠FOC =∠FCO ,∴EB =EO ,FO =FC ,∴EF =EO +FO =BE +CF ,∴以E 为圆心、BE 为半径的圆与以F 为圆心、CF 为半径的圆外切,故②正确,根据已知不能推出E 、F 分别是AB 、AC 的中点,故③正确,∴其中正确的结论是①②④选D .同类题型3.1 如图所示,四边形ABCD 中,DC ∥AB ,BC =1,AB =AC =AD =2.则BD 的长为()A .14B .15C .3 2D .2 3解:以A 为圆心,AB 长为半径作圆,延长BA 交⊙A 于F ,连接DF .∵DC ∥AB ,∴⌒DF =⌒BC ,∴DF =CB =1,BF =2+2=4,∵FB 是⊙A 的直径,∴∠FDB =90°,∴BD =BF 2-DF 2=15 . 选B .同类题型3.2 如图,在Rt △ABC 中,BC =2,∠BAC =30°,斜边AB 的两个端点分别在相互垂直的射线OM 、ON 上滑动,下列结论:①若C 、O 两点关于AB 对称,则OA =2 3 ;②C 、O 两点距离的最大值为4;③若AB 平分CO ,则AB ⊥CO ;④斜边AB 的中点D 运动路径的长为π2; 其中正确的是______________(把你认为正确结论的序号都填上).解:在Rt △ABC 中,∵BC =2,∠BAC =30°,∴AB =4,AC =42-22=2 3 ,①若C 、O 两点关于AB 对称,如图1,∴AB 是OC 的垂直平分线, 则OA =AC =2 3 ;所以①正确;②如图1,取AB 的中点为E ,连接OE 、CE ,∵∠AOB =∠ACB =90°,∴OE=CE=12AB =2, 当OC 经过点E 时,OC 最大,则C 、O 两点距离的最大值为4;所以②正确;③如图2,当∠ABO =30°时,∠OBC =∠AOB =∠ACB =90°,∴四边形AOBC 是矩形,∴AB 与OC 互相平分,但AB 与OC 的夹角为60°、120°,不垂直,所以③不正确;④如图3,斜边AB 的中点D 运动路径是:以O 为圆心,以2为半径的圆周的14,则:90π×2180 =π, 所以④不正确;综上所述,本题正确的有:①②.同类题型3.3 如图,直角△ABC 中,∠B =30°,点O 是△ABC 的重心,连接CO 并延长交AB 于点E ,过点E 作EF ⊥AB 交BC 于点F ,连接AF 交CE 于点M ,则MO MF的值为( ) A .12 B .54 C .23 D .33解:∵点O 是△ABC 的重心,∴OC =23CE , ∵△ABC 是直角三角形,∴CE =BE =AE ,∵∠B =30°,∴∠FAE =∠B =30°,∠BAC =60°,∴∠FAE =∠CAF =30°,△ACE 是等边三角形,∴CM =12CE , ∴OM =23CE -12CE =16 CE ,即OM =16AE , ∵BE =AE ,∴EF =33AE , ∵EF ⊥AB ,∴∠AFE =60°,∴∠FEM =30°,∴MF=36AE,∴MOMF=16AE36AE=33.选D.例4.如图,在△ABC中,4AB=5AC,AD为△ABC的角平分线,点E在BC的延长线上,EF⊥AD于点F,点G在AF上,FG=FD,连接EG交AC于点H.若点H是AC的中点,则AGFD的值为________.解:已知AD为角平分线,则点D到AB、AC的距离相等,设为h.∵BDCD=S△ABDS△ACD=12AB﹒h12AC﹒h=ABAC=54,∴BD=54C D.如右图,延长AC,在AC的延长线上截取AM=AB,则有AC=4CM.连接DM.在△ABD与△AMD中,⎩⎪⎨⎪⎧AB=AM∠BAD=∠MADAD=AD∴△ABD≌△AMD(SAS),∴MD=BD=54C D.过点M作MN∥AD,交EG于点N,交DE于点K.∵MN∥AD,∴CK =14CD , ∴KD =54C D . ∴MD =KD ,即△DMK 为等腰三角形,∴∠DMK =∠DKM .由题意,易知△EDG 为等腰三角形,且∠1=∠2;∵MN ∥AD , ∴∠3=∠4=∠1=∠2,又∵∠DKM =∠3(对顶角)∴∠DMK =∠4,∴DM ∥GN ,∴四边形DMNG 为平行四边形,∴MN =DG =2F D .∵点H 为AC 中点,AC =4CM ,∴AH MH =23. ∵MN ∥AD , ∴AG MN =AH MH ,即AG 2FD =23, ∴AG FD =43 .同类题型4.1 如图,已知CO 1 是△ABC 的中线,过点O 1 作O 1E 1 ∥AC 交BC 于点E 1 ,连接AE 1 交CO 1 于点O 2 ;过点O 2 作O 2E 2 ∥AC 交BC 于点E 2 ,连接AE 2 交CO 1 于点O 3 ;过点O 3 作O 3E 3 ∥AC 交BC 于点E 3 ,…,如此继续,可以依次得到点O 4 ,O 5 ,…,O n 和点E 4 ,E 5 ,…,E n ,则O 2016E 2016 =_________A C .解:∵O 1E 1 ∥AC ,∴∠BO 1E 1 =∠BAC ,∠BE 1O 1 =∠BCA ,∴△BO 1E 1 ∽△BAC ,∴BO 1BA =O 1E 1AC.∵CO 1 是△ABC 的中线, ∴BO 1BA =O 1E 1AC =12 . ∵O 1E 1 ∥AC ,∴∠O 1E 1O 2=∠CAO 2 ,∠E 1O 1O 2=∠ACO 2 ,∴△E 1O 1O 2∽△ACO 2 ,∴E 1O 1AC =E 1O 2AO 2=12. ∵O 2E 2 ∥AC ,∴E 1O 2E 1A =O 2E 2AC =13, ∴O 2E 2=13A C . 同理:O n E n =1n +1A C . ∴O 2016E 2016=12016+1=12017.同类题型4.2 如图,过锐角△ABC 的顶点A 作DE ∥BC ,AB 恰好平分∠DAC ,AF 平分∠EAC 交BC 的延长线于点F .在AF 上取点M ,使得AM = 13 AF ,连接CM 并延长交直线DE 于点H .若AC =2,△AMH 的面积是112,则1tan ∠ACH的值是___________.解:过点H 作HG ⊥AC 于点G ,∵AF 平分∠CAE ,DE ∥BF ,∴∠HAF =∠AFC =∠CAF ,∴AC =CF =2,∵AM =13AF ,∴AM MF =12, ∵DE ∥CF ,∴△AHM ∽△FCM ,∴AM MF =AH CF, ∴AH =1,设△AHM 中,AH 边上的高为m ,△FCM 中CF 边上的高为n ,∴m n =AM MF =12, ∵△AMH 的面积为:112, ∴112=12AH ﹒m ∴m =16, ∴n =13, 设△AHC 的面积为S ,∴S S △AHM =m +n m=3, ∴S =3S △AHM =14, ∴12AC ﹒HG =14, ∴HG =14, ∴由勾股定理可知:AG =154 , ∴CG =AC -AG =2-154 ∴1tan ∠ACH =CG HG=8-15 .例5. 如图,△ABC 的面积为S .点P 1 ,P 2 ,P 3 ,…,P n -1 是边BC 的n 等分点(n ≥3,且n 为整数),点M ,N 分别在边AB ,AC 上,且AM AB = AN AC = 1n,连接MP 1 ,MP 2 ,MP 3 ,…,MP n -1 ,连接NB ,NP 1 ,NP 2 ,…,NP n -1 ,线段MP 1 与NB 相交于点D 1 ,线段MP 2 与NP 1 相交于点D 2 ,线段MP 3 与NP 2 相交于点D 3 ,…,线段MP n -1 与NP n -2 相交于点D n -1 ,则△ND 1P 1 ,△ND 2P 2 ,△ND 3P 3 ,…,△ND n -1P n -1 的面积和是 ____________.(用含有S 与n 的式子表示)解:连接MN ,设BN 交MP 1 于O 1 ,MP 2 交NP 1 于O 2 ,MP 3 交NP 2 于O 3 .∵AM AB =AN AC =1n, ∴MN ∥BC , ∴MN BC =AM AB =1n , ∵点P 1 ,P 2 ,P 3 ,…,P n -1 是边BC 的n 等分点,∴MN =BP 1=P 1P 2=P 2P 3 ,∴四边形MNP 1 B ,四边形MNP 2P 1 ,四边形MNP 3P 2 都是平行四边形,易知S △ABN =1n ﹒S ,S △BCN =n -1n ﹒S ,S △MNB =n -1n 2 ﹒S , ∴S △BP 1O 1=S △P 1P 2O 2=S △P 3P 2O 3=n -12n 2 ﹒S ,∴S 阴=S △NBC -(n -1)﹒S △BP 1O 1-S △NPn -1C =n -1n ﹒S -(n -1)﹒n -12n 2﹒S -n -1 n 2S =(n -1)22n 2 ﹒S .同类题型5.1如图,四边形ABCD 是边长为9的正方形纸片,将其沿MN 折叠,使点B 落在CD 边上的B ′处,点A 对应点为A ′,且B ′C =3,则AM 的长是( )A .1.5B .2C .2.25D .2.5解:设AM =x ,连接BM ,MB ′,在Rt △ABM 中,AB 2+AM 2=BM 2 ,在Rt △MDB ′中,B ′M 2=MD 2+DB ′2 ,∵MB =MB ′,∴AB 2+AM 2=BM 2=B ′M 2=MD 2+DB ′2 ,即92+x 2=(9-x )2+(9-3)2 ,解得x =2,即AM =2,故选B .同类题型5.2 如图,△ABC 中,∠BAC =90°,AB =3,AC =4,点D 是BC 的中点,将△ABD 沿AD 翻折得到△AED ,连CE ,则线段CE 的长等于( )A .2B .54C .53D .75解:如图连接BE 交AD 于O ,作AH ⊥BC 于H .在Rt △ABC 中,∵AC =4,AB =3,∴BC =32+42 =5,∵CD =DB ,∴AD =DC =DB =52 , ∵12﹒BC ﹒AH =12﹒AB ﹒AC , ∴AH =125, ∵AE =AB ,∴点A 在BE 的垂直平分线上.∵DE =DB =DC ,∴点D 在BE 使得垂直平分线上,△BCE 是直角三角形, ∴AD 垂直平分线段BE ,∵12﹒AD ﹒BO =12﹒BD ﹒AH , ∴OB =125, ∴BE =2OB =245, 在Rt △BCE 中,EC =BC 2-BE 2=52-(245)2=75, 选D .同类题型5.3 如图,在Rt △ABC 中,∠A =90°,AB =AC ,BC = 2 +1,点M ,N 分别是边BC ,AB 上的动点,沿MN 所在的直线折叠∠B ,使点B 的对应点B ′始终落在边AC 上,若△MB ′C 为直角三角形,则BM 的长为____________.解:①如图1,当∠B ′MC =90°,B ′与A 重合,M 是BC 的中点,∴BM =12BC =122+12; ②如图2,当∠MB ′C =90°,∵∠A =90°,AB =AC ,∴∠C =45°,∴△CMB ′是等腰直角三角形, ∴CM = 2 MB ′,∵沿MN 所在的直线折叠∠B ,使点B 的对应点B ′,∴BM =B ′M ,∴CM = 2 BM ,∵BC = 2 +1,∴CM +BM =2BM +BM = 2 +1,∴BM =1,综上所述,若△MB ′C 为直角三角形,则BM 的长为122+12或1.同类题型5.4 如图,在矩形ABCD 中,∠B 的平分线BE 与AD 交于点E ,∠BED 的平分线EF 与DC 交于点F ,若AB =9,DF =2FC ,则BC =_________________.(结果保留根号)解:延长EF 和BC ,交于点G∵矩形ABCD 中,∠B 的角平分线BE 与AD 交于点E ,∴∠ABE =∠AEB =45°,∴AB =AE =9,∴直角三角形ABE 中,BE =92+92=9 2 ,又∵∠BED 的角平分线EF 与DC 交于点F ,∴∠BEG =∠DEF∵AD∥BC∴∠G=∠DEF∴∠BEG=∠G∴BG=BE=9 2由∠G=∠DEF,∠EFD=∠GFC,可得△EFD∽△GFC∴CGDE=CFDF=CF2CF=12设CG=x,DE=2x,则AD=9+2x=BC ∵BG=BC+CG∴92=9+2x+x解得x=3 2 -3∴BC=9+2(32-3)=6 2 +3.。

江苏省无锡地区中考数学选择填空压轴题专题5三角形综合问题(含答案)67

江苏省无锡地区中考数学选择填空压轴题专题5三角形综合问题(含答案)67

专题05三角形综合问题例1.以下列图,矩形ABCD中,AB=4,BC=43,点E是折线ADC上的一个动点〔点E与点A 不重合〕,点P是点A对于BE的对称点.在点E运动的过程中,使△PCB为等腰三角形的点E的地点共有〔〕A.2个B.3个C.4个D.5个同类题型:如图,在钝角△ABC中,分别以AB和AC为斜边向△ABC的外侧作等腰直角三角形ABE和等腰直角三角形ACF,EM均分∠AEB交AB于点M,取BC中点D,AC中点N,连结DN、DE、DF.以下结论:①EM=DN;②S1=S△CDN3四边形ABDN;③DE=DF;④DE⊥DF.此中正确的结论的个数是〔〕A.1个B.2个C.3个D.4个同类题型:如图,D,E分别是△ABC的边BC,AC上的点,假定∠B=∠C,∠ADE=∠AED,那么〔〕A.当∠B为定值时,∠C.当∠2为定值时,∠CDE为定值CDE为定值B.当∠1D.当∠3为定值时,∠为定值时,∠CDE为定值CDE为定值同类题型:如图,在△ABC中,AB=AC=23,∠BAC=120°,点D、E都在边BC上,∠DAE=60°.假定BD=2CE,那么DE的长为______________.例2.如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=BC,E为AB边上一点,∠BCE =15°,且AE=AD.连结DE交对角线AC于H,连结BH.以下结论:①ACD≌△ACE;②△CDE为等边三角形;③S△AEHEH=2EB;④=S△CEH EHCD.此中正确的结论是________.同类题型:以下列图,:点A〔0,0〕,B〔3,0〕,C〔0,1〕在△ABC内挨次作等边三角形,使一边在x轴上,另一个极点在BC边上,作出的等边三角形分别是第1个△AA1B1,第2个△B1A2B2,第3个△B2A3B3,,那么第n个等边三角形的边长等于____________.同类题型:如图,点P在等边△ABC的内部,且PC=6,PA=8,PB=10,将线段PC绕点C顺时针旋转60°获得P'C,连结AP',那么sin∠PAP'的值为_________.例3.如图,在△ABC中,∠ABC和∠ACB的均分线订交于点O,过点O 作EF∥BC交AB于E,交AC于F,过点O作OD⊥AC于D.以下四个结论:1①∠BOC=90°+2∠A;②以E为圆心、BE为半径的圆与以F为圆心、CF为半径的圆外切;1③EF是△ABC的中位线;④设OD=m,AE+AF=n,那么S△AEF=2mn.此中正确的结论是〔〕A.①②③B.①③④C.②③④D.①②④同类题型:以下列图,四边形ABCD中,DC∥AB,BC=1,AB=AC=AD=2.那么BD的长为〔〕A. 14 B. 15 C.3 2 D.2 3同类题型:如图,在Rt△ABC中,BC=2,∠BAC=30°,斜边AB的两个端点分别在相互垂直的射线OM、ON上滑动,以下结论:①假定C、O两点对于AB对称,那么OA=23;②C、O两点距离的最大值为4;π③假定AB均分CO,那么AB⊥CO;④斜边AB的中点D运动路径的长为2;此中正确的选项是______________〔把你以为正确结论的序号都填上〕.同类题型:如图,直角△ABC中,∠B=30°,点O是△ABC的重心,连结CO并延伸交AB于点E,过点E作EF⊥AB交BC于点F,连结AF交CE于点M,MO那么MF的值为〔〕1523A.2B.4C.3D.3例4.如图,在△ABC中,4AB=5AC,AD为△ABC的角均分线,点E在BC的延伸线上,EF⊥AD于点F,点G在AF上,FG=FD,连结EG交AC于点H.假定点HAG是AC的中点,那么FD的值为________.同类题型:如图,CO1是△ABC的中线,过点O1作O1E1∥AC交BC于点E1,连结AE1交CO1于点O2;过点O2作O2E2∥AC交BC于点E2,连结AE2交CO1于点O3;过点O3作O3E3∥AC交BC于点E3,,这样持续,能够挨次获得点O4,O5,,On和点E4,E5,,En,那么O2021E2021=_________AC.同类题型:如图,过锐角△ABC的极点A作DE∥BC,AB恰巧均分∠DAC,AF1均分∠EAC交BC的延伸线于点F.在AF上取点M,使得AM=3AF,连结CM并延伸交直线DE 于点.假定=2,△的面积是1,那么1的值是H AC AMH12tan∠ACH___________.例5.如图,△ABC的面积为S.点P1,P2,P3,,Pn-1是边BC的n等分点〔n≥3,且n为整数〕,点M,N分别在边AB,AC上,且AMAN1,连==nABAC接MP,MP,MP,,MP,连结NB,NP,NP,,NP,线123n-112n-1段MP与NB订交于点D,线段MP与NP订交于点D,线段MP与NP订交1121232于点D,,线段MP与NP订交于点D ,那么△NDP,△NDP,n-1n-2n-11122ND3P3,,△NDn-1Pn-1的面积和是____________.〔用含有S与n的式子表示〕同类题型:如图,四边形ABCD是边长为9的正方形纸片,将其沿MN折叠,使点B落在CD边上的B′处,点A对应点为A′,且B′C=3,那么AM的长是〔〕A. B.2 C. D.同类题型:如图,△ABC中,∠BAC=90°,AB=3,AC=4,点D是BC的中点,将△ABD沿AD翻折获得△AED,连CE,那么线段CE的长等于〔〕557A.2B.4C.3D.5同类题型:如图,在Rt△ABC中,∠A=90°,AB=AC,BC=2+1,点M,N分别是边BC,AB上的动点,沿MN所在的直线折叠∠B,使点B的对应点B′一直落在边AC上,假定△MB′C为直角三角形,那么BM的长为____________.同类题型:如图,在矩形ABCD中,∠B的均分线BE与AD交于点E,∠BED的均分线EF与DC 交于点F,假定AB=9,DF=2FC,那么BC=_________________.〔结果保留根号〕参照答案例1.以下列图,矩形ABCD中,AB=4,BC=43,点E是折线ADC上的一个动点〔点E与点A 不重合〕,点P是点A对于BE的对称点.在点E运动的过程中,使△PCB为等腰三角形的点E的地点共有〔〕A.2个B.3个C.4个D.5个解:①BP为等腰三角形一腰长时,切合点E的地点有2个,是BC的垂直均分线与以B为圆心BA 为半径的圆的交点即是点P;BP为底边时,C为极点时,切合点E的地点有2个,是以B为圆心BA为半径的圆与以C为圆心BC 为半径的圆的交点即是点P;③以PC为底边,B为极点时,这样的等腰三角形不存在,由于以B为圆心BA为半径的圆与以B为圆心BC为半径的圆没有交点.选C.同类题型:如图,在钝角△ABC中,分别以AB和AC为斜边向△ABC的外侧作等腰直角三角形ABE和等腰直角三角形ACF,EM均分∠AEB交AB于点M,取BC中点D,AC中点N,连结DN、DE、DF.以下结论:①EM=DN;②S=1△CDN3;③DE=DF;④DE⊥DF.此中正确的结论的个数是〔〕四边形ABDNA.1个B.2个C.3个D.4个解:∵D是BC中点,N是AC中点,∴DN是△ABC的中位线,1DN∥AB,且DN=2AB;∵三角形ABE是等腰直角三角形,EM均分∠AEB交AB于点M,∴M是AB的中点,1EM=2AB,1又∵DN=2AB,EM=DN,∴结论①正确;∵DN∥AB,∴△CDN∽ABC,1DN=2AB,1∴S=S,△CDN4△ABC1S=S_(四边形ABDN),△CDN3∴结论②正确;如图1,连结MD、FN,D是BC中点,M是AB中点,∴DM是△ABC的中位线,1DM∥AC,且DM=2AC;∵三角形ACF是等腰直角三角形,N是AC的中点,1FN=2AC,1又∵DM=2AC,DM=FN,DM∥AC,DN∥AB,∴四边形AMDN是平行四边形,∴∠AMD=∠AND,又∵∠EMA=∠FNA=90°,∴∠EMD=∠DNF,在△EMD和△DNF中,EM=DN∠EMD=∠DNF,MD=NF∴△EMD≌△DNF,DE=DF,∴结论③正确;如图2,连结MD,EF,NF,∵三角形ABE是等腰直角三角形,EM均分∠AEB,M是AB的中点,EM⊥AB,EM=MA,∠EMA=90°,∠AEM=∠EAM=45°,EM2∴=sin45°=,EA2D是BC中点,M是AB中点,∴DM是△ABC的中位线,1DM∥AC,且DM=2AC;∵三角形ACF是等腰直角三角形,N是AC的中点,1FN=2AC,∠FNA=90°,∠FAN=∠AFN=45°,1又∵DM=2AC,2DM=FN=2FA,∵∠EMD=∠EMA+∠AMD=90°+∠AMD,EAF=360°-∠EAM-∠FAN-∠BAC360°-45°-45°-〔180°-∠AMD〕90°+∠AMD∴∠EMD=∠EAF,在△EMD和△∠EAF中,EMDM 2==EAFA 2∠EMD=∠EAF∴△EMD∽△∠EAF,∴∠MED=∠AEF,∵∠MED+∠AED=45°,∴∠AED+∠AEF=45°,即∠DEF=45°,又∵DE=DF,∴∠DFE=45°,∴∠EDF=180°-45°-45°=90°,DE⊥DF,∴结论④正确.∴正确的结论有4个:①②③④.选D.同类题型:如图,D,E分别是△ABC的边BC,AC上的点,假定∠B=∠C,∠ADE=∠AED,那么〔〕A.当∠B为定值时,∠CDE为定值B.当∠1为定值时,∠CDE为定值C.当∠2为定值时,∠CDE为定值D.当∠3为定值时,∠CDE为定值解:在△CDE中,由三角形的外角性质得,∠AED=∠CDE+∠C,在△ABD中,由三角形的外角性质得,∠B+∠1=∠ADC=∠ADE+∠CDE,∵∠B=∠C,∠ADE=∠AED,∴∠B+∠1=∠CDE+∠C+∠CDE=2∠CDE+∠B,∴∠1=2∠CDE,∴当∠1为定值时,∠CDE为定值.选B.同类题型:如图,在△ABC中,AB=AC=23,∠BAC=120°,点D、E都在边BC上,∠DAE=60°.假定BD=2CE,那么DE的长为______________.解:将△ABD绕点A逆时针旋转120°获得△ACF,取CF的中点G,连结EF、EG,以下列图.AB=AC=23,∠BAC=120°,∴∠ACB=∠B=∠ACF=30°,∴∠ECG=60°.CF=BD=2CE,CG=CE,∴△CEG为等边三角形,EG=CG=FG,1∴∠EFG=∠FEG=2∠CGE=30°,∴△CEF为直角三角形.∵∠BAC=120°,∠DAE=60°,∴∠BAD+∠CAE=60°,∴∠FAE=∠FAC+∠CAE=∠BAD+∠CAE=60°.AD=AF在△ADE和△AFE中,∠DAE=∠FAE=60°,AE=AE∴△ADE≌△AFE〔SAS〕,DE=FE.设EC=x,那么BD=CD=2x,DE=FE=6-3x,在Rt△CEF中,∠CEF=90°,CF=2x,EC=x,2 2EF=CF-EC=3x,6-3x=3x,x=3-3,∴DE=3x=3 3-3.例2.如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=BC,E为AB边上一点,∠BCE =15°,且AE=AD.连结DE交对角线AC于H,连结BH.以下结论:①ACD≌△ACE;②△CDE为等边三角形;③S△AEHEH=2EB;④=S△CEH EHCD.此中正确的结论是________.解:①∵∠ABC=90°,AB=BC,∴∠BAC=∠ACB=45°,又∵∠BAD=90°,∴∠BAC=∠DAC,在△ACD和△ACE中,AD=AE∠EAC=∠DAC,AC=AC∴△ACD≌△ACE 〔SAS〕;故①正确;②同理∠AED=45°,∠BEC=90°-∠BCE=90°-15°=75°,∴∠DEC=60°,∵△ACD≌△ACE,CD=CE,∴△CDE为等边三角形.故②正确.③∵△CHE为直角三角形,且∠HEC=60°EC=2EH∵∠ECB=15°,EC≠4EB,EH≠2EB;故③错误.④∵AE=AD,CE=CD,∴点A与C在DE的垂直均分线上,AC是DE的垂直均分线,即AC⊥DE,∴CE>CH,∵CD=CE,∴CD>CH,∵∠BAC=45°,∴AH=EH,S△AEHAHEH∵==,S△CEH CHCHS△AEHEH∴>,故④错误.S△CEHCD答案为:①②.同类题型:以下列图,:点A〔0,0〕,B〔3,0〕,C〔0,1〕在△ABC内挨次作等边三角形,使一边在x轴上,另一个极点在BC边上,作出的等边三角形分别是第1个△AA1B1,第2个△B1A2B2,第3个△B2A3B3,,那么第n个等边三角形的边长等于____________.解:∵OB=3,OC=1,BC=2,∴∠OBC=30°,∠OCB=60°.而△AA1B1为等边三角形,∠A1AB1=60°,∴∠COA=30°,那么∠CAO=90°.3 1 143在Rt△CAA1中,AA1=2OC=2,13同理得:B1A2=2A1B1=22,3依此类推,第n个等边三角形的边长等于.2n同类题型:如图,点P在等边△ABC的内部,且PC=6,PA=8,PB=10,将线段PC绕点C顺时针旋转60°获得P'C,连结AP',那么sin∠PAP'的值为_________.解:连结PP ′,如图,∵线段PC 绕点C 顺时针旋转60°获得P'C ,CP =CP ′=6,∠PCP ′=60°,∴△CPP ′为等边三角形, PP ′=PC =6,∵△ABC 为等边三角形,CB =CA ,∠ACB =60°,∴∠PCB =∠P ′CA , 在△PCB 和△P ′CA 中 PC =P ′C ∠PCB =∠P ′CA , CB =CA∴△PCB ≌△P ′CA , PB =P ′A =10, ∵62+82=102,2 2 2,∴PP ′+AP =P ′A ∴△APP ′为直角三角形,∠APP ′=90°, PP ′63sin∠PAP ′=P ′A =10=5.同类题型:例3.如图,在△ABC 中,∠ABC 和∠ACB 的均分线订交于点 O ,过点O 作EF ∥BC 交AB 于E ,交AC 于F ,过点O 作OD ⊥AC 于D .以下四个结论: 1①∠BOC =90°+2∠A ;②以E为圆心、BE为半径的圆与以F为圆心、CF为半径的圆外切;③EF是△ABC的中位线;1④设OD=m,AE+AF=n,那么S△AEF=2mn.此中正确的结论是〔〕A.①②③B.①③④C.②③④D.①②④解:∵在△ABC中,∠ABC和∠ACB的均分线订交于点O,1 1∴∠OBC=2∠ABC,∠OCB=2∠ACB,∠A+∠ABC+∠ACB=180°,1∴∠OBC+∠OCB=90°-2∠A,1∴∠BOC=180°-〔∠OBC+∠OCB〕=90°+2∠A;故①正确;过点O作OM⊥AB于M,作ON⊥BC于N,连结OA,∵在△ABC中,∠ABC和∠ACB的均分线订交于点O,ON=OD=OM=m,1 1 1 1S△AEF=S△AOE+S△AOF=2AE﹒OM+2AF﹒OD=2OD﹒〔AE+AF〕=2mn;故④正确;∵在△ABC中,∠ABC和∠ACB的均分线订交于点O,∴∠EBO=∠OBC,∠FCO=∠OCB,EF∥BC,∴∠EOB=∠OBC,∠FOC=∠OCB,∴∠EBO=∠EOB,∠FOC=∠FCO,EB=EO,FO=FC,EF=EO+FO=BE+CF,∴以E为圆心、BE为半径的圆与以F为圆心、CF为半径的圆外切,故②正确,依据不可以推出E、F分别是AB、AC的中点,故③正确,∴此中正确的结论是①②④选D.同类题型:以下列图,四边形ABCD中,DC∥AB,BC=1,AB=AC=AD=2.那么BD的长为〔〕A. 14 B. 15 C.3 2 D.2 3解:以A为圆心,AB长为半径作圆,延伸BA交⊙A于F,连结DF.DC∥AB,⌒⌒∴DF=BC,∴DF=CB=1,BF=2+2=4,∵FB是⊙A的直径,∴∠FDB=90°,∴BD =22.BF-DF=15选B.同类题型:如图,在Rt△ABC中,BC=2,∠BAC=30°,斜边AB的两个端点分别在相互垂直的射线OM、ON上滑动,以下结论:①假定C、O两点对于AB对称,那么OA=23;C、O两点距离的最大值为4;③假定AB均分CO,那么AB⊥CO;π④斜边AB的中点D运动路径的长为2;此中正确的选项是______________〔把你以为正确结论的序号都填上〕.解:在Rt△ABC中,∵BC=2,∠BAC=30°,AB=4,AC=42-22=23,①假定C、O两点对于AB对称,如图1,∴AB是OC的垂直均分线,那么OA=AC=23;因此①正确;②如图1,取AB的中点为E,连结OE、CE,∵∠AOB=∠ACB=90°,1OE=CE=AB=2,2当OC经过点E时,OC最大,那么C、O两点距离的最大值为4;因此②正确;③如图2,当∠ABO=30°时,∠OBC=∠AOB=∠ACB=90°,∴四边形AOBC是矩形,∴AB与OC相互均分,但AB与OC的夹角为60°、120°,不垂直,因此③不正确;1④如图3,斜边AB的中点D运动路径是:以O为圆心,以2为半径的圆周的4,那么:90π×2=π,180因此④不正确;综上所述,本题正确的有:①②.同类题型:如图,直角△ABC中,∠B=30°,点O是△ABC的重心,连结CO并延伸交AB于点E,过点E作EF⊥AB交BC于点F,连结AF交CE于点M,那么MOMF的值为〔〕1523A.2B.4C.3D.3解:∵点O是△ABC的重心,2OC=3CE,∵△ABC是直角三角形,CE=BE=AE,∵∠B=30°,∴∠FAE=∠B=30°,∠BAC=60°,∴∠FAE=∠CAF=30°,△ACE是等边三角形,1CM=2CE,2 1 1 1OM=3CE-2CE=6CE,即OM=6AE,∵BE=AE,3EF=3AE,∵EF⊥AB,∴∠AFE=60°,∴∠FEM=30°,1MF=2EF,3MF=6AE,1MO 6AE3∴==.MF 3 3AE选D.例4.如图,在△ABC中,4AB=5AC,AD为△ABC的角均分线,点E在BC的延伸线上,EF⊥AD于点F,点G在AF上,FG=FD,连结EG交AC于点H.假定点HAG是AC的中点,那么FD的值为________.解:AD为角均分线,那么点D到AB、AC的距离相等,设为h.1BDS△ABD2AB﹒h AB5∵====,CDS1AC4△AC DAC﹒h25BD=4CD.如右图,延伸AC,在AC的延伸线上截取AM=AB,那么有AC=4CM.连结DM.在△ABD与△AMD中,AB=AM∠BAD=∠MADAD=AD∴△ABD≌△AMD〔SAS〕,5MD=BD=4CD.过点M作MN∥AD,交EG于点N,交DE于点K.MN∥AD,CKCM1∴==,CDAC41CK=4CD,5KD=4CD.MD=KD,即△DMK为等腰三角形,∴∠DMK=∠DKM.由题意,易知△EDG为等腰三角形,且∠1=∠2;∵MN∥AD,∴∠3=∠4=∠1=∠2,又∵∠DKM=∠3〔对顶角〕∴∠DMK=∠4,DM∥GN,∴四边形DMNG为平行四边形,MN=DG=2FD.∵点H为AC中点,AC=4CM,AH2∴=.∵MH3∵MN∥AD,∴AGAHAG2=,即=,MNMH2FD3∴AG4.=3FD同类题型:如图,CO是△ABC的中线,过点O作OE∥AC交BC于1111点E,连结AE交CO于点O ;过点O作OE∥AC交BC于点E,连结AE111222222交CO于点O;过点O作OE∥AC交BC于点E,,这样持续,能够挨次133333获得点,O,,O和点E,E,,E,那么OE=_________AC.45n45n20212021解:∵O1E1∥AC,∴∠BOE11=∠BAC,∠BEO11=∠BCA,∴△BO1E 1∽△BAC ,BO1 O1E1BA =AC .∵CO1是△ABC 的中线,BO OE 11 11∴BA =AC =2.O1E 1∥AC ,∴∠O1E1O2=∠CAO2,∠E1O1O2=∠ACO2,∴△E1O1O 2∽△ACO2,∵ E1O1 E1O2 1∵ AC =AO =2.2∵ O2E 2∥AC ,E1O2 O2E2 1E1A=AC=3,1OE=AC.2231AC.同理:O n E n=n+11 1O2021E2021=2021+1=2021.同类题型:如图,过锐角△ABC的极点A作DE∥BC,AB恰巧均分∠DAC,AF1均分∠EAC交BC的延伸线于点F.在AF上取点M,使得AM=3AF,连结CM并11延伸交直线DE于点H.假定AC=2,△AMH的面积是12,那么tan∠ACH的值是___________.解:过点H作HG⊥AC于点G,AF均分∠CAE,DE∥BF,∴∠HAF=∠AFC=∠CAF,∴AC=CF=2,1AM=3AF,AM1∴=,∵MF2∵DE∥CF,∴△AHM∽△FCM,AMAH∴=,MFCFAH=1,设△AHM中,AH边上的高为m,△FCM中CF边上的高为n,mAM1∴==,n MF211∵△AMH的面积为:12,2112=2AH﹒m1∴m=6,1∴n=3,设△AHC的面积为S,S m+n∴==3,S△AHM m1S=3S△AHM=4,1 12AC﹒HG=4,1HG=4,15∴由勾股定理可知:AG=4,∴CG=AC-AG=2-1541CG∴==8-15.tan∠ACHHG例5.如图,△ABC的面积为S.点P1,P2,P3,,Pn-1是边BC的n 等分点〔n≥3,且n为整数〕,点M,N分别在边AB,AC上,且AMAN,连==ABAC接MP1,MP2,MP3,,MPn-1,连结NB,NP1,NP2,,NPn-1,线段MP1与NB订交于点D1,线段MP2与NP1订交于点D2,线段MP3与NP2订交于点D3,,线段MPn-1与NPn-2订交于点Dn-1,那么△NDP11,△NDP22,△ND3P3,,△NDn-1Pn-1的面积和是____________.〔用含有S与n的式子表示〕解:连结MN,设BN交MP1于O1,MP2交NP1于O2,MP3交NP2于O3.AMAN1∵==,∴ABACn∴MN∥BC,MNAM1∴==,BCABn∵点P1,P2,P3,,Pn-1是边BC的n均分点,∴MN=BP1=P1P2=P2P3,∴四边形MNPB,四边形MNPP,四边形MNPP都是平行四边形,1232易知S=1﹒S,S=n-1﹒S,S=n-1﹒S,△ABN n△BCN n△MNB2nn-1∴S△BP1O1=S△P1P2O2=S△P3P2O3=2n2﹒S,∴S=S-〔n-1〕﹒SO-SC=n-1n-1﹒S-〔n-1〕﹒阴△NBC△BP11△NPn-1n2n2 n-1(n-1)2﹒S-2S=2﹒S.n2n同类题型:如图,四边形ABCD是边长为9的正方形纸片,将其沿MN折叠,使点B落在CD边上的B′处,点A对应点为A′,且B′C=3,那么AM的长是〔〕A.B.2C.D.解:设AM=x,连结BM,MB′,222在Rt△ABM中,AB+AM=BM,222在Rt△MDB′中,B′M=MD+DB′,∵MB=MB′,2+2=2=′2=2+′2,ABAMBMBMMDDB即92+x2=〔9-x〕2+〔9-3〕2,解得x=2,即AM=2,应选B.同类题型:如图,△ABC中,∠BAC=90°,AB=3,AC=4,点D是BC的中点,将△ABD沿AD翻折获得△AED,连CE,那么线段CE的长等于〔〕557A.2B.4C.3D.5解:如图连结BE交AD于O,作AH⊥BC于H.在Rt△ABC中,∵AC=4,AB=3,BC=32+42=5,∵CD=DB,5AD=DC=DB=2,1 12﹒BC﹒AH=2﹒AB﹒AC,12AH=5,∵AE=AB,∴点A在BE的垂直均分线上.∵DE=DB=DC,∴点D在BE使得垂直均分线上,△BCE是直角三角形,∴AD垂直均分线段BE,1 12﹒AD﹒BO=2﹒BD﹒AH,12∴OB=5,24∴BE=2OB=5,在Rt△BCE中,EC=222247BC-BE=5-(5)=5,选D.同类题型:如图,在Rt△ABC中,∠A=90°,AB=AC,BC=2+1,点M,N分别是边BC,AB上的动点,沿MN所在的直线折叠∠B,使点B的对应点B′一直落在边AC上,假定△MB′C为直角三角形,那么BM的长为____________.解:①如图1,当∠B′MC=90°,B′与A重合,M是BC的中点,1 1 1BM=2BC=22+2;②如图2,当∠MB′C=90°,∵∠A=90°,AB=AC,∴∠C=45°,∴△CMB′是等腰直角三角形,CM=2MB′,∵沿MN所在的直线折叠∠B,使点B的对应点B′,BM=B′M,CM=2BM,∵BC=2+1,CM+BM=2BM+BM=2+1,BM=1,1 1综上所述,假定△MB′C为直角三角形,那么BM的长为22+2或1.同类题型:如图,在矩形ABCD中,∠B的均分线BE与AD交于点E,∠BED的均分线EF与DC 交于点F,假定AB=9,DF=2FC,那么BC=_________________.〔结果保留根号〕解:延伸EF和BC,交于点G∵矩形ABCD中,∠B的角均分线BE与AD交于点E,∴∠ABE=∠AEB=45°,AB=AE=9,∴直角三角形ABE中,BE=92+92=9 2,又∵∠BED的角均分线EF与DC交于点F,∴∠BEG=∠DEFAD∥BC∴∠G=∠DEF∴∠BEG=∠GBG=BE=92由∠G=∠DEF,∠EFD=∠GFC,可得△EFD∽△GFC CGCF CF 1∴===DEDF2CF2设CG=x,DE=2x,那么AD=9+2x=BCBG=BC+CG92=9+2x+x解得x=3 2-3∴BC=9+2〔32-3〕=6 2+3.。

2024北京中考数学二轮复习 专题一 选择、填空压轴题 (含答案)

2024北京中考数学二轮复习 专题一  选择、填空压轴题 (含答案)

2024北京中考数学二轮复习专题一选择、填空压轴题类型一分析统计图(表)1.根据国家统计局2019—2023年中国普通本专科、中等职业教育及普通高中招生人数的相关数据,绘制统计图如下:2019—2023年普遍本专科、中等职业教育及普遍高中招生人数第1题图下面有四个推断:①2019—2023年,普通本专科招生人数逐年增多;②2023年普通高中招生人数比2019年增加约4%;③2019—2023年,中等职业教育招生人数逐年减少;④2019年普通高中招生人数约是中等职业教育招生人数的1.4倍.所有合理推断的序号是()A.①④ B.②③ C.①②④D.①②③④2.为了解某校学生每周课外阅读时间的情况,随机抽取该校a 名学生进行调查,获得的数据整理后绘制成统计表如下:每周课外阅读时间x (小时)0≤x <22≤x <44≤x <66≤x <8x ≥8合计频数817b 15a 频率0.080.17c 0.151表中4≤x <6组的频数b 满足25≤b ≤35.下面有四个推断:①表中a的值为100;②表中c的值可以为0.31;③这a名学生每周课外阅读时间的中位数一定不在6~8之间;④这a名学生每周课外阅读时间的平均数不会超过6.所有合理推断的序号是()A.①②B.③④C.①②③D.②③④3.密云水库是首都北京重要水源地,水源地生态保护对保障首都水源安全及北京市生态和城市可持续发展具有不可替代的作用.以下是1986—2023年密云水库水体面积和年降水量变化图.1986—2023年密云水库水体面积和年降水量变化图第3题图(以上数据来源于《全国生态气象公报(2023年)》,部分年份缺数据)对于现有数据有以下结论:①2004年的密云水库水体面积最小,仅约为20km2;②2015—2023年,密云水库的水体面积呈持续增加趋势.表明水资源储备增多;③在1986—2023年中,2023年的密云水库水体面积最大,约为170km2;④在1986—2023年中,密云水库年降水量最大的年份,水体面积也最大.其中结论正确的是()A.②③B.②④C.①②③D.③④4.某公司计划招募一批技术人员,他们对25名面试合格人员又进行了理论知识和实践操作测试,其中25名入围者的面试成绩排名,理论知识成绩排名与实践操作成绩的排名情况如图所示第4题图下面有3个推断:①甲的理论知识成绩排名比面试成绩排名靠前;②甲的实践操作成绩排名与理论知识成绩排名相同;③乙的理论知识成绩排名比甲的理论知识成绩排名靠前.其中合理的是()A.①B.①②C.①③D.①②③5.多年来,北京市以强有力的措施和力度治理大气污染,空气质量持续改善,主要污染物的年平均浓度值全面下降.下图是1998年至2019年二氧化硫(SO2)和二氧化氮(NO2)的年平均浓度值变化趋势图.第5题图下列说法错误的是()A.1998年至2019年,SO2的年平均浓度值的平均数小于NO2的年平均浓度值的平均数B.1998年至2019年,SO2的年平均浓度值的中位数小于NO2的年平均浓度值的中位数C.1998年至2019年,SO2的年平均浓度值的方差小于NO2的年平均浓度值的方差D.1998年至2019年,SO2的年平均浓度值比NO2的年平均浓度值下降得更快6.“实际平均续航里程”是指电动汽车的行驶总里程与充电次数的比值,是反映电动汽车性能的重要指标.某汽车生产厂家为了解某型号电动汽车的“实际平均续航里程”,收集了使用该型号电动汽车1年以上的部分客户的相关数据,按年龄不超过40岁和年龄在40岁以上将客户分为A,B两组,从A,B组各抽取10位客户的电动汽车的实际平均续航里程数据整理成图.其中“⊙”表示A组的客户,“*”表示B组的客户.第6题图下列推断不正确的是()A.A组客户的电动汽车的“实际平均续航里程”的最大值低于B组B.A组客户的电动汽车的“实际平均续航里程”的方差低于B组C.A组客户的电动汽车的“实际平均续航里程”的平均值低于B组D.这20位客户的电动汽车的“实际平均续航里程”的中位数落在B组7.某种预防病虫害的农药即将于三月15日之前喷洒,需要连续三天完成,又知当最低温度不低于0摄氏度,且昼夜温差不大于10摄氏度时药物效果最佳,为此农广站工作人员查看了三月1—15日的天气预报,请你结合气温图给出一条合理建议,药剂喷洒可以安排在________日开始进行.1—15日天气情况第7题图类型二分析与判断函数图象1.如图,一个小球由静止开始沿一个斜坡滚下,其速度每秒增加的值相同.用t 表示小球滚动的时间,v 表示小球的速度.下列图象中,能表示小球在斜坡上时v 与t 的函数关系的图象大致是()第1题图2.某农科所响应“乡村振兴”号召,为某村免费提供一种优质瓜苗及大棚栽培技术.这种瓜苗先在农科所的温室中生长,平均高度长到大约20cm 时,移至该村的大棚内继续生长.研究表明,60天内,这种瓜苗的平均高度y (cm)与生长时间x (天)的函数关系的图象如图所示.当这种瓜苗长到大约80cm 时,开始开花结果,此时瓜苗在该村大棚内生长的天数是()第2题图A.10天B.18天C.33天D.48天3.有一圆形苗圃如图①所示,中间有两条交叉过道AB ,CD ,它们为苗圃⊙O 的直径,且AB ⊥C D.入口K位于AD ︵中点,园丁在苗圃圆周或两条交叉过道上匀速行进.设该园丁行进的时间为t ,与入口K 的距离为S ,表示S 与t 的函数关系的图象大致如图②所示,则该园丁行进的路线可能是()第3题图A.A →O →DB.C →A →O →BC.D →O →CD.O →D →B →C4.(2023通州区一模)为满足人民对美好生活的向往,造福子孙后代,环保部门要求相关企业加强污水治理能力,污水排放未达标的企业要限期整改.甲、乙两个企业的污水排放量W 与时间t 的关系如图所示,我们用W t表示t时刻某企业的污水排放量,用-Wt1-Wt2t1-t2的大小评价在t1至t2这段时间内某企业污水治理能力的强弱.已知甲、乙两企业在整改期间排放的污水排放量与时间的关系如下图所示.第4题图给出下列四个结论:①在t1≤t≤t2这段时间内,甲企业的污水治理能力比乙企业强;②在t1时刻,乙企业的污水排放量高;③在t3时刻,甲、乙两企业的污水排放量都已达标;④在0≤t≤t1,t1≤t≤t2,t2≤t≤t3这三段时间中,甲企业在t2≤t≤t3的污水治理能力最强.其中所有正确结论的序号是()A.①②③B.①③④C.②④D.①③5.(2023房山区一模)在平面直角坐标系xOy中,若函数图象上任意两点P(x1,y1),Q(x2,y2)均满足(x1-x2)(y1-y2)>0.下列四个函数图象中,所有正确的函数图象的序号是()第5题图A.①②B.③④C.①③D.②④类型三代数类问题1.(2023西城区期末)现有函数y +4(x <a ),2-2x (x ≥a ),如果对于任意的实数n ,都存在实数m ,使得当x =m 时,y =n ,那么实数a 的取值范围是()A.-5≤a ≤4 B.-1≤a ≤4 C.-4≤a ≤1D.-4≤a ≤52.在平面直角坐标系xOy 中,对于自变量为x 的函数y 1和y 2,若当-1≤x ≤1时,都满足|y 1-y 2|≤1成立,则称函数y 1和y 2互为“关联的”.下列函数中,不与y =x 2互为“关联的”函数是()A.y =x 2-1B.y =2x 2C.y =(x -1)2D.y =-x 2+13.(2023人大附中模拟)在数轴上有三个互不重合的点A ,B ,C ,它们代表的实数分别为a ,b ,c ,下列结论中:①若abc >0,则A ,B ,C 三点中,至少有一个点在原点右侧;②若a +b +c =0,则A ,B ,C 三点中,至少有一个点在原点右侧;③若a +c =2b ,则点B 为线段AC 的中点;④O 为坐标原点且A ,B ,C 均不与O 重合,若OB -OC =AB -AC ,则bc >0.所有正确结论的序号是()A.①② B.③④ C.①②③D.①②③④4.(2023西城区二模)从1,2,3,4,5中选择四个数字组成四位数abcd ,其中a ,b ,c ,d 分别代表千位、百位、十位、个位数字.若要求这个四位数同时满足以下条件:①abcd 是偶数;②a >b >c ;③a +c =b +d ,请写出一个符合要求的数________.5.(2023燕山区期末)在实数范围内定义一种运算“*”,其运算法则为a *b =a 2-a b.根据这个法则,下列结论中错误的是________.(把所有错误结论的序号都填在横线上)①2*3=2-6;②若a +b =0,则a *b =b *a ;③(x +2)*(x +1)=0是一元二次方程;④方程(x +2)*1=3的根是x 1=-3-52,x 2=-3+52.6.(2023丰台区一模)京剧作为一门中国文化的传承艺术,常常受到外国友人的青睐.如图,在平面直角坐标系xOy 中,某脸谱轮廓可以近似地看成是一个半圆与抛物线的一部分组合成的封闭图形,记作图形G .点A ,B ,C ,D 分别是图形G 与坐标轴的交点,已知点D 的坐标为(0,-3),AB 为半圆的直径,且AB =4,半圆圆心M 的坐标为(1,0).关于图形G 给出下列四个结论,其中正确的是________(填序号).①图形G 关于直线x =1对称;②线段CD 的长为3+3;③图形G 围成区域内(不含边界)恰有12个整点(即横、纵坐标均为整数的点);④当-4≤a ≤2时,直线y =a 与图形G 有两个公共点.第6题图7.(2023石景山区二模)在平面直角坐标系xOy 中,A (0,1),B (1,1),有以下4种说法:①一次函数y =x 的图象与线段AB 无公共点;②当b <0时,一次函数y =x +b 的图象与线段AB 无公共点;③当k >1时,反比例函数y =k x的图象与线段AB 无公共点;④当b >1时,二次函数y =x 2-bx +1的图象与线段AB 无公共点.上述说法中正确的是________.8.(2023一七一中学模拟)小聪用描点法画出了函数y =x (x ≥0)的图象F ,如图所示.结合旋转的知识,他尝试着将图象F 绕原点逆时针旋转90°得到图象F 1,再将图象F 1绕原点逆时针旋转90°得到图象F 2,如此继续下去,得到图象F n .在尝试的过程中,他发现点P (4,2)在图象________上(写出一个正确的即可);若点P (a ,b )在图象F 2021上,则a =________(用含b 的代数式表示).第8题图9.如图,A (0,1),B (1,5),曲线BC 是双曲线y =k x(k ≠0)的一部分,曲线AB 与BC 组成图形G ,由点C 开始不断重复图形G 形成一线“波浪线”,若点P (2023,m ),Q (x ,n )在该“波浪线”上,则m 的值为________.n 的最大值为________.第9题图类型四几何类问题1.(2023海淀区一模)如图,在平面直角坐标系xOy中,AB,CD,EF,GH是正方形OPQR 边上的线段,点M在其中某条线段上,若射线OM与x轴正半轴的夹角为α,且sinα>cosα,则点M所在的线段可以是()第1题图A.AB和CDB.AB和EFC.CD和GHD.EF和GH2.程老师制作了如图①所示的学具,用来探究“边边角条件是否可确定三角形的形状”问题.操作学具时,点Q在轨道槽AM上运动,点P既能在以A为圆心、以8为半径的半圆轨道槽上运动,也能在轨道槽QN上运动.图②是操作学具时,所对应某个位置的图形的示意图.第2题图有以下结论:①当∠PAQ=30°,PQ=6时,可得到形状唯一确定的△PAQ;②当∠PAQ=30°,PQ=9时,可得到形状唯一确定的△PAQ;③当∠PAQ=90°,PQ=10时,可得到形状唯一确定的△PAQ;④当∠PAQ=150°,PQ=12时,可得到形状唯一确定的△PAQ.其中所有正确结论的序号是()A.②③B.③④C.②③④D.①②③④3.(2021东城区二模)数学课上,李老师提出如下问题:已知:如图,AB是⊙O的直径,射线AC交⊙O于C.求作:弧BC的中点D.同学们分享了如下四种方案:第3题图①如图①,连接BC,作BC的垂直平分线,交⊙O于点D;②如图②,过点O作AC的平行线,交⊙O于点D;③如图③,作∠BAC的平分线,交⊙O于点D;④如图④,在射线AC上截取AE,使AE=AB,连接BE,交⊙O于点D.上述四种方案中,正确的方案的序号是________.4.(20231大兴区一模)如图,在▱ABCD中,AD>AB,E,F分别为边AD,BC上的点(E,F 不与端点重合).对于任意▱ABCD,下面四个结论中:①存在无数个四边形ABFE,使得四边形ABFE是平行四边形;②至少存在一个四边形ABFE,使得四边形ABFE是菱形;③至少存在一个四边形ABFE,使得四边形ABFE是矩形;④存在无数个四边形ABFE,使得四边形ABFE的面积是▱ABCD面积的一半.所有正确结论的序号是________.第4题图5.(2021西城区期末)如图,在平面直角坐标系xOy中,P(4,3),⊙O经过点P.点A,点B 在y轴上,PA=PB,延长PA,PB分别交⊙O于点C,点D,设直线CD与x轴正方向所夹的锐角为α.(1)⊙O的半径为________;(2)tanα=________第5题图参考答案类型一分析统计图(表)1.C【解析】由题图知2019—2023年,普通本专科招生人数逐年增多,故①正确;2023年普通高中招生人数比2019年增加约876-839×100%≈4%,故②正确;从2019—2018839年,中等职业教育招生人数逐年减少,从2019—2023年,中等职业教育招生人数在增加,故③错误;2019年普通高中招生人数约是中等职业教育招生人数的839÷600≈1.4倍,故④正确.2.A【解析】①8÷0.08=100,故表中a的值为100,是合理推断;②25÷100=0.25,35÷100=0.35,1-0.08-0.17-0.35-0.15=0.25,1-0.08-0.17-0.25-0.15=0.35,故表中c的值为0.25≤c≤0.35,表中c的值可以为0.31,是合理推断;③∵表中4≤x<6组的频数b满足25≤b≤35,∴8+17+25=50,8+17+35=60,∴这100名学生每周课外阅读时间的中位数可能在4~6之间,也可能在6~8之间,故此推断不是合理推断;④这a名学生每周课外阅读时间的平均数可以超过6,故此推断不是合理推断.3.A【解析】由题图知①2004年的水体面积超过60km2,不符合题意;②2015—2023年,密云水库的水体面积呈持续增加趋势,表明水资源储备增多,符合题意;③在1986—2023年中,2023年的密云水库水体面积最大,约为170km2,符合题意;④水体面积最大的年份是2023年,但年降水量不是最大,不符合题意.4.D【解析】由题图知,甲的面试成绩排名为11,理论知识成绩排名为8,实践操作成绩排名为8;乙的面试成绩排名为7,实践操作成绩排名为15,理论知识成绩排名为5,故①②③都合理,故选D.5.C【解析】由题图可得,A.2000年至2019年,SO2的年平均浓度值都在NO2的年平均浓度值以下,由此可得SO2的年平均浓度值的平均数小于NO2的年平均浓度值的平均数,此选项正确,不合题意;B.2000年至2019年,SO2的年平均浓度值都在NO2的年平均浓度值以下,由此可得SO2的年平均浓度值的中位数小于NO2的年平均浓度值的中位数,此选项正确,不合题意;C.根据图中两折线中点的离散程度可得SO2的年平均浓度值的方差大于NO2的年平均浓度值的方差,此选项错误,符合题意;D.1998年至2019年,根据图中两折线的起止点可得SO2的年平均浓度值比NO2的年平均浓度值下降得更快,此选项正确,不合题意.6.C 【解析】由图象可得,A 组客户的电动汽车的“实际平均续航里程”的最大值在350左右,B 组客户的电动汽车的“实际平均续航里程”的最大值在450左右,故A 选项不符合题意;A 组客户的电动汽车的“实际平均续航里程”的数据波动比B 组客户的电动汽车的“实际平均续航里程”的数据波动小,即A 组客户的电动汽车的“实际平均续航里程”的方差比B 组客户的电动汽车的“实际平均续航里程”的方差小,故B 选项不符合题意;A 组客户的电动汽车的“实际平均续航里程”的平均值不一定低于B 组,故C 选项符合题意;这20位客户的电动汽车的“实际平均续航里程”按从大到小排序,第10位,第11位均在B 组,故D 选项不符合题意.7.3或12(任写一个即可)【解析】由题图可知,3日、4日、5日最低温度分别是1摄氏度、2摄氏度、0摄氏度,且昼夜温差分别是8-1=7摄氏度,4-2=2摄氏度,9-0=9摄氏度,最低温度不低于0摄氏度,且昼夜温差不大于10摄氏度,可以药剂喷洒,12日、13日、14日最低温度分别是6摄氏度、7摄氏度、8摄氏度,且昼夜温差分别是12-6=6摄氏度,16-7=9摄氏度,14-8=6摄氏度,最低温度不低于0摄氏度,且昼夜温差不大于10摄氏度,可以药剂喷洒.类型二分析与判断函数图象1.D 【解析】∵一个小球由静止开始沿一个斜坡滚下,其速度每秒增加的值相同,∴v t为定值,∴v 与t 是正比例函数的关系.∴选项D 符合题意.2.B 【解析】当15<x ≤60时,设y =kx +b (k ≠0),k +b =20,k +b =170,=103,=-30,∴y =103x -30.当y =80时,103x -30=80,解得x =33,33-15=18(天),∴开始开花结果,此时瓜苗在该村大棚内生长的天数是18天.3.B 【解析】若按A →O →D 路线,图象应呈现对称性,故A 错误;若按C →A →O →B ,则从C →A 距离逐渐减少,A →O →B 距离先减少,再增大,符合题图中函数图象的大致走势,故B 正确;C 、D 中,起始点处S 值小于终点处S 值,由题图可知在起点和终点时,S 值最大且相等,故C 、D 错误.4.D 【解析】①在t 1≤t ≤t 2这段时间内,甲企业的图象比乙企业的图象倾斜角度大,故①正确;②在t 1时刻,甲企业的污水排放量高,故②错误;③在t 3时刻,甲、乙两企业的污水排放量在达标量以下,故③正确;④在0≤t ≤t 1,t 1≤t ≤t 2,t 2≤t ≤t 3这三段时间中,甲企业在t 1≤t ≤t 2的图象倾斜角度最大,即治理污水能力最强,故④错误.5.D 【解析】由题意中(x 1-x 2)(y 1-y 2)>0可知,x 1-x 2>0,y 1-y 2>0或x 1-x 2<0,y 1-y 2<0,即当x 1>x 2时,y 1>y 2或当x 1<x 2时,y 1<y 2.故函数中y 随着x 的增大而增大,故②④正确.类型三代数类问题1.A 【解析】如解图,由图象可知,当-5≤a ≤4时,对于任意的实数n ,都存在实数m ,使得当x =m 时,函数y =n .第1题解图2.C 【解析】A .∵|y 1-y 2|=|x 2-(x 2-1)|=1≤1,故A 选项与y =x 2互为“关联的”函数;B .∵|y 1-y 2|=|x 2-2x 2|=x 2,又∵-1≤x ≤1,∴x 2≤1,故B 选项与y =x 2互为“关联的”函数;C .∵|y 1-y 2|=|x 2-(x -1)2|=|2x -1|,又∵-1≤x ≤1,∴|2x -1|≤3,故C 选项不与y =x 2互为“关联的”函数;D .∵|y 1-y 2|=|x 2-(-x 2+1)|=|2x 2-1|,又∵-1≤x ≤1,∴|2x 2-1|≤1,故D 选项与y =x 2互为“关联的”函数.3.D 【解析】若全在原点的左侧,则a <0,b <0,c <0,与abc >0矛盾,∴三点中至少有一个在原点的右侧,故①正确;若全在原点的左侧,则a <0,b <0,c <0,∴a +b +c <0.又∵a ,b ,c 不全为0,与a +b +c =0矛盾,∴至少有一个点在原点右侧,故②正确;∵a +c =2b ,∴b =a +c 2,∴B 为AC 的中点,故③正确;由绝对值的意义:OB =|b |,OC =|c |,AB =|b -a |,AC =|c -a |,|b |-|c |=|b -a |-|c -a |,∴A 在最左或最右时,上面等式的右边=b -c 或c -b ,∴|b |-|c |=b -c ,∴b >0,c >0,∴bc >0,|b |-|c |=c -b ,∴b <0,c <0,∴bc >0,故④正确.4.4312(答案不唯一)【解析】∵abcd 是偶数,∴d =2或4.∵a >b >c ,a +c =b +d ,∴a =4,b =3,c =1,d =2,或a =5,b =4,c =1,d =2,或a =5,b =3,c =2,d =4,或a =5,b =2,c =1,d =4,∴abcd =4312或5412或5324或5214.5.③④【解析】根据题中的定义得:2*3=(2)2-2×3=2-6,①正确,不符合题意;若a +b =0,则有a =-b ,a *b =a 2-ab =b 2+b 2=2b 2,b *a =b 2-ab =b 2+b 2=2b 2,即a *b =b *a ,②正确,不符合题意;已知等式变形得:(x +2)2-(x +2)(x +1)=0,即x 2+4x +4-x 2-3x -2=0,合并得:x +2=0,是一元一次方程,③错误,符合题意;④方程变形得:(x +2)2-(x +2)=3,整理得:x 2+4x +4-x -2-3=0,即x 2+3x -1=0,∵a =1,b =3,c =-1,∴x =-b ±b 2-4ac 2a =-3±132,解得x 1=-3+132,x 2=-3-132,④错误,符合题意.6.①②【解析】由半圆M 可知A (-1,0),B (3,0),M (1,0),且点A ,B 在抛物线上,∴图形G 关于直线x =1对称,故①正确;如解图,连接CM ,第6题解图在Rt △MOC 中,∵OM =1,CM =2,∴OC =22-12= 3.又∵D (0,-3),∴OD =3,∴CD =OC +OD =3+3,故②正确;根据题图得,图形G 围成区域内(不含边界)恰有13个整点(即横、纵坐标均为整数的点),故③错误;由题意得A (-1,0),B (3,0),当a =-4时,直线y =-4与图形G 有一个公共点,当a =2时,直线y =2与图形G 有一个公共点,故④错误.综上所述,正确的有①②.7.②③【解析】一次函数y =x 图象经过点B (1,1),即一次函数y =x 的图象与线段AB 有公共点,故①错误;一次函数y =x 图象刚好经过点B (1,1),向下平移直线y =x ,此时b <0,直线y =x +b 与线段AB 无公共点,故②正确;反比例函数y =1x的图象刚好经过点B (1,1),当k >1时,反比例函数y =k x的图象沿着y =x 向远离原点的方向平移,与线段AB 无公共点,故③正确;二次函数y =x 2-bx +1的图象一定经过A (0,1),即二次函数的图象与线段AB 有公共点,故④错误.8.F 4,-b 【解析】根据旋转的规律得,F 1的解析式为y =x 2,其图象位于第二象限;F 2的解析式为y =--x ,其图象位于第三象限;F 3的解析式为y =-x 2,其图象位于第四象限;F 4的解析式为y =x ,其图象位于第一象限;…则2021÷4=505……1,即F 2021的图象位于第二象限,该图象的函数解析式是y =x 2.∵P (4,2)位于第一象限,∴点P 所在的图象是F 4.∵点P (a ,b )在图象F 2021上,∴b =a 2,∴a =-b .9.1,5【解析】∵B (1,5)在y =k x 的图象上,∴k =1×5=5.当x =5时,y =55=1.∴C (5,1).又∵2023÷5=404,∴m =1.∵Q (x ,n )在该“波浪线”上,∴n 的最大值是5.类型四几何类问题1.D 【解析】如解图,连接OQ ,则∠POQ =45°,sin 45°=cos 45°=22,当点M 在AB 和CD 上时,α<45°,则sin α<cos α,当点M 在EF 和GH 上时,α>45°,sin α>cos α.第1题解图2.C 【解析】①当∠PAQ =30°,PQ =6时,以P 为圆心,6为半径画弧,与射线AM 有两个交点,则△PAQ 的形状不能唯一确定,故①错误;②当∠PAQ =30°,PQ =9时,以P 为圆心,9为半径画弧,与射线AM 有两个交点,但左边位置的Q 不符合题意,∴Q 点位置唯一确定,则可得到形状唯一确定的△PAQ ,故②正确;③当∠PAQ =90°,PQ =10时,以P 为圆心,10为半径画弧,与射线AM 有两个交点,但此时两个三角形全等,Q 点位置唯一确定,则可得到形状唯一确定的△PAQ ,故③正确;④当∠PAQ =150°,PQ =12时,以P 为圆心,12为半径画弧,与射线AM 有两个交点,左边的Q 不符合题意,∴Q 点位置唯一确定,则可得到形状唯一确定的△PAQ ,故④正确,故选C .3.①②③④【解析】①如题图①,由作图可知,BC 的垂直平分线经过圆心O ,∵OD⊥BC ,∴点D 是BC ︵的中点;②如解图①,连接BC ,∵AB 是⊙O 的直径,∴∠ACB =90°.∵OD ∥AC ,∴OD ⊥BC ,∴点D 是BC ︵的中点;③如题图③,∵∠BAD =∠CAD ,∴点D 是BC ︵的中点;④如解图②,连接AD ,∵AB 是⊙O 的直径,∴∠ADB =90°.∵AE =AB ,∴∠BAD =∠CAD ,∴点D 是BC ︵的中点.图①图②第3题解图4.①②④【解析】只要满足AB ∥EF ,则四边形ABFE 是平行四边形,这样的EF 有无数条,故①正确;∵AD >AB ,∴在AD 上截取AE =AB ,再满足AB ∥EF ,就能使得四边形ABFE 是菱形,故②正确;∵∠B 不是直角,∴矩形ABFE 不存在,故③错误;只要当EF 经过▱ABCD 对角线交点时,四边形ABFE 的面积是▱ABCD 面积的一半,这样的EF 有无数条,故④正确.5.(1)5;(2)43【解析】(1)如解图,连接OP ,∵P (4,3),∴OP =32+42=5;(2)如解图,设CD 交x 轴于点J ,过点P 作PT ⊥AB 交⊙O 于点T ,交AB 于点E ,连接CT ,DT ,OT ,∵P (4,3),∴PE =4,OE =3.在Rt △OPE 中,tan ∠POE =PE OE =43,∵OE ⊥PT ,OP =OT ,∴∠POE =∠TOE ,∴∠PDT =12∠POT =∠POE ,∵PA =PB ,PE ⊥AB ,∴∠APT =∠DPT ,∴TC ︵=DT ︵,∴∠TDC =∠TCD ,∵PT ∥x 轴,∴∠CJO =∠CKP ,∵∠CKP =∠TCK+∠CTK ,∠CTP =∠CDP ,∠PDT =∠TDC +∠CDP ,∴∠TDP =∠CJO ,∴∠CJO =∠POE ,∴tan α=tan ∠CJO =tan ∠POE =43.第5题解图。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题01代数式的求值问题例1.观察下列等式:1=2=3=4=5=6=64,…,根据这个规律,则1)+2\S\UP6(2)+2\S\UP6(3)+2\S\UP6(4)+…+2\S\UP6(2017的末位数字是()A.0 B.2 C.4 D.6同类题型1.1计算:1=2=3=4=5=31,…归纳各计算结果中的个位数字规律,猜测2016的个位数字是()A.1 B.3 C.7 D.5同类题型1.2观察下列算式1=2=3=4=5=6=7=2187…根据上述算式中的规律,你认为2018的末位数字是()A.3 B.9 C.7 D.1例2.下列定义一种关于n的运算:①当n是奇数时,结果为3n+5②n为偶数时结果是n2\S\UP6(k)(其中k是使n2\S\UP6(k)是奇数的正整数),并且运算重复进行.例如:取n=26,则…,若n=449,则第449次运算结果是()A.1 B.2 C.7 D.8同类题型2.1定义一种对正整数n的“F”运算:①当n为奇数时,结果为3n+5;②当n为偶数时,结果为n2\S\UP6(k) (其中k是使n2\S\UP6(k)为奇数的正整数),并且运算重复进行.例如,取n=26,那么当n=26时,第2016次“F运算”的结果是________.同类题型2.2对于任意正整数n,定义"n!!"如下:当n是偶数时,n!!=n﹒(n-2)﹒(n-4)…6﹒4﹒2,当n是奇数时,n!!=n﹒(n-2)﹒(n-4)…5﹒3﹒1,且有n!=n﹒(n-1)﹒(n-2)…3﹒2﹒1则有四个命题:①(2015!!)﹒(2016!!)=2016!②2016!!=2018③2015!!的个位数是5④2014!!的个位数是0其中正确的命题有()A.1个B.2个C.3个D.4个例3.一列数123满足条件:1=12n=1n-1且n为整数),则2017等于()A.-1 B.12C.1 D.2同类题型 3.1一列数123满足条件:1=12n=1n-1且n为整数),则1)+a\S\DO(2)+a\S\DO(3)+…+a\S\DO(2017=________.同类题型3.2 1、2、3、20是20个由1,0,-1组成的数,且满足下列两个等式:①1)+x\S\DO(2)+x\S\DO(3)+…+x\S\DO(20=4,②(\l(x\S\DO(1)-1))\S\UP6(2)+\b\bc\((\l(x\S\DO(2)-1))\S\UP6(2)+\b\bc\((\l(x\S\DO(3)-1))\S\UP6(2)+…+\b\bc\((\l(x\S\DO(20)-1))\S\UP6(2=32,则这列数中1的个数为()A.8 B.10 C.12 D.14例4.设△ABC的面积为1.如图1,分别将AC,BC边2等分1),E\S\DO(1是其分点,连接1)BD\S\DO(1交于点1得到四边形1)F\S\DO(1)E\S\DO(1其面积1=13.如图2,分别将AC,BC边3等分1),D\S\DO(2),E\S\DO(1),E\S\DO(2是其分点,连接2)BD\S\DO(2交于点2得到四边形2)F\S\DO(2)E\S\DO(2其面积2=16如图3,分别将AC,BC边4等分1),D\S\DO(2),D\S\DO(3),E\S\DO(1),E\S\DO(2),E\S\DO(3是其分点,连接3)BD\S\DO(3交于点3得到四边形3)F\S\DO(3)E\S\DO(3其面积3=110…按照这个规律进行下去,若分别将AC,BC边(n+1)等分,…,得到四边形n)F\S\DO(n)E\S\DO(n其面积n =________.同类题型4.1庄子说:“一尺之椎,日取其半,万世不竭”.这句话(文字语言)表达了古人将事物无限分割的思想,用图形语言表示为图1,按此图分割的方法,可得到一个等式(符号语言):1=112)3)n.4.2图图2也是一种无限分割:在△ABC中,∠C=90°,∠B=30°,过点C作1于点1再过点1作1)C\S\DO(2于点2又过点2作2)C\S\DO(3于点3如此无限继续下去,则可将利△ABC分割成1、1)C\S\DO(2、1)C\S\DO(2)C\S\DO(3、2)C\S\DO(3)C\S\DO(4、…、n-2)C\S\DO(n-1)C\S\DO(n、….假设AC=2,这些三角形的面积和可以得到一个等式是________________________________.同类题型4.2 如图,顺次连接腰长为2的等腰直角三角形各边中点得到第1个小三角形,再顺次连接所得的小三角形各边中点得到第2个小三角形,如此操作下去,则第n个小三角形的面积为________.例5.如图,一个瓶身为圆柱体的玻璃瓶内装有高a厘米的墨水,将瓶盖盖好后倒置,墨水水面高为h厘米,则瓶内的墨水的体积约占玻璃瓶容积的()A.aa+b B.ba+b C.ha+b D.ha+h例5图 5.1图同类题型5.1如图,一个啤酒瓶的高度为30cm,瓶中装有高度12cm的水,将瓶盖盖好后倒置,这时瓶中水面高度20cm,则瓶中水的体积和瓶子的容积之比为________.(瓶底的厚度不计)同类题型5.2一艘轮船往返甲、乙两港之间,第一次往返航行时,水流速度为a千米/时,第二次往返航行时,正遇上发大水,水流速度为b千米/时(b>a),已知该船在两次航行中的静水速度相同,则该船这两次往返航行所用时间的关系是()A.第一次往返航行用的时间少B.第二次往返航行用的时间少C.两种情况所用时间相等D.以上均有可能例6.若1x=3,求2)x\S\UP6(4)+x\S\UP6(2)+1的值是()A.18 B.110 C.12 D.14同类题型6.1 已知a,b,c满足|2a-4|+|b+2|(a-3)b\S\UP6(2))+a\S\UP6(2)+c\S\UP6(2=2+2ac,则a-b+c的值为()A.2 B.4 C.6 D.8同类题型6.2已知a,b,c满足ab-ca+c5,则a+c2a+b的值为()A.12 B.34 C.1 D.2参考答案例1.观察下列等式:1=2=3=4=5=6=64,…,根据这个规律,则1)+2\S\UP6(2)+2\S\UP6(3)+2\S\UP6(4)+…+2\S\UP6(2017的末位数字是()A.0 B.2 C.4 D.6解:∵1=2=3=4=5=6=64,…,∴2017÷4=504…1,∵(2+4+8+6)×504的末尾数字是0,∴1)+2\S\UP6(2)+2\S\UP6(3)+2\S\UP6(4)+…+2\S\UP6(2017的末位数字是2,选B.同类题型1.1计算:1=2=3=4=5=31,…归纳各计算结果中的个位数字规律,猜测2016的个位数字是()A.1 B.3 C.7 D.5解:∵1=2=3=4=15,5=6=7=8=255…∴由此可以猜测个位数字以4为周期按照1,3,7,5的顺序进行循环,知道2016除以4为504,而第4个数字为5,所以可以猜测2016的个位数字是5.选D.同类题型1.2观察下列算式1=2=3=4=5=6=7=2187…根据上述算式中的规律,你认为2018的末位数字是()A.3 B.9 C.7 D.1解:以3为底的幂的末位数字是3,9,7,1依次循环的,2018÷4=504…2,所以2018的个位数字是9,选B.例2.下列定义一种关于n的运算:①当n是奇数时,结果为3n+5②n为偶数时结果是n2\S\UP6(k)(其中k是使n2\S\UP6(k)是奇数的正整数),并且运算重复进行.例如:取n=26,则…,若n=449,则第449次运算结果是()A.1 B.2 C.7 D.8解:第一次:3×449+5=1352,第二次:1352k根据题意k=3时结果为169;第三次:3×169+5=512,第四次:因为512是2的9次方,所以k=9,计算结果是1;第五次:1×3+5=8;第六次:8k因为8是2的3次方,所以k=3,计算结果是1,此后计算结果8和1循环.因为449是奇数,所以第449次运算结果是8.选D.同类题型2.1定义一种对正整数n的“F”运算:①当n为奇数时,结果为3n+5;②当n为偶数时,结果为n2\S\UP6(k) (其中k是使n2\S\UP6(k)为奇数的正整数),并且运算重复进行.例如,取n=26,那么当n=26时,第2016次“F运算”的结果是________.解:根据题意,得当n=26时,第1次的计算结果是262=13,第2次的计算结果是13×3+5=44,第3次的计算结果是442\S\UP6(2)=11,第4次的计算结果是11×3+5=38,第5次的计算结果是382=19,第6次的计算结果是19×3+5=62,第7次的计算结果是622=31,第8次的计算结果是31×3+5=98,第9次的计算结果是982=49,第10次的计算结果是49×3+5=152,第11次的计算结果是1522\S\UP6(3)=19,以下每6次运算一循环,∵(2016-4)÷6=335…2,∴第2016次“F运算”的结果与第6次的计算结果相同,为62,故答案为:62.同类题型2.2对于任意正整数n,定义"n!!"如下:当n是偶数时,n!!=n﹒(n-2)﹒(n-4)…6﹒4﹒2,当n是奇数时,n!!=n﹒(n-2)﹒(n-4)…5﹒3﹒1,且有n!=n﹒(n-1)﹒(n-2)…3﹒2﹒1则有四个命题:①(2015!!)﹒(2016!!)=2016!②2016!!=2018③2015!!的个位数是5④2014!!的个位数是0其中正确的命题有()A.1个B.2个C.3个D.4个解:根据题意,依次分析四个命题可得:对于①,(2015!!)﹒(2016!!)=(2﹒4﹒6﹒8…2008﹒2010﹒2012﹒2014﹒2016)﹒(1﹒3﹒5﹒7…2009﹒2011﹒2013﹒2015)=1﹒2﹒3﹒4﹒5…﹒2012﹒2013﹒2014﹒2015﹒2016=2016!,故①正确;对于②,2016!!=2﹒4﹒6﹒8﹒10…2008﹒2010﹒2012﹒2014﹒2016=1008)(1﹒2﹒3﹒4…1008=1008故②正确;对于③,2015!=2015×2011×2009×…×3×1,其个位数字与1×3×5×7×9的个位数字相同,故其个位数字为5,故正确;对于④,2014!!=2﹒4﹒6﹒8…2008﹒2010﹒2012﹒2014,其中含有10,故个位数字为0,故正确;选D.例3.一列数123满足条件:1=12n=1n-1且n为整数),则2017等于()A.-1 B.12C.1 D.2解:∵1=12n=1n-1∴2=11-a\S\DO(1)=112=2,3=11-a\S\DO(2)=11-2=-1,4=11-a\S\DO(3)=11-(-1)=12…∴这列数每3个数为一循环周期,∵2017÷3=672…1,∴2017=1=12选B.同类题型 3.1一列数123满足条件:1=12n=1n-1且n为整数),则1)+a\S\DO(2)+a\S\DO(3)+…+a\S\DO(2017=________.解:∵1=12n=1n-1∴2=11-a\S\DO(1)=112=2,3=11-a\S\DO(2)=11-2=-1,4=11-a\S\DO(3)=11-(-1)=12…∴这列数每3个数为一循环周期,∵2017÷3=672…1,∴2017=1=12又∵1)+a\S\DO(2)+a\S\DO(3=12=32∴1)+a\S\DO(2)+a\S\DO(3)+…+a\S\DO(2017=312=12.答案为12.同类题型3.2 1、2、3、20是20个由1,0,-1组成的数,且满足下列两个等式:①1)+x\S\DO(2)+x\S\DO(3)+…+x\S\DO(20=4,②(\l(x\S\DO(1)-1))\S\UP6(2)+\b\bc\((\l(x\S\DO(2)-1))\S\UP6(2)+\b\bc\((\l(x\S\DO(3)-1))\S\UP6(2)+…+\b\bc\((\l(x\S\DO(20)-1))\S\UP6(2=32,则这列数中1的个数为()A.8 B.10 C.12 D.14解:∵1、2、3、20是20个由1,0,-1组成的数,且满足下列两个等式:①1)+x\S\DO(2)+x\S\DO(3)+…+x\S\DO(20=4,②(\l(x\S\DO(1)-1))\S\UP6(2)+\b\bc\((\l(x\S\DO(2)-1))\S\UP6(2)+\b\bc\((\l(x\S\DO(3)-1))\S\UP6(2)+…+\b\bc\((\l(x\S\DO(20)-1))\S\UP6(2=32,∴-1的个数有8个,则1的个数有12个.故选C.例4.设△ABC的面积为1.如图1,分别将AC,BC边2等分1),E\S\DO(1是其分点,连接1)BD\S\DO(1交于点1得到四边形1)F\S\DO(1)E\S\DO(1其面积1=13.如图2,分别将AC,BC边3等分1),D\S\DO(2),E\S\DO(1),E\S\DO(2是其分点,连接2)BD\S\DO(2交于点2得到四边形2)F\S\DO(2)E\S\DO(2其面积2=16如图3,分别将AC,BC边4等分1),D\S\DO(2),D\S\DO(3),E\S\DO(1),E\S\DO(2),E\S\DO(3是其分点,连接3)BD\S\DO(3交于点3得到四边形3)F\S\DO(3)E\S\DO(3其面积3=110…按照这个规律进行下去,若分别将AC,BC边(n+1)等分,…,得到四边形n)F\S\DO(n)E\S\DO(n其面积n =________.解:如图所示,连接12)E\S\DO(23∵图1中1),E\S\DO(1是△ABC两边的中点,∴1)∥ABD\S\DO(1)E\S\DO(1=12∴1)E\S\DO(1且1)E\S\DO(1)BF\S\DO(1)=1)E\S\DO(1)AB=12∴△CD1E1=14)S\S\DO(△ABC=14∵1是BC的中点,∴△BD1E1=△CD1E1=14∴△D1E1F1=13)S\S\DO(△BD1E1=114=112∴1=△CD1E1)+S\S\DO(△D1E1F1=1112=13同理可得:图2中2=△CD2E2)+S\S\DO(△D2E2F2=1118=16图3中3=△CD3E3)+S\S\DO(△D3E3F3=1380=110以此类推,将AC,BC边(n+1)等分,得到四边形n)E\S\DO(n)F\S\DO(n其面积n=1n+1)\S\UP6(2)n+1)\S\UP6(2)1+n+1=2n+1)(n+2答案为2(n+1)(n+2).同类题型4.1庄子说:“一尺之椎,日取其半,万世不竭”.这句话(文字语言)表达了古人将事物无限分割的思想,用图形语言表示为图1,按此图分割的方法,可得到一个等式(符号语言):1=112)3)n.图2也是一种无限分割:在△ABC中,∠C=90°,∠B=30°,过点C作1于点1再过点1作1)C\S\DO(2于点2又过点2作2)C\S\DO(3于点3如此无限继续下去,则可将利△ABC分割成1、1)C\S\DO(2、1)C\S\DO(2)C\S\DO(3、2)C\S\DO(3)C\S\DO(4、…、n-2)C\S\DO(n-1)C\S\DO(n、….假设AC=2,这些三角形的面积和可以得到一个等式是________.解:如图2,∵AC=2,∠B=1∴1中1=30°,且BC=3∴1=12=1=3)AC\S\DO(1=3∴△ACC1=12)﹒AC\S\DO(1)﹒CC\S\DO(1=13=32∵1)C\S\DO(2∴1)C\S\DO(2=1=30°,∴2=12)CC\S\DO(1=321=3)CC\S\DO(2=32∴△CC)\S\DO(1)C\S\DO(2=12)﹒CC\S\DO(2)﹒C\S\DO(1)C\S\DO(2=1\R(332=334同理可得,△C)\S\DO(1)C\S\DO(2)C\S\DO(3=3(\l(\F(32△C)\S\DO(2)C\S\DO(3)C\S\DO(4=3(\l(\F(33…∴△C)\S\DO(n-2)C\S\DO(n-1)C\S\DO(n=3(\l(\F(3n-1又∵△ABC=12=13=3∴3=3\R(33\R(3(\l(\F(323(\l(\F(333(\l(\F(3n-1∴3=3\l(1+\F(3(\l(\F(323n-1n)+….答案为3=3\l(1+\F(3(\l(\F(323n-1n)+….同类题型4.2 如图,顺次连接腰长为2的等腰直角三角形各边中点得到第1个小三角形,再顺次连接所得的小三角形各边中点得到第2个小三角形,如此操作下去,则第n个小三角形的面积为________.解:记原来三角形的面积为s,第一个小三角形的面积为1第二个小三角形的面积为2∵1=14=122=114=143=16∴n=12\S\UP6(2n)=12n)2=12n-1答案为12\S\UP6(2n-1).例5.如图,一个瓶身为圆柱体的玻璃瓶内装有高a厘米的墨水,将瓶盖盖好后倒置,墨水水面高为h厘米,则瓶内的墨水的体积约占玻璃瓶容积的()A.aa+b B.ba+b C.ha+b D.ha+h解:设规则瓶体部分的底面积为S平方厘米.倒立放置时,空余部分的体积为bS立方厘米,正立放置时,有墨水部分的体积是aS立方厘米,因此墨水的体积约占玻璃瓶容积的asas+bs=aa+b.选A.同类题型5.1如图,一个啤酒瓶的高度为30cm,瓶中装有高度12cm的水,将瓶盖盖好后倒置,这时瓶中水面高度20cm,则瓶中水的体积和瓶子的容积之比为________.(瓶底的厚度不计)解:设瓶的底面积为2,则左图V水=12S cm3,右图V空=10S cm3,∵V瓶=V水+V空=22S cm3,∴V水:V瓶=6:11.故答案为611.同类题型5.2一艘轮船往返甲、乙两港之间,第一次往返航行时,水流速度为a千米/时,第二次往返航行时,正遇上发大水,水流速度为b千米/时(b>a),已知该船在两次航行中的静水速度相同,则该船这两次往返航行所用时间的关系是()A.第一次往返航行用的时间少B.第二次往返航行用的时间少C.两种情况所用时间相等D.以上均有可能解:设两次航行的路程都为S,静水速度设为v,第一次所用时间为:SS2vS2)-a\S\UP6(2第二次所用时间为:SS2vS2)-b\S\UP6(2∵b>a,∴2)>a\S\UP6(2,∴2)-b\S\UP6(2)<v\S\UP6(2)-a\S\UP6(2∴2vS2)-b\S\UP6(2)2)-a\S\UP6(2∴第一次的时间要短些.选A.例6.若1x=3,求2)x\S\UP6(4)+x\S\UP6(2)+1的值是()A.18 B.110 C.12 D.14解:∵1x=3,∴1x))\S\UP6(2=9,即1x\S\UP6(2)=9-2=7,∴4)+x\S\UP6(22))=x\S\UP6(22=7+1=8,∴24)+x\S\UP6(2)+18.选A.同类题型6.1 已知a,b,c满足|2a-4|+|b+2|(a-3)b\S\UP6(2))+a\S\UP6(2)+c\S\UP6(2=2+2ac,则a-b+c的值为()A.2 B.4 C.6 D.8解:∵已知a,b,c满足|2a-4|+|b+2|(a-3)b\S\UP6(2))+a\S\UP6(2)+c\S\UP6(2=2+2ac,∴|2a-4|+|b+2|(a-3)b\S\UP6(2))+a\S\UP6(2)+c\S\UP6(2-2ac=2,…①且(a-3)b\S\UP6(2)必有意义,又∵2≥0,∴a-3≥0①当a-3>0时,|2a-4|>2,有|2a-4|+|b+2|(a-3)b\S\UP6(2))+a\S\UP6(2)+c\S\UP6(2-2ac>2,则这与①式相矛盾,即a-3>0不成立;②当a-3=0时,a=3,则|2a-4|+|b+2|(a-3)b\S\UP6(2))+a\S\UP6(2)+c\S\UP6(2-2ac=2+|b+2|2=2,|b+2|2=0,又∵|b+2|≥0,2≥0,∴必有b+2=0,c-3=0即:b=-2,c=3∴a-b+c=3-(-2)+3=8选D.同类题型6.2已知a,b,c满足ab-ca+c5,则a+c2a+b的值为()A.12 B.34 C.1 D.2解:设ab-ca+c5=k,则a=2k①,b-c=3k②,a+c=5k③.①+②+③得:2a+b=10k.∴a+c5k12.选A.专题02方程、不等式中的含参问题例1.已知三个非负实数a,b,c满足:3a+2b+c=5和2a+b-3c=1,若m=3a+b-7c,则m的最小值为__________.同类题型1.1 已知x+2y-3z=0,2x+3y+5z=0,则x+y+zx-y+z=________.同类题型1.2 方程组4x+3m=28x-3y=m)的解x,y满足x>y,则m的取值范围是()A.910 B.109 C.1910 D.1019例2.关于x的方程2+mx-9=0和2)-3x+m\S\UP6(2+6m=0有公共根,则m的值为________.同类题型2.1 已知a是一元二次方程2-2018x+1=0的一个根,则代数式2018a\S\UP6(2)+1的值是___.同类题型2.2 已知关于x的方程2)-1)x\S\UP6(2+(2k-1)x+1=0有两个不相等的实数根,那么实数k的取值范围为_____________.同类题型2.3 已知α、β是方程2-2x-4=0的两个实数根,则3+8β+6的值为()A.-1B.2C.22D.30例3.已知方程11a的两根分别为a,1a,则方程11a-1的根是()A.a,1a-1 B.1a-1,a-1C.1a,a-1D.a,aa-1同类题型3.1 若关于x的方程2x-bx-1=3的解是非负数,则b的取值范围是________.同类题型3.2 观察分析下列方程:①2x=3;②6x=5;③12x=7.请利用它们所蕴含的规律,求关于x的方程2)+nx-4=2n+5(n为正整数)的根,你的答案是_________________.同类题型3.3 已知关于x的方程2a+13a x-1)(x+2只有整数解,则整数a的值为_____________.例4.[x]表示不超过x的最大整数.如,[π]=3,[2]=2,[-2.1]=-3.则下列结论:①[-x]=-[x];②若[x]=n,则x的取值范围是n≤x<n+1;③当-1<x<1时,[1+x]+[1-x]的值为1或2;④x=-2.75是方程4x-2[x]+5=0的唯一一个解.其中正确的结论有_________(写出所有正确结论的序号).同类题型4.1 设[x]表示不大于x的最大整数,{x}表示不小于x的最小整数,(x)表示最接近x的整数(x ≠n+0.5,n为整数).例如[3.4]=3,{3.4}=4,(3.4)=3.则不等式8≤2x+[x]+3{x}+4(x)≤14的解为()A.0.5≤x≤2 B.0.5<x<1.5或1.5<x<2C.0.5<x<1.5D.1.5<x<2同类题型4.2规定:[x]表示不大于x的最大整数,(x)表示不小于x的最小整数,[x)表示最接近x的整数(x≠n+0.5,n为整数),例如:[2.3]=2,(2.3)=3,[2.3)=2.则下列说法正确的是___________.(写出所有正确说法的序号)①当x=1.7时,[x]+(x)+[x)=6;②当x=-2.1时,[x]+(x)+[x)=-7;③方程4[x]+3(x)+[x)=11的解为1<x<1.5;④当-1<x<1时,函数y=[x]+(x)+x的图象与正比例函数y=4x的图象有两个交点.同类题型4.3 如果关于x的不等式(a+b)x+2a-b>0的解集是52,那么关于x的不等式(b-a)x+a +2b≤0的解集是____________.同类题型4.4 若关于x的不等式组\F(x+4x2x-a<0解集为x<2,则a的取值范围是___________.同类题型4.5 按如图的程序计算,若开始输入的值x为正数,最后输出的结果为656,则满足条件的x的不同值最多有___________.参考答案例1.已知三个非负实数a,b,c满足:3a+2b+c=5和2a+b-3c=1,若m=3a+b-7c,则m的最小值为__________.解:由题意可得3a+2b+c=52a+b-3c=1m=3a+b-7c,解得7﹒(m+2)3-3,11﹒(m+2)3,m+23,由于a,b,c是三个非负实数,∴a≥0,b≥0,c≥0,∴157.所以m_(最小值)=57.故本题答案为:-57.同类题型1.1 已知x+2y-3z=0,2x+3y+5z=0,则x+y+zx-y+z=________.解:由题意得:x+2y-3z=0①2x+3y+5z=0②),①×2-②得y=11z,代入①得x=-19z,原式x+y+z-19z+11z+z729.同类题型1.2 方程组4x+3m=28x-3y=m)的解x,y满足x>y,则m的取值范围是()A.910 B.109 C.1910 D.1019解:4x+3m=2①8x-3y=m②)由①得2-3m4,代入②得,2-3m4-3y=m,4-7m3.∵x>y,即2-3m4-7m3,解得1019.选D.例2.关于x的方程2+mx-9=0和2)-3x+m\S\UP6(2+6m=0有公共根,则m的值为________.解:设这个公共根为α.则方程2+mx-9=0的两根为α、-m-α;方程2)-3x+m\S\UP6(2+6m=0的两根为α、3-α,由根与系数的关系有:α(-m-α)=-9,2+6m,整理得,2+mα=9①,2)-3α+m\S\UP6(2+6m=0②,②-①得,2+6m-3α-mα=-9,即2-α(m+3)=0,(m+3)(m+3-α)=0,所以m+3=0或m+3-α=0,解得m=-3或α=m+3,把α=m+3代入①得,2+m(m+3)=9,2)+6m+9+m\S\UP6(2+3m=9,m(2m+9)=0,所以m=0或2m+9=0,解得m=0或m=-4.5,综上所述,m的值为-3,0,-4.5.同类题型2.1 已知a是一元二次方程2-2018x+1=0的一个根,则代数式2018a\S\UP6(2)+1的值是___.解:由题意,把根a代入2-2018x+1=0,可得:2-2018a+1=0,∴2-2017a-a+1=0,2+1=2018a;∴2-2017a=a-1,∴20182)+11a-122018a a-1=2018-1,=2017.同类题型2.2 已知关于x的方程2)-1)x\S\UP6(2+(2k-1)x+1=0有两个不相等的实数根,那么实数k的取值范围为_____________.解:由题意知,k≠±1,2)-4(k\S\UP6(2-1)=5-4k>0∴54且k≠±1.同类题型2.3 已知α、β是方程2-2x-4=0的两个实数根,则3+8β+6的值为()A.-1 B.2 C.22 D.30解:∵α、β是方程2-2x-4=0的两个实数根,∴α+β=2,2-2α-4=0,∴2=2α+4∴3)+8β+6=α﹒α\S\UP6(2+8β+6=α﹒(2α+4)+8β+62+4α+8β+6=2(2α+4)+4α+8β+6=8α+8β+14=8(α+β)+14=30,故选D.例3.已知方程11a的两根分别为a,1a,则方程11a-1的根是()A.a,1a-1 B.1a-1,a-1 C.1a,a-1 D.a,aa-1解:方程11a-1可以写成11a-1的形式,∵方程11a的两根分别为a,1a,∴方程11a-1的两根的关系式为x-1=a-1,1a-1,即方程的根为x=a或aa-1,∴方程11a-1的根是a,aa-1.选D.同类题型3.1 若关于x的方程2x-bx-1=3的解是非负数,则b的取值范围是________.解:去分母得,2x-b=3x-3∴x=3-b∵x≥0∴3-b≥0解得,b≤3又∵x-1≠0∴x≠1即3-b≠1,b≠2则b的取值范围是b≤3且b≠2.同类题型3.2 观察分析下列方程:①2x=3;②6x=5;③12x=7.请利用它们所蕴含的规律,求关于x的方程2)+nx-4=2n+5(n为正整数)的根,你的答案是_________________.解:1×2x=3,解得:x=2或x=1;2×3x=5,解得:x=2或x=3;3×4x=7,解得:x=3或x=4,得到规律mnx=m+n的解为:x=m或x=n,所求方程整理得:n(n+1)x-4=2n+1,根据规律得:x-4=n或x-4=n+1,解得:x=n+4或x=n+5.同类题型3.3 已知关于x的方程2a+13a x-1)(x+2只有整数解,则整数a的值为_____________.解:方程两边同乘以(x-1)(x+2),得:2(x+2)-(a+1)(x-1)=3a,解得:2a-531-a,∵方程只有整数解,∴1-a=3或1或-3或-1,当1-a=3,即a=-2时,x=-2-1=-3,检验,将x=-3代入(x-1)(x+2)=4≠0,故x=-3是原分式方程的解;当1-a=1,即a=0时,x=-2-3=-5,检验,将x=-5代入(x-1)(x+2)=18≠0,故x=-7是原分式方程的解;当1-a=-3,即a=4时,x=-2+1=-1,检验,将x=-1代入(x-1)(x+2)=-2≠0,故x=-1是原分式方程的解;当1-a=-1,即a=2时,x=1,检验,将x=1代入(x-1)(x+2)=0,故x=1不是原分式方程的解;∴整数a的值为:-2,0或4.例4.[x]表示不超过x的最大整数.如,[π]=3,[2]=2,[-2.1]=-3.则下列结论:①[-x]=-[x];②若[x]=n,则x的取值范围是n≤x<n+1;③当-1<x<1时,[1+x]+[1-x]的值为1或2;④x=-2.75是方程4x-2[x]+5=0的唯一一个解.其中正确的结论有_________(写出所有正确结论的序号).解:①当x=-3.5时,[-3.5]=-4,-[x]=-3,不相等,故原来的说法错误;②若[x]=n,则x的取值范围是n≤x<n+1是正确的;③当-1<x<0时,[1+x]+[1-x]=0+1=1;当x=0时,[1+x]+[1-x]=1+1=2;当0<x<1时,[1+x]+[1-x]=1+0=1;故当-1<x<1时,[1+x]+[1-x]的值为1或2是正确的;④x-[x]的范围为0~1,4x-2[x]+5=0,-5≤2x<-7,即-2.5≤x<-3.5,x=-2.75或x=-3.25都是方程4x-2[x]+5=0,故原来的说法错误.故答案为:②③.同类题型4.1 设[x]表示不大于x的最大整数,{x}表示不小于x的最小整数,(x)表示最接近x的整数(x ≠n+0.5,n为整数).例如[3.4]=3,{3.4}=4,(3.4)=3.则不等式8≤2x+[x]+3{x}+4(x)≤14的解为()A.0.5≤x≤2 B.0.5<x<1.5或1.5<x<2C.0.5<x<1.5 D.1.5<x<2解:根据题意得:x>0,若x≥2,则2x≥4,[x]≥2,3{x}≥6,4(x)≥8,不等式不成立.故只需分析0<x<2时的情形即可,①0<x≤0.5时,不等式可化为:8≤2x+0+3+0≤14,解得:2.5≤x≤5.5,不符合不等式;②当0.5<x≤1时,不等式可化为:8≤2x+0+3+4≤14,解得:0.5≤x≤3,因此0.5<x≤1,符合不等式;③当1<x<1.5时,不等式可化为:8≤2x+1+6+4≤14,解得:-1.5≤x≤1.5,因此1<x<1.5,符合不等式;④当1.5<x<2时,不等式可化为:8≤2x+1+6+8≤14,解得:-3.5≤x≤-0.5,不符合不等式.故原不等式的解集为:0.5<x<1.5.故选C.同类题型4.2规定:[x]表示不大于x的最大整数,(x)表示不小于x的最小整数,[x)表示最接近x的整数(x≠n+0.5,n为整数),例如:[2.3]=2,(2.3)=3,[2.3)=2.则下列说法正确的是___________.(写出所有正确说法的序号)①当x=1.7时,[x]+(x)+[x)=6;②当x=-2.1时,[x]+(x)+[x)=-7;③方程4[x]+3(x)+[x)=11的解为1<x<1.5;④当-1<x<1时,函数y=[x]+(x)+x的图象与正比例函数y=4x的图象有两个交点.解:①当x=1.7时,[x]+(x)+[x)=[1.7]+(1.7)+[1.7)=1+2+2=5,故①错误;②当x=-2.1时,[x]+(x)+[x)=[-2.1]+(-2.1)+[-2.1)=(-3)+(-2)+(-2)=-7,故②正确;③4[x]+3(x)+[x)=11,7[x]+3+[x)=11,7[x]+[x)=8,1<x<1.5,故③正确;④∵-1<x<1时,∴当-1<x<-0.5时,y=[x]+(x)+x=-1+0+x=x-1,当-0.5<x<0时,y=[x]+(x)+x=-1+0+x=x-1,当x=0时,y=[x]+(x)+x=0+0+0=0,当0<x<0.5时,y=[x]+(x)+x=0+1+x=x+1,当0.5<x<1时,y=[x]+(x)+x=0+1+x=x+1,∵y=4x,则x-1=4x时,得13;x+1=4x时,得13;当x=0时,y=4x=0,∴当-1<x<1时,函数y=[x]+(x)+x的图象与正比例函数y=4x的图象有三个交点,故④错误,故答案为:②③.同类题型4.3 如果关于x的不等式(a+b)x+2a-b>0的解集是52,那么关于x的不等式(b-a)x+a +2b≤0的解集是____________.解:∵关于x的不等式(a+b)x+2a-b>0的解集是52,∴b-2aa+b,∴b-2a52,且a+b<0,即b=-3a,a+b<0,∴a-3a<0,即a>0,∴b-a=-4a<0,∴关于x的不等式(b-a)x+a+2b≤0的解集是-a-2bb-a,∵-a-2b-a+6a54,∴关于x的不等式(b-a)x+a+2b≤0的解集是54.同类题型4.4 若关于x的不等式组\F(x+4x2x-a<0解集为x<2,则a的取值范围是___________.解:由x+4x2+1,得2x+8>3x+6,解得x<2,由x-a<0,得x<a,又因关于x的不等式组\F(x+4x2x-a<0解集为x<2,所以a≥2.同类题型4.5 按如图的程序计算,若开始输入的值x为正数,最后输出的结果为656,则满足条件的x的不同值最多有___________.解:∵最后输出的数为656,∴5x+1=656,得:x=131>0,∴5x+1=131,得:x=26>0,∴5x+1=26,得:x=5>0,∴5x+1=5,得:x=0.8>0;∴5x+1=0.8,得:x=-0.04<0,不符合题意,故x的值可取131,26,5,0.8共4个.专题03函数的几何综合问题例1.如图,在平面直角坐标系中,直线l:3\R(33与x轴交于点1,以1为边长作等边三角形1)OB\S\DO(1,过点1作1)B\S\DO(2平行于x轴,交直线l于点2,以1)B\S\DO(2为边长作等边三角形2)A\S\DO(1)B\S\DO(2,过点2作2)B\S\DO(3平行于x轴,交直线l于点3,以2)B\S\DO(3为边长作等边三角形3)A\S\DO(2)B\S\DO(3,…,则点2017的横坐标是____________.同类题型1.1 如图,直线l:y=x+1交y轴于点1,在x轴正方向上取点1,使1)=OA\S\DO(1;过点1作2)B\S\DO(1⊥x轴,交l于点2,在x轴正方向上取点2,使1)B\S\DO(2)=B\S\DO(1)A\S\DO(2;过点2作3)B\S\DO(2⊥x轴,交l于点3,在x轴正方向上取点3,使2)B\S\DO(3)=B\S\DO(2)A\S\DO(3;…记1)B\S\DO(1面积为1,1)A\S\DO(2)B\S\DO(2面积为2,2)A\S\DO(3)B\S\DO(3面积为3,…则2017等于()A.4030 B.4031 C.4032 D.4033同类题型1.2 如图,已知直线l:33x,过点A(0,1)作y轴的垂线交直线l于点B,过点B作直线l的垂线交y轴于点1;过点1作y轴的垂线交直线l于点1,过点1作直线l的垂线交y轴于点2;…;按此作法继续下去,则点4的坐标为()A.(0,128)B.(0,256)C.(0,512)D.(0,1024)同类题型1.3 如图,在平面直角坐标系中,直线l:33x+1交x轴于点B,交y轴于点A,过点A作1⊥AB 交x轴于点1,过点1作1)A\S\DO(1⊥x轴交直线l于点2…依次作下去,则点n的横坐标为____________.例2.高速公路上依次有3个标志点A、B、C,甲、乙两车分别从A、C两点同时出发,匀速行驶,甲车从A→B→C,乙车从C→B→A,甲、乙两车离B的距离1、2(千米)与行驶时间x(小时)之间的函数关系图象如图所示.观察图象,给出下列结论:①A、C之间的路程为690千米;②乙车比甲车每小时快30千米;③4.5小时两车相遇;④点E的坐标为(7,180),其中正确的有_________(把所有正确结论的序号都填在横线上).同类题型2.1 甲、乙两辆汽车沿同一路线从A地前往B地,甲车以a千米/时的速度匀速行驶,途中出现故障后停车维修,修好后以2a千米/时的速度继续行驶;乙车在甲车出发2小时后匀速前往B地,比甲车早30分钟到达.到达B地后,乙车按原速度返回A地,甲车以2a千米/时的速度返回A地.设甲、乙两车与A地相距s(千米),甲车离开A地的时间为t(小时),s与t之间的函数图象如图所示.下列说法:①a=40;②甲车维修所用时间为1小时;③两车在途中第二次相遇时t的值为5.25;④当t=3时,两车相距40千米,其中不正确的个数为()A.0个B.1个C.2个D.3个同类题型2.2 甲、乙两车从A地驶向B地,并以各自的速度匀速行驶,甲车比乙车早行驶2h,并且甲车途中休息了0.5h,如图是甲乙两车行驶的距离y(km)与时间x(h)的函数图象.则下列结论:(1)a=40,m=1;(2)乙的速度是80km/h;(3)甲比乙迟74h到达B地;(4)乙车行驶94小时或194小时,两车恰好相距50km.正确的个数是()A.1B.2C.3D.4同类题型2.3 甲、乙两人从科技馆出发,沿相同的路线分别以不同的速度匀速跑向极地馆,甲先跑一段路程后,乙开始出发,当乙超出甲150米时,乙停在此地等候甲,两人相遇后乙又继续以原来的速度跑向极地馆.如图是甲、乙两人在跑步的全过程中经过的路程y(米)与甲出发的时间x(秒)的函数图象.则下列四种说法:①甲的速度为1.5米/秒;②a=750;③乙在途中等候甲100秒;④乙出发后第一次与甲相遇时乙跑了375米.其中正确的个数是()A.1个B.2个C.3个D.4个例3.如图,已知动点P在函数12x(x>0)的图象上运动,PM⊥x轴于点M,PN⊥y轴于点N,线段PM、PN分别与直线AB:y=-x+1交于点E,F,则AF﹒BE的值为()A.4B.2C.1D.12同类题型3.1 如图,在反比例函数32x的图象上有一动点A,连接AO并延长交图象的另一支于点B,在第二象限内有一点C,满足AC=BC,当点A运动时,点C始终在函数kx的图象上运动,若tan∠CAB=2,则k的值为()A.-3B.-6C.-9D.-12同类题型3.2 如图,在平面直角坐标系中,点A在x轴的正半轴上,点B在第一象限,点C在线段AB上,点D在AB的右侧,△OAB和△BCD都是等腰直角三角形,∠OAB=∠BCD=90°,若函数6x(x>0)的图象经过点D,则△OAB与△BCD的面积之差为()A.12 B.6 C.3 D.2同类题型3.3 如图,在平面直角坐标系xOy中,已知直线y=kx(k>0)分别交反比例函数1x和9x在第一象限的图象于点A,B,过点B作BD⊥x轴于点D,交1x的图象于点C,连结A C.若△ABC是等腰三角形,则k的值是___________.例4.如图,一次函数y=x+b的图象与反比例函数kx的图象交于点A(3,6)与点B,且与y轴交于点C,若点P是反比例函数kx图象上的一个动点,作直线AP与x轴、y轴分别交于点M、N,连结BN、CM.若△ACM)=S\S\DO(△ABN,则APAN的值为__________.同类题型4.1 当12≤x≤2时,函数y=-2x+b的图象上至少有一点在函数1x的图象下方,则b的取值范围为()A.2 B.92 C.b<3D.92同类题型4.2 方程2+3x-1=0的根可视为函数y=x+3的图象与函数1x的图象交点的横坐标,那么用此方法可推断出方程2+2x-1=0的实数根0所在的范围是()A.0<0 B.0<1 C.0<2 D.0<3例5.在平面直角坐标系xOy中,抛物线2)+2mx-m\S\UP6(2-m+1交y轴于点为A,顶点为D,对称轴与x轴交于点H.当抛物线顶点D在第二象限时,如果∠ADH=∠AHO,则m=__________.同类题型5.1 已知抛物线14)x\S\UP6(2+1具有如下性质:该抛物线上任意一点到定点F(0,2)的距离与到x轴的距离始终相等,如图,点M的坐标为3,3),P是抛物线14)x\S\UP6(2+1上一个动点,则△PMF周长的最小值是()A.3 B.4 C.5 D.6同类题型5.2 抛物线2+bx+3(a≠0)经过点A(-1,0),32,0),且与y轴相交于点C.设点D是所求抛物线第一象限上一点,且在对称轴的右侧,点E在线段AC上,且DE⊥AC,当△DCE与△AOC相似时,求点D的坐标.同类题型5.3小明家的洗手盆上装有一种抬启式水龙头(如图1),完全开启后,水流路线呈抛物线,把手端点A,出水口B和落水点C恰好在同一直线上,点A至出水管BD的距离为12cm,洗手盆及水龙头的相关数据如图2所示,现用高10.2cm的圆柱型水杯去接水,若水流所在抛物线经过点D和杯子上底面中心E,则点E到洗手盆内侧的距离EH为__________cm.参考答案例1.如图,在平面直角坐标系中,直线l:3\R(33与x轴交于点1,以1为边长作等边三角形1)OB\S\DO(1,过点1作1)B\S\DO(2平行于x轴,交直线l于点2,以1)B\S\DO(2为边长作等边三角形2)A\S\DO(1)B\S\DO(2,过点2作2)B\S\DO(3平行于x轴,交直线l于点3,以2)B\S\DO(3为边长作等边三角形3)A\S\DO(2)B\S\DO(3,…,则点2017的横坐标是____________.解:由直线l:3\R(33与x轴交于点1,可得1(1,0),D(0,33),∴1=1,1D=30°,如图所示,过1作1)A⊥OB\S\DO(1于A,则112,即1的横坐标为12\S\UP6(12,由题可得1)B\S\DO(2)B\S\DO(1)=∠OB\S\DO(1D=30°,2)A\S\DO(1)B\S\DO(1)=∠A\S\DO(1)B\S\DO(1O =60°,∴1)B\S\DO(1)B\S\DO(2=90°,∴1)B\S\DO(2)=2A\S\DO(1)B\S\DO(1=2,过2作2)B⊥A\S\DO(1)B\S\DO(2于B,则12)A\S\DO(1)B\S\DO(2=1,即2的横坐标为132\S\UP6(22,过3作3)C⊥A\S\DO(2)B\S\DO(3于C,同理可得,2)B\S\DO(3)=2A\S\DO(2)B\S\DO(2=4,12)A\S\DO(2)B\S\DO(3=2,即3的横坐标为172\S\UP6(32,同理可得,4的横坐标为1152\S\UP6(42,由此可得,n的横坐标为n)-12,∴点2017的横坐标是2017)-12.同类题型1.1 如图,直线l:y=x+1交y轴于点1,在x轴正方向上取点1,使1)=OA\S\DO(1;过点1作2)B\S\DO(1⊥x轴,交l于点2,在x轴正方向上取点2,使1)B\S\DO(2)=B\S\DO(1)A\S\DO(2;过点2作3)B\S\DO(2⊥x轴,交l于点3,在x轴正方向上取点3,使2)B\S\DO(3)=B\S\DO(2)A\S\DO(3;…记1)B\S\DO(1面积为1,1)A\S\DO(2)B\S\DO(2面积为2,2)A\S\DO(3)B\S\DO(3面积为3,…则2017等于()A.4030 B.4031 C.4032 D.4033解:∵1)=OA\S\DO(1;过点1作2)B\S\DO(1⊥x轴,1)B\S\DO(2)=B\S\DO(1)A\S\DO(2);A\S\DO(3)B\S\DO(2⊥x轴,2)B\S\DO(3)=B\S\DO(2)A\S\DO(3;…∴1)B\S\DO(1,1)A\S\DO(2)B\S\DO(2,2)A\S\DO(3)B\S\DO(3是等腰直角三角形,∵y=x+1交y轴于点1,∴1(0,1),∴1(1,0),∴1)=OA\S\DO(1=1,∴112,同理112,112;…∴12)×2\S\UP6(2n-2)=2\S\UP6(2n-3,∴2017)=2\S\UP6(2×2017-3)=2\S\UP6(4031,选B.同类题型1.2 如图,已知直线l:33x,过点A(0,1)作y轴的垂线交直线l于点B,过点B作直线l的垂线交y轴于点1;过点1作y轴的垂线交直线l于点1,过点1作直线l的垂线交y轴于点2;…;按此作法继续下去,则点4的坐标为()A.(0,128)B.(0,256)C.(0,512)D.(0,1024)解:∵直线l的解析式为33x,∴l与x轴的夹角为30°,∵AB∥x轴,∴∠ABO=30°,∵OA=1,∴OB=2,∴3,∵1B⊥l,∴1=60°,∴1O=4,∴1(0,4),同理可得2(0,16),…∴4纵坐标为4=256,∴4(0,256).选B.同类题型1.3 如图,在平面直角坐标系中,直线l:33x+1交x轴于点B,交y轴于点A,过点A作1⊥AB 交x轴于点1,过点1作1)A\S\DO(1⊥x轴交直线l于点2…依次作下去,则点n的横坐标为____________.解:由直线l:33x+1交x轴于点B,交y轴于点A,可得A(0,1),3,0),∴33,即∠ABO=30°,∴BA=2AO=2,又∵1⊥AB交x轴于点1,AO=1,∴23,∴1中,43;由题可得83,∴23,∴1)B\S\DO(2中,163;由题可得329,∴33,∴2)B\S\DO(3中,643,…以此类推,\F(4n3,又∵3,∴\F(4n3,∴点n的横坐标为4n3.例2.高速公路上依次有3个标志点A、B、C,甲、乙两车分别从A、C两点同时出发,匀速行驶,甲车从A→B→C,乙车从C→B→A,甲、乙两车离B的距离1、2(千米)与行驶时间x(小时)之间的函数关系图象如图所示.观察图象,给出下列结论:①A、C之间的路程为690千米;②乙车比甲车每小时快30千米;③4.5小时两车相遇;④点E的坐标为(7,180),其中正确的有_________(把所有正确结论的序号都填在横线上).解:①450+240=690(千米).故A、C之间的路程为690千米是正确的;②450÷5-240÷4=90-60=30(千米/小时).故乙车比甲车每小时快30千米是正确的;③690÷(450÷5+240÷4)=690÷(90+60)=690÷150=4.6(小时).故4.6小时两车相遇,原来的说法是错误的;④(450-240)÷(450÷5-240÷4)=210÷(90-60)=210÷30=7(小时),450÷5×7-450=630-450=180(千米).故点E的坐标为(7,180)是正确的,故其中正确的有①②④.同类题型2.1 甲、乙两辆汽车沿同一路线从A地前往B地,甲车以a千米/时的速度匀速行驶,途中出现故障后停车维修,修好后以2a千米/时的速度继续行驶;乙车在甲车出发2小时后匀速前往B地,比甲车早30分钟到达.到达B地后,乙车按原速度返回A地,甲车以2a千米/时的速度返回A地.设甲、乙两车与A地相距s(千米),甲车离开A地的时间为t(小时),s与t之间的函数图象如图所示.下列说法:①a=40;②甲车维修所用时间为1小时;③两车在途中第二次相遇时t的值为5.25;④当t=3时,两车相距40千米,其中不正确的个数为()A.0个B.1个C.2个D.3个解:①由函数图象,得a=120÷3=40故①正确,②由题意,得5.5-3-120÷(40×2),=2.5-1.5,=1.∴甲车维修的时间为1小时;故②正确,③如图:∵甲车维修的时间是1小时,∴B(4,120).∵乙在甲出发2小时后匀速前往B地,比甲早30分钟到达.∴E(5,240).∴乙行驶的速度为:240÷3=80,∴乙返回的时间为:240÷80=3,∴F(8,0).设BC的解析式为1)=k\S\DO(1)t+b\S\DO(1,EF的解析式为2)=k\S\DO(2)t+b\S\DO(2,由图象,得120=4k\S\DO(1)+b\S\DO(1)240=5.5k\S\DO(1)+b\S\DO(,)),240=5k\S\DO(2)+b\S\DO(2)0=8k\S\DO(2)+b\S\DO(2))解得k\S\DO(1)=80b\S\DO(1)=-200),k\S\DO(2)=-80b\S\DO(2)=640),∴1=80t-200,2=-80t+640,当1)=y\S\DO(2时,80t-200=-80t+640,t=5.25.∴两车在途中第二次相遇时t的值为5.25小时,故弄③正确,④当t=3时,甲车行的路程为:120km,乙车行的路程为:80×(3-2)=80km,∴两车相距的路程为:120-80=40千米,故④正确,选A.同类题型2.2 甲、乙两车从A地驶向B地,并以各自的速度匀速行驶,甲车比乙车早行驶2h,并且甲车途中休息了0.5h,如图是甲乙两车行驶的距离y(km)与时间x(h)的函数图象.则下列结论:(1)a=40,m=1;(2)乙的速度是80km/h;(3)甲比乙迟74h到达B地;(4)乙车行驶94小时或194小时,两车恰好相距50km.。

相关文档
最新文档