数值分析考试复习总结

合集下载

期末数值分析重点总结

期末数值分析重点总结

期末数值分析重点总结第一部分:数值逼近(Approximation)数值逼近是数值分析的基础,主要研究如何利用有限的计算资源得到逼近数学问题的有效算法。

数值逼近的主要内容包括多项式逼近、插值和最小二乘等。

1. 多项式逼近多项式逼近是指用一个多项式函数来逼近给定函数的值。

通过选择合适的多项式次数和插值点,可以使得多项式逼近误差最小化。

其中最常用的方法是最小二乘法,它可以通过最小化残差来得到最佳的多项式逼近。

多项式逼近在信号处理、图像处理和计算机图形学等领域中有广泛的应用。

2. 插值插值是指通过已知数据点的函数值来估计在其他点的函数值。

常用的插值方法有拉格朗日插值和牛顿插值。

拉格朗日插值通过构造一个满足插值条件的多项式来逼近给定函数。

牛顿插值则利用差商的概念来构造插值多项式。

插值方法在数值微分和数值积分中有广泛的应用。

3. 最小二乘最小二乘是一种在一组离散数据点上拟合曲线的方法。

通过最小化数据点与拟合曲线之间的欧几里得距离,可以得到最佳拟合曲线。

最小二乘法可以用于曲线拟合、参数估计和数据关联等问题。

第二部分:数值解方程(Numerical Solution of Equations)数值解方程是数值分析的重要内容之一,研究如何通过数值计算来求解非线性方程组和线性方程组。

数值解方程的主要方法有迭代法、常微分方程数值解和偏微分方程数值解等。

1. 迭代法迭代法是求解非线性方程组的常用方法之一。

通过不断迭代逼近方程的根,可以得到方程组的数值解。

常用的迭代法有牛顿迭代法和弦截法。

迭代法在计算机辅助设计、优化和数据分析等领域中有广泛的应用。

2. 常微分方程数值解常微分方程数值解研究如何通过数值计算来求解常微分方程。

常微分方程数值解的主要方法有Euler方法、Runge-Kutta方法和线性多步法等。

常微分方程数值解在物理学、工程学和生物学等领域中有广泛的应用。

3. 偏微分方程数值解偏微分方程数值解研究如何通过数值方法来求解偏微分方程。

(完整版),数值分析笔记期末复习汇总,推荐文档

(完整版),数值分析笔记期末复习汇总,推荐文档

x
*n )
e(x *1)
f
(x *1,
x *2 ,, xn
x *n
)
e(x *n )
n i 1
f
(x *1, x *2 ,, x *n ) xi
e(x *i )
9、加减乘除运算的误差估计
加法

对 误
e(x1 x2 ) e(x1) e(x2 )



误 (x1 x2 ) (x1) (x2 )
x1
b
sign(b) 2a
b2 4ac 109
x1
x2
c a
x2
c a x1
109 109
1
求和时从小到大相加,可使和的误差减小。若干数相加,采用绝对值较小者先加的算法,
结果的相对误差限较小
y 54321100 0.4100 0.3100 0.4100 54322
(三) 注意简化计算步骤,减少运算次数,避免误差积累(秦九韶)
则称 r (x*) 为近似值 x*的相
对误差限。 (2)性质:
当|| er (x*) | 较小时,可用下
是有量纲的。 (2)绝对误差限是正的,有无穷
常取
er
( x*)
e( x*) x*
式计算
绝对误差是误差的绝对值? 多个【则比 * 大的任意正数均
(错)
是绝对误差
限】
r
( x*)
(x*) | x |

x2* =3.14
作为 π 的近似值,则 | e2
| 0.00159
1 102 :三个有效数字 2

x3* =3.1416 作为 π 的近似值,则 | e3
| 0.00000734

山东省考研数学复习资料数值分析重点知识点

山东省考研数学复习资料数值分析重点知识点

山东省考研数学复习资料数值分析重点知识点数值分析是数学中的一个重要分支,它研究的是利用数值方法解决实际问题的理论和方法。

对于山东省考研的学生来说,数值分析是一个必修课程,理解和掌握数值分析的重点知识点对于备考非常重要。

本文将详细介绍山东省考研数学复习资料中数值分析的重点知识点。

一、数值误差与有效数字在进行数值计算时,绝对精确的数值很难获得,因此数值计算中会产生误差。

数值误差主要分为绝对误差和相对误差。

绝对误差是指计算结果与真实值之差的绝对值,相对误差是指绝对误差与真实值之比的绝对值。

为了评估数值的精确程度,我们还需要了解有效数字的概念。

有效数字是指一个数中,从第一个非零数位开始,一直到最后一个数字位之间的数字个数。

在进行数值计算时,我们需要考虑有效数字和误差的影响。

二、插值与多项式逼近插值是指利用已知数据点构造出一个函数,在这些数据点上与给定函数的函数值相等。

而多项式逼近是指利用已知数据点构造出一个多项式函数,使该多项式函数与给定函数在这些数据点上尽可能接近。

插值与多项式逼近是数值分析中常见的实用计算方法,可以用于曲线拟合、数据恢复等实际问题的求解。

三、数值积分与数值微分数值积分是利用数值方法计算给定函数在一个区间上的积分值。

数值微分是利用数值方法计算给定函数在一个点处的斜率或导数值。

数值积分和数值微分是计算积分和求导数的常用数值方法,可以广泛应用于物理、工程、金融等领域的问题求解。

四、常微分方程的数值解法常微分方程是研究物理、生物和工程等领域的重要工具。

数值解法通过将常微分方程问题转化为数值离散问题,进而求解出近似的数值解。

常见的数值解法包括欧拉法、改进的欧拉法、龙格-库塔法等,每种方法都有其适用范围和特点,需要根据具体问题选择合适的方法。

五、线性代数方程组的数值解法线性代数方程组是数值分析中的重要问题,常常涉及到大规模的稀疏矩阵。

数值解法通过将线性代数方程组转化为数值问题,并应用迭代法或直接法求解出线性代数方程组的解。

数值分析考试复习总结修订稿

数值分析考试复习总结修订稿

数值分析考试复习总结 WEIHUA system office room 【WEIHUA 16H-WEIHUA WEIHUA8Q8-第一章1 误差相对误差和绝对误差得概念 例题:当用数值计算方法求解一个实际的物理运动过程时, 一般要经历哪几个阶段? 在哪些阶段将有哪些误差产生?答: 实际问题-数学模型-数值方法-计算结果 在这个过程中存在一下几种误差:建立数学模型过程中产生:模型误差 参数误差选用数值方法产生:截断误差计算过程产生:舍入误差 传播误差6.设937.0=a 关于精确数x 有3位有效数字,估计a 的相对误差. 对于x x f -=1)(,估计)(a f 对于)(x f 的误差和相对误差.解 a 的相对误差:由于31021|)(|-⋅≤-≤a x x E . x ax x E r -=)(,221018110921)(--⋅=⨯≤x E r . (1Th ))(a f 对于)(x f 的误差和相对误差.|11||)(|a x f E ---==()25.021011321⨯⋅≤-+---ax x a =310-33104110|)(|--⨯=-≤a f E r . □2有效数字基本原则:1 两个很接近的数字不做减法:2: 不用很小得数做分母(不用很大的数做分子) 例题:4.改变下列表达式使计算结果比较精确:(1) ;1||,11211<<+--+x xxx 对(2);1,11>>--+x xx xx 对(3)1||,0,cos 1<<≠-x x xx对.解 (1) )21()1(22x x x ++. (2) )11(2x x x x x-++.(3) xxx x x x x cos 1sin )cos 1(sin cos 12+≈+=-. □第二章拉格朗日插值公式(即公式(1))插值基函数(因子)可简洁表示为其中: ()∏∏≠==-='-=nij j j i i nnj jn x x x xx x 0)(,)()(ωω. 例1 n=1时,线性插值公式 )()()()()(010110101x x x x y x x x x y x P --⨯+--⨯=, 例2 n=2时,抛物插值公式 牛顿(Newton )插值公式由差商的引入,知(1) 过点10,x x 的一次插值多项式为其中(2) 过点210,,x x x 的二次插值多项式为其中重点是分段插值:例题:1. 利用Lagrange 插值公式求下列各离散函数的插值多项式(结果要简化):(1) (2) 解(2):方法一. 由 Lagrange 插值公式 可得: )21()(23-=x x x L 方法二. 令由 23)1(3-=-L , 21)1(3=L , 定A ,B (称之为待定系数法) □15.设2)(x x f =,求)(x f 在区间]1,0[上的分段线性插值函数)(x f h ,并估计误差,取等距节点,且10/1=h .解 2)(x x f =, ih x i = , 10,,1,0 =i , 101=h设 1+≤≤i i x x x ,则:误差估计: ))1(()(!2|)()(|max)1(h i x ih x f x f x f hi x ix h +--''≤-+≤≤. □第三章最佳一致逼近:(了解) 最佳平方逼近 主要分两种情形:1. 连续意义下在空间],[2b a L 中讨论2. 离散意义下在n 维欧氏空间n R 中讨论,只要求提供f 的样本值1. 最佳逼近多项式的法方程组设],[2b a L 的1+n 维子空间 n P =span },,,1{2n x x x , 其中 n x x x ,,,12 是],[2b a L 的线性无关多项式系.对],[2b a L f ∈∀,设其最佳逼近多项式*φ可表示为: ∑==ni i i x a 0**φ由 n P f ∈∀=-φφφ ,0),(*即 ∑===nj ij j i n i x f a x x 0*)1(0),,(),((*2) 其中称(*2)式为最佳逼近多项式的法方程组(或正规方程组). 由n i i x 0}{=的线性无关性,可证明G 正定,即 上述法方程组的解存在且唯一 .11、 求x x f πcos )(= ,]1,0[∈x 的一次和二次最佳平方逼近多项式. 解: 设 x a a x P 10*1)(+= , 2210*2)(x b x b b x P ++= 分别为)(x f 的一次、二次最佳平方逼近多项式。

数值分析期末知识点总结

数值分析期末知识点总结

数值分析期末知识点总结一、引言数值分析是一门研究如何使用计算机提高数学模型数值计算精度和效率的学科。

它是计算数学的一个重要分支,涉及到数值计算、数值逼近和误差分析等一系列内容。

在数值分析课程中,我们将学习到数值解微分方程、线性代数问题的求解、插值与拟合、积分等一系列内容。

本文将对数值分析期末知识点进行总结,以便帮助大家复习。

二、常见数值计算方法1. 插值与拟合插值与拟合是数值分析中重要的内容,它们用于在给定数据点集上构造一个函数,以便在其他点上进行求值。

插值是通过一些已知数据点来求得一个函数,使得这个函数能够通过这些点,而拟合则是通过已知数据点来求得一个函数,使得这个函数在这些点附近能够比较好地拟合数据。

常见的插值方法包括线性插值、拉格朗日插值、牛顿插值等;而拟合方法包括最小二乘法拟合、多项式拟合等。

2. 数值解微分方程数值解微分方程是数值分析的一个重要内容,它讨论如何使用计算机对微分方程进行数值求解。

微分方程是自然界中描述变化的数学方程,它们在物理学、化学、生物学等领域都有着重要的应用。

数值解微分方程的方法包括欧拉法、中点法、四阶龙格-库塔法等。

3. 数值线性代数数值线性代数是数值分析领域的另一个重要内容,它讨论如何使用数值方法解决线性代数问题。

原始的线性代数问题可能非常大或者非常复杂,因此我们常常需要使用计算机进行数值计算。

数值线性代数的方法包括高斯消元法、LU分解、Jacobi迭代法、Gauss-Seidel 迭代法等。

4. 数值积分数值积分是数值分析的一个重要内容,它讨论如何使用数值方法对积分进行数值求解。

在实际问题中,有很多积分问题是无法解析求解的,因此我们需要使用数值方法进行近似求解。

数值积分的方法包括复合辛普森法、复合梯形法、龙贝格积分法等。

三、数值分析的误差分析在数值计算过程中,我们会遇到误差的问题。

这些误差可能来自于测量、舍入、截断等各种原因。

因此,误差分析是数值分析中一个非常重要的内容。

数值分析考试复习总结

数值分析考试复习总结

第一章1 误差相对误差和绝对误差得概念 例题:当用数值计算方法求解一个实际的物理运动过程时, 一般要经历哪几个阶段? 在哪些阶段将有哪些误差产生?答: 实际问题-数学模型-数值方法-计算结果 在这个过程中存在一下几种误差:建立数学模型过程中产生:模型误差 参数误差选用数值方法产生:截断误差 计算过程产生:舍入误差 传播误差6.设937.0=a 关于精确数x 有3位有效数字,估计a 的相对误差. 对于x x f -=1)(,估计)(a f 对于)(x f 的误差和相对误差.解 a 的相对误差:由于31021|)(|-⋅≤-≤a x x E . x ax x E r -=)(,221018110921)(--⋅=⨯≤x E r . (1Th ))(a f 对于)(x f 的误差和相对误差.|11||)(|a x f E ---==()25.021011321⨯⋅≤-+---ax x a =310-33104110|)(|--⨯=-≤a f E r . □2有效数字基本原则:1 两个很接近的数字不做减法:2: 不用很小得数做分母(不用很大的数做分子) 例题:4.改变下列表达式使计算结果比较精确:(1) ;1||,11211<<+--+x xxx 对(2);1,11>>--+x xx xx 对(3)1||,0,cos 1<<≠-x x xx对.解 (1) )21()1(22x x x ++. (2) )11(2x x x x x-++.(3) xxx x x x x cos 1sin )cos 1(sin cos 12+≈+=-. □第二章拉格朗日插值公式(即公式(1))插值基函数(因子)可简洁表示为其中: ()∏∏≠==-='-=nij j j i i nnj jn x x x xx x 0)(,)()(ωω. 例1 n=1时,线性插值公式 )()()()()(010110101x x x x y x x x x y x P --⨯+--⨯=, 例2 n=2时,抛物插值公式 牛顿(Newton )插值公式由差商的引入,知(1) 过点10,x x 的一次插值多项式为其中(2) 过点210,,x x x 的二次插值多项式为其中重点是分段插值:例题:1. 利用Lagrange 插值公式求下列各离散函数的插值多项式(结果要简化):(1) (2) 解(2):方法一. 由 Lagrange 插值公式 可得: )21()(23-=x x x L 方法二. 令由 23)1(3-=-L , 21)1(3=L , 定A ,B (称之为待定系数法) □15.设2)(x x f =,求)(x f 在区间]1,0[上的分段线性插值函数)(x f h ,并估计误差,取等距节点,且10/1=h .解 2)(x x f =, ih x i = , 10,,1,0Λ=i , 101=h设 1+≤≤i i x x x ,则: 误差估计: ))1(()(!2|)()(|max)1(h i x ih x f x f x f hi x ix h +--''≤-+≤≤. □第三章最佳一致逼近:(了解) 最佳平方逼近 主要分两种情形:1. 连续意义下在空间],[2b a L 中讨论2. 离散意义下在n 维欧氏空间n R 中讨论,只要求提供f 的样本值1. 最佳逼近多项式的法方程组设],[2b a L 的1+n 维子空间 n P =span },,,1{2n x x x Λ, 其中 n x x x ,,,12Λ是],[2b a L 的线性无关多项式系.对],[2b a L f ∈∀,设其最佳逼近多项式*φ可表示为: ∑==ni i i x a 0**φ由 n P f ∈∀=-φφφ ,0),(*即 ∑===nj ij j i n i x f a x x 0*)1(0),,(),((*2) 其中称(*2)式为最佳逼近多项式的法方程组(或正规方程组). 由n i i x 0}{=的线性无关性,可证明G 正定,即 上述法方程组的解存在且唯一 .11、 求x x f πcos )(= ,]1,0[∈x 的一次和二次最佳平方逼近多项式. 解: 设 x a a x P 10*1)(+= , 2210*2)(x b x b b x P ++= 分别为)(x f 的一次、二次最佳平方逼近多项式。

(完整版)数值分析考试复习总结汇总,推荐文档

(完整版)数值分析考试复习总结汇总,推荐文档

10
100
误差估计:
f
max | f (x) fh (x) |
(x ih) (x (i 1)h) . 2! ixx(i1)h

第三章
最佳一致逼近:(了解) 最佳平方逼近
主要分两种情形:
1. 连续意义下
在空间 L2[a,b]中讨论
2. 离散意义下
在 n 维欧氏空间 Rn 中讨论,只要求提供 f 的样本值
n (x)
(x
xi
)
n
(xi
)
ji
n
n
其中: n (x) (x x j ), n xi (xi x j ) .
j0
j0
ji
例 1 n=1 时,线性插值公式
P1 ( x)
y0
(x x1) (x0 x1)
y1
(x x0 ) (x1 x0 )

例 2 n=2 时,抛物插值公式
P2 (x)
可得: L3 (x) x 2 (x 1 2)
方法二. 令
L3 (x) x(x 1 2) ( Ax B)

L3
(1)
3 2

L3 (1)
1, 2
定 A,B
(称之为待定系数法)

15.设 f (x) x2 ,求 f (x) 在区间[0,1] 上的分段线性插值函数 fh (x) ,并估计误差, 取等距节点,且 h 1/10 .
(2)
2x ( x 1 x
x 1 x) .
(3) 1 cos x sin 2 x sin x .

x
x(1 cos x) 1 cos x
第二章
拉格朗日插值公式(即公式(1))

数值分析考试复习总结

数值分析考试复习总结

第一章1误差相对误差和绝对误差得概念 例题:当用数值计算方法求解一个实际的物理运动过程时 哪些阶段将有哪些误差产生? 答:实际问题-数学模型-数值方法-计算结果 在这个过程中存在一下几种误差: 建立数学模型过程中产生:模型误差 参数误差 选用数值方法产生:截断误差 计算过程产生:舍入误差传播误差 6 •设a 0.937关于精确数x 有3位有效数字,估计a 的相对误差. 计f(a)对于f(x)的误差和相对误差. 解 a 的相对误差:由于1 |E(x)| x a 10 32-^10 2 2 9f(a)对于f(x)的误差和相对误差.E r (x)—1018|E(f)| | -.1 x 、1 a| =般要经历哪几个阶段?在对于f (x) .J x ,估x aE r (x)(Th1)| E r (f)| 10 3. 1 a 4 10 34=102 0.252有效数字基本原则:1两个很接近的数字不做减法:2:不用很小得数做分母(不用很大的数做分子)例题:4 •改变下列表达式使计算结果比较精确:1 1 2xx 1x1 cosx(1)| 1;1;(3)0,|x|解(1)2X 2(1x)(1 2x).1 cosxsin 2 xsin x,x 1 x)■x(1 cosx) 1 cosx第二章拉格朗日插值公式(即公式(1))插值基函数(因子)可简洁表示为n其中:n(X)(X X j),j 0 n X i (X i X j).j 0例1 n=1时,线性插值公式P(x) yo (x X i) (x X o) (X o X i) y1(X i X o)例2 n=2时,抛物插值公式牛顿(Newton)插值公式由差商的引入,知(1) 过点X o , X1的一次插值多项式为其中(2) 过点X o,X1,X2的二次插值多项式为其中重点是分段插值:例题:1.利用):解⑵:方法一.由Lagrange 插值公式可得:L3(X) X2(X 12)方法二•令3 1由L a( 1) 3,L S(1)-,定A, B (称之为待定系数法) □2 215.设f(x) x2,求f(x)在区间[0,1]上的分段线性插值函数f h(x),并估计误差,取等距节点,且h 1/10.解f(x) X2,X i ih ,i 0,1, ,10,h 110第三章最佳一致逼近:(了解) 最佳平方逼近 主要分两种情形:1. 连续意义下在空间L 2[a,b]中讨论2. 离散意义下在n 维欧氏空间R n 中讨论,只要求提供f 的样本值1. 最佳逼近多项式的法方程组设 L 2[a,b]的 n 1 维子空间 P n =span {1,x,x 2 , x n }, 其中1, x,x 2 , x n 是L 2[a, b]的线性无关多项式系.n 对f L 2[a,b],设其最佳逼近多项式可表示为: a i x ii 0由(f *,) 0,P nn*即 (x —xHa j (f,x i ), i 0(1) n(*2)j 0其中称(*2)式为最佳逼近多项式的法方程组(或正规方程组) .由{x i }i n 0的线性无关性,可证明G 正定,即 上述法方程组的解存在且唯一.11、求f (x) cos x , x [0,1]的一次和二次最佳平方逼近多项式 解: 设P 1*(x) a 0 a 1x , P ; (x) b 0 b 1x b 2x 2分别为f(x)的一次、二次最佳平方逼近多项式。

数值分析考试知识点总结

数值分析考试知识点总结

数值分析考试知识点总结数值分析是一门研究数值计算方法和数值计算误差的学科,它的研究对象是计算机数值计算和数值模拟方法的理论和技术。

一、误差分析数值计算是以实际问题为基础的分析过程,其目的是研究数值计算误差和误差的影响,以确保数值计算的准确性和可靠性。

数值计算误差主要包括截断误差和舍入误差两个部分。

1. 截断误差截断误差是由于在数值计算过程中,使用了近似代替精确值而引起的误差。

例如,在对连续函数的微分或积分进行数值计算时,所采用的近似公式都会引起截断误差。

截断误差可以通过增加计算步骤或者采用更加精确的计算方法来减小。

2. 舍入误差舍入误差是由于计算机对于无限小数进行截断或者舍入时引起的误差。

由于计算机是以有限的二进制数进行存储和运算,因此对于很小的数字或者非常大的数字,都会存在舍入误差。

舍入误差的大小与计算精度有关,可以通过提高计算精度来减小舍入误差。

二、插值和逼近插值和逼近是数值分析中常见的计算技术,用于利用已知的数据点来估计未知函数的值。

1. 插值插值是通过已知的数据点来估计未知函数在这些数据点之间的取值。

插值方法的目标是通过已知数据点构造一个函数,使得该函数在已知点上的取值与已知数据点的取值一致。

常见的插值方法包括拉格朗日插值多项式和牛顿插值多项式。

2. 逼近逼近是通过已知的数据点来估计未知函数的近似值,与插值不同的是,逼近方法不要求逼近函数必须在已知数据点上取特定的值。

常用的逼近方法包括最小二乘法逼近和样条逼近。

三、数值积分数值积分是通过数值计算来近似求解定积分的值,它是数值分析中的一个重要内容。

1. 复化数值积分复化数值积分是通过将积分区间划分成若干子区间,然后在每个子区间上进行数值积分来近似求解定积分的值。

复化数值积分方法包括复化梯形公式、复化辛普森公式以及复化辛普森三分法等。

2. 数值积分的误差分析在数值积分中,由于使用了近似方法,所以会引入数值积分误差。

要保证数值积分的准确性,需要对数值积分误差进行分析和评价。

数值分析期末复习要点总结省公开课获奖课件市赛课比赛一等奖课件

数值分析期末复习要点总结省公开课获奖课件市赛课比赛一等奖课件

15
Lagrange插值
Lagrange插值基函数
设 lk(x) 是 n 次多项式,在插值节点 x0 , x1 , … , xn 上满足
1, j k lk ( x j ) 0, j k
则称 lk(x) 为节点 x0 , x1 , … , xn 上旳拉格朗日插值基函数
16
线性与抛物线插值
两种特殊情形
x0 ƒ(x0)
x1 ƒ(x1) ƒ[x0, x1]
x2 ƒ(x2) ƒ[x1, x2] ƒ[x0, x1, x2]
x3 ƒ(x3) ƒ[x2, x3] ƒ[x1, x2, x3] ƒ[x0, x1, x2, x3]

xn ƒ(xn) ƒ[xn-1, ƒ[xn-2, xn-1, ƒ[xn-3, xn-2, xn-1, … ƒ[x0, x1,2…7 ,
ln 0.54 旳精确值为:-0.616186···
可见,抛物线插值旳精度比线性插值要高
Lagrange插值多项式简朴以便,只要取定节点就可写 出基函数,进而得到插值多项式,易于计算机实现。
19
Lagrange插值
lk(x) 旳体现式 由构造法可得
lk (
x)
( x x0 ) ( xk x0 )
Rn(x)
n1
Nn( x) a0 a1( x x0 ) a2( x x0 )( x x1 ) an ( x xi )
i 1
其中 a0 f ( x0 ), ai f [x0 ,, xi ], i 1,2,, n
Nn(x) 是 n 次多项式
Rn( x) f [x, x0 , ... , xn]( x x0 )...( x xn1)( x xn )

e(x*) x x*

数值分析总复习

数值分析总复习

样条插值;整体连续光滑,且不需知导数值。
插值问题提法:已知
x y f(x)
x0 y
x1 y
xn y
0
1
n
求一个三次分段函数 S(x) 使
1,
S(
xi
)
y i
x x 2, 在 [ , ] 上是三次多项式
i
i 1
C 3, S(x) 2 ( a,b )
i 0, 1, , n
计算三次样条算法
由边界条件 i , i , , i 0 ,1,, n
插值基函数方法
插值问题解的一般形式 :
n (x) a0 a1 x an xn
(1 )
实质上是在求多项式的 自然基底 Bn Span{1, x , ,xn}
张成的线性空间中的一 个点 —一个多项式 (1) ,由(2 18)
式知,解存在唯一 ,只要解方程组求出线 性组合系数 {ai}
就可以了 , 但计算量太大 .
定理2.5(余项) .
(2 - 35)
设H (x)是过 x0 , x1 的 Hermite 插值多项式 , C f f(x) 3 , ( 4 )(x)在 (a,b) 内存在, (a,b)是
(a,b)
含点 x0 , x1 的任一区间, 则对任意给定的
x (a,b) 总存在一点ξ (x)使
R(x)
f(x) H(x)
f
( 4 )(ξ
4!
)
(x
x0
)2(x
x1
)2
分段三次 Hermite 插值多项式及余项
∑ y h m H n
H (x) [ (x)
( x)]
i0
ii
ii
定理2.7(余项) :

数值分析期末总结与体会

数值分析期末总结与体会

数值分析期末总结与体会数值分析是一门应用数学课程,主要研究数值计算方法和数值计算误差,并为实际问题提供数值计算解决方案。

在本学期的学习中,我深入学习了数值计算的基本概念与原理,并通过编程实践掌握了常见的数值计算方法。

在期末考试前夕,我对这门课的学习经历进行了总结与体会,下面是我对数值分析的期末总结与体会。

一、总结1. 知识掌握:在学习过程中,我通过系统的学习,掌握了课程中介绍的求根问题、插值问题、数值积分和数值微分等数值计算方法。

我了解了牛顿迭代法、二分法、割线法等求解非线性方程根的方法,熟悉了拉格朗日插值、牛顿插值等插值方法,学会了辛卜生插值多项式、三次样条插值等高级插值方法。

同时,我还学习了梯形法则、辛普森法则等数值积分算法,掌握了欧拉法、龙格-库塔法等数值微分算法。

2. 编程实践:在理论学习的基础上,我通过编写程序加深了对数值计算方法的理解与掌握。

我使用Python语言编写了求解非线性方程根、插值计算、数值积分和数值微分的代码,并通过实际运行验证了这些数值计算方法的正确性与有效性。

编程实践过程中,我深刻体会到了算法的重要性,不同的算法对于同一个数值计算问题,可能会有不同的效果。

3. 数值计算误差:在学习数值计算的过程中,我逐渐认识到数值计算误差的存在与产生机理。

由于计算机内部采用的是二进制表示法,而浮点数的二进制表示无法准确表示所有的实数,从而引入了舍入误差;另外,数值计算方法本身也存在精度误差,例如插值多项式的截断误差、数值积分的数值误差等。

掌握数值计算误差的产生原因和估计方法,对于正确评估数值计算结果的精度至关重要。

4. 应用实例:在学习过程中,我们还分析了各种实际问题,并通过数值计算方法得到了解决方案。

例如,在求根问题中,我们可以利用牛顿迭代法估计气体状态方程的参数;在插值问题中,我们可以使用拉格朗日插值方法恢复图像;在数值积分中,我们可以利用梯形法则或辛普森法则计算定积分;在数值微分中,我们可以应用欧拉法或者龙格-库塔法求解微分方程等。

数值分析-第五版-考试总结

数值分析-第五版-考试总结

第一章:数值分析与科学计算引论截断误差:近似解与精确解之间的误差。

近似值的误差〔为准确值〕:近似值的误差限:近似值相对误差〔较小时约等〕:近似值相对误差限:函数值的误差限:近似值有n位有效数字:第二章:插值法其中:2.拉格朗日插值次插值基函数:引入记号:余项:3.牛顿插值多项式:阶均差〔把中间去掉,分别填在左边和右边〕:余项:4.牛顿前插公式〔令,计算点值,不是多项式〕:阶差分:余项:5.泰勒插值多项式:阶重节点的均差:6.埃尔米特三次插值:其中,A的标定为:7.分段线性插值:第三章:函数逼近与快速傅里叶变换1. 属于维空间:2.范数:3.带权内积和带权正交:4.最正确逼近的分类〔范数的不同、是否离散〕:最优一致〔-范数〕逼近多项式:最正确平方〔-范数〕逼近多项式:最小二乘拟合〔离散点〕:5.正交多项式递推关系:6.勒让德多项式:正交性:奇偶性:递推关系:7.切比雪夫多项式:递推关系:正交性:在上有个零点:在上有个零点:〔最优一致逼近〕首项的系数:8.最正确平方逼近:法方程:正交函数族的最正确平方逼近:9.最小二乘法:法方程:正交多项式的最小二乘拟合:第四章数值积分与数值微分1.求积公式具有次代数精度求积公式〔多项式与函数值乘积的和〕,对于次数不超过的多项式成立,不成立2.插值型求积公式时的余项4.牛顿-柯特斯公式:将划分为等份构造出插值型求积公式5.梯形公式:当n=1时,6.辛普森公式:当n=2时,7.复合求积公式:复合梯形公式:复合辛普森公式:8.高斯求积公式〔求待定参数和〕:〔1〕求高斯点〔〕:令与任何次数不超过的多项式带权正交,即那么,由个方程求出高斯点。

〔2〕求待定参数:,也为次数不超过的多项式。

9.高斯-勒让德求积公式:取权函数为的勒让德多项式的零点即为求积公式的高斯点。

10.高斯-切比雪夫求积公式:取权函数为的切比雪夫多项式的零点即为求积公式的高斯点。

第五章解线性方程组的直接方法1.矩阵的附属范数:2.条件数:第六章解线性方程组的迭代法1.迭代法:2.迭代法收敛:存在。

数值分析期末复习总结(优选.)

数值分析期末复习总结(优选.)

线性插值多项式(一次插值多项式)
n=2
L2 ( x) =
y0
(x ( x0
− −
x1 )( x − x2 ) x1 )( x0 − x2 )
+
y1
(x ( x1
− −
x0 )( x − x2 ) x0 )( x1 − x2 )
+
y2
(x ( x2
− −
x0 )( x − x1 ) x0 )( x2 − x1 )
f ( x=) f ( x0 ) + ( x − x0 ) f [x, x0]
1
f [ x, x0 ] = f [ x0 , x1] + ( x − x1 ) f [ x, x0 , x1]
2
……
f [ x, x0 , ... , xn−1] = f [ x0 , ... , xn ] + ( x − xn ) f [ x, x0 , ... , xn ] n−1
19
Newton 插值
为什么 Newton 插值
Lagrange 插值简单易用,但若要增加一个节点时,全部基函
数 lk(x) 都需重新计算,不太方便。
解决办法
设计一个可以逐次生成插值多项式的算法,即 n 次插值多项式 可以通过 n-1 次插值多项式生成 —— Newton 插值法
20
新的基函数
设插值节点为 x0 , … , xn ,考虑插值基函数组 ϕ0(x) = 1 ϕ1( x)= x − x0 ϕ2( x) = ( x − x0 )( x − x1 )
18
插值余项
几点说明
余项公式只有当 f(x) 的高阶导数存在时才能使用
ξx 与 x 有关,通常无法确定, 实际使用中通常是估计其上界

数值分析期末总结pdf

数值分析期末总结pdf

数值分析期末总结pdf一、引言数值分析指的是利用数值方法对数学问题进行计算和求解的一门学科,在科学计算和工程技术领域中具有重要的应用价值。

本学期学习了数值分析的基本理论知识和常用的数值计算方法,对于提高科学计算和工程分析的准确性和效率具有重要意义。

通过这门课程的学习,我深刻认识到数值分析在实际问题求解中的重要性,并且对于数值方法的原理和应用有了一定的了解。

下面将对本学期学习的内容进行总结和思考。

二、数值误差的分类在数值计算过程中,会产生各种不同类型的误差。

了解不同类型的误差对于评估计算结果的准确性十分重要。

常见的数值误差包括:绝对误差、相对误差、截断误差和舍入误差等。

绝对误差指的是数值计算结果与真实值之间的差距。

相对误差是绝对误差除以真实值,用来计算计算结果相对于真实值的相对准确性。

截断误差是指数值计算方法本身的误差,通常由数值逼近和离散化引起。

舍入误差是因计算机中浮点数的机器精度引起的误差,它是由于计算机在二进制下无法准确表示所有实数而引起的。

在数值计算中,为了减小舍入误差,可以采用舍入规则和舍入策略来控制舍入过程。

三、插值和拟合插值和拟合是数值分析中常用的数值逼近方法,它们可以通过已知数据点推断出未知数据点的数值。

插值是通过已知数据点构造一个函数,使得该函数在已知点上的取值与给定函数完全一致。

常见的插值方法包括拉格朗日插值和牛顿插值等。

拟合是通过已知数据点构造一个函数近似地表示给定函数,以最小化数据点和拟合函数之间的误差。

拟合方法包括最小二乘法和样条插值等。

在插值和拟合的过程中,需要根据实际问题选择适当的插值函数或拟合函数,并确定适当的插值节点或拟合参数。

选择不同的函数或节点参数可能会导致不同的逼近精度和计算效率。

因此,在实际问题中需要根据需求和计算资源的限制综合考虑。

四、数值微积分数值微积分是利用数值方法求解微积分问题的一门学科,常见的数值微积分问题包括数值积分和常微分方程数值解等。

数值积分是计算给定函数在给定区间上的定积分值。

数值分析期末复习要点总结

数值分析期末复习要点总结

数值分析期末复习要点总结数值分析是一门研究用数值方法来解决数学问题和科学工程问题的学科。

它包括数值计算、数值逼近、数值求解以及数值模拟等内容。

本文将从数值计算的基础知识、数值逼近方法、数值求解方法以及数值模拟方法等方面进行复习要点总结。

一、数值计算的基础知识1. 计算误差:绝对误差、相对误差、有效数字、舍入误差等等。

2. 机器精度:机器数、舍入误差、截断误差等等。

3. 数值稳定性:条件数、病态问题等等。

4. 误差分析:前向误差分析、后向误差分析等等。

二、数值逼近方法1. 插值方法:拉格朗日插值、Newton插值、Hermite插值等等。

2. 曲线拟合:最小二乘法、Chebyshev逼近等等。

3. 数值微分:前向差分、后向差分、中心差分等等。

4. 数值积分:梯形法则、Simpson法则等等。

三、数值求解方法1. 非线性方程求解:二分法、牛顿迭代法、弦截法等等。

2. 线性方程组求解:直接法(Gauss消元法、LU分解法)和迭代法(Jacobi法、Gauss-Seidel法)。

3. 特征值和特征向量:幂法、反幂法、QR分解法等等。

4. 非线性最优化问题:牛顿法、拟牛顿法、梯度下降法等等。

四、数值模拟方法1. 常微分方程数值解法:Euler法、改进Euler法、Runge-Kutta法等等。

2. 偏微分方程数值解法:差分法、有限元法、有限差分法等等。

3. 数值优化方法:线性规划、非线性规划、整数规划等等。

五、数值计算软件1. MATLAB基础:向量、矩阵、符号计算等等。

2. MATLAB数值计算工具箱:插值与拟合工具箱、符号计算工具箱等等。

3. 其他数值计算软件:Python、R、Octave等等。

总结数值分析是一门重要的数学学科,它为解决实际问题提供了有效的数值方法。

在数值计算的基础知识中,我们需要了解计算误差、机器精度和数值稳定性等概念,同时也需要掌握误差分析的方法。

数值逼近方法包括插值、曲线拟合、数值微分和数值积分等内容,其中插值和拟合是常见的逼近方法。

数值分析期末复习知识点

数值分析期末复习知识点

第一章(有效数字位数)1、经四舍五入取近似值,其绝对误差限不超过末尾数字的半个单位。

2、设X*为准确值,X为近似值,称e=X*-X为近似值X的绝对误差,简称误差(显然e可正可负,准确值X*未知,因此e的准确值无法求出)3、|e|=|X-X*|≤ŋ,则称ŋ为近似值X的绝对误差限,简称误差限。

4、e r=e/X*称为相对误差,由于准确值X*总是未知的,所以也把e r*=e/X称为近似值X的相对误差5、|e r*|=|e/X|≤ŋ*,则称ŋ*为近似值X的相对误差限6、设X是X*的近似值,如果|X*-X|≤1/2×10-k,则称用X近似值表示X*时准确到小数点后第k位,并称从小数点后第k位起,直到最左边的非零数字之间的所有数字为有效数字,称有效数字的位数为有效数位。

7、设X是X*的近似值,X=±10m×0.a1a2…,其中a i(i=2,3…)是0到9之间的自然数,a1≠0,m为整数,如果|X*-X|≤1/2×10m-n,那么称近似值有n位有效数字。

8、四舍五入所得到的数均为有效数字,但并不是说非四舍五入所得到的数不能为有效数字。

第二章、非线性方程求根(不动点迭代、牛顿法、弦截法、快速弦截法、局部收敛、全局收敛、收敛阶)1、不动点迭代法(迭代法)(单根区间求解方法):将非线性方程f(x)=0化为一个同解方程x=ø(x),若要求f(x*)=0,则x*=ø(x*),称x*为f(x)的零点,为ø(x)的一个不动点。

2、定理:设迭代函数ø(x)在【a,b】上连续,且满足(1)当x∈【a,b】时,a≤ø(x)≤b,(2)存在一正数L,满足0<L<1,且∀x∈【a,b】,有|ø/(x)|≤L<1。

则1、方程x=ø(x)在【a,b】内有唯一解x*。

2、对于任意初值x0∈【a,b】,迭代法x k+1=ø(x k)均收敛x*3、设ø(x)有不动点x*,如果存在x*的一个邻域 S:|X*-X|< ŋ,对任意初值x0∈S,迭代过程x k+1=ø(x k)均收敛,则称迭代过程在根x*邻近局部收敛。

数值分析知识点大全总结

数值分析知识点大全总结

数值分析知识点大全总结一、数值计算方法数值计算方法是数值分析的基础,它涵盖了数值逼近、数值积分、插值与拟合、数值微分与数值积分、解线性方程组、求解非线性方程与方程组、解常微分方程等内容。

下面我们将逐一介绍这些方面的知识点。

1. 数值逼近数值逼近是研究如何用简单的函数来近似一个复杂的函数的方法。

常见的数值逼近方法包括多项式逼近、三角函数逼近、曲线拟合等。

其中,最为重要的是多项式逼近,它可以用来近似任意函数,并且具有较好的数学性质。

2. 数值积分数值积分是研究如何用离散的数据来估计连续函数的积分值的方法。

常见的数值积分方法包括梯形公式、辛普森公式、龙贝格公式等。

其中,辛普森公式是一种较为精确的数值积分方法,它可以用来估计任意函数的积分值,并且具有较好的数值稳定性。

3. 插值与拟合插值与拟合是研究如何用离散的数据来构造连续函数的方法。

常见的插值方法包括拉格朗日插值、牛顿插值等。

而拟合方法则是研究如何用简单的函数来拟合复杂的数据,常见的拟合方法包括最小二乘法、最小二乘多项式拟合等。

4. 数值微分与数值积分数值微分与数值积分是研究如何用差分方法来估计导数与积分的值的方法。

常见的数值微分方法包括向前差分、向后差分、中心差分等。

而数值积分方法则可以直接用差分方法来估计积分的值。

5. 解线性方程组解线性方程组是研究如何用迭代法或直接法来求解线性方程组的方法。

常见的迭代法包括雅各比迭代法、高斯-赛德尔迭代法等。

而直接法则是指用消元法来求解线性方程组的方法。

6. 求解非线性方程与方程组求解非线性方程与方程组是研究如何用迭代法来求解非线性方程与方程组的方法。

常见的迭代法包括牛顿法、割线法等。

其中,牛顿法是一种非常高效的求解非线性方程与方程组的方法,它具有收敛速度快的特点。

7. 解常微分方程值积分方法包括龙格-库塔法、变步长欧拉法、变步长龙格-库塔法等。

其中,龙格-库塔法是一种较为精确的数值积分方法,它可以用来求解各种类型的常微分方程。

数值分析-第五版-考试总结

数值分析-第五版-考试总结

第一章:数值分析与科学计算引论截断误差:近似 解与精确解之间的误差。

近似值的误差:(.为准确值):e*-x*-x近似值的误差限一: 1疋近似值相对误差(较小时约等)近似值相对误差限 :函数值的误差限 :苗⑺“ Ifool 叱)近似值;一士心:化叙…®)"八■有n 位有效数字:第二章:插值法P (对J =0.1/*%?] Oo + %呵+…+偽!曙=九 % +如股+…+ %!珥=Y1 % +舸斗1 +…+ %坊=儿 2•拉格朗日插值 (x- x k )6J n+1(x k ) .次插值基函数: (X- x)-(x-x fc -i)(x-曲十 1)…a — X JJ ) (Xk - X 0)-(X k - X k_i) (x k - x k¥1)-(x k - X…)1•多项式插值其中:P(x) = a()+ OjX + …+ a n ^I>k — O.L —.n = _xl(r -n+l引入记号:^n+l(X)={X-Xo)(A?-粗)…(#- Xj余项:=f(x} - SG)=:;:;詁+W > 5 e 3:3•牛顿插值多项式: ^nW = /(^0)+f 必珀("叼)+・”+/■[和巧严如(龙-坯”心-*_』〔阶均差(把中间去掉,分别填在左边和右边) :店”“皿]丿杯Fmr gd余项:4•牛顿前插公式(令心'小,计算点值,不是多项式):PQ +t h )=/o +帧 + 忖A 讥 + - + 心1)::*%°〔阶差分:AVo = A n "7i -余项:严(和E 3J5•泰勒插值多项式:•阶重节点的均差:6.埃尔米特三次插值:p (x ) -f (^X Q )十打和尤』仗—如+f 1叼公1也](JC-衍)(工一 Xi ) +人(尤-叼)(黑-衍)o — x 2)其中,A 的标定为:咋沪f (社)7.分段线性插值:第三章:函数逼近与快速傅里叶变换p n (x) = 7(X Q ) + f(x Q )(x -和)+ “•+警(U血屯“匈1.-:-属于’.维空间:5(玄)=。

数值分析-第五版-考试总结培训资料

数值分析-第五版-考试总结培训资料

收集于网络,如有侵权请联系管理员删除
精品文档
第八章 矩阵特征值计算 1.格什戈林圆盘:以 为圆心,以 为半径的所有圆盘
2. 的每个特征值必属于某个圆盘之中:
3. 有 个圆盘组成一个连通的并集 , 与和余下 的 个特征值。 4.幂法:
设 的特征值满足条件: 任取非零向量 ,构造向量序列, 假设:
个圆盘是分离的,则 内恰包含
第七章 非线性方程与方程组的数值解法 1.二分法:1)计算 在有根区间 的端值 ,
2)计算区间中点值
3)判断 2.不动点迭代法:
或者
收集于网络,如有侵权请联系管理员删除
3.不动点迭代法收敛:
精品文档
4. 在 上存在不动点 :(压缩映射)
5. 不动点迭代法收敛性:满足上条,则不动点迭代法收敛,误差为:
7.复合求积公式:
收集于网络,如有侵权请联系管理员删除
复合梯形公式: 复合辛普森公式:
精品文档
8.高斯求积公式(求待定参数 和 ): (1)求高斯点( ):令
与任何次数不超过 的多项
式 带权 正交,即则 。
,由 个方程求出高斯点
(2)求待定参数 : 9.高斯-勒让德求积公式:取权函数为 式的高斯点。
数值分析-第五版-考 试总结
精品文档
第一章:数值分析与科学计算引论 截断误差:近似解与精确解之间的误差。 近似值的误差 ( 为准确值):
近似值的误差限 :
近似值相对误差 ( 较小时约等):
近似值相对误差限 :
函数值的误差限 近似值
: 有 n 位有效数字:
1.多项式插值 其中:
第二章:插值法
收集于网络,如有侵权请联系管理员删除
精品文档
第三章:函数逼近与快速傅里叶变换 1. 属于 维空间 :
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章1 误差相对误差和绝对误差得概念 例题:当用数值计算方法求解一个实际的物理运动过程时, 一般要经历哪几个阶段? 在哪些阶段将有哪些误差产生?答: 实际问题-数学模型-数值方法-计算结果 在这个过程中存在一下几种误差:建立数学模型过程中产生:模型误差 参数误差选用数值方法产生:截断误差 计算过程产生:舍入误差 传播误差6.设937.0=a 关于精确数x 有3位有效数字,估计a 的相对误差. 对于x x f -=1)(,估计)(a f 对于)(x f 的误差和相对误差.解 a 的相对误差:由于31021|)(|-⋅≤-≤a x x E . x ax x E r -=)(,221018110921)(--⋅=⨯≤x E r . (1Th ))(a f 对于)(x f 的误差和相对误差.|11||)(|a x f E ---==()25.021011321⨯⋅≤-+---ax x a =310-33104110|)(|--⨯=-≤a f E r . □2有效数字基本原则:1 两个很接近的数字不做减法:2: 不用很小得数做分母(不用很大的数做分子) 例题:4.改变下列表达式使计算结果比较精确:(1) ;1||,11211<<+--+x xxx 对(2) ;1,11>>--+x xx xx 对(3)1||,0,cos 1<<≠-x x xx对.解 (1) )21()1(22x x x ++. (2) )11(2x x x x x-++.(3) xxx x x x x cos 1sin )cos 1(sin cos 12+≈+=-. □ 第二章拉格朗日插值公式(即公式(1))插值基函数(因子)可简洁表示为其中: ()∏∏≠==-='-=nij j j i i nnj jn x x x xx x 0)(,)()(ωω. 例1 n=1时,线性插值公式 )()()()()(010110101x x x x y x x x x y x P --⨯+--⨯=, 例2 n=2时,抛物插值公式 牛顿(Newton )插值公式由差商的引入,知(1) 过点10,x x 的一次插值多项式为其中(2) 过点210,,x x x 的二次插值多项式为其中重点是分段插值:例题:1. 利用Lagrange 插值公式求下列各离散函数的插值多项式(结果要简化):(1) (2) 解(2):方法一. 由 Lagrange 插值公式 可得: )21()(23-=x x x L 方法二. 令由 23)1(3-=-L , 21)1(3=L , 定A ,B (称之为待定系数法) □15.设2)(x x f =,求)(x f 在区间]1,0[上的分段线性插值函数)(x f h ,并估计误差,取等距节点,且10/1=h .解 2)(x x f =, ih x i = , 10,,1,0Λ=i , 101=h设 1+≤≤i i x x x ,则: 误差估计: ))1(()(!2|)()(|max)1(h i x ih x f x f x f hi x ix h +--''≤-+≤≤. □第三章最佳一致逼近:(了解) 最佳平方逼近 主要分两种情形:1. 连续意义下在空间],[2b a L 中讨论2. 离散意义下在n 维欧氏空间n R 中讨论,只要求提供f 的样本值1. 最佳逼近多项式的法方程组设],[2b a L 的1+n 维子空间 n P =span },,,1{2n x x x Λ, 其中 n x x x ,,,12Λ是],[2b a L 的线性无关多项式系.对],[2b a L f ∈∀,设其最佳逼近多项式*φ可表示为: ∑==ni i i x a 0**φ由 n P f ∈∀=-φφφ ,0),(*即 ∑===nj ijj i n i x f a x x 0*)1(0),,(),( (*2) 其中称(*2)式为最佳逼近多项式的法方程组(或正规方程组). 由n i i x 0}{=的线性无关性,可证明G 正定,即 上述法方程组的解存在且唯一 .11、 求x x f πcos )(= ,]1,0[∈x 的一次和二次最佳平方逼近多项式. 解: 设 x a a x P 10*1)(+= , 2210*2)(x b x b b x P ++= 分别为)(x f 的一次、二次最佳平方逼近多项式。

内积 ⎰⋅=10)()(),(dx x g x f g f计算如下内积:1)1,1(= , 21),1(=x , 31),1(2=x 31),(=x x , 41),(2=x x , 51),(22=x x0),1(=f , 22),(π-=f x , 222),(π-=f x建立法方程组:(1) ⎪⎪⎩⎪⎪⎨⎧-=+=+210102)31(21021πa a a a ,得:2012π=a ,2124π-=a于是 x x P 22*12412)(ππ-=(2) ⎪⎪⎪⎩⎪⎪⎪⎨⎧-=++-=++=++2210221021025141312413121031)21(ππb b b b b b b b b解得: 2012π=b , 2124π-=b , 02=b , 于是: x x P 2222412)(ππ-=. □第四章1 为什么要进行数值积分?常用哪些公式,方法? 答: 梯形复化求积公式和simpson 复化求积公式. 2: 方法好坏的判断: 代数精度 误差分析 1.代数精度的概念定义 若求积公式∑⎰=≈ni i i bax f w dx x f 0)()( (*)对所有次数m ≤的多项式是精确的,但对1+m 次多项式不精确,则称(*)具有m 次代数精度。

等价定义若求积公式(*)对m x x x ,,,,12Λ 是精确的,但对1+m x 不精确,则(*)具有m 次代数精度。

3: 误差1 等距剖分下的数值求积公式:公式特点:节点预先给定,均匀分布,系数n iw i )1(0,=待定利用插值多项式)(x p n 近似代替)(x f ,即得插值型求积公式Newton-Cotes 公式2 给定节点数下的具有最佳逼近性质(具有最高次代数精度)的数值求积公式:Gauss 求积公式 公式特点:系数n iw i )1(0,=和节点n i x i )1(0,=均待定3 分段插值多项式)(x n φ近似代替)(x f (分段求积)复化求积公式 复化求积公式通过高次求积公式提高精度的途径不行,类似函数插值 分而治之: 分段+低次求积公式---------- 称为复化求积法 两类低次(4≤n )求积公式:1. Newton -Cotes 型:矩形、梯形、Simpson 、Cotes 公式分别称为复化矩形、梯形、辛甫生、柯特斯公式2. Gauss 型: 一点、两点、三点Gauss 求积公式称为复化一点、两点、三点Gauss 公式复化梯形公式(n T )n ab h b f x f a f h x f x f x f x f x f x f hT n k k n n n -=++=++++++≡∑-=- )],()(2)([2 )]}()([)]()([)]()({[21112110Λ复化辛甫生公式: (每个k e 上用辛甫生公式求积))]()(2)(4)([6)]}()(4)([)]()(4)([)]()(4)({[61111211021212321b f x f x f a f hx f x f x f x f x f x f x f x f x f hS n k k n k k n n n n +++=+++++++++≡∑∑-==--- Λna b h -=其中,2/1-k x 为ke 的中点 复化辛甫生公式是最常用的数值求积方法。

常采用其等价形式: 复化柯特斯公式 其中,na b h -=,21-k x为],[1k k x x -的中点,41-k x ,43-k x 为],[1k k x x -的四等分的分点自适应复化求积法计算时,要预先给定n 或步长h ,在实际中难以把握因为,h 取得太大则精度难以保证,h 太小则增加计算工作量. 自适应复化梯形法的具有计算过程如下: 步1 )]()([2,,11b f a f hT a b h n +←-←← 步2步3 判断ε<-||12T T ?若是,则转步5; 步4 21,2/,2T T h h n n ←←←,转步2; 步5 输出 2T .第五章1: 常用方法:(1).直接解法:Gauss 逐步(顺序)消去法、 Gauss 主元素法、矩阵分解法等;(2).迭代解法:构造某种极限过程去逐步逼近方程组的解 ①.经典迭代法Jacobi 迭代法、Seidel Gauss -迭代法、 逐次超松弛(SOR )迭代法等;②. Krolov 子空间的迭代法 根据A 的对称性,又分为:A 对称正定------- 共轭梯度法A 非对称--------- BICG 、 GMRes(最小残量法)③.解一类特定背景问题的迭代法 多重网格法2: 几类迭代法优缺点比较: 3: 迭代方法目标: 求解b Ax = 其中,A 非奇异。

基本思想:把线性方程组b Ax =的解x ,化为一个迭代序列极限解 关键:构造迭代序列所满足的公式:迭代格式。

构造迭代格式基本步骤:1. 将A 分裂:C B A -=:, 其中,B 非奇异 2. 构造迭代格式其中C B G ⋅=-1,称之为迭代矩阵 , b B g 1-= 其中,)(k Ax b -为)(k x 的残余向量 此时,b B g A B I G 11--=-= ,常用的迭代方法将)(ij a A =分裂为U L D A --= 其中⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---=-00001,121n n n a a aL ΛO O M ,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---=-000,1112n n n a a a U OM O Λ, Jacobi 迭代方法若0≠ii a ,迭代格式g x G x k J k +⋅=+)()1( ① 其中 Jacobi 迭代矩阵:)(1U L D G J +=- ①式可写为分量形式 0][11)()1(≥-=∑≠=+k x a b a xnij j k j ij i ii k i, . (*1) 方法(*1)或①称为Jacobi 迭代方法. Gauss —Seidle 迭代方法若0≠ii a ,迭代格式g x G x k G k +⋅=+)()1( ② 其中,Gauss-Seidel 迭代矩阵:U L D G G 1)(--= 其分量形式][11)(11)1()1(∑∑+=-=++--=ni j k j ij i j k j ij i ii k ix a x a b a x,n i ,,2,1Λ=. (*2) 即,在计算新分量)1(+k i x 时,利用新值)1(+k j x ,1,,2,1-=i j Λ。

相关文档
最新文档