数字信号处理(程佩青)课后习题解答(4)
程佩青《数字信号处理教程》(第4版)(课后习题详解 数字滤波器的基本结构)
则
6 / 40
圣才电子书
十万种考研考证电子书、题库视频学习平 台
即 h(n)是偶对称,对称中心在 5-5 所示。
处,N 为奇数(N=5)。线性相位结构如图
图 5-5
5-6 设滤波器差分方程为
(1)试用直接工型、典范型及一阶节的级联型、一阶节的并联型结构实现此差分方 程;
8 / 40
圣才电子书
并联结构见图 5-6(d)。
十万种考研考证电子书、题库视频学习平 台
(2)由题意可知
图 5-6(d)
可推出
幅度为
相位为
(3)输入正弦波为 x(t)=5sin(2πt·103)
由 ΩT1=2π×103T1=2π,可得周期
又抽样频率为 10kHz,即抽样周期为
(1)根据 H(z)的表达式,可画出卷积型(直接型)结构如图 5-1(a)所示。
(2)可将 H(z)改写为
图 5-1(a)
相应的级联型结构如图 5-1(b)所示。 (3)将图 5-1(b)中两个延时链子系统的次序交换,并将有相同输出的中间两延时
链加以合并,可得出如图 5-1(c)所示直接Ⅱ型结构图。
图 5-3(1)
图 5-3(2) 5-4 用频率抽样结构实现以下系统函数:
4 / 40
圣才电子书
十万种考研考证电子书、题库视频学习平
台
抽样点数 N=6,修正半径 r=0.9。
解:FIR 滤波器修正后的频率抽样结构(当 N 为偶数时)有以下关系
其中 θ(k)=arg[H(k)]。因而有 因为 N=6,所以根据公式可得
(2)根据图 5-7(b)可通过对各结点的求解来获得:即将输入结点和输出结点分别 用中间结点 x1 表示,然后将中间结点消去,即可得到输入结点与输出结点之间的关系,从 而求得系统函数。所设结点可得
程佩青《数字信号处理教程》(第4版)(课后习题详解 无限长单位冲激响应(IIR))
7.2 课后习题详解7-1 用冲激响应不变法将以下Ha (s )变换为H (z ),抽样周期为T 。
(1)H a (s )=(s +a )/[(s +a )2+b 2];(2)H a (s )=A/(s -s 0)n0,n 0为任意正整数。
解:(1)冲激响应不变法满足h (n )=h a (t )|t =nT =h a (nT ),T 为抽样间隔。
这种变换法必须让H a (s )先用部分分式展开。
由推出由冲激响应不变法可得(2)先引用拉氏变换的结论,可得按且可得可以递推求得7-2 设计一个模拟低通滤波器,要求其通带截止频率f p=20Hz,其通带最大衰减为R p=2dB,阻带截止频率为f st=40Hz,阻带最小衰减为A s=20dB,采用巴特沃思滤波器,画出滤波器的幅度响应。
解:巴特沃思模拟低通滤波器设计流程为:①利用教程(7-5-24)式求解滤波器阶次N;②利用教程(7-5-27a)式求解3dB截止频率Ωc;③查教程表7-2或表7-4获得归一化巴特沃思低通滤波器的系统函数H an(s);④将H an(s)根据Ωc的值去归一化求得所需的系统函数H a(s)。
已知Ωp=2π×20rad/s,Ωst=2π×40rad/s,R p=2dB,A s=20dB。
(1)按给定的参数由教程(7-5-24)式可求得取N=4。
(2)按教程(7-5-27a)式可求得巴特沃思滤波器3dB处的通带截止频率Ωc为(3)查教程表7-2可得N=4时归一化巴特沃思低通滤波器H an(s)(4)去归一化,求得所需的H a(s)为滤波器的幅度响应如图7-1所示。
图7-17-3 设计一个模拟高通滤波器,要求其阻带截止频率f st=30Hz,阻带最小衰减为A s=25dB,通带截止频率为f p=50Hz,通带最大衰减为R p=1dB。
(1)采用巴特沃思滤波器;(2)采用切比雪夫滤波器;(3)利用MATLAB工具箱函数设计椭圆函数滤波器。
(完整版)数字信号处理教程程佩青课后题答案
第一章 离散时间信号与系统2.任意序列x(n)与δ(n)线性卷积都等于序列本身x(n),与δ(n-n 0)卷积x(n- n 0),所以(1)结果为h(n) (3)结果h(n-2) (2(4)3 .已知 10,)1()(<<--=-a n u a n h n,通过直接计算卷积和的办法,试确定单位抽样响应为 )(n h 的线性移不变系统的阶跃响应。
4. 判断下列每个序列是否是周期性的,若是周期性的,试确定其周期:)6()( )( )n 313si n()( )()873cos()( )(ππππ-==-=n j e n x c A n x b n A n x a分析:序列为)cos()(0ψω+=n A n x 或)sin()(0ψω+=n A n x 时,不一定是周期序列,nmm m n n y n - - -∞ = - ⋅ = = ≥ ∑ 2 31 2 5 . 0 ) ( 01当 3 4n m nm m n n y n 2 2 5 . 0 ) ( 1⋅ = = - ≤ ∑ -∞ = - 当 aa a n y n a a an y n n h n x n y a n u a n h n u n x m m nnm mn -==->-==-≤=<<--==∑∑--∞=---∞=--1)(11)(1)(*)()(10,)1()()()(:1时当时当解①当=0/2ωπ整数,则周期为0/2ωπ;②;为为互素的整数)则周期、(有理数当 , 2 0Q Q P QP =ωπ ③当=0/2ωπ无理数 ,则)(n x 不是周期序列。
解:(1)0142/3πω=,周期为14 (2)062/13πω=,周期为6 (2)02/12πωπ=,不是周期的 7.(1)[][]12121212()()()()()()[()()]()()()()[()][()]T x n g n x n T ax n bx n g n ax n bx n g n ax n g n bx n aT x n bT x n =+=+=⨯+⨯=+所以是线性的T[x(n-m)]=g(n)x(n-m) y(n-m)=g(n-m)x(n-m) 两者不相等,所以是移变的y(n)=g(n)x(n) y 和x 括号内相等,所以是因果的。
《数字信号处理》作业程佩青(第2版)清华大学出版社课后答案
0.588
0.5
0
0
0
0
-0.5 -0.588
-1 -0.951
-0.588
-0.951
-1.5 0 1 2 3 4 5 6 7 8 9 10
绘图程序如下: n = 0:10; % 定义时间长度 xa = cos(40*pi*n*0.02 + pi/2); stem(n,xa,'filled'),title('cos(40*\pi*n*0.02 + \pi/2)') axis([-1,n(end)+1,-1.5,1.5]) for i = 1:11
N −1
∑ X (k) = −
[ x(( N
−1−
n))N
RN
(n)WN−
k
(
N
W −1−n) k N
(
N
−1)
]
n=0
N −1
∑ = − [x(n)N WN−kn ]WNk (N −1) n=0
N −1
∑ = − [x(n)N WN(−k )n ] •WNk (N −1) n=0
N −1
∑ = − [x(n)N WN(−k )n ] •WNk (N −1) n=0
课后答案网
2.8 P140 题 10
12 3 4 0 00 -1 -1 -1 -1 -1 1 1 1 2 3 40 00 1 2 3 4 00 0 -1 -2 -3 -4 0 0 0 -1 -2 -3 -4 0 0 0 -1 -2 -3 -4 0 0 0 -1 -2 -3 -4 0 0 0 -1 -2 -3 -4 0 0 0 -1 -3 -6 -10 -10 -8 -4 1 7 4 0 0 0 -1 -3 -6 -10 -10 -8 -4 17 40 0 0 0 4 -2 -10 -10 -8 -4
(NEW)程佩青《数字信号处理教程》(第4版)笔记和课后习题(含考研真题)详解
目 录第1章 离散时间信号与系统1.1 复习笔记1.2 课后习题详解1.3 名校考研真题详解第2章 Z变换与离散时间傅里叶变换(DTFT)2.1 复习笔记2.2 课后习题详解2.3 名校考研真题详解第3章 离散傅里叶变换(DFT)3.1 复习笔记3.2 课后习题详解3.3 名校考研真题详解第4章 快速傅里叶变换(FFT)4.1 复习笔记4.2 课后习题详解4.3 名校考研真题详解第5章 数字滤波器的基本结构5.1 复习笔记5.2 课后习题详解5.3 名校考研真题详解第6章 几种特殊滤波器及简单一、二阶数字滤波器设计6.1 复习笔记6.2 课后习题详解6.3 名校考研真题详解第7章 无限长单位冲激响应(IIR)7.1 复习笔记7.2 课后习题详解7.3 名校考研真题详解第8章 有限长单位冲激响应(FIR)数字滤波器设计方法8.1复习笔记8.2 课后习题详解8.3 名校考研真题详解第9章 序列的抽取与插值——多抽样率数字信号处理基础9.1 复习笔记9.2 课后习题详解9.3 名校考研真题详解第10章 数字信号处理中的有限字长效应10.1 复习笔记10.2 课后习题详解10.3 名校考研真题详解第1章 离散时间信号与系统1.1 复习笔记一、离散时间信号——序列1.序列序列可以有三种表示法。
(1)函数表示法。
例如x(n)=a n u(n)。
(2)数列的表示法。
例如x(n)={...,-5,-3,-l,0,2,7,9,…)本书中,凡用数列表示序列时,都将n=0时x(o)的值用下划线(_)标注,这个例子中有z(-1)=-3,x(0)=-l,x(1)=0,…(3)用图形表示,如图l-1所示。
图1-1 离散时间信号的图形表示2.序列的运算(1)基于对序列幅度x(n)的运算序列的简单运算有①加法;②乘法;③累加;④序列绝对和;⑤序列的能量;⑥平均功率。
(2)基于对n的运算①移位,某序列为x(n)则x(n-m)就是x(n)的移位序列,当m=正数时,表示序列x(n)逐项依次右移(延时)m位;当m=负数时,表示序列 x(n)逐项依次左移(超前)m位;②翻褶,若序列为x(n),则x(-n)是以n=0为对称轴将x(n)序列加以翻褶;③时间尺度变换。
数字信号处理(程佩青)课后习题解答(1)
数字信号处理(程佩青)课后习题解答(1)1. 什么是数字信号处理?数字信号处理(Digital Signal Processing,DSP)是指对数字信号进行滤波、采样、压缩、编码和解码等操作的一种信号处理技术。
数字信号处理通过离散采样将连续时间信号转换为离散时间信号,并利用数学算法对离散时间信号进行处理和分析。
数字信号处理广泛应用于音频处理、图像处理、视频处理、通信系统等领域。
2. 采样定理的原理是什么?采样定理又称为奈奎斯特-香农采样定理(Nyquist-Shannon Sampling Theorem),是指在进行模拟信号的离散化处理时,采样频率必须大于模拟信号中最高频率的两倍。
采样定理的原理是根据信号的频谱特性,将模拟信号转换为离散时间信号时,需要保证采样频率足够高,以避免采样后的信号出现混叠现象,即频域上的重叠造成的信息损失。
根据奈奎斯特-香农采样定理,采样频率必须大于模拟信号中最高频率的2倍,才能完全还原原始信号。
3. 什么是混叠现象?如何避免混叠现象?混叠现象是指在进行模拟信号的采样时,由于采样频率低于模拟信号中的最高频率,导致频域上的重叠,从而造成采样信号中出现与原始信号不一致的频谱。
混叠现象会使得原始信号的高频部分被错误地表示成低频部分,从而损失了原始信号的信息。
为了避免混叠现象,可以采取以下措施:- 提高采样频率:采样频率必须大于模拟信号中最高频率的两倍,以保证信号的频谱不发生重叠。
- 使用低通滤波器:在采样前,先通过低通滤波器将模拟信号中的高频成分滤除,以避免混叠现象。
滤波器的截止频率应该设置为采样频率的一半。
4. 离散时间信号和连续时间信号有哪些区别?离散时间信号和连续时间信号是两种不同的信号表示形式。
离散时间信号是在时间上离散的,通常由序列表示,每个时间点上有对应的取样值。
离散时间信号可以通过采样连续时间信号得到,采样时将连续时间信号在一定时间间隔内进行取样。
连续时间信号是在时间上连续的,可以用数学函数、图像或者波形图来表示,不存在取样点。
数字信号处理(程佩青)课后习题解答(4)
数字信号处理(程佩青)课后习题解答(4)第四章快速傅立叶变换运算需要多少时间。
计算需要多少时间,用,问直拉点的,用它来计算每次复加速度为平均每次复乘需如果一台通用计算机的FFT DFT[x (n)]512s 5 s 50.1μμ 解: 解: ⑴ 直接计算: 复乘所需时间:复加所需时间: ⑵用FFT 计算:复乘所需时间: 复加所需时间:运算一次完成。
点试用一个为了提高运算效率值求今需要从值的点实序列是两个已知IFFT N n y n x k Y k X DFT n y n x N k Y k X ,,)(),()(),(,)(),()(),(.2s N T N 01152.0 512log 105 log 105 2251262261==??=--s T T T sN N T 013824.0 002304.0 512log 512105.0 log 105.0 2126262=+=∴===--sT T T sN N T 441536.1 130816.0 )1512(512105.0 )1(105.0 21662=+=∴=-=-=--s N T 31072.1 512105 105 262 61=??=??=--值的过程。
)(),(完成计算点)可用一次()()(综上所述,构造序列)()()()(可得:)()()(再根据都是实序列,)(),(由原题可知:)()()()(()()(性质:又根据可得序列点作对取序列依据题意解 ]Im[ ]Re[ ][][ ][ ).()( )()()( )()();()( ::n y n x IFFT N k jY k X k Z n z n y n z n x n jy n x n z n y n x n jy n x k Y jIDFT k X IDFT k jY k X IDFT DFT n z IFFT N k Z k jY k Xk Z k Y n y k X n x +===+=+=+=++=??。
程佩青《数字信号处理教程(第三版)》课后习题答案精编版
第一章 离散时间信号与系统
1 .直接计算下面两个序列的卷积和 y( n ) = x( n )* h( n )
h (n )
=
⎧an ⎨
⎩0
, 0 ≤ n ≤ N −1 , 其他n
x (n )
=
⎧⎪ β ⎨
n−n 0
⎪⎩ 0
,n0 ≤ n , n < n0
请用公式表示。
分析:
①注意卷积和公式中求和式中是哑变量 m ( n 看作参量),
y (n ) ={1,2,3,3,2,1} ;
②δ (n)* x(n) = x(n) , δ (n − m)* x(n) = x(n − m) ;
③卷积和求解时, n 的分段处理。
6
解:(1) y(n) = x(n) * h(n) = R5(n) (2) y(n) = x(n) * h(n) = {1,2,3,3,2,1}
β α
n +1
β α β =
n +1− N −n0
N−
N
α −β
y(n) = Nα n−n0 ,
(α = β )
, (α ≠ β )
如此题所示,因而要分段求解。
2 .已知线性移不变系统的输入为 x( n ) ,系统的单位抽样响应
为 h( n ) ,试求系统的输出 y( n ) ,并画图。
(1)x(n) = δ (n)
∑ ∑( ) n α m−n0 n−m = β α = β m=n0
nn β
n0
α
n β −n0
− β n0
α
β n +1 α
1
−
β α
α β =
− n +1− n0
数字旌旗灯号处理教程-程佩青-课后题答案
第一章 离散时间信号与系统2.任意序列x(n)与δ(n)线性卷积都等于序列本身x(n),与δ(n-n 0)卷积x(n- n 0),所以(1)结果为h(n) (3)结果h(n-2) (2(4)3 .已知 10,)1()(<<--=-a n u a n h n,通过直接计算卷积和的办法,试确定单位抽样响应为 )(n h 的线性移不变系统的阶跃响应。
4. 判断下列每个序列是否是周期性的,若是周期性的,试确定其周期:)6()( )( )n 313si n()( )()873cos()( )(ππππ-==-=n j e n x c A n x b n A n x a分析:序列为)cos()(0ψω+=n A n x 或)sin()(0ψω+=n A n x 时,不一定是周期序列,nmm m n n y n - - -∞ = - ⋅ = = ≥ ∑ 2 31 2 5 . 0 ) ( 01当 3 4n m nm m n n y n 2 2 5 . 0 ) ( 1⋅ = = - ≤ ∑ -∞ = - 当 aa a n y n a a an y n n h n x n y a n u a n h n u n x m m nnm mn -==->-==-≤=<<--==∑∑--∞=---∞=--1)(11)(1)(*)()(10,)1()()()(:1时当时当解①当=0/2ωπ整数,则周期为0/2ωπ;②;为为互素的整数)则周期、(有理数当 , 2 0Q Q P QP =ωπ ③当=0/2ωπ无理数 ,则)(n x 不是周期序列。
解:(1)0142/3πω=,周期为14 (2)062/13πω=,周期为6 (2)02/12πωπ=,不是周期的 7.(1)[][]12121212()()()()()()[()()]()()()()[()][()]T x n g n x n T ax n bx n g n ax n bx n g n ax n g n bx n aT x n bT x n =+=+=⨯+⨯=+所以是线性的T[x(n-m)]=g(n)x(n-m) y(n-m)=g(n-m)x(n-m) 两者不相等,所以是移变的y(n)=g(n)x(n) y 和x 括号内相等,所以是因果的。
数字信号处理教程-程佩青-课后题答案
第一章 离散时间信号与系统2.任意序列x(n)与δ(n)线性卷积都等于序列本身x(n),与δ(n-n 0)卷积x(n- n 0),所以(1)结果为h(n) (3)结果h(n-2) (2(4)3 .已知 10,)1()(<<--=-a n u a n h n,通过直接计算卷积和的办法,试确定单位抽样响应为 )(n h 的线性移不变系统的阶跃响应。
4. 判断下列每个序列是否是周期性的,若是周期性的,试确定其周期:)6()( )( )n 313si n()( )()873cos()( )(ππππ-==-=n j e n x c A n x b n A n x a分析:序列为)cos()(0ψω+=n A n x 或)sin()(0ψω+=n A n x 时,不一定是周期序列,nmm m n n y n - - -∞ = - ⋅ = = ≥ ∑ 2 31 2 5 . 0 ) ( 01当 3 4n m nm m n n y n 2 2 5 . 0 ) ( 1⋅ = = - ≤ ∑ -∞ = - 当 aa a n y n a a an y n n h n x n y a n u a n h n u n x m m nnm mn -==->-==-≤=<<--==∑∑--∞=---∞=--1)(11)(1)(*)()(10,)1()()()(:1时当时当解①当=0/2ωπ整数,则周期为0/2ωπ;②;为为互素的整数)则周期、(有理数当 , 2 0Q Q P QP =ωπ ③当=0/2ωπ无理数 ,则)(n x 不是周期序列。
解:(1)0142/3πω=,周期为14 (2)062/13πω=,周期为6 (2)02/12πωπ=,不是周期的 7.(1)[][]12121212()()()()()()[()()]()()()()[()][()]T x n g n x n T ax n bx n g n ax n bx n g n ax n g n bx n aT x n bT x n =+=+=⨯+⨯=+所以是线性的T[x(n-m)]=g(n)x(n-m) y(n-m)=g(n-m)x(n-m) 两者不相等,所以是移变的y(n)=g(n)x(n) y 和x 括号内相等,所以是因果的。
程佩青《数字信号处理教程》(第4版)(课后习题详解 快速傅里叶变换(FFT))
4.2 课后习题详解4-1 如果一台通用计算机的速度为平均每次复乘40ns ,每次复加5ns ,用它来计算512点的DFT[x (n )],问直接计算需要多少时问?用FFT 运算需要多少时间?若做128点快速卷积运算,问最低抽样频率应是多少?解:①直接利用DFT 计算:复乘次数为N 2,复加次数为N (N-1)。
②利用FFT计算:复乘次数为,复加次数为N㏒2N 。
(1)直接计算复乘所需时间复加所需时间所以(2)用FFT 计算复乘所需时间复加所需时间所以4-2 N =16时,画出基-2按频率抽选法的FFT 流图采用输入自然顺序,输出倒位序),统计所需乘法次数(乘±1,乘±j 都不计在内)。
根据任一种流图确定序列x (n )=4cos (n π/2)(0≤n ≤15)的DFT 。
解:按频率抽取法的FFT 流图中的复数乘法出现在减法之后,其运算量为复数乘法:;复数加法:;由于N =16,有,,,不需要乘法。
按频率抽取,见图4-1(a )。
图4-1(a )运算量:复数乘法:由于,,,不需要乘法。
由图P4.2(a )可知,共有的个数为1+2+4+8=15有的个数为1+2+4=7所以总的乘法次数为32-15-7=10(个)复数加法:举例:对序列x (n )=4cos (n π/2)(0≤n ≤15)可表示为由于N =16,可采用P4.2(b )的流图。
设Xi (k )=(i =1,2,3,4)分别为第i 级蝶形结构的输出序列,则由P4.2(b )的流图可知由于采用的是顺序输入、逆序输出的结构,因此输出X (k )与X 4(k )为逆序关系,即,为k 二进制逆序值由此可知,x (n )的DFT 为X (4)=X 4(2)=32,X (12)=X 4(3)=12图4-1(b )4-3 用MATLAB 或C 语言编制以下几个子程序。
(1)蝶形结运算子程序;(2)求二进制倒位序子程序;(3)基-2 DIT FFT 流程图,即迭代次数计算子程序。
(完整word版)数字信号处理(程佩青)课后习题解答(5)
第五章 数字滤波器的基本结构1。
用直接I 型及典范型结构实现以下系统函数21214.06.028.02.43)(-----+++=z z z z z H分析:①注意系统函数H(z)分母的 0z 项的系数应该化简为1。
②分母), 2 , 1( ••••••=-i z i 的系数取负号,即为反馈链的系数。
解:21212.03.014.01.25.1)(-----+++=z z z z z H )2.03.0(14.01.25.12121----+--++=z z z z ∵)()(1)(1z X z Y z a zb z H Nn nn Mm mn=-=∑∑=-=- ∴3.01-=a ,2.02=a5.10=b ,1.21=b ,4.02=b2。
用级联型结构实现以下系统函数)8.09.0)(5.0()14.1)(1(4)(22++-+-+=z z z z z z z H 试问一共能构成几种级联型网络。
分析:用二阶基本节的级联来表达(某些节可能是一阶的)。
解: ∏------++=k k k k k z zz z A z H 2211221111)(ααββ )8.09.01)(5.01()4.11)(1(4211211------++-+-+=z z z z z z ∴ 4=A8.0 ,9.0 , 0,5.0 1,4.1 , 0 ,1 2212211122122111-=-====-===ααααββββ由此可得:采用二阶节实现,还考虑分子分母组合成二阶(一阶)基本节的方式,则有四种实现形式.3。
给出以下系统函数的并联型实现。
)8.09.01)(5.01(6.141.158.12.5)(211321------++--++=z z z z z z z H 分析:注意并联的基本二阶节和级联的基本二阶节是不一样的,这是因为系统函数化为部分分式之和,分子的1-z 的最高阶数比分母1-z 的最高阶数要低一阶,如果分子、分母多项式的1-z 的最高阶数相同,则必然会分解出一个常数项的相加(并联)因子。
(完整word版)数字信号处理(程佩青)课后习题解答(3)
第三章 离散傅立叶变换1.如下图,序列x(n)是周期为6的周期性序列,试求其傅立叶级数的系数。
∑∑=-===562650)(~)(~)(X ~:n nkj nkn e n x W n x k π解kj k j k j k j kj e e e e e 562462362262621068101214πππππ-----+++++=计算求得:。
339)5(~; 33)4(~ ; 0)3(~; 33)2(~;339)1(~;60)0(~j X j X X j X j X X +=-==+=-==。
并作图表示试求设)(~),(~)(~ .))(()(~),()(.264k X n x k X n x n x n R n x == ∑∑=-===56265)(~)(~)(~:n nk jnk n en x W n x k X π解k j k j k j e e e πππ---+++=3231。
计算求得: 3)5(~; 1)4(~ ; 0)3(~ ;1)2(~; 3)1(~ ; 4)0(~j X X X X j X X ====-==。
的周期卷积并作图与试求令其它,设 )(~)(~,))(()(~,))(()(~,)2()(,040,1)(.3464n h n x n h n h n x n x n R n h nn n n x ==-=⎩⎨⎧≤≤+=解:在一个周期内的计算值等各序列。
试画出所示如图已知)())((),())3((,))(()())((),())((,))((,13)(.47755633665n R n x n R n x n x n R n x n R n x n x P n x ----)(~)(~*)(~)(~m n h n h n x n y -==)(~)(~*)(~)(~m n h n h n x n y -==)()()5()(x(n)(4)N n 0 ),n -(n )()3()()()2()()(cos )()1()(52000n R n n x n nR n x n R a n x n R n a n x DFT N N N N n N ==<<===δω闭合形式表达式点试求以下有限长序列的])21sin()2sin()21sin()2sin([21])()()()([21)(]1111[)(][)(])([)()(cos )()()(cos )(:0)2(21020)2(2102)2(21)2(21)2(21222)2(21)2(21)2(21222)()(211)(10)(2110211000000000000000000002002002022002ϖπϖϖπϖωωϖπϖϖπϖϖπϖπϖπϖϖϖϖπϖπϖπϖϖϖωωωωωωωωππππππ-++⋅=--+--=--+--=+=+===---+---------+-++-----+---=---=+--=---=-∑∑∑∑k N e N e k N eN e a e ee e e e eeeee e a k R ee ee a k R eea k R e e e a k R en a k X n R n a n x k N j N j k Nj Njk Nj k Nj k Nj NjNjN jk Nj k N j k Nj NjNjNjN k j N j k j N j N N n nj N n nk j N N n nkj n j n j N n N nkj N N N N N N N 解)(111121)(21)()(21)()(cos )( )()(cos )( ) 1 (:)2()2(10)2(10)2(1020010200000k R e e e e a k R e e a k R e e e a k Re n a k X n R n a n x N k N j N j k Nj Nj N N n nN j N n nk N j N N n nk N j n j n j N n N nk N j N ⎥⎥⎦⎤⎢⎢⎣⎡--+--=⎥⎦⎤⎢⎣⎡+=⎥⎦⎤⎢⎣⎡+===--+---=---=+--=---=-∑∑∑∑ωπωωπωωπωππωωπωω解⎥⎥⎥⎦⎤---⎢⎢⎢⎣⎡--=------+-++---)()()()(21)2(21)2(21)2(21222)2(21)2(21)2(212220000000ωπωπωπωωωωπωπωπωωωk Nj k N j k N j N jN jNjk N j k N j k N j Nj N j N j e e e eeee e e e e e a⎥⎥⎥⎥⎦⎤--⎢⎢⎢⎢⎣⎡+⋅=--+--)21sin()2sin()21sin()2sin(210)2(21020)2(21020000ωπωωπωωπωωπωk N e Nek N e Ne a k Nj Njk N j N jk Nj N N n nk Njn N n aea ea k X n R a n x ππ210211)()()((2)--=---===∑)( )()( )()()( 0,)()( (3)02102010200k Re k Re n n k Re n x k X N n n n n x Nk n N j NN n nk N j N n NnkN j πππδδ--=--=-=-==<<-=∑∑)(1)( 11)1()())1(()(])1)2( 2[)1( 32()1)(()()()()( )()(411)1(32)1(321)1(110)1(1k R W Nk X N W W N k R W N k R N W N W W W N W W W nW nWW k X k R nW k X W k R nW k X n nR n x N kNkNkN N N n nk N N k N N k N k N k N N kN k N k N N n kn N N n nk Nk NN n N k n N k NN n N nkN N --=∴-=--+--=+--=-+-+++--++++=-=-==∴=∑∑∑∑∑-=---=+-=-=+-=••••••)(kNN N n nkNN W Nk X n nR n x W n k X n R n n x --===∴=∑-=1)()()()4()( )()(5111022,则小题的结论根据第)(221111122)1(232)1(23210)1(2121)1(2)1()2()(12)2()(2)2(2)2()12()1(]1()2(4[)1(94)1)(()(k N kN kNN n nk NN n nkNk N N kN k N k N N k N k N k N N n kn NN n nk NkNN n k n Nk NW N W N N k X W NN N k X N N nWN N W n N N W N W W W N W W W W n W nW k X Wn k X W ---=∴----=+--=+--=-+--=-+-+++--++++=-=-=∑∑∑∑∑-=-=---=+-=-=+••••••)•••±±±===∑-=,6,4,2,0)(~)3(?])0([)()2(?)()1(:;)(~1)(~).(~.61)/2(k k x X k X k X e k X Nn x n x N k nk N j 哪些序列列能做到成虚数外除时间原点使所有的哪些序列能够通过选择成为实数时间原点使所有的哪些序列能够通过选择问傅里叶级数这些序列可以表示成列如图画出了几个周期序π条件。
数字信号处理(程佩青)课后习题解答(4-2)
第四章 快速傅立叶变换运算需要多少时间。
计算需要多少时间,用,问直拉点的,用它来计算每次复加速度为平均每次复乘需如果一台通用计算机的FFT DFT[x(n)]512s 5 s50.1μμ解: 解: ⑴ 直接计算: 复乘所需时间:复加所需时间:⑵用FFT 计算: 复乘所需时间:复加所需时间:运算一次完成。
点试用一个为了提高运算效率值求今需要从值的点实序列是两个已知IFFTN n y n x k Y k X DFT n y n x N k Y k X ,,)(),()(),(,)(),()(),(.2sN T N01152.0512log105log105 2251262261=⨯⨯⨯=⨯⨯=--sT T T sN N T 013824.0 002304.0512log512105.0log105.0 2126262=+=∴=⨯⨯⨯=⨯⨯⨯=--sT T T sN N T 441536.1 130816.0)1512(512105.0)1(105.0 21662=+=∴=-⨯⨯⨯=-⨯⨯⨯=--sN T 31072.1 512105 105 26261=⨯⨯=⨯⨯=--值的过程。
)(),(完成计算点)可用一次()()(综上所述,构造序列)()()()(可得:)()()(再根据都是实序列,)(),(由原题可知:)()()()(()()(性质:又根据可得序列点作对取序列依据题意解 ]Im[ ]Re[ ][][ ][ ).()( )()()( )()();()( ::n y n x IFFT N k jY k X k Z n z n y n z n x n jy n x n z n y n x n jy n x k Y jIDFT k X IDFT k jY k X IDFT DFT n z IFFT N k Z k jY k X k Z k Y n y k X n x +===+=+=+=++=⇔⇔。
输出倒位序顺序频率抽取采用输入自然输出自然数顺序序时间抽取采用输入倒位流图抽取法的按时间抽取法及按频率画出基时), ,,( 2,16.3FFT N -=。
数字信号处理教程 程佩青 课后题答案
第一章 离散时间信号与系统2.任意序列x(n)与δ(n)线性卷积都等于序列本身x(n),与δ(n-n 0)卷积x(n- n 0),所以(1)结果为h(n) (3)结果h(n-2) (2(4)3 .已知 10,)1()(<<--=-a n u a n h n,通过直接计算卷积和的办法,试确定单位抽样响应为 )(n h 的线性移不变系统的阶跃响应。
4. 判断下列每个序列是否是周期性的,若是周期性的,试确定其周期:)6()( )( )n 313si n()( )()873cos()( )(ππππ-==-=n j e n x c A n x b n A n x a分析:序列为)cos()(0ψω+=n A n x 或)sin()(0ψω+=n A n x 时,不一定是周期序列,nmm m n n y n - - -∞ = - ⋅ = = ≥ ∑ 2 31 2 5 . 0 ) ( 01当 3 4n m nm m n n y n 2 2 5 . 0 ) ( 1⋅ = = - ≤ ∑ -∞ = - 当 aa a n y n a a an y n n h n x n y a n u a n h n u n x m m nnm mn -==->-==-≤=<<--==∑∑--∞=---∞=--1)(11)(1)(*)()(10,)1()()()(:1时当时当解①当=0/2ωπ整数,则周期为0/2ωπ;②;为为互素的整数)则周期、(有理数当 , 2 0Q Q P QP =ωπ ③当=0/2ωπ无理数 ,则)(n x 不是周期序列。
解:(1)0142/3πω=,周期为14 (2)062/13πω=,周期为6 (2)02/12πωπ=,不是周期的 7.(1)[][]12121212()()()()()()[()()]()()()()[()][()]T x n g n x n T ax n bx n g n ax n bx n g n ax n g n bx n aT x n bT x n =+=+=⨯+⨯=+所以是线性的T[x(n-m)]=g(n)x(n-m) y(n-m)=g(n-m)x(n-m) 两者不相等,所以是移变的y(n)=g(n)x(n) y 和x 括号内相等,所以是因果的。
数字信号处理-答案第四章
y
l 1
m
( n) ,然后对它求一次 N 点
DFT , 即可计算 X ( z )在单位圆上的 N点抽样 (b)若:N M,可将x ( n)补零 到N点, 即 x ( n) x0 ( n ) 0 则:X (e
j 2 k N
0 n M 1 M n N 1
令 X 1 (k0 , n1 , n0 )
n2 0
x(n , n , n )W
2 1 0 1 ' 1
2
n2 k 0 3
,
k0 0,1,2
X 1' (k0 , n1 , n0 ) X 1 (k0 , n1 , n0 )W6n1k 0 X 2 (k0 , k1 , n0 )
n1 0
2 . 已知X (k ),Y (k )是两个N点实序列x(n), y(n)的DFT值, 今需要从 X (k ),Y (k )求x(n), y (n)值, 为了提高运算效率, 试用一个N点IFFT 运算一次完成。
解 : 依据题意 : x ( n ) X ( k ); y ( n ) Y ( k ) 取序列 Z ( k ) X ( k ) jY ( k ) 对Z ( k )作N点IFFT可得序列 z ( n ). 又根据DFT性质: IDFT [ X(k) jY(k) ] IDFT( [ X( k ) ] jIDFT [Y(k) ] x ( n) jy(n) 由原题可知: x(n),y(n) 都是实序列, 再根据 z(n) x ( n) jy(n) 可得:x(n) Re[ z(n) ] y(n) Im[z(n) ] 综上所述,构造序列 Z(k) X(k) jY(k)可用一次 N点IFFT完成计算x(n),y(n) 值的过程。
数字信号处理教程程佩青课后题答案
第一章 离散时间信号与系统2.任意序列x(n)与δ(n)线性卷积都等于序列本身x(n),与δ(n-n 0)卷积x(n- n 0),所以(1)结果为h(n) (3)结果h(n-2) (2x(m)()h n m -n1 1 1 0 0 0 0 y(n) 0 11 1 1 12 2 1 1 13 3 1 1 1 1 34 0 1 1 1 1 2 511111(4)3 .已知 10,)1()(<<--=-a n u a n h n,通过直接计算卷积和的办法,试确定单位抽样响应为 )(n h 的线性移不变系统的阶跃响应。
4. 判断下列每个序列是否是周期性的,若是周期性的,试确定其周期:)6()( )( )n 313si n()( )()873cos()( )(ππππ-==-=n j e n x c A n x b n A n x a分析:序列为)cos()(0ψω+=n A n x 或)sin()(0ψω+=n A n x 时,不一定是周期序列, nmm m n n y n - - -∞ = - ⋅ = = ≥ ∑ 2 31 2 5 . 0 ) ( 01当 3 4n m nm m n n y n 2 2 5 . 0 ) ( 1⋅ = = - ≤ ∑ -∞ = - 当 aa a n y n a a an y n n h n x n y a n u a n h n u n x m m nnm mn -==->-==-≤=<<--==∑∑--∞=---∞=--1)(11)(1)(*)()(10,)1()()()(:1时当时当解①当=0/2ωπ整数,则周期为0/2ωπ;②;为为互素的整数)则周期、(有理数当 , 2 0Q Q P QP =ωπ ③当=0/2ωπ无理数 ,则)(n x 不是周期序列。
解:(1)0142/3πω=,周期为14 (2)062/13πω=,周期为6 (2)02/12πωπ=,不是周期的 7.(1)[][]12121212()()()()()()[()()]()()()()[()][()]T x n g n x n T ax n bx n g n ax n bx n g n ax n g n bx n aT x n bT x n =+=+=⨯+⨯=+所以是线性的T[x(n-m)]=g(n)x(n-m) y(n-m)=g(n-m)x(n-m) 两者不相等,所以是移变的y(n)=g(n)x(n) y 和x 括号内相等,所以是因果的。
(完整word版)数字信号处理(程佩青)课后习题解答(4)
第四章 快速傅立叶变换运算需要多少时间。
计算需要多少时间,用,问直拉点的,用它来计算每次复加速度为平均每次复乘需如果一台通用计算机的FFT DFT[x(n)]512s 5 s 50.1μμ 解: 解: ⑴ 直接计算:复乘所需时间: 复加所需时间:⑵用FFT 计算:复乘所需时间:复加所需时间:s N T N 01152.0 512log 105 log 105 2251262261=⨯⨯⨯=⨯⨯=--sT T T sN N T 013824.0 002304.0 512log 512105.0 log 105.0 2126262=+=∴=⨯⨯⨯=⨯⨯⨯=--sT T T sN N T 441536.1 130816.0 )1512(512105.0 )1(105.0 21662=+=∴=-⨯⨯⨯=-⨯⨯⨯=--s N T 31072.1 512105 105 26261=⨯⨯=⨯⨯=--运算一次完成。
点试用一个为了提高运算效率值求今需要从值的点实序列是两个已知IFFT N n y n x k Y k X DFT n y n x N k Y k X ,,)(),()(),(,)(),()(),(.2值的过程。
)(),(完成计算点)可用一次()()(综上所述,构造序列)()()()(可得:)()()(再根据都是实序列,)(),(由原题可知:)()()()(()()(性质:又根据可得序列点作对取序列依据题意解 ]Im[ ]Re[ ][][ ][ ).()( )()()( )()();()( ::n y n x IFFT N k jY k X k Z n z n y n z n x n jy n x n z n y n x n jy n x k Y jIDFT k X IDFT k jY k X IDFT DFT n z IFFT N k Z k jY k X k Z k Y n y k X n x +===+=+=+=++=⇔⇔。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章 快速傅立叶变换运算需要多少时间。
计算需要多少时间,用,问直拉点的,用它来计算每次复加速度为平均每次复乘需如果一台通用计算机的FFT DFT[x (n)]512s 5 s 50.1μμ 解: 解: ⑴ 直接计算: 复乘所需时间:复加所需时间: ⑵用FFT 计算:复乘所需时间: 复加所需时间:运算一次完成。
点试用一个为了提高运算效率值求今需要从值的点实序列是两个已知IFFT N n y n x k Y k X DFT n y n x N k Y k X ,,)(),()(),(,)(),()(),(.2sN T N 01152.0 512log 105 log 105 2251262261=⨯⨯⨯=⨯⨯=--s T T T sN N T 013824.0 002304.0 512log 512105.0 log 105.0 2126262=+=∴=⨯⨯⨯=⨯⨯⨯=--sT T T sN N T 441536.1 130816.0 )1512(512105.0 )1(105.0 21662=+=∴=-⨯⨯⨯=-⨯⨯⨯=--s N T 31072.1 512105 105 26261=⨯⨯=⨯⨯=--值的过程。
)(),(完成计算点)可用一次()()(综上所述,构造序列)()()()(可得:)()()(再根据都是实序列,)(),(由原题可知:)()()()(()()(性质:又根据可得序列点作对取序列依据题意解 ]Im[ ]Re[ ][][ ][ ).()( )()()( )()();()( ::n y n x IFFT N k jY k X k Z n z n y n z n x n jy n x n z n y n x n jy n x k Y jIDFT k X IDFT k jY k X IDFT DFT n z IFFT N k Z k jY k X k Z k Y n y k X n x +===+=+=+=++=⇔⇔。
输出倒位序顺序频率抽取采用输入自然输出自然数顺序序时间抽取采用输入倒位流图抽取法的按时间抽取法及按频率画出基时), ,,( 2,16.3FFT N -=。
的运算量及乘不计乘相比较的基并就运算量与公式并画出流图基导出时)(2,4,16.4j j FFT FFT N ±±--=),( )4()()(),( )4()()(3,2,1,03,2,1,0,)( ,3,2,1,03,2,1,0;, 440101011010102101011120102121k k X k k X k r k X k X n n x n n x n r n x n x k k k r k k N k k r r N n n n r n n N n r r N =+=+==+=+=∴⎩⎨⎧==+=<=⎩⎨⎧==+=<∴=⨯=有对于频率变量同样令有对于解:依题意:∑∑∑∑∑====++=+=+==∴30316416416013030)4)(4(160115016010010******** )4( )4()()(n n k n k n k n n n k k n n n nkW W W n nx W n n x W n x k X并画出流图。
采用基的结果算法求为组合数时的试用,)43(12.5⨯-=NFFTN1 20 10 21213,2,1,02,1,0 ,,,43rrNnnnrn nNnr r N=⎩⎨⎧== +=<≤∴=⨯=令同样:有对于解:依题意:∑∑∑==++===∴=+=+==+=+=∴⎩⎨⎧==+=<≤32)3)(4(1211112111111211110111),()()(),()3()()(),()4()()(2,1,03,2,1,0,)0(n nkknnnnkWnnxWnxkXkkXkkXkrkXkXnnxnnxnrnxnxkkkrkkNkk有对于频率变量并画出流图。
的结果同上题导出,52330.6⨯⨯==N∑∑∑∑==+===∴=++==++=∴++===∴========2903001201201201201232103012245010'22103)3(300102010'21121'1010*********'1023120101)()(),,()36()(),,()510()()36( ),,( ),,()(4,3,2,1,0,),,(),,( ),,(),,(1,0,),,(),,(),,(),,(2,1,0,),,(),,(02000111101202n nkn k n n k k n k n k n n k n W n x k X k k k X k k k X k X n n n x n n n x n x k k k X k k k X k k k X k X k W n k k Xk k k X W n k k X n k k X k Wn n k X n k k X W n n k X n n k X k Wn n n x n n k X 则令⎪⎩⎪⎨⎧===++=++=<≤=⎪⎩⎪⎨⎧===++=++=<∴=⨯⨯=2,1,01,04,3,2,1,0;36)300(,4,3,2,1,01,02,1,0 ;510 ,5230120120*********12012031322321k k k k k k k r k r r k k k k r r r N n n n n n n n r n r r n n N n r r r N 有对于频率变量令同样:有对于解:依题意:流图如下图所示:MN b M N a N z X DFT N N k e z N zn x z X z nn x n x n x M k Nj M n n>≤-===⎩⎨⎧≤≤=∙∙∙∑-=- )(;)(:)(,,1,,1,0,,)()( 0,1-M n 0 ),()(,)(.721之个抽样的方法,并证明的就能计算点找出用一个情况试对下列上的抽样即在上的抽样个等间隔点在单位圆上变换我们希望计算求其他点的有限长序列研究一个长度为π{}200011110102200010200111210202101201205)3(302106301220403033063053015302010103001242010)36)(510(301240 ),,( ),,(),,(k n n k k k n n k n k n n n k n k n k n k n k n n n k n n n n k k k n n n n W W W W W n n n x W W W W W Wn n n x Wn n n x +========++++=⨯⎥⎥⎦⎤⎢⎢⎣⎡⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛=⨯==∑∑∑∑∑∑∑∑∑∑∑∑∑--=--=--=--=-+++=<≤-=≤∙∙∙1)1( 212 2122122)()()()()1()()( , )(M Nl n kn Nj N N n kn Nj N n kn Nj k Nj M n kn Nj kNj en x en x en x eX lN M N l en x eX M N a ππππππ设依题意若解:10,)()(1010)()(,)()()(, )( )]([)()1)1(0(])1([)()10( ])2([)(),()(),()(,])1([)()(1020201101221210 2 )(21)1(0])1([21)(212-≤≤=⎩⎨⎧-≤≤-≤≤=>≤=∴---≤≤-+=-≤≤-+=+===-+++++=∑∑∑∑∑∑∑-=--=-=-=----+----=-+--=+--=-∙∙∙∙∙∙∙∙∙N k e n xeX N n M M n n x n x N n x M N b N z X DFT N n yM N en yeX N l M n N l n x n y N n N l n x n y N n x n y n x n y eeeN l n x eN n x en x N n kn Nj k Nj l m mN n l m kn Nj mk Nj l l kn Nj klN n Nj N l M n kN l n j N n kN n Nj N n kn Nj πππππππππ则:即点到补零,可将若:点抽样在单位圆上的即可计算点,然后对它求一次,可先计算由此可见,对于且令:实现过程示意图。
的路径及画出平面路径为。
已知的复频谱点法求其前面试用其他点序列已知一个CZT z A z z X CZT n x k k ; 20/2 ,2.1W ,3/ ,8.0)( 10 n,07n 0 ,1)( 8.80000πφπθ====⎩⎨⎧≤≤=9,,1,0,)]()([)(7,,1,0 )(7,,1,0;)()(:)(}2.12.18.0{)2.1()(])([90,)2.1()8.0()()((1)90,)2.1(8.0 2.1;8.022 22722)(222270]32)(20220[2)(21222202222221)310(707)310(2020300=*======⨯⨯⨯=∴--+=≤≤⨯==∴≤≤⨯======--=---=+-------+-=-=-+----∑∑∑∑k k h k g Wz X nWn h n W A n x n g W WA n x We e z X n k k n nk k e z n x z X k e AW z e eW W e e A A k k n n n n n k n n k n n n k n j n k n n k j k k nk j n nk nn nkk k j kkk j j j j 则:令则解:依题意:πππππππππϕπθ由(1)式可得k z 的路径,如下表所示:{}时的抽样。
为实数在变换不能计算即线性调频两者都不行两者都行和为实数为实数使变换的的实轴上各点平面在点有限长序列计算一个可以用来变换线性调频的结论在下列说法中选择正确z H(z)z ,(b)(b)(a) (c)0a ,a 1,-N ,1,0,k ,z (b)1a ,a 1,-N ,1, 0,k ,)(:),( )()(..9k ≠==±≠==∙∙∙∙∙∙ak a z a z H z z z z n h M CZT z k k k1,,1,0 , )()()()()()1( 0 ,0 , , 1 , )(,,,1,,1,0)()()(102/2/)(102/2/10001000000)(0010222200-=-===±≠=====∴-====∙∙∙∙∙∙∙∙∙∑∑∑∑-=---=---=--+---=-N k n k p n g a a a n h aa n h z H a a z a W A z z n h W A N k e W A AW z zn h z H a M n k n k M n nk M n nk k kk k j k k k M n n kk 此时即可只需取变换各点的上平面实轴在若求有限长序列都是任意实数其中:是正确的。