上拉和下拉电阻的阻值不能选得太小

合集下载

can上下拉电阻

can上下拉电阻

can上下拉电阻上下拉电阻,也称为上下拉电阻器、上拉电阻、下拉电阻或拉电阻,是电子电路中常见的部件之一。

它们主要用于改变电路或器件的输入信号电平,从而实现不同的功能。

在本文中,我们将详细介绍上下拉电阻的工作原理、应用场景以及常见的上下拉电阻器的设计和选取。

首先,我们来了解一下上下拉电阻的工作原理。

上下拉电阻通常由一个电阻和一个开关组成。

电阻用于限制电流的流动,而开关用于控制电路是否连接。

当开关闭合时,电阻与电路连接,在电路中形成一条低电阻路径。

反之,当开关断开时,电阻与电路断开,形成一条高阻抗路径。

通过控制开关的闭合与断开,我们可以控制电阻器对电路的影响,实现上拉或下拉的功能。

上拉电阻通常用于将信号引脚拉高至高电平。

当信号引脚不连接任何外部电源时,它处于悬空状态,容易受到外界电磁干扰。

在这种情况下,引脚的电平可能会不稳定,导致电路无法正常工作。

通过接入一个上拉电阻,可以将引脚的电平拉高至高电平,提高信号的稳定性。

上拉电阻通常连接到信号引脚和高电平电源之间。

下拉电阻则与上拉电阻相反,它主要用于将信号引脚拉低至低电平。

与上拉电阻类似,下拉电阻也可以提高信号引脚的稳定性,避免其处于悬空状态。

上下拉电阻在实际应用中非常常见,下面我们来看一些常见的应用场景。

1.数字输入在数字电路中,上下拉电阻常用于输入引脚的电平设置。

例如,在微控制器的I/O引脚中,通常需要将引脚拉高或拉低以确定输入的电平。

通过配置上下拉电阻,我们可以将输入引脚的默认状态设置为高电平或低电平,从而简化外部电路的设计。

2.开关输入在一些数字电路中,我们需要检测开关的状态(开启或关闭)。

通过连接一个上拉或下拉电阻到开关输入引脚上,我们可以确定开关在打开或关闭时引脚的电平状态。

当开关关闭时,引脚电平被拉高至高电平(通过上拉电阻);当开关打开时,引脚电平被拉低至低电平(通过下拉电阻)。

3.I2C总线I2C总线是一种常用的串行通信协议,用于连接多个设备(如传感器和芯片)到单个总线上。

上拉下拉电阻

上拉下拉电阻

上拉电阻与下拉电阻的选取上拉电阻:1、当TTL 电路驱动COMS 电路时电路时,,如果TTL 电路输出的高电平低于COMS 电路的最低高电平(一般为(一般为3.5V 3.5V 3.5V)),这时就需要在TTL 的输出端接上拉电阻,以提高输出高电平的值。

2、OC 门电路必须加上拉电阻,才能使用。

3、为加大输出引脚的驱动能力,有的单片机管脚上也常使用上拉电阻。

4、在COMS 芯片上,为了防止静电造成损坏,不用的管脚不能悬空,一般接上拉电阻产生降低输入阻抗,提供泄荷通路。

5、芯片的管脚加上拉电阻来提高输出电平芯片的管脚加上拉电阻来提高输出电平,,从而提高芯片输入信号的噪声容限增强抗干扰能力。

6、提高总线的抗电磁干扰能力。

管脚悬空就比较容易接受外界的电磁干扰。

7、长线传输中电阻不匹配容易引起反射波干扰长线传输中电阻不匹配容易引起反射波干扰,,加上下拉电阻是电阻匹配加上下拉电阻是电阻匹配,,有效的抑制反射波干扰。

上拉电阻阻值的选择原则包括射波干扰。

上拉电阻阻值的选择原则包括::1、从节约功耗及芯片的灌电流能力考虑应当足够大够大;;电阻大电阻大,,电流小电流小。

2、从确保足够的驱动电流考虑应当足够小从确保足够的驱动电流考虑应当足够小;;电阻小电阻小,,电流大电流大。

3、对于高速电路,过大的上拉电阻可能边沿变平缓。

综合考虑以上三点以上三点,,通常在通常在1k 1k 到10k 之间选取。

对下拉电阻也有类似道理对上拉电阻和下拉电阻的选择应结合开关管特性和下级电路的输入特性进行设定,主要需要考虑以下几个因素:1.驱动能力与功耗的平衡。

以上拉电阻为例,一般地说,上拉电阻越小,驱动能力越强.驱动能力与功耗的平衡。

以上拉电阻为例,一般地说,上拉电阻越小,驱动能力越强,,但功耗越大,设计是应注意两者之间的均衡。

2.下级电路的驱动需求下级电路的驱动需求。

同样以上拉电阻为例同样以上拉电阻为例,,当输出高电平时当输出高电平时,,开关管断开开关管断开,,上拉电阻应适当选择以能够向下级电路提供足够的电流。

485上拉电阻和下拉电阻

485上拉电阻和下拉电阻

485上拉电阻和下拉电阻
485总线是一种串行通信协议,常用于工业自动化领域的数据传输。

在485总线中,传输线一般采用双线制,分为A线和B线。

而上拉电阻和下拉电阻则是在485总线通信中常见的电路元件。

上拉电阻和下拉电阻都是一种电阻,它们的作用是控制总线上信号的电平。

在485总线中,上拉电阻和下拉电阻分别连接在A线和B线上,起到调整总线电平的作用。

上拉电阻是将总线电平拉高的电阻,它连接在总线A线上,并向上拉高总线电平。

上拉电阻的阻值一般较大,通常为1kΩ至10kΩ。

当总线无信号时,上拉电阻会将总线电平拉高至逻辑1的电平,以保证总线处于高电平状态。

下拉电阻则是将总线电平拉低的电阻,它连接在总线B线上,并向下拉低总线电平。

下拉电阻的阻值一般较小,通常为150Ω至300Ω。

当总线有数据传输时,总线会出现电平变化,下拉电阻则会将总线电平拉低至逻辑0的电平,以保证数据传输的准确性。

总的来说,上拉电阻和下拉电阻在485总线通信中起到非常重要的作用,它们可以保证总线电平的稳定性和数据传输的可靠性。

三极管基础之上拉电阻下拉电阻

三极管基础之上拉电阻下拉电阻

三极管基础之上拉电阻-下拉电阻我们先来说说集电极开路输出的结构。

集电极开路输出的结构如图1所示,右边的那个三极管集电极什么都不接,所以叫做集电极开路(左边的三极管为反相之用,使输入为“0”时,输出也为“0”)。

对于图1,当左端的输入为“0”时,前面的三极管截止(即集电极C跟发射极E之间相当于断开),所以5V电源通过1K电阻加到右边的三极管上,右边的三极管导通(即相当于一个开关闭合);当左端的输入为“1”时,前面的三极管导通,而后面的三极管截止(相当于开关断开)。

我们将图1简化成图2的样子。

图2中的开关受软件控制,“1”时断开,“0”时闭合。

很明显可以看出,当开关闭合时,输出直接接地,所以输出电平为0。

而当开关断开时,则输出端悬空了,即高阻态。

这时电平状态未知,如果后面一个电阻负载(即使很轻的负载)到地,那么输出端的电平就被这个负载拉到低电平了,所以这个电路是不能输出高电平的。

再看图三。

图三中那个1K的电阻即是上拉电阻。

如果开关闭合,则有电流从1K电阻及开关上流过,但由于开关闭和时电阻为0(方便我们的讨论,实际情况中开关电阻不为0,另外对于三极管还存在饱和压降),所以在开关上的电压为0,即输出电平为0。

如果开关断开,则由于开关电阻为无穷大(同上,不考虑实际中的漏电流),所以流过的电流为0,因此在1K电阻上的压降也为0,所以输出端的电压就是5V了,这样就能输出高电平了。

但是这个输出的内阻是比较大的(即1KΩ),如果接一个电阻为R的负载,通过分压计算,就可以算得最后的输出电压为5*R/(R+1000)伏,即5/(1+1000/R)伏。

所以,如果要达到一定的电压的话,R就不能太小。

如果R真的太小,而导致输出电压不够的话,那我们只有通过减小那个1K的上拉电阻来增加驱动能力。

但是,上拉电阻又不能取得太小,因为当开关闭合时,将产生电流,由于开关能流过的电流是有限的,因此限制了上拉电阻的取值,另外还需要考虑到,当输出低电平时,负载可能还会给提供一部分电流从开关流过,因此要综合这些电流考虑来选择合适的上拉电阻。

上拉和下拉电阻的阻值不能选得太小

上拉和下拉电阻的阻值不能选得太小

上拉和下拉电阻的阻值不能选得太小, 太小会增加整机的静态功耗.也不能选得太大,太大的话不能确保上拉或下拉电平.正确的选择方法是: 先了解需要上拉或下拉的元器件端口需要的上拉或下拉电流, 然后参考系统的供电电压, 计算上拉或下拉电阻, 确保上拉或下拉电阻能够提供所需要的电流,基本上,100K作为普通的数字端口的上拉或下拉电阻是一个比较常用的值。

专家毛斌对此问题的补充:对上拉电阻和下拉电阻的选择应结合开关管特性和下级电路的输入特性进行设定,主要需要考虑以下几个因素:1.驱动能力与功耗的平衡。

以上拉电阻为例,一般地说,上拉电阻越小,驱动能力越强,但功耗越大,设计是应注意两者之间的均衡。

2.下级电路的驱动需求。

同样以上拉电阻为例,当输出高电平时,开关管断开,上拉电阻应适当选择以能够向下级电路提供足够的电流。

3.高低电平的设定。

不同电路的高低电平的门槛电平会有不同,电阻应适当设定以确保能输出正确的电平。

以上拉电阻为例,当输出低电平时,开关管导通,上拉电阻和开关管导通电阻分压值应确保在零电平门槛之下。

4.频率特性。

以上拉电阻为例,上拉电阻和开关管漏源级之间的电容和下级电路之间的输入电容会形成RC延迟,电阻越大,延迟越大。

上拉电阻的设定应考虑电路在这方面的需求。

下拉电阻的设定的原则和上拉电阻是一样有一些ic的输入PIN在不使用的时候需要一个这样的外部电路给他高电平,但是当IC内部已经有这样的电路就可以不连接了上下拉电阻:1、当TTL电路驱动COMS电路时,如果TTL电路输出的高电平低于COMS电路的最低高电平(一般为3.5V),这时就需要在TTL的输出端接上拉电阻,以提高输出高电平的值。

2、OC门电路必须加上拉电阻,以提高输出的搞电平值。

3、为加大输出引脚的驱动能力,有的单片机管脚上也常使用上拉电阻。

4、在COMS芯片上,为了防止静电造成损坏,不用的管脚不能悬空,一般接上拉电阻产生降低输入阻抗,提供泄荷通路。

三极管的上拉下拉电阻的选取

三极管的上拉下拉电阻的选取

三极管的上拉下拉电阻的选取输出端的接电源或接地的电阻叫上拉、下拉电阻,而基极电阻不叫这个名称,应该叫基极偏置电路分压电阻。

根据基极所需的偏置电压以及电源电压大小,用电阻分压公式计算Ub=Vcc*R2/(R1+R2),电阻值的大小应该在kΩ~十kΩ数量级,保证电阻上的电流比基极电流大一个数量级。

例如基极偏压需要2V,电源电压6V,取下偏置电阻10kΩ,可以算出上偏置电阻为20kΩ。

为了简便叙述,以下统一为上下拉电阻简单概括为:电源到器件引脚上的电阻叫上拉电阻,作用是平时使该引脚为高电平,地到器件引脚上的电阻叫下拉电阻,作用是平时使该引脚为低电平。

低电平在IC内部与GND相连接;高电平在IC内部与超大电阻相连接。

上拉就是将不确定的信号通过一个电阻钳位在高电平,电阻同时起限流作用,下拉同理。

对于非集电极(或漏极)开路输出型电路(如普通门电路,其提升电流和电压的能力是有限的,上拉和下拉电阻的主要功能是为集电极开路输出型电路提供输出电流通道。

上拉是对器件注入电流,下拉是输出电流;强弱只是上拉或下拉电阻的阻值不同,没有什么严格区分。

当IC的I/O端口,节点为高电平时,节点处和GND之间的阻抗很大,可以理解为无穷大,这个时候通过上拉电阻(如4.7K欧,10K欧电阻)接到VCC上,上拉电阻的分压几乎可以忽略不计;当I/O端口节点需要为低电平时,直接接GND就可以了,这个时候VCC与GND是通过刚才的上拉电阻(如4.7K欧,10K欧电阻)连接的,通过的电流很小,可以忽略不计。

如果单纯的想要使这个节点成为高电平,并且输出阻抗非常大,则直接接电源也无妨,但是如果单片机要使这个节点拉低,即单片机内部使节点接地,这样5V电源和地之间就短路了。

另外,当要求这个节点为高电平时,这个节点和地之间的阻抗一般非常大,如100K欧的阻抗,当上拉一个10K欧的电阻,这个点分得的电压为100K欧/(100K 10K)*5V=4.5V,这样也可以拉到高电平。

上拉电阻和下拉电阻

上拉电阻和下拉电阻

上拉电阻和下拉电阻什么是上拉电阻和下拉电阻?在电子电路中,上拉电阻和下拉电阻是常用于控制和稳定电路的元件。

它们主要用于输入引脚的电平的控制,帮助确保信号稳定和可靠。

上拉电阻是指连接在信号引脚和正电源之间的电阻,用于将信号引脚的电平拉高。

当信号引脚未接外部信号时,上拉电阻会将引脚的电平拉高到正电源电平。

通常,上拉电阻的阻值比较大,一般在10kΩ到100kΩ之间。

下拉电阻则是连接在信号引脚和地之间的电阻,用于将信号引脚的电平拉低。

当信号引脚未接外部信号时,下拉电阻会将引脚的电平拉低到地电平。

下拉电阻的阻值与上拉电阻类似,通常也在10kΩ到100kΩ之间。

上拉电阻和下拉电阻的应用上拉电阻的应用上拉电阻常用于数字电路中的输入引脚。

在数字电路中,当输入引脚未连接外部信号时,它往往处于一个悬空状态,容易受到干扰而产生误判。

通过连接上拉电阻,可以确保输入引脚的电平稳定地被拉高到正电源电平,从而避免误判。

下拉电阻的应用下拉电阻同样常用于数字电路中的输入引脚。

当输入引脚未连接外部信号时,下拉电阻可以确保引脚电平稳定地被拉低到地电平,避免产生误判。

下拉电阻也常用于与上拉电阻配合使用,实现部分输入引脚上升沿和下降沿触发功能。

上拉电阻和下拉电阻的实现方式上拉电阻和下拉电阻可以通过不同的实现方式来实现。

软件实现在一些特定的矽晶管结构中,当将输入引脚设置为输入模式时,可以通过软件配置使其内部电路自带上拉电阻或下拉电阻。

这种方式可以减少外部电路元件的使用,但在某些情况下可能受到芯片设计限制。

外部电路实现在一些情况下,需要通过外部电路连接上拉电阻或下拉电阻。

上拉电阻和下拉电阻可以通过将电阻连接到信号引脚和正电源或地之间来实现。

这种方式更灵活,可以根据需要选择不同阻值的电阻,以满足特定的应用要求。

小结上拉电阻和下拉电阻是在电子电路中常用的元件,用于控制和稳定电路的输入引脚电平。

通过连接上拉电阻和下拉电阻,可以确保信号引脚的电平稳定地被拉高或拉低。

三极管上拉电阻和下拉电阻

三极管上拉电阻和下拉电阻

三极管上拉电阻和下拉电阻三极管是一种常用的电子元件,广泛应用于各类电子设备中。

在三极管电路中,上拉电阻和下拉电阻是两个重要的元件,它们在电路中起到了重要的作用。

本文将分别介绍三极管上拉电阻和下拉电阻的作用和原理。

一、三极管上拉电阻上拉电阻是指连接在三极管的集电极和电源正极之间的电阻。

它的作用是将集电极与电源正极相连,以提供稳定的电压给三极管的集电极。

上拉电阻的阻值一般较大,常采用几千欧姆至几十千欧姆的范围。

三极管上拉电阻的主要作用有以下几个方面:1. 稳定工作点:上拉电阻通过限制集电极电流的大小,使得三极管能够在某个工作点上稳定工作。

上拉电阻的阻值越大,集电极电流就越小,从而使得工作点更加稳定。

2. 提供集电极电压:上拉电阻将电源正极与集电极相连,使得集电极能够获得稳定的电压。

这样,三极管的放大功能才能正常进行。

3. 防止漂移:上拉电阻通过限制集电极电流的大小,使得三极管的工作点不容易受到外界因素的干扰,从而防止工作点的漂移。

二、三极管下拉电阻下拉电阻是指连接在三极管的发射极和地之间的电阻。

它的作用是将发射极与地相连,以提供稳定的电压给三极管的发射极。

下拉电阻的阻值一般较小,常采用几十欧姆至几百欧姆的范围。

三极管下拉电阻的主要作用有以下几个方面:1. 提供发射极电压:下拉电阻将发射极与地相连,使得发射极能够获得稳定的电压。

这样,三极管的放大功能才能正常进行。

2. 稳定工作点:下拉电阻通过限制发射极电流的大小,使得三极管能够在某个工作点上稳定工作。

下拉电阻的阻值越小,发射极电流就越大,从而使得工作点更加稳定。

3. 防止漂移:下拉电阻通过限制发射极电流的大小,使得三极管的工作点不容易受到外界因素的干扰,从而防止工作点的漂移。

三、上拉电阻和下拉电阻的选择在实际应用中,选择合适的上拉电阻和下拉电阻对于三极管的工作非常重要。

具体选择的原则如下:1. 上拉电阻的阻值应适当大,以保证集电极电流的稳定性。

2. 下拉电阻的阻值应适当小,以保证发射极电流的稳定性。

上拉电阻下拉电阻的原理

上拉电阻下拉电阻的原理

上拉电阻下拉电阻的原理普通说来,不光是重要的信号线,只要信号在一段时光内可能出于无驱动状态,就需要处理。

比如说,一个门的输入端阻抗很高,没有处理,在悬空情况下很简单捡拾到干扰,假如能量足够甚至会导致击穿或者闩锁,导致器件失效。

祈祷输入的庇护平安工作吧。

假如电平向来处于中间态,那输出就可能是不确定的状况,也可能是上下MOS都导通,对器件寿命造成影响。

上当全部的器件都处于高阻态时也简单有干扰浮现。

由于这时读写控制线处于无效状态,所以不一定会引起问题。

你假如觉得自己能够接受的话也就将就了。

但是这时你就要注重到,控制线不能悬空,不然……TTL的输入端是一个放射极开路引出的结构,拉高或者不接都是高电平,但是剧烈建议不要悬空不接。

上拉还是下拉?要看需要。

一方面器件可能又要求,另一方面,比如总线上两个器件,使能控制都是高有效,那么最好下拉,否则当控制信号没有建立的时候就会浮现两个矛盾,可能烧片。

假如计算机总线上面挂了一个D/A,上电复位信号要对它清零或者预置,那么总线可以上下拉到你需要的数字。

至于上下拉的大小,这个状况就比较多了。

CMOS输入的阻抗很高,上下拉电阻阻值可以大一些,普通低功耗电路的阻值取得都比较大,但是抗干扰能力相应比较弱一些。

无数场合下拉电阻取值比上拉电阻要小,这个是历史遗留问题。

如上面所说,TTL电路上拉时输入3集管基射反偏,没有什么,但是下拉时要能够使得输入晶体管工作,这个在TTL的手册中可以查到。

也是为了这个历史遗留问题,有些CMOS器件内部采纳了上拉,这时它会告知你可以不处理这些管脚,但是这时你就要注重了,由于下拉再用10K可能不好使,由于大概内置的20K电阻和外置的10K把电平固定在了1V左右。

有时候你会看到150欧姆或者50欧姆左右的上下拉电阻,尤其是在高速电路中会看到。

150欧姆电阻下拉普通在PECL规律中浮现。

PECL规律输出级是设计开路的尾随器,需要你用电阻来建立电压。

50欧姆的电阻在TTL电路中用的不多,由于静态功耗实在是比较大。

影响上拉电阻和下拉电阻选择的因素

影响上拉电阻和下拉电阻选择的因素

影响上拉电阻和下拉电阻选择的因素事实上,上拉电阻和下拉电阻是没有严格的区别的,上拉电阻时输入电流,下拉电阻时输出电流。

强弱主要决定于阻值的不同,那幺上来电阻和下拉电阻在使用的电路中进行选择,要注意哪些影响因素才能正确的选择合适的电阻呢? 上来电阻和下拉电阻的选择应结合开关管特性和下级电路的输入特性进行设定,主要考虑以下四方面的因素。

1、驱动能力与功耗的平衡。

以上拉电阻为例,一般地说,上拉电阻越小,驱动能力越强,但功耗越大,设计是应注意两者之间的均衡。

2、下级电路的驱动需求。

同样以上拉电阻为例,当输出高电平时,开关管断开,上拉电阻应适当选择以能够向下级电路提供足够的电流。

3、高低电平的设定。

不同电路的高低电平的门槛电平会有不同,电阻应适当设定以确保能输出正确的电平。

以上拉电阻为例,当输出低电平时,开关管导通,上拉电阻和开关管导通电阻分压值应确保在零电平门槛之下。

4、频率特性。

以上拉电阻为例,上拉电阻和开关管漏源级之间的电容和下级电路之间的输入电容会形成RC 延迟,电阻越大,延迟越大。

上拉电阻的设定应考虑电路在这方面的需求。

 同样的,下拉电阻设定的原则和上拉电阻是相同的。

OC门输出高电平时是一个高阻态,其上拉电流要由上拉电阻来提供,设输入端每端口不大于100uA,设输出口驱动电流约500uA,标准工作电压是5V,输入口的高低电平门限为0.8V(低于此值为低电平),2V(高电平门限值)。

选上拉电阻时,500uA x 8.4K= 4.2 即选大于8.4K 时输出端能下拉至0.8V 以下,此为最小阻值,再小就拉不下来了。

如果输出口驱动电流较大,则阻值可减小,保证下拉时能低于0.8V 即可。

当输出高电平时,忽略管子的漏电流,两输入口。

数字电路中上拉电阻和下拉电阻作用和选用选择

数字电路中上拉电阻和下拉电阻作用和选用选择

数字电路中上拉电阻和下拉电阻作用和选用选择文章内容为数字中上拉和下拉电阻作用和选用挑选,希翼对大家有协助。

上拉电阻:1、当TTL电路驱动COMS电路时,假如TTL电路输出的高电平低于COMS电路的最低高电平(普通为3.5V),这时就需要在TTL的输出端接上拉电阻,以提高输出高电平的值。

2、OC门电路必需加上拉电阻,才干用法。

3、为加大输出引脚的驱动能力,有的管脚上也常用法上拉电阻。

4、在COMS芯片上,为了防止静电造成损坏,不用的管脚不能悬空,普通接上拉电阻产生降低输入阻抗,提供泄荷通路。

5、芯片的管脚加上拉电阻来提高输出电平,从而提高芯片输入信号的噪声容限增加抗干扰能力。

6、提高的抗电磁干扰能力。

管脚悬空就比较简单接受外界的电磁干扰。

7、长线传输中电阻不匹配简单引起反射波干扰,加上下拉电阻是电阻匹配,有效的抑制反射波干扰。

上拉电阻阻值的挑选原则包括:1、从节省功耗及芯片的灌能力考虑应该足够大;电阻大,电流小。

2、从确保足够的驱动电流考虑应该足够小;电阻小,电流大。

3、对于高速电路,过大的上拉电阻可能边沿变平缓。

综合考虑以上三点,通常在1k到10k之间选取。

对下拉电阻也有类似道理对上拉电阻和下拉电阻的挑选应结合开关管特性和下级电路的输入特性举行设定,主要需要考虑以下几个因素:1.驱动能力与功耗的平衡。

以上拉电阻为例,普通地说,上拉电阻越小,驱动能力越强,但功耗越大,设计是应注重两者之间的均衡。

2.下级电路的驱动需求。

同样以上拉电阻为例,当输出高电平常,开关管断开,上拉电阻应适当挑选以能够向下级电路提供足够的电流。

3.凹凸电平的设定。

不同电路的凹凸电平的门槛电平会有不同,电阻第1页共6页。

上下拉电阻设计原因和规范

上下拉电阻设计原因和规范

上下拉电阻设计原因和规范电路设计中,上下拉设计是教字电路设计中经常遇到的,为什么数字电路上还需要上下拉设计,需要上下拉设计的原因和场景都是什么呢?一、上下拉设计的原因【原因1】增强芯片输入管脚的固定电平的驱动能力,防止被上电或者初始化时的异常信号干扰。

对于单端信号,通常芯片内部本身有上拉或者下拉电阻,但是这个上拉或意下拉的强度是比较弱的,也就是阻值是比较大的,通常会在30K-100K之间。

一般来说这种上下拉也是没有问题的。

但是在如下场合,还是建议增加上下拉:A、关键信号管脚(如复位,TRST、片选,使能,时钟,中断等信号)不悬空有很长的走线,容易受到干扰B、芯片面积比较大,内部走线复杂,输入端悬空时,容易受到干扰,通常会建议增加上下拉;C、部分信号内部没有上下拉,芯片有建议上下拉的;对于差分信号,由于内部存在差分放大电路,对信号非常敏感,悬空时没有固定电平,在内部一定会恢复成非常好的信号,所以对于关健的差分信号,它而给一个固定电平,如差分时钟,有时没有给时钟,会恢复成异常的不确定时钟。

【原因2】OD\OC 输出电路OD\OC电路,为了能适应不同的驱动能力,不同的电平等场景,故意设计成一个不完整的电路,由实际应用时补充、这类信号品常见的就是IIC,INT,WAKE,Alarm 等信号。

【原因3】精密电阻需求芯片有些地方需要精密电阻来进行校准,但是芯片制造中,由于工艺和成本的限制,对小阻值的精密电阻很难控制。

因此这种精密的小电阻,都是由外部添加。

这类电阻芯片都会明确说明出来,要求多大的电阻,上拉到某个电源,或者下拉到地上。

DDR4 240欧姆精密校准电阻二、上下拉的选择原则这个主要针对需求1进行说明。

知道了上下拉的设计需求,根据需求,上下拉的主要原因是为了防止干扰。

如果希望有干扰时,仍然保持上拉,那么就增加上拉设计;如果干扰时,为了保持下拉,就使用下拉口设计。

另外,在可靠性设计上,近有一种需求,如FMEA分析时,出现单点故障时,要求1、不要影响系统的正常工作;2、故障不扩散,能检测,能告警;综合考虑FMEA和抗干扰的设计需求,就会发现这2个需求很多时候是予盾的,比如芯片的片选信号cs,为了防止未驱动时的被干扰,最好设计成上拉,但是从FMEA角度分析,很多时候设计成下拉。

上拉电阻和下拉电阻选取经验大合集

上拉电阻和下拉电阻选取经验大合集

上拉电阻和下拉电阻选取经验大合集上拉电阻1、当TTL电路驱动COMS电路时,如果TTL电路输出的高电平低于COMS电路的最低高电平(一般为3.5V),这时就需要在TTL的输出端接上拉电阻,以提高输出高电平的值。

【TTL-CMOS 匹配输出电平】2、OC(集电极开路,TTL) 或OD(漏极开路,COMS)输出必须加上拉电阻,才能使用。

假如有一个三态的门带下一级门.如果直接把三态的输出接在下一级的输入上,当三态的门为高阻态时,下一级的输入就如同漂空一样.可能引起逻辑的错误,对MOS电路也许是有破坏性的.所以用电阻将下一级的输入拉高或拉低,既不影响逻辑又保正输入不会漂空【OC】3、为加大输出引脚的驱动能力,有的单片机管脚上也常使用上拉电阻。

【驱动能力】4、在COMS芯片上,为了防止静电造成损坏,不用的管脚不能悬空,一般接上拉电阻产生降低输入阻抗,提供泄荷通路。

【输入阻抗】5、芯片的管脚加上拉电阻来提高输出电平,从而提高芯片输入信号的噪声容限增强抗干扰能力【噪声容限】6、提高总线的抗电磁干扰能力。

管脚悬空就比较容易接受外界的电磁干扰。

【EMC】7、长线传输中电阻不匹配容易引起反射波干扰,加上下拉电阻是电阻匹配,有效的抑制反射波干扰。

【电阻匹配】8、可以用来降低输出电流。

设上拉电阻的阻值为R,当输出低电平时,输出端的电流为(Vcc - Vsds)/R (设Vsds为CMOS管饱和压降),如果直接将OD端接在电源Vcc上,相当于R = 0,这意味着电流过大,从而造成输出端烧毁。

【输出电流】9、如果输出电流比较大,输出的电平就会降低(电路中已经有了一个上拉电阻,但是电阻太大,压降太高),就可以用上拉电阻提供电流分量,把电平“拉高”。

(就是并一个电阻在IC内部的上拉电阻上,让它的压降小一点)。

当然管子按需要该工作在线性范围的上拉电阻不能太小。

当然也会用这个方式来实现门电路电平的匹配。

10、需要注意的是,上拉电阻太大会引起输出电平的延迟。

gpio 上拉电阻 下拉电阻

gpio 上拉电阻 下拉电阻

gpio 上拉电阻下拉电阻GPIO (General Purpose Input/Output) 是一种通用输入输出接口,常用于嵌入式系统中控制外部电路的信号传输。

在使用GPIO接口时,经常会遇到上拉电阻和下拉电阻的概念和应用。

本文将针对这两种电阻进行详细介绍和讨论。

一、上拉电阻上拉电阻是一种连接到GPIO引脚的电阻,其目的是将GPIO引脚默认拉高到高电平状态。

在使用GPIO引脚时,如果没有外部电路或其他信号源将引脚拉低,GPIO引脚会处于悬空状态,容易受到干扰并产生误操作。

为了避免这种情况,可以通过上拉电阻将GPIO引脚拉高到高电平,从而确保引脚处于稳定状态。

上拉电阻的原理是通过连接一个较大的电阻到GPIO引脚和电源之间,形成一个电压分压电路。

当GPIO引脚处于悬空状态时,上拉电阻会将引脚上的电压拉高到接近电源电压的值,使引脚稳定在高电平状态。

当外部信号源或其他电路将引脚拉低时,GPIO引脚的电压会被拉低到接近地的电压,实现了信号的传输和控制。

上拉电阻的应用场景较多。

例如,在按钮输入电路中,可以使用上拉电阻将按钮的一侧连接到GPIO引脚上。

当按钮未被按下时,引脚处于高电平状态;当按钮被按下时,引脚被连接到地,电压降低为低电平状态。

通过读取GPIO引脚的电平状态,可以检测按钮是否被按下。

二、下拉电阻下拉电阻与上拉电阻的原理和应用类似,只是工作方式相反。

下拉电阻将GPIO引脚默认拉低到低电平状态,使引脚保持在稳定状态。

在没有外部信号源或其他电路将引脚拉高时,下拉电阻能够将引脚拉低,使引脚处于低电平状态。

下拉电阻的应用场景与上拉电阻类似。

例如,在开关输入电路中,可以使用下拉电阻将开关的一侧连接到GPIO引脚上。

当开关未接通时,引脚处于低电平状态;当开关接通时,引脚被连接到电源,电压升高为高电平状态。

通过读取GPIO引脚的电平状态,可以检测开关是否接通。

三、上拉电阻与下拉电阻的选择在选择上拉电阻或下拉电阻时,需要根据具体应用的需求和电路设计考虑。

上拉电阻阻值大小的选择

上拉电阻阻值大小的选择

上拉电阻阻值⼤⼩的选择
选择这个电阻,主要根据所接电路情况来选择。

也有“阻抗匹配”的意思。

如果MCU作为输⼊,信号源的阻抗⾜够低,这个电阻仅作为在没有接⼊信号源时起固定电平作⽤,选择⼤⼀些的好。

如果源输⼊部分象OC 类的器件,这个电阻要根据源输⼊器件的输出阻抗来确定。

对于数字电路,负载电阻越⼩,频响越好,所以,对于它的取值还要看具体情况。

如果MCU作为输出,也要看后级的阻抗来确定它的阻值。

原理同上。

上拉电阻要根据具体的⽤途、器件相应引脚容许的电流值、还有相应引脚的⼯作电压和供电电压之间的差值、需要上拉的信号线的速度等等,来决定⽤多⼤的上拉电阻。

上拉电阻的选择,主要是参照你所⽤的mcu和你外接的电路来选择。

⽐如说有的MCU,是5V供电,他的I0⼝在低电平状态时能够通过的电流为2MA,IO⼝的低电平是⼩于0.5V 。

如果你选择的是10k,当mcu为低电平时,通过的电流为0.5MA,IO⼝端的电压为0.1V,那么这个状态很好,满⾜要求。

如果选择的是1k,单⽚机内部是有内阻的,电阻过⼩,会导致通过IO⼝的电流过⼤烧坏单⽚机,因为单⽚io内部是有内阻的,电流⼤了分得的电压就越⼤,有可能导致IO⼝末端的电压⼤于0.5V,单⽚机认为不是低电平,数据出现错误。

总之:上拉电阻的选择,上拉电阻选择越⼤,功耗越低,但是要保证通过的电流能驱动外设和IO⼝。

上拉电阻选择越⼩,功耗越⼤,但是要保证当为低电平时,io⼝端的电压要在低电平的电压值的范围之内。

经验值:⼀般为5.6k到10k之间,⼀般都不会出现太⼤问题。

上拉电阻与下拉电阻的设定原则

上拉电阻与下拉电阻的设定原则

上拉电阻与下拉电阻的设定原则
上拉电阻: 1、当 TTL 电路驱动 COMS 电路时,如果 TTL 电路输出的高电平低于 COMS 电路的最低高电平 (一般为3.5V) ,这时就需要在 TTL 的输出端接上拉电阻,以提高输出高电平的值。 2、OC 门电路必须加上拉电阻,才能使用。 3、为加大输出引脚的驱动能力,有的单片机管脚上也常使用上拉电阻。 4、在 COMS 芯片上,为了防止静电造成损坏,不用的管脚不能悬空,一般接上拉电阻产生降 低输入阻抗,提供泄荷通路。 5、芯片的管脚加上拉电阻来提高输出电平,从而提高芯片输入信号的噪声容限增强抗干扰 能力。 6、提高总线的抗电磁干扰能力。管脚悬空就比较容易接受外界的电磁干扰。 7、长线传输中电阻不匹配容易引起反射波干扰,加上下拉电阻是电阻匹配,有效的抑制反 射波干扰。 : 上拉电阻阻值的选择原则包括: 1、从节约功耗及芯片的灌电流能力考虑应当足够大;电阻大,电流小。 2、从确保足够的驱动电流考虑应当足够小;电阻小,电流大。 3、对于高速电路,过大的上拉电阻可能边沿变平缓。综合考虑 以上三点,通常在1k 到10k 之间选取。对下拉电阻也有类似道理 对上拉电阻和下拉电阻的选择应结合开关管特性和下级电路的输入特性进行设定, 主 要需要考虑以下几个因素: 1. 驱动能力与功耗的平衡。以上拉电阻为例,一般地说,上拉电阻越小,驱动能力越强, 但功耗越大,设计是应注意两者之间的均衡。 2. 下级电路的驱动需求。同样以上拉电阻为例,当输出高电平时,开关管断开,上拉电阻 应适当选择以能够向下级电路提供足够的电流。
个! P0为什么要上拉电阻原因有: 1. P0口片内无上拉电阻 2. P0为 I/O 口工作状态时,上方 FET 被关断,从而输出脚浮空,因此 P0用于输出线时为开 漏输出。 3. 由于片内无上拉电阻,上方 FET 又被关断,P0输出1时无法拉升端口电平。 P0是双向口,其它 P1,P2,P3是准双向口。 不错准双向口是因为在读外部数据时要先“准备”一下,为什么要准备一下呢? 单片机在读准双向口的端口时,现应给端口锁存器赋1,目的是使 FET 关断,不至于因片内 FET 导通使端口钳制在低电平。 上下拉一般选10k! 芯片的上拉/下拉电阻的作用最常见的用途是,假如有一个三态的门带下一级门.如果直接把 三态的输出接在下一级的输入上,当三态的门为高阻态时,下一级的输入就如同漂空一样.可 能引起逻辑的错误,对 MOS 电路也许是有破坏性的.所以用电阻将下一级的输入拉高或拉低, 既不影响逻辑又保正输入不会漂空. 改变电平的电位,常用在 TTL-CMOS 匹配; 在引脚悬空时有确定的状态; 为 OC 门的输出提 供电流; 作为端接电阻; 在试验板上等于多了一个测试点, 特别对板上表贴芯片多的更好, 免得割线; 嵌位; 上、 下拉电阻的作用很多, 比如抬高信号峰峰值, 增强信号传输能力, 防 止信号远距离传输时的线上反射, 调节信号电平级别等等! 当然还有其他的作用了具体的应 用方法要看在什么场合,什么目的,至于参数更不能一概而定,要看电路其他参数而定, 比 如通常用在输入脚上的上拉电阻如果是为了抬高峰峰值, 就要参考该引脚的内阻来定电阻值 的!另外,没有说输入加下拉,输出加上拉的,有时候没了某个目的也可能同时既有上拉又 有下拉电阻的! 加接地电阻--下拉 加接电源电阻--上拉对于漏极开路或者集电极开路输出的器件需要加上拉电阻才可能工 作。另外,普通的口,加上拉电阻可以提高抗干扰能力,但是会增加负载。 电源:+5V 普通的直立 LED,共八个,负极分别接到一个大片子的管脚上,用多大的上拉电 阻合适? 谢谢指教!

上拉、下拉电阻

上拉、下拉电阻

上拉、下拉电阻上下拉电阻上拉就是将不确定的信号通过一个电阻钳位在高电平!电阻同时起限流作用!下拉同理!上拉是对器件注入电流,下拉是输出电流;弱强只是上拉电阻的阻值不同,没有什么严格区分;对于非集电极(或漏极)开路输出型电路(如普通门电路)提升电流和电压的能力是有限的,上拉电阻的功能主要是为集电极开路输出型电路输出电流通道。

上下拉电阻:1、当TTL电路驱动CMOS电路时,如果电路输出的高电平低于CMOS电路的最低高电平(一般为3.5V), 这时就需要在TTL的输出端接上拉电阻,以提高输出高电平的值。

上拉电阻2、OC门电路必须加上拉电阻,以提高输出的高电平值。

3、为加大输出引脚的驱动能力,有的单片机管脚上也常使用上拉电阻。

4、在CMOS芯片上,为了防止静电造成损坏,不用的管脚不能悬空,一般接上拉电阻产生降低输入阻抗, 提供泄荷通路。

5、芯片的管脚加上拉电阻来提高输出电平,从而提高芯片输入信号的噪声容限增强抗干扰能力。

6、提高总线的抗电磁干扰能力。

管脚悬空就比较容易接受外界的电磁干扰。

7、长线传输中电阻不匹配容易引起反射波干扰,加上下拉电阻是电阻匹配,有效的抑制反射波干扰。

上拉电阻:就是从电源高电平引出的电阻接到输出1,如果电平用OC(集电极开路,TTL)或OD(漏极开路,CMOS)输出,那么不用上拉电阻是不能工作的, 这个很容易理解,管子没有电源就不能输出高电平了。

2,如果输出电流比较大,输出的电平就会降低(电路中已经有了一个上拉电阻,但是电阻太大,压降太高),就可以用上拉电阻提供电流分量,把电平“拉高”。

(就是并一个电阻在IC内部的上拉电阻上, 让它的压降小一点)。

当然管子按需要该工作在线性范围的上拉电阻不能太小。

当然也会用这个方式来实现门电路电平的匹配。

注意事项需要注意的是,上拉电阻太大会引起输出电平的延迟。

(RC延时) 一般CMOS门电路输出不能给它悬空,都是接上拉电阻设定成高电平。

下拉电阻:和上拉电阻的原理差不多, 只是拉到GND去而已。

上下拉电阻

上下拉电阻

浅谈上、下拉电阻的作用/什么是拉电流和灌电流2008-10-05 12:42浅谈上、下拉电阻的作用上下拉电阻:1、当TTL电路驱动COMS电路时,如果TTL电路输出的高电平低于CMOS电路的最低高电平(一般为3.5V),这时就需要在TTL的输出端接上拉电阻,以提高输出高电平的值。

2、OC门电路必须加上拉电阻,以提高输出的高电平值。

3、为加大输出引脚的驱动能力,有的单片机管脚上也常使用上拉电阻。

4、在CMOS芯片上,为了防止静电造成损坏,不用的管脚不能悬空,一般接上拉电阻产生降低输入阻抗,提供泄荷通路。

5、芯片的管脚加上拉电阻来提高输出电平,从而提高芯片输入信号的噪声容限增强抗干扰能力。

6、提高总线的抗电磁干扰能力。

管脚悬空就比较容易接受外界的电磁干扰。

7、长线传输中电阻不匹配容易引起反射波干扰,加上下拉电阻是电阻匹配,有效的抑制反射波干扰。

上拉电阻阻值的选择原则包括:1、从节约功耗及芯片的灌电流能力考虑应当足够大;电阻大,电流小。

2、从确保足够的驱动电流考虑应当足够小;电阻小,电流大。

3、对于高速电路,过大的上拉电阻可能边沿变平缓。

综合考虑以上三点,通常在1k到10k之间选取。

对下拉电阻也有类似道理电阻的具体取值怎么计算的?上拉电阻是不是应该是接Vcc再接电阻,然后接到管脚上的?一般上下拉的电阻取值都有个特定的范围,不能太大,也不能太小.都在几K到几十K之间吧,具体的还要看电路要求.至于接法,上拉电阻简单来说就是把电平拉高,通常用4.7-10K的电阻接到Vcc电源,下拉电阻则是把电平拉低,电阻接到GND地线上。

所以是接电源或者接地,再接到需要拉高或者拉地电平的节点上的.一般说来,不光是重要的信号线,只要信号在一段时间内可能出于无驱动状态,就需要处理。

比如说,一个CMOS门的输入端阻抗很高,没有处理,在悬空状况下很容易捡拾到干扰,如果能量足够甚至会导致击穿或者闩锁,导致器件失效。

祈祷输入的保护二极管安全工作吧。

上拉电阻和下拉电阻的选型和设计计算

上拉电阻和下拉电阻的选型和设计计算

上拉电阻和下拉电阻的选型和设计计算上拉就是将不确定的信号通过一个电阻钳位在高电平,电阻同时起限流作用。

下拉同理。

也是将不确定的信号通过一个电阻钳位在低电平。

上拉是对器件输入电流,下拉是输出电流;强弱只是上拉电阻的阻值不同,没有什么严格区分;对于非集电极(或漏极)开路输出型电路(如普通门电路)提升电流和电压的能力是有限的,上拉电阻的功能主要是为集电极开路输出型电路输出电流通道。

常见各类技术资料上,有些技术规范写道“无用的管脚不允许悬空状态,必须接上拉或下拉电阻以提供确定的工作状态”。

这个提法基本是对的,但也不全对。

下面详细加以说明。

管脚上拉下拉电阻设计出发点有两个:一个是在正常工作或单一故障状态下,管脚均不应出现不定状态,如接头脱落后导致的管脚悬空;二是从功耗的角度考虑,就是在长时间的管脚等待状态下,管脚端口的电阻上不应消耗太多电流,尤其是对电池供电设备。

从抗扰的角度,信号端口优选上拉电阻。

上拉电阻时,在待机状态下,源端输入常为高阻态,如果没有上拉电阻或下拉电阻,输入导线呈现天线效应,一旦管脚受到辐射干扰,管脚输入状态极容易被感应发生变化。

所以,这个电阻是肯定要加的。

下一个问题就是加上拉还是下拉。

如果加了下拉,在平常状态下,输入表现为低电平,但辐射干扰进来后,会通过下拉电阻泻放到地,就会发生从Low—High的一个跳变,产生误触发。

相当于一个乞丐,你给了他10万元,他的生活方式就会从穷人到富人发生一个改变。

但如果加了上拉电阻,在平常状态下,输入表现为高电平,辐射干扰进来后,如果低也没关系,上拉电阻会将输入端钳位在高电平,如果辐射干扰强,超过了Vcc的电平,导线上的高电平干扰会通过上拉电阻泻放到Vcc上去,无论怎样干扰,都只会发生High—Higher的变化,不会产生误触发。

相当于人家本来是一个富豪,你给了他10万元,他的生活方式不会发生任何的改变。

图1和图2是干扰状态下的电平示意图。

图2中的低电平由VL变为VL+ΔV时,产生了从低电平到高电平的跳变,有可能使后级电路误动作的风险。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

上拉和下拉电阻的阻值不能选得太小, 太小会增加整机的静态功耗.
也不能选得太大,太大的话不能确保上拉或下拉电平.
正确的选择方法是: 先了解需要上拉或下拉的元器件端口需要的上拉或下拉电流, 然后参考系统的供电电压, 计算上拉或下拉电阻, 确保上拉或下拉电阻能够提供所需要的电流,基本上,100K作为普通的数字端口的上拉或下拉电阻是一个比较常用的值。

专家毛斌对此问题的补充:
对上拉电阻和下拉电阻的选择应结合开关管特性和下级电路的输入特性进行设定,主要需要考虑以下几个因素:
1.驱动能力与功耗的平衡。

以上拉电阻为例,一般地说,上拉电阻越小,驱动能力越强,但功耗越大,设计是应注意两者之间的均衡。

2.下级电路的驱动需求。

同样以上拉电阻为例,当输出高电平时,开关管断开,上拉电阻应适当选择以能够向下级电路提供足够的电流。

3.高低电平的设定。

不同电路的高低电平的门槛电平会有不同,电阻应适当设定以确保能输出正确的电平。

以上拉电阻为例,当输出低电平时,开关管导通,上拉电阻和开关管导通电阻分压值应确保在零电平门槛之下。

4.频率特性。

以上拉电阻为例,上拉电阻和开关管漏源级之间的电容和下级电路之间的输入电容会形成RC延迟,电阻越大,延迟越大。

上拉电阻的设定应考虑电路在这方面的需求。

下拉电阻的设定的原则和上拉电阻是一样
有一些ic的输入PIN在不使用的时候需要一个这样的外部电路给他高电平,但是当IC内部已经有这样的电路就可以不连接了
上下拉电阻:
1、当TTL电路驱动COMS电路时,如果TTL电路输出的高电平低于COMS电路的最低高电平(一般为3.5V),这时就需要在TTL的输出端接上拉电阻,以提高输出高电平的值。

2、OC门电路必须加上拉电阻,以提高输出的搞电平值。

3、为加大输出引脚的驱动能力,有的单片机管脚上也常使用上拉电阻。

4、在COMS芯片上,为了防止静电造成损坏,不用的管脚不能悬空,一般接上拉电阻产生降低输入阻抗,提供泄荷通路。

5、芯片的管脚加上拉电阻来提高输出电平,从而提高芯片输入信号的噪声容限增强抗干扰能力。

6、提高总线的抗电磁干扰能力。

管脚悬空就比较容易接受外界的电磁干扰。

7、长线传输中电阻不匹配容易引起反射波干扰,加上下拉电阻是电阻匹配,有效的抑制反射波干扰。

上拉电阻阻值的选择原则包括:
1、从节约功耗及芯片的灌电流能力考虑应当足够大;电阻大,电流小。

2、从确保足够的驱动电流考虑应当足够小;电阻小,电流大。

3、对于高速电路,过大的上拉电阻可能边沿变平缓。

综合考虑以上三点,通常在1k到10k之间选取。

对下拉电阻也有类似道理。

相关文档
最新文档