中考圆的常见题型
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
( 1)证明:连接 AD ∵AB 是⊙O 的直径
A
E
O
CDB
∴∠ADB=9°0
又∵BD=CD
∴AB=AC 。
( 2)解:∵ ∠BAC=6°0 ,由( 1)知 AB=AC
∴△ABC 是等边三角形
中考圆的常见题型
在 Rt△BAD 中,∠ BAD=3°0 , AB=8 ∴BD=4 ,即 DC=4 又∵ DE ⊥AC ,
C 9、已知:如图, AB 是⊙O 的直径, AD 是弦, OC 垂直 AD 于 F 交⊙O 于 E,
连结 DE 、 BE,且∠ C=∠BED . ( 1)求证: AC 是⊙O 的切线;
D
E
( 2)若 OA=10, AD=16 ,求 AC 的长. F
A C A P . ··················································································································································5 分
1
C
A O P 30 °, ···························································································································3 分
2
C P , ··················································································································································4 分
N
( 1)证明:∵ AB 为⊙ O 直径 ∴∠ACB=90°
A
OM B
(第 8 题图)
∴EM ⊥AB
∴∠A= ∠CNF=∠MNB=9°0 - ∠B …………………………………… (1 分)
又∴CF 为⊙O 切线
∴∠OCF=90°
∴∠ACO= ∠NCF=90°-∠OCB……………………………………… ( 2 分)
B. 0.5 米
C. 0.8 米
D. 1 米
O 第 5 题图
6、如图, AB 是⊙O 的直径, BD 是⊙O 的弦,延长 BD 到点 C,使 DC= BD,连接 AC,过
点 D 作 DE ⊥AC,垂足为 E. (1)求证: AB= AC; (2)若⊙ O 的半径为 4,∠BAC= 60o,求 DE 的长.
中考圆的常见题型
中考圆的常见题型
1、如图, EB 为半圆 O 的直径,点 A 在 EB 的延长线上, AD 切半圆 O 于点 D,BC⊥AD 于
点 C, AB= 2,半圆 O 的半径为 2,则 BC 的长为( B )
A. 2
B. 1
C. 1.5
D . 0.5
D C
EOB A
2、如图( 2),在 R t△ ABC 中, C 90 °, AC 6, BC 点 D 是斜边 A B 的中点,则 tan O D A ( D )
又 B C 为 O 直径,
C AB
PAO 90 °, ···············································································6 分
△ AC B ≌ △ APO ( ASA). ··················································································································7 分
8,⊙ O 为 △ A B C 的内切圆, C
A. 3
B. 3
C. 3
D. 2
2
3
O
B
3、如图,两同心圆的圆心为 O,大圆的弦 AB 切小圆于 P, 两圆的半径分别为 6, 3,则图中阴影部分的面积是( C )
D 图( 2)
A O
A. 9 3
B. 6 3
C. 9 3 3 A
D. 6 3 2
A
B
P
(第 3 题图)
∴△ACO ∽△NCF ……………………………………………………
( 4 分)
( 2)由 △ACO ∽△NCF 得: AC CN
CO CF
3 ………………………………… ( 5 分)
2
在 Rt△ABC 中, sinB= AC
AB
AC 2 AO
AC 2 CO
3 ……………………… ( 7 分)
4
中考圆的常见题型
PAO 90 °. ················································································1 分
又 P 30 °, AO P 60 °, ·········································································································2 分
(注:其它方法按步骤得分. )
E
8、如图, AB 是半圆 O 的直径, C 为半圆上一点, N 是线段
BC 上一点(不与 B﹑ C 重合),过 N 作 AB 的垂线交 AB 于 M,
交 AC 的延长线于 E,过 C 点作半圆 O 的切线交 EM 于 F.
C
F
⑴求证: △ACO ∽△NCF;
⑵若 NC∶CF = 3∶2,求 sinB 的值 .
∴DE=D×C sinC=4×sin60 °= 4
3 23
2
7、如图, P A 为 ⊙ O 的切线, A 为切点.直线 P O 与 ⊙ O 交于 B、 C 两点, P 30 °,连 接 A O、 A B 、 A C .求证: △ AC B ≌ △ APO .
A
C
O
B
P
(第 7 题图)
证明: P A 为 O 的切线,
4、如图,点 A, B, C 在 O 上, A 50 °,
则 B O C 的度数为(
)
A. 130 °
B. 50 °
wk.baidu.com
B
C. 65 °
D. 100 °
O C
(第 4 题图) 5、一根水平放置的圆柱形输水管道横截面如图所示,其中有水部分水面宽
0.8 米,最深处水深 0.2 米,则此输水管道的直径是(
)
A. 0.4 米
A
E
O
CDB
∴∠ADB=9°0
又∵BD=CD
∴AB=AC 。
( 2)解:∵ ∠BAC=6°0 ,由( 1)知 AB=AC
∴△ABC 是等边三角形
中考圆的常见题型
在 Rt△BAD 中,∠ BAD=3°0 , AB=8 ∴BD=4 ,即 DC=4 又∵ DE ⊥AC ,
C 9、已知:如图, AB 是⊙O 的直径, AD 是弦, OC 垂直 AD 于 F 交⊙O 于 E,
连结 DE 、 BE,且∠ C=∠BED . ( 1)求证: AC 是⊙O 的切线;
D
E
( 2)若 OA=10, AD=16 ,求 AC 的长. F
A C A P . ··················································································································································5 分
1
C
A O P 30 °, ···························································································································3 分
2
C P , ··················································································································································4 分
N
( 1)证明:∵ AB 为⊙ O 直径 ∴∠ACB=90°
A
OM B
(第 8 题图)
∴EM ⊥AB
∴∠A= ∠CNF=∠MNB=9°0 - ∠B …………………………………… (1 分)
又∴CF 为⊙O 切线
∴∠OCF=90°
∴∠ACO= ∠NCF=90°-∠OCB……………………………………… ( 2 分)
B. 0.5 米
C. 0.8 米
D. 1 米
O 第 5 题图
6、如图, AB 是⊙O 的直径, BD 是⊙O 的弦,延长 BD 到点 C,使 DC= BD,连接 AC,过
点 D 作 DE ⊥AC,垂足为 E. (1)求证: AB= AC; (2)若⊙ O 的半径为 4,∠BAC= 60o,求 DE 的长.
中考圆的常见题型
中考圆的常见题型
1、如图, EB 为半圆 O 的直径,点 A 在 EB 的延长线上, AD 切半圆 O 于点 D,BC⊥AD 于
点 C, AB= 2,半圆 O 的半径为 2,则 BC 的长为( B )
A. 2
B. 1
C. 1.5
D . 0.5
D C
EOB A
2、如图( 2),在 R t△ ABC 中, C 90 °, AC 6, BC 点 D 是斜边 A B 的中点,则 tan O D A ( D )
又 B C 为 O 直径,
C AB
PAO 90 °, ···············································································6 分
△ AC B ≌ △ APO ( ASA). ··················································································································7 分
8,⊙ O 为 △ A B C 的内切圆, C
A. 3
B. 3
C. 3
D. 2
2
3
O
B
3、如图,两同心圆的圆心为 O,大圆的弦 AB 切小圆于 P, 两圆的半径分别为 6, 3,则图中阴影部分的面积是( C )
D 图( 2)
A O
A. 9 3
B. 6 3
C. 9 3 3 A
D. 6 3 2
A
B
P
(第 3 题图)
∴△ACO ∽△NCF ……………………………………………………
( 4 分)
( 2)由 △ACO ∽△NCF 得: AC CN
CO CF
3 ………………………………… ( 5 分)
2
在 Rt△ABC 中, sinB= AC
AB
AC 2 AO
AC 2 CO
3 ……………………… ( 7 分)
4
中考圆的常见题型
PAO 90 °. ················································································1 分
又 P 30 °, AO P 60 °, ·········································································································2 分
(注:其它方法按步骤得分. )
E
8、如图, AB 是半圆 O 的直径, C 为半圆上一点, N 是线段
BC 上一点(不与 B﹑ C 重合),过 N 作 AB 的垂线交 AB 于 M,
交 AC 的延长线于 E,过 C 点作半圆 O 的切线交 EM 于 F.
C
F
⑴求证: △ACO ∽△NCF;
⑵若 NC∶CF = 3∶2,求 sinB 的值 .
∴DE=D×C sinC=4×sin60 °= 4
3 23
2
7、如图, P A 为 ⊙ O 的切线, A 为切点.直线 P O 与 ⊙ O 交于 B、 C 两点, P 30 °,连 接 A O、 A B 、 A C .求证: △ AC B ≌ △ APO .
A
C
O
B
P
(第 7 题图)
证明: P A 为 O 的切线,
4、如图,点 A, B, C 在 O 上, A 50 °,
则 B O C 的度数为(
)
A. 130 °
B. 50 °
wk.baidu.com
B
C. 65 °
D. 100 °
O C
(第 4 题图) 5、一根水平放置的圆柱形输水管道横截面如图所示,其中有水部分水面宽
0.8 米,最深处水深 0.2 米,则此输水管道的直径是(
)
A. 0.4 米