中考数学二轮复习勾股定理知识点总结及答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、选择题

1.图中不能证明勾股定理的是( )

A .

B .

C .

D .

2.已知,如图,ABC ,点,P Q 分别是BAC ∠的角平分线AD ,边AB 上的两个动点,

45C ︒∠=,6BC =,则PB PQ +的最小值是( )

A .3

B .23

C .4

D .32

3.如图,OP =1,过点P 作PP 1⊥OP ,且PP 1=1,得OP 1=2;再过点P 1作P 1P 2⊥OP 1且P 1P 2=1,得OP 2=3;又过点P 2作P 2P 3⊥OP 2且P 2P 3=1,得OP 3=2……依此法继续作下去,得OP 2018的值为( )

A 2016

B 2017

C 2018

D 2019

4.已知,,a b c 是ABC ∆的三边,且满足222()()0a b a b c ---=,则ABC ∆是( ) A .直角三角形 B .等边三角形

C .等腰直角三角形

D .等腰三角形或直角三角形

5.三个正方形的面积如图,正方形A 的面积为( )

A .6

B .36

C .64

D .8

6.如图,在等腰Rt △ABC 中,∠C =90°,AC =7,∠BAC 的角平分线AD 交BC 于点D ,则点D 到AB 的距离是( )

A .3

B .4

C .7(21)-

D .7(21)+

7.如图,西安路与南京路平行,并且与八一街垂直,曙光路与环城路垂直.如果小明站在南京路与八一街的交叉口,准备去书店,按图中的街道行走,最近的路程约为( )

A .200m

B .300m

C .400m

D .500m

8.在Rt△ABC 中,∠C=90°,AC=3,BC=4,则点C 到AB 的距离是( ) A .

34

B .

35

C .

45

D .

125

9.以下列各组数为边长,不能构成直角三角形的是( ) A .3,4,5

B .1,12

C .8,12,13

D .2、3、5

10.在ABC ∆中,::1:1:2BC AC AB =,则△ABC 是( ) A .等腰三角形

B .钝角三角形

C .直角三角形

D .等腰直角三角形

二、填空题

11.如图,点E 在DBC △边DB 上,点A 在DBC △内部,∠DAE =∠BAC =90°,AD =AE ,AB =AC ,给出下列结论,其中正确的是_____(填序号)

①BD =CE ;②∠DCB =∠ABD =45°;③BD ⊥CE ;④BE 2=2(AD 2+AB 2).

12.如图,在四边形ABCD 中,AB =AD ,BC=DC ,点E 为AD 边上一点,连接BD 、CE ,CE 与BD 交于点F ,且CE ∥AB ,若∠A =60°,AB=4,CE=3,则BC 的长为_______.

13.如图,这是由八个全等的直角三角形拼接而成,记图中正方形ABCD ,正方形EFGH ,正方形MNKT 的面积分别为 1S ,2S ,3S ,若123144S S S ++=,则2S 的值是__________.

14.在ABC ∆中,90BAC ∠=︒,以BC 为斜边作等腰直角BCD ∆,连接DA ,若

22AB =42AC =DA 的长为______.

15.如图,O 为坐标原点,四边形OABC 为矩形,()20,0A ,()0,8C ,点D 是OA 的中点,点P 在边BC 上运动,当ODP ∆是以OD 为腰的等腰三角形时,则P 点的坐标为

______.

16.如图,在ABC △中8,4,AB AC BC AD BC ===⊥于点D ,点P 是线段AD 上一个动点,过点P 作PE AB ⊥于点E ,连接PB ,则PB PE +的最小值为________.

17.如图,BAC 90∠=度,AB AC =,AE AD ⊥,且AE AD =,AF 平分DAE ∠交BC 于F ,若BD 6=,CF 8=,则线段AD 的长为______.

18.如图,在□ABCD 中,AC 与BD 交于点O ,且AB =3,BC =5. ①线段OA 的取值范围是______________; ②若BD -AC =1,则AC •BD = _________.

19.如图,△ABC 中,AB=AC=13,BC=10,AD 是BAC ∠的角平分线,E 是AD 上的动点,F 是AB 边上的动点,则BE+EF 的最小值为_____.

20.在△ABC 中,∠A=30°,∠B=90°,AC=8,点 D 在边 AB , 且3,点 P 是△ABC 边上的一个动点,若 AP=2PD 时,则 PD 的长是____________.

三、解答题

21.如图,,90,8,6,,ABC B AB cm BC cm P Q ︒

∆∠===是边上的两点,点P 从点A 开始

沿A B →方向运动,且速度为每秒1cm ,点Q 从点B 沿B C A →→运动,且速度为每秒2cm ,它们同时出发,设出发的时间为t 秒. (1)出发2秒后,求线段PQ 的长;

(2)求点Q 在BC 上运动时,出发几秒后,PQB 是等腰三角形; (3)点Q 在边CA 上运动时,求能使BCQ ∆成为等腰三角形的运动时间.

22.如图,在两个等腰直角ABC 和CDE △中,∠ACB = ∠DCE=90°.

(1)观察猜想:如图1,点E 在BC 上,线段AE 与BD 的数量关系是 ,位置关系是 ;

(2)探究证明:把CDE △绕直角顶点C 旋转到图2的位置,(1)中的结论还成立吗?说明理由;

(3)拓展延伸:把CDE △绕点C 在平面内自由旋转,若AC = BC=10,DE=12,当A 、E 、D 三点在直线上时,请直接写出 AD 的长.

23.如图1,在△ABC 中,AB =AC ,∠BAC =90°,D 为AC 边上一动点,且不与点A 点C 重合,连接BD 并延长,在BD 延长线上取一点E ,使AE =AB ,连接CE .

(1)若∠AED =20°,则∠DEC = 度;

(2)若∠AED =a ,试探索∠AED 与∠AEC 有怎样的数量关系?并证明你的猜想; (3)如图2,过点A 作AF ⊥BE 于点F ,AF 的延长线与EC 的延长线交于点H ,求证:EH 2+CH 2=2AE 2.

24.我们规定,三角形任意两边的“广益值”等于第三边上的中线和这边一半的平方差.如

相关文档
最新文档