种经典软件滤波的原理和实现

合集下载

常见数字滤波技术与原理

常见数字滤波技术与原理

常见数字滤波技术与原理数字滤波技术是一种在数字信号处理中广泛应用的技术。

它通过在数字信号中加入一些特定的滤波器,以减少噪声、平滑信号或提取特定特征。

数字滤波器通常由数字信号处理软件或硬件实现,具有精度高、稳定性好、易于编程等优点。

常见的数字滤波技术包括移动平均滤波、滑动窗口滤波、傅里叶变换滤波等。

1. 移动平均滤波移动平均滤波是一种简单而有效的数字滤波方法。

它通过计算输入信号在一定时间窗口内的平均值,以平滑信号中的噪声。

移动平均滤波器通常由一个滑动窗口和一个累加器组成,窗口内的数据逐个进入累加器,并输出窗口内的平均值。

移动平均滤波器适用于消除随机噪声和周期性噪声。

2. 滑动窗口滤波滑动窗口滤波是一种基于滑动窗口的数字滤波方法。

它通过将输入信号分成多个固定长度的窗口,并对每个窗口内的数据进行处理,以提取特定特征或平滑噪声。

滑动窗口滤波器通常由一个滑动窗口和一个处理函数组成,窗口内的数据逐个进入处理函数,并输出处理结果。

滑动窗口滤波器适用于提取信号中的特定特征或平滑信号中的噪声。

3. 傅里叶变换滤波傅里叶变换滤波是一种基于傅里叶变换的数字滤波方法。

它通过将输入信号从时域转换到频域,以提取信号中的特定频率成分或消除特定频率成分。

傅里叶变换滤波器通常由一个傅里叶变换和一个逆傅里叶变换组成,输入信号经过傅里叶变换后得到频谱图,然后通过逆傅里叶变换将频谱图转换回时域。

傅里叶变换滤波器适用于提取信号中的特定频率成分或消除特定频率成分。

以上是常见数字滤波技术与原理的简要介绍。

在实际应用中,需要根据具体需求选择合适的数字滤波技术,以达到最佳的信号处理效果。

10种软件滤波方法及示例程序

10种软件滤波方法及示例程序

10种软件滤波方法及示例程序滤波是数字信号处理中常用的一种方法,用于去除信号中的噪声或者改变信号的频率响应。

软件滤波是指使用计算机软件来实现滤波功能。

本文将介绍10种常用的软件滤波方法,并附上相应的示例程序。

1.均值滤波:将信号中的每个样本点都替换为其邻近样本点的平均值。

这种方法适用于去除高频噪声,但会导致信号的模糊化。

示例程序:```pythonimport numpy as npdef mean_filter(signal, window_size):filtered_signal = []for i in range(len(signal)):start = max(0, i - window_size//2)end = min(len(signal), i + window_size//2)filtered_signal.append(np.mean(signal[start:end]))return filtered_signal#使用示例signal = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]window_size = 3filtered_signal = mean_filter(signal, window_size)print(filtered_signal)```2.中值滤波:将信号中每个样本点都替换为邻近样本点的中值。

这种方法适用于去除椒盐噪声等随机噪声,但不适用于平滑信号。

示例程序:```pythonimport numpy as npdef median_filter(signal, window_size):filtered_signal = []for i in range(len(signal)):start = max(0, i - window_size//2)end = min(len(signal), i + window_size//2)filtered_signal.append(np.median(signal[start:end]))return filtered_signal#使用示例signal = [1, 3, 5, 7, 9, 8, 6, 4, 2]window_size = 3filtered_signal = median_filter(signal, window_size)print(filtered_signal)```3.高斯滤波:使用一维/二维高斯函数作为滤波器,加权平均信号的邻近样本点。

11种经典软件滤波的原理和实现58239

11种经典软件滤波的原理和实现58239

11种经典软件滤波的原理和实现1、限幅滤波法(又称程序判断滤波法)A、方法:根据经验判断,确定两次采样允许的最大偏差值(设为A)每次检测到新值时判断:如果本次值与上次值之差<=A,则本次值有效如果本次值与上次值之差>A,则本次值无效,放弃本次值,用上次值代替本次值B、优点:能有效克服因偶然因素引起的脉冲干扰C、缺点无法抑制那种周期性的干扰平滑度差2、中位值滤波法A、方法:连续采样N次(N取奇数)把N次采样值按大小排列取中间值为本次有效值B、优点:能有效克服因偶然因素引起的波动干扰对温度、液位的变化缓慢的被测参数有良好的滤波效果C、缺点:对流量、速度等快速变化的参数不宜3、算术平均滤波法A、方法:连续取N个采样值进行算术平均运算N值较大时:信号平滑度较高,但灵敏度较低N值较小时:信号平滑度较低,但灵敏度较高N值的选取:一般流量,N=12;压力:N=4B、优点:适用于对一般具有随机干扰的信号进行滤波这样信号的特点是有一个平均值,信号在某一数值范围附近上下波动C、缺点:对于测量速度较慢或要求数据计算速度较快的实时控制不适用比较浪费RAM4、递推平均滤波法(又称滑动平均滤波法)A、方法:把连续取N个采样值看成一个队列队列的长度固定为N每次采样到一个新数据放入队尾,并扔掉原来队首的一次数据.(先进先出原则)把队列中的N个数据进行算术平均运算,就可获得新的滤波结果N值的选取:流量,N=12;压力:N=4;液面,N=4~12;温度,N=1~4B、优点:对周期性干扰有良好的抑制作用,平滑度高适用于高频振荡的系统C、缺点:灵敏度低对偶然出现的脉冲性干扰的抑制作用较差不易消除因为脉冲干扰所引起的采样值偏差不适用于脉冲干扰比较严重的场合比较浪费RAM5、中位值平均滤波法(又称防脉冲干扰平均滤波法)A、方法:相当于“中位值滤波法”+“算术平均滤波法”连续采样N个数据,去掉一个最大值和一个最小值然后计算N-2个数据的算术平均值N值的选取:3~14B、优点:融合了两种滤波法的优点对于偶然出现的脉冲性干扰,可消除因为脉冲干扰所引起的采样值偏差C、缺点:测量速度较慢,和算术平均滤波法一样比较浪费RAM6、限幅平均滤波法A、方法:相当于“限幅滤波法”+“递推平均滤波法”每次采样到的新数据先进行限幅处理,再送入队列进行递推平均滤波处理B、优点:融合了两种滤波法的优点对于偶然出现的脉冲性干扰,可消除因为脉冲干扰所引起的采样值偏差C、缺点:比较浪费RAM7、一阶滞后滤波法A、方法:取a=0~1本次滤波结果=(1-a)*本次采样值+a*上次滤波结果B、优点:对周期性干扰具有良好的抑制作用适用于波动频率较高的场合C、缺点:相位滞后,灵敏度低滞后程度取决于a值大小不能消除滤波频率高于采样频率的1/2的干扰信号8、加权递推平均滤波法A、方法:是对递推平均滤波法的改进,即不同时刻的数据加以不同的权通常是,越接近现时刻的数据,权取得越大。

matlab匹配滤波

matlab匹配滤波

MATLAB匹配滤波一、介绍匹配滤波是一种常用的信号处理技术,广泛应用于图像处理、通信系统等领域。

MATLAB作为一种功能强大的科学计算软件,提供了丰富的工具箱和函数,用于实现匹配滤波算法。

本文将详细介绍MATLAB中的匹配滤波算法的原理、实现方法以及一些实际应用。

二、匹配滤波原理匹配滤波是一种基于模板匹配的信号处理技术,通过与预先定义好的模板进行比较来检测信号中的目标。

其原理可以简要概括如下:1.定义模板:首先,需要定义一个模板,用来表示待检测目标的特征。

模板可以是一个图像、一个二进制序列或者一个滤波器等。

2.相关运算:将待检测信号与模板进行相关运算,计算它们之间的相似度。

这一步骤可以通过卷积运算或者自相关运算来实现。

3.提取结果:根据相关运算的结果,可以提取出目标在原始信号中的位置信息,以及信号中与目标相关的其他特性。

三、MATLAB中的匹配滤波函数MATLAB提供了多个函数和工具箱,用于实现匹配滤波算法。

下面介绍几个常用的函数:1. conv2conv2函数可以进行二维卷积运算,用于将图像与模板进行相关运算。

其使用方式如下:result = conv2(image, template);2. normxcorr2normxcorr2函数可以进行二维归一化互相关运算,用于计算图像与模板之间的相似度。

其使用方式如下:result = normxcorr2(template, image);3. imfilterimfilter函数可以应用一维或二维滤波器对图像进行滤波操作,也可用于匹配滤波。

其使用方式如下:result = imfilter(image, template);4. filter2filter2函数可以进行二维卷积运算,用于将图像与滤波器进行相关运算。

其使用方式如下:result = filter2(template, image);四、MATLAB匹配滤波的实际应用匹配滤波算法在图像处理、目标识别等领域有着广泛的应用。

一些软件滤波算法的原理和程序源代码

一些软件滤波算法的原理和程序源代码

一些软件滤波算法的原理和程序源代码滤波算法是信号处理中常用的技术,用于去除信号中的噪声或抽取感兴趣的信号特征。

在本文中,我将介绍几种常见的软件滤波算法的原理和程序源代码,包括均值滤波、中值滤波和高斯滤波。

1.均值滤波均值滤波是一种简单直观的滤波算法。

其原理是通过计算像素周围邻近像素的平均值,来替换掉原始图像像素的值。

均值滤波的算法步骤如下:-创建一个大小为n的窗口(n通常为奇数),以当前像素为中心。

-计算窗口中所有像素的平均值。

-将当前像素的值替换为计算得到的平均值。

-按顺序处理所有像素。

以下是均值滤波的C++程序源代码示例:```cppvoid meanFilter(const cv::Mat& src, cv::Mat& dst, int kernelSize)int kernelHalfSize = kernelSize / 2;dst.create(src.size(, src.type();for (int y = 0; y < src.rows; y++)for (int x = 0; x < src.cols; x++)cv::Vec3f sum = cv::Vec3f(0, 0, 0);int numPixels = 0;for (int ky = -kernelHalfSize; ky <= kernelHalfSize; ky++) for (int kx = -kernelHalfSize; kx <= kernelHalfSize; kx++) int px = x + kx;int py = y + ky;if (px >= 0 && py >= 0 && px < src.cols && py < src.rows) sum += src.at<cv::Vec3b>(py, px);numPixels++;}}}cv::Vec3f average = sum / numPixels;dst.at<cv::Vec3b>(y, x) = average;}}```2.中值滤波中值滤波是一种非线性滤波算法,主要用于去除图片中的椒盐噪声。

fir数字滤波器设计与软件实现数字信号处理实验原理

fir数字滤波器设计与软件实现数字信号处理实验原理

fir数字滤波器设计与软件实现数字信号处理实验原理FIR数字滤波器设计的基本原理是从理想滤波器的频率响应出发,寻找一个系统函数,使其频率响应尽可能逼近滤波器要求的理想频率响应。

为了实现这一目标,通常会采用窗函数法进行设计。

这种方法的基本思想是,将理想滤波器的无限长单位脉冲响应截断为有限长因果序列,并用合适的窗函数进行加权,从而得到FIR滤波器的单位脉冲响应。

在选择窗函数时,需要考虑其频率响应和幅度响应。

常见的窗函数包括矩形窗、三角形窗、汉宁窗、汉明窗、布莱克曼窗和凯泽窗等。

每种窗函数都有其特定的特性,如主瓣宽度、旁瓣衰减等。

根据实际需求,可以选择合适的窗函数以优化滤波器的性能。

在软件实现上,可以使用各种编程语言和信号处理库进行FIR滤波器的设计和实现。

例如,在MATLAB中,可以使用内置的`fir1`函数来设计FIR滤波器。

该函数可以根据指定的滤波器长度N和采样频率Fs,自动选择合适的窗函数并计算滤波器的系数。

然后,可以使用快速卷积函数`fftfilt`对输入信号进行滤波处理。

此外,还可以使用等波纹最佳逼近法来设计FIR数字滤波器。

这种方法的目标是找到一个最接近理想滤波器频率响应的实数序列,使得在所有可能的实
数序列中,该序列的误差平方和最小。

通过优化算法,可以找到这个最优序列,从而得到性能更优的FIR滤波器。

总的来说,FIR数字滤波器设计与软件实现数字信号处理实验原理是基于对理想滤波器频率响应的逼近和优化,通过选择合适的窗函数和算法,实现信号的滤波处理。

FIR滤波器的MATLAB设计与实现

FIR滤波器的MATLAB设计与实现

FIR滤波器的MATLAB设计与实现1、设计任务1、用MATLAB软件实现FIR滤波器;2、设计基于DSP的FIR滤波器硬件框图;3、了解用DSP实现FIR滤波器的关键问题;4、完成必要的软件流程图;2.前言在通信与电子信息当中,在对信号作分析与处理时,常会遇到有用信号叠加无用噪声的问题;这些噪声信号有的是与信号同时产生的,有的是在传输过程中混入的,在接收的信号中,必须消除或减弱噪声干扰,这是信号处理中十分重要的问题;根据有用信号与噪声的不同特性,消除或减弱噪声,提取有用信号的过程就称为滤波;滤波器的种类很多,实现方法也多种多样;随着数字技术的飞速发展,数字滤波理论也得到了长足的进步;因此,对数字滤波系统硬件实现的要求也越来越高,而软件模拟的方法不仅能及时地提供系统运行的信息,还可以随时改变系统结构从而验证全新的系统,所以软件仿真变得非常重要;Matlab 是具有很强的科学计算和图形显示功能的软件系统,可以对数字滤波器进行精确设计,并且方便地进行FFT 频谱分析与频谱图显示,从而对数字滤波器进行快速地检验和分析;本文讨论在MATLAB 平台下的FIR 数字滤波器设计与分析;DSP是一种实时、快速、特别适合于实现各种数字信号处理运算的微处理器;由于它由具有丰富的硬件资源、高速数据处理能力和强大的指令系统,而在通信、航空、航天、雷达、工业控制、网络及家用电器等各个领域得到广泛应用;DSP分为定点和浮点两种,本文以定点DSP芯片为例,讨论FIR滤波器实现的几个关键问题;所讨论的这些问题,在DSP系统设计中有实际的参考和应用价值;3.FIR 滤波器的原理与MATLAB仿真设计滤波器概述数字滤波在数字信号处理中占有重要的地位,是广泛使用的一种基本线性处理模块,它可以实现模拟器件很难达到的准确线性相位关系特性;数字滤波器分为无限冲激响应滤波器IIR和有限冲激响应滤波器FIR;由于FIR系统只有零点,因此这类滤波器不像IIR 滤波器那样容易取得比较好的通带与阻带衰减特性;要取得好的衰减特性,一般要求Hz 的阶次要高,即N 要大;FIR 滤波器有自己突出的优点,其一是系统总是稳定的,其二是易实现线性相位,其三是只要经过一定的时延,任何非因果有现场序列都能变成因果有限长序列,因而总能用因果系统来实现,其四是FIR 滤波器由于单位冲击响应是有限长的,因而可以用快速傅里叶变换算法来实现过滤信号,从而可以大大提高运算效率;由于FIR 滤波器在阶数相同的条件下运算速度比IIR 滤波器快,同时FIR 滤波器具有不含反馈环路、结构简单以及可以实现的严格线性相位等优点,因而在对相位要求比较严格的条件下,常常采用FIR 数字滤波器;目前常用的设计方法主要有窗函数法、频率取样法及等波纹逼近法;本文应用窗函数法设计FIR 数字低通滤波器;具体参数见表一;FIR 数字滤波器基本原理3.2.1窗函数法的基本思想先构造一个线性相位理想滤波器的频率响应()jw d H e ,然后用一个N 点的窗函数wn, (01)n N ≤≤-去截取理想滤波器的单位抽样响应()d h n 通常为无限长,从而得到具有线性相位的实际滤波器的有限长单位抽样响()()()d h n h n w n =;3.2.2基本方法1构造线性相位理想滤波器的频率响应()jw d H e ,为简单起见,若没有90°相移的特殊要求,一般选择滤波器具有第一类线性相位;2求理想滤波器的单位抽样响应()d h n ;3根据技术指标要求和4种形式的线性相位FIR 数字滤波器的特点,选择合适的窗函数wn 及其长度N,然后对()d h n 加窗函数截取,得到具有线性相应的实际FIR 数字滤波器的单位抽样相应()()()d h n h n w n =,(01)n N ≤≤-;4检验实际滤波器的频率响应()[()]jw H e DTFT h n =是否满足设计指标要求;3.2.3用窗函数设计FIR 滤波器的步骤1根据技术要求确定线性相位理想滤波器的频率响应()jw d H e ;2求理想滤波器的单位抽样响应()d h n ;3根据对过渡带及阻带衰减的要求,选择窗函数的形式,并估计窗口长度N,设待求滤波器的过渡带用△w 表示,它近似等于窗函数主瓣的宽度;4计算滤波器的单位抽样响应()()()d h n h n w n =5验算技术指标是否满足要求,设计出的滤波器频率响应用下式计算10()()N jwjwn n H e h n e --==∑ 3.2.4用窗函数设计FIR 滤波器设滤波器的通带截止频率为p f ,阻带截止频率为s f ,系统采样频率为samp f ,则其过渡带宽带为tw s p f f f =-,抽样周期为 2S sampT f π= 则过渡带数字角频率为22s p tw tw samp samp f f f w f f ππ-== 各种窗函数的过渡带宽可用x Nπ来表示,其中N 是滤波器阶数,x 是一个整数,对应于矩形窗,三角窗,汉宁窗,汉明窗,其值分别为4,8,8,8,所以滤波器的阶数N 可由下式求得2()samp tw s p xf x N w f f π==- 理想低通滤波器的冲击响应为()sin(())()c d n w n h n π-∂=-∂ 其中(1)2N -∂=, c w 是3dB 通带截止数字角频率,其值为 ()()2p s Sp s c samp f f T f f w f π++==加窗后的低通滤波器的冲击响应为()()()n d n n h h w =检验实际滤波器的频率响应()[()]jw H e DTFT h n =是否满足设计指标要求;表1 几种常见的窗函数对比例:用窗函数设计一个线性相位FIR低通滤波器,并满足性能要求:通带边界的归一化频率wp=,阻带边界的归一化频率ws=,阻带衰减不小于30dB,.通带波纹不大于3dB,假设一个信号,其中f1=5Hz,f2=20Hz.;信号的采样频率为50Hz.;并将原信号与通过滤波器的信号进行比较;由题意值,阻带衰减不小于30dB,根据表1,选取汉宁窗,因为汉宁窗的第一旁瓣相对主瓣衰减为31dB,满足滤波要求;wp=pi;ws=pi; %滤波器的边界频率wdelta=ws-wp; %过渡带宽度N=ceil8pi/wdelta; %根据过渡带宽等于表中汉宁窗函数的主瓣宽度求得滤波器所用常函数的最小带宽Wn=+pi/2; %截止频率取通带和阻带边界频率的中点b=fir1N,Wn/pi,hanningN+1;%设计FIR滤波器H,f=freqzb,1,512,50; %采用50Hz的采样频率绘出该滤波器的幅频和相频响应subplot2,1,1,plotf,20log10absH;xlabel'频率';ylabel'振幅';grid on;subplot2,1,2,plotf,180/piunwrapangleH;xlabel'频率';ylabel'相位';grid on;f1=3;f2=20;dt=;t=0:dt:3; %采样间隔和检测信号的时间序列x=sin2pif1t+cos2pif2t; %检测信号y=fftfiltb,x; %给出滤波器的输出figure2subplot2,1,1,plott,x,title'输入信号' %绘出输入信号subplot2,1,2,plott,y %绘出输出信号hold on;plot1 1N-1/2dt,ylim,'r' %绘出延迟到的时刻xlabel'时间',title'输出信号'图1 所设计滤波器的幅频响应上图和相频响应下图图2 所设计滤波器的输入和输出信号程序运行结果如图1,2.该例对应于50Hz的采样频率通带边界频率为fp=50/2=,fs=50/2=;有图1上图得,在小于的频段上,几乎看不到下降,即满足通带波纹不大于3dB的要求;在大于的频段上,阻带衰减大于30dB,满足题目要求;由图1下图得,在通带范围内,相位频率响应为一条直线,表面该滤波器为线性相位;图2给出了滤波器的输入信号和输出信号,输入信号包括3Hz和20Hz的信号,由图1可知,20Hz的信号不能通过该滤波器,通过滤波器后只剩下3Hz的信号;由于FIR滤波所需的阶数较高,信号延迟N-1/2也较大,输出信号前面有一段直线就是延迟造成的; 4.FIR滤波器的DSP实现FIR滤波器的DSP实现方案DSP与一般的微处理器相比有很大的区别;它所特有的结构和指令集合为解决复杂的数字信号处理问题提供了便利;在DSP处理器上实现FIR滤波时,一般使用实系数的FIR滤波器,其最基本的操作是MAC乘-累加指令;本文介绍在TMS320C54X上实现FIR 滤波器;C54X上有一个17位17位的乘法器和一个40位的加法器,用于在单周期内实现MAC运算;同时,C54X使用了先进的多总线体系结构,包含1条程序总线,3条数据总线及4条辅助地址总线;这些特殊的硬件结构使得C54X支持单指令循环,快循环,数据块搬移及循环寻址;所以这些都有利于高效的实现FIR滤波器;硬件框图图3 系统总体框图JTAGJoint Test Action Group联合测试行动小组是一种国际标准测试协议IEEE兼容,主要用于芯片内部测试;基本原理是在器件内部定义一个TAPTest Access Port&0;测试访问口通过专用的JTAG测试工具对内部节点进行测试;JTAG测试允许多个器件通过JTAG接口串联在一起,形成一个JTAG链,能实现对各个器件分别测试;FLASE存储器具有性价比高,体积小,功耗低,可电擦写,使用方便等优点;在DSP应用系统中采用Flash存储器和固定数据是一种比较好的选择;SRAM静态存储器,读写速度快,但价格较高;适合于外部存放需要经常访问或更新的临时数据;RS232电平转换模块,将外部电平转换为适合DSP芯片内部要求的电平;图3是系统的总体框图;主要包括输入信号缓冲及调理电路、A/D 变换器、输入缓冲 FIFO、DSP及外围电路、输出缓冲FIFO、D/A变换器等几部分;其中DSP及外围电路包括程序存储器、串行口、显示及键盘接口等;串行口用于实现和PC机的通信,可以通过PC机对滤波器的控制;假定输入模拟信号为带限信号;该信号经缓冲和调理后经A/D变换进入输入缓冲FIFO,当 FIFO中的数据达到一定数量时产生中断,DSP将数据读入内存中并进行计算和处理,这里DSP主要实现FIR滤波运算;处理后的数据写入输出FIFO中,之后通过D/A变换后输出模拟信号;输出的信号是低通滤波后的结果;用DSP实现FIR滤波器的关键问题定点数的定标在滤波器的实现过程中,DSP所要处理的数可能是整数,也可能是小数或混合小数;然而,DSP在执行算术运算指令时,并不知道当前所处理的数据是整数还是小数,更不能指出小数点的位置在哪里;因此,在编程时必须指定一个数的小数点处于哪一位,这就是定标;通过定标,可以在16位数的不同位置上确定小数点,从而表示出一个范围大小不同且精度也不同的小数;误差问题因为在用定点DSP实现时,所有的数据都是定长的,运算也都是定点运算,因而会产生有限字长效应;所产生的误差主要包括:数模转换引起的量化误差、系数量化引起的误差以及运算过程中的舍入误差;在用定点DSP时,产生误差是不能避免的;循环寻址循环寻址是DSP中经常用到的一种寻址方式;该寻址方法可以对一块特定存储区实现循环的操作;可以把循环寻址理解为实现一个滑动窗,新数据引入后将覆盖老的数据,便得该窗中包含了需处理的最新数据;在数字信号处理中的FIR、卷积等运算中,循环寻址具有极其重要的意义;运算量估计及D SP 芯片的选取;滤波器必须做到实时处理,因此对运算量应该有一个精确的估计,然后选择合适的D SP 处理器;估计运算量时应按最高采样率时计算,主要估算其乘加次数;A/D 及D/A 变换器的选取A/D 及D/A 变换器的选取主要考虑速度和数据宽度;变换器的速度一定要大于所设计滤波器的最高采样速率并要考虑一定的裕量,变换器的数据宽度则根据实际需要的计算精度选择;DDS 芯片的选取DDS 芯片的选择主要考虑频率的调整步长,当可调滤波器的调整步长较大时,可以选择精度稍低的D DS 芯片;软件流程滤波器的软件要实现的功能主要是FIR滤波;工作流程为:根据按键输入的频率,DSP计算出应对AD9850设置的状态字并对AD9850进行设置,AD9850将按设置的频率输出时钟;A/D 转换后的数据进入FIFO中,当到达设置的数据量时将产生中断,DSP将输入 FIFO 中的数据读入DSP并进行FIR运算;运算完成后的数据写入输出FIFO;输出FIFO中的数据将按照与A/D转换同样的速率输出到 D/A 变换器中并产生模拟输出;这样,只要保证FIR运算足够快就可以既不会产生数据溢出,也不会输出数据不足;图4 软件流程图5.结束语由于数字技术的飞速发展,数字滤波理论得到飞速发展,对数字滤波器的设计也提出了更高的要求;现代数字滤波器可以用软件或硬件2 种方式来实现,软件方式实现的优点是可以通过参数的修改进行滤波器性能的仿真和优化;本文运用MATLAB软件,根据设计要求进行了FIR滤波器的仿真;并分析了用DSP实现FIR滤波器的硬件结构和几个关键问题,这些关键问题在实际设计中都有着重要义; 6.参考文献1程佩青.数字信号处理教程M.北京:清华大学出版社,2008,323-369.2万永革.数字信号处理的MATLAB实现M.北京:科学出版社,2007,187-234.3张卫宁.DSP原理及应用教程M.北京:科学出版社,2008,282-296.4张雄伟,邹霞,贾冲.DSP芯片原理与应用M.北京:机械工业出版社,2005,48-76.5罗军辉,罗勇江,白义臣,庞娜.Matlab在数字信号处理中的应用M.北京:机械工业出版社,2005,99-115.6赵顺珍,马英..基于DSP的FIR数字滤波器设计与实现J..微计算机信息,2009 ,25 2:29-31.7张萍.基于MATLAB与DSP的FIR数字滤波器的设计J.中国科技信息,200723:80 – 81.8周辉,董正宏.数字信号处理基础及Matlab实现M.北京:希望电子出版社,2006,116-121.9彭红平,杨福宝.基于Matlab 的FIR 数字滤波器设计J.武汉理工大学学报,2005,105: 275-278.7.个人总结这次课设题目是FIR滤波器的MATLAB设计与实现,通过这次课设使我受益匪浅,首先,我先去图书馆下载各种论文,在网上查找各种资料,但FIR滤波器的知识已经忘得差不多了,一些资料看不懂,把数字信号课件又了一遍,然后是MATLAB编程,以前虽然做实验的时候接触过MATLAB软件,但并不很熟练,这次编程中出现了一些不应该的错误;在这次课设中,需要了解怎么用DSP实现FIR滤波器,由于我们没有学过DSP,所以查了一些资料,但还是觉得很不明白;在写课设报告过程中,越写越觉得自己很无知,平时学习不扎实,对各种知识点没有进行及时积累与总结,导致做课设时临时抱佛脚;以后一定要认真学习,拓展学习知识面,也要加强团队合作与沟通;。

卡尔曼滤波原理及应用matlab仿真

卡尔曼滤波原理及应用matlab仿真

卡尔曼滤波原理及应用matlab仿真卡尔曼滤波(Kalman Filter)是一种最优估计算法,由美国工程师卡尔曼发明并命名。

它是一种递归算法,适用于线性以及线性化的系统。

卡尔曼滤波可以通过已知的状态方程和观测方程来计算未知的状态量,同时考虑到测量误差和系统噪声。

卡尔曼滤波的核心思想是通过已知的状态方程和观测方程来递归地更新估计值和协方差矩阵。

估计值是对状态量的估计,协方差矩阵是表示估计值的不确定性的指标,它受到测量误差和系统噪声的影响。

通过不断迭代的过程,最终得到最优的状态估计值。

卡尔曼滤波主要应用于控制系统、导航、信号处理、图像处理等领域,它可以用于预测未来的状态量和优化估计结果,提高系统的稳定性和精度。

在自主导航系统中,卡尔曼滤波可以通过传感器捕捉环境信息,实现机器人的定位、控制和路径规划。

Matlab是一种强大的数学计算软件,它提供了丰富的工具箱和函数库,可以实现卡尔曼滤波算法的仿真。

Matlab中的Kalman滤波工具箱可以用于模拟线性系统的状态估计。

通过Matlab软件,可以输入系统的状态方程和观测方程,生成真实值和观测值序列,并使用卡尔曼滤波算法估计状态量,同时展示状态量的收敛过程和误差分析。

在实际应用中,卡尔曼滤波需要针对具体的问题进行调整和优化,例如选择不同的观测量和噪声模型,选择恰当的卡尔曼增益等。

因此,在使用卡尔曼滤波进行估计时需要注意以下几点:1.确定系统的状态方程和观测方程,建立合理的模型。

2.合理估计系统噪声和观测噪声,减小误差对估计结果的影响。

3.选择合适的卡尔曼增益,平衡观测值和实际值对估计的贡献。

4.对估计结果进行误差分析,评估卡尔曼滤波的优势和局限性。

总之,卡尔曼滤波是一种重要的最优估计算法,广泛应用于控制、导航、信号处理等领域。

通过Matlab软件,可以进行卡尔曼滤波算法的仿真,并优化估计结果。

在实际应用中,需要针对具体问题进行调整和优化,以提高估计精度和稳定性。

中值滤波原理及MATLAB实现

中值滤波原理及MATLAB实现

中值滤波原理及MATLAB实现摘要:图像是一种重要的信息源,通过图像处理可以帮助人们了解信息的内涵。

本文将纯净的图像加入椒盐噪声,然后采用中值滤波的方法对其进行去噪。

中值滤波是一种常用的非线性信号处理技术,在图像处理中,它对滤除脉冲干扰噪声最为有效。

文章阐述了中值滤波的原理、算法以及在图像处理中的应用。

MATLAB 是一种高效的工程计算语言,在数据处理、图像处理、神经网络、小波分析等方面都有广泛的应用。

关键词:图像,中值滤波,去噪,MATLAB1.引言20世纪20年代,图像处理首次得到应用。

上个世纪60年代中期,随着计算机科学的发展和计算机的普及,图像处理得到广泛的应用。

60年代末期,图像处理技术不断完善,逐渐成为一个新兴的学科。

图像处理中输入的是质量低的图像,输出的是改善质量后的图像。

为了改善图像质量,从图像中提取有效信息,必须对图像进行去噪预处理。

根据噪声频谱分布的规律和统计特征以及图像的特点,出现了多种多样的去噪方法。

经典的去噪方法有:空域合成法,频域合成法和最优合成法等,与之适应的出现了许多应用方法,如均值滤波器,中值滤波器,低通滤波器,维纳滤波器,最小失真法等。

这些方法的广泛应用,促进数字信号处理的极大发展,显著提高了图像质量。

2.中值滤波在图像滤波中,常用的方法是线性滤波技术和非线性滤波技术,线性滤波以其完美的理论基础,数学处理简单、易于采用和硬件实现等优点,一直在图像滤波领域中占有重要的地位。

线性滤波对加性高斯噪声有较好的平滑作用,但对脉冲信号和其它形式的高频分量抑制效果较差,且模糊信号边缘。

非线性滤波是基于对输入信号序列的一种非线性投影关系,常把某一特定的噪声近似为零而保留信号的重要特征,一定程度上克服线性滤波器的不足,非线性滤波早期运用较多的是中值滤波器,其应用于多维信号处理时,对窄脉冲信号具有良好的抑制能力,但中值滤波器对中拖尾(如均匀分布噪声)和短拖尾分布噪声(如高斯噪声),滤波性能较差,且拖尾越短,其滤波能力越差。

常用7种软件滤波

常用7种软件滤波

随机误差是有随机干搅引起的,其特点是在相同条件下测量同一个量时,其大小和符号做无规则变化而无法预测,但多次测量结果符合统计规律。

为克服随机干搅引入的误差,硬件上可采用滤波技术,软件上可以采用软件算法实现数字滤波,其算法往往是系统测控算法的一个重要组成部分,实时性很强,采用汇编语言来编写。

采用数字滤波算法克服随机干搅引入的误差具有以下几个优点:(1)数字滤波无须硬件,只用一个计算过程,可靠性高,不存在阻抗匹配问题,尤其是数字滤波可以对(2(31.。

式中Yn-1——第(n-1)次采样的值;△Y——相邻两次采样值允许的最大偏差。

设R1和R2为内部RAM单元,分别存放yn-1和yn,滤波值也存放在R2单元,采用MCS-51单片机指令编写的程序判断法子程序如下:付表2.??中值滤波法即对某一参数连续采样N次(一般N为奇数),然后把N次采样值按从小到大排队,再取中间值作为本次采样值。

设DATA为存放采样值的内存单元首地址,SAMP为存放滤波值的内存单元地址,N为采样值个数,用MCS-51指令编写的中值滤波子程序如下:副表3.算术平均值滤波算法算术平均滤波法就是连续取N次采样值进行算术平均,其数学表达式是:Y=∑yi~y=1/N ∑ yii=1……N式中Yi设8下:副表4.次数N 1ROM中,5.值即可投入使用,如果取N个采样值求平均,RAM中必须开辟N个数据的暂存区。

每新采样一个数据便存入暂存区,同时去掉一个最老的数据,保持这N个数据始终是最近的数据,这种数据存放方式可以用环行队列结构方便的实现。

设环行队列为40H-4FH连续16个单元,RO作为队尾指针,滤波程序如下:副表6.低通滤波法:将普通硬件RC低通滤波器的微分方程用差分方程来表求,变可以采用软件算法来模拟硬件滤波的功能,经推导,低通滤波算法如下:Yn=a* Xn+ (1-a) *Yn-1式中??Xn——本次采样值Yn-1——上次的滤波输出值;a——滤波系数,其值通常远小于1;Yn——本次滤波的输出值。

十种软件滤波的算法

十种软件滤波的算法

十种软件滤波的算法软件滤波在嵌入式的数据采集和处理中有着很重要的作用,这10种方法各有优劣,根据自己的需要选择。

同时提供了C语言的参考代码,希望对各位能有帮助。

1、限幅滤波法(又称程序判断滤波法)A、方法:根据经验判断,确定两次采样允许的最大偏差值(设为A)每次检测到新值时判断:如果本次值与上次值之差<=A,则本次值有效如果本次值与上次值之差>A,则本次值无效,放弃本次值,用上次值代替本次值B、优点:能有效克服因偶然因素引起的脉冲干扰C、缺点无法抑制那种周期性的干扰平滑度差/* A值可根据实际情况调整value为有效值,new_value为当前采样值滤波程序返回有效的实际值*/#define A 10char value;char filter(){char new_value;new_value =get_ad();if ( ( new_value - value > A ) || ( value- new_value > A )return value;returnnew_value;}2、中位值滤波法A、方法:连续采样N次(N取奇数)把N次采样值按大小排列取中间值为本次有效值B、优点:能有效克服因偶然因素引起的波动干扰对温度、液位的变化缓慢的被测参数有良好的滤波效果C、缺点:对流量、速度等快速变化的参数不宜/* N值可根据实际情况调整排序采用冒泡法*/#define N 11char filter(){charvalue_buf[N];charcount,i,j,temp;for (count=0;count<N;count++){value_buf[count] = get_ad();delay();}for (j=0;j<N-1;j++){for(i=0;i<N-j;i++){if (value_buf[i]>value_buf[i+1] ){temp =value_buf[i];value_buf[i] = value_buf[i+1];value_buf[i+1] = temp;}}}return value_buf[(N-1)/2];}3、算术平均滤波法A、方法:连续取N个采样值进行算术平均运算N值较大时:信号平滑度较高,但灵敏度较低N值较小时:信号平滑度较低,但灵敏度较高N值的选取:一般流量,N=12;压力:N=4B、优点:适用于对一般具有随机干扰的信号进行滤波这样信号的特点是有一个平均值,信号在某一数值范围附近上下波动C、缺点:对于测量速度较慢或要求数据计算速度较快的实时控制不适用比较浪费RAM#define N 12char filter(){int sum = 0;for (count=0;count<N;count++){sum + =get_ad();delay();}return(char)(sum/N);}4、递推平均滤波法(又称滑动平均滤波法)A、方法:把连续取N个采样值看成一个队列队列的长度固定为N每次采样到一个新数据放入队尾,并扔掉原来队首的一次数据.(先进先出原则)把队列中的N个数据进行算术平均运算,就可获得新的滤波结果N值的选取:流量,N=12;压力:N=4;液面,N=4~12;温度,N=1~4B、优点:对周期性干扰有良好的抑制作用,平滑度高适用于高频振荡的系统C、缺点:灵敏度低对偶然出现的脉冲性干扰的抑制作用较差不易消除由于脉冲干扰所引起的采样值偏差不适用于脉冲干扰比较严重的场合比较浪费RAM#define N 12char value_buf[N];char i=0;char filter(){char count;int sum=0;value_buf[i++] =get_ad();if ( i == N) i = 0;for (count=0;count<N,count++)sum =value_buf[count];return(char)(sum/N);}5、中位值平均滤波法(又称防脉冲干扰平均滤波法)A、方法:相当于“中位值滤波法”+“算术平均滤波法”连续采样N个数据,去掉一个最大值和一个最小值然后计算N-2个数据的算术平均值N值的选取:3~14B、优点:融合了两种滤波法的优点对于偶然出现的脉冲性干扰,可消除由于脉冲干扰所引起的采样值偏差C、缺点:测量速度较慢,和算术平均滤波法一样比较浪费RAM#define N 12char filter(){char count,i,j;charvalue_buf[N];int sum=0;for (count=0;count<N;count++){value_buf[count] = get_ad();delay();}for(j=0;j<N-1;j++){for (i=0;i<N-j;i++){if (value_buf[i]>value_buf[i+1] ){temp =value_buf[i];value_buf[i] = value_buf[i+1];value_buf[i+1] = temp;}}}for(count=1;count<N-1;count++)sum +=value[count];return(char)(sum/(N-2));}6、限幅平均滤波法A、方法:相当于“限幅滤波法”+“递推平均滤波法”每次采样到的新数据先进行限幅处理,再送入队列进行递推平均滤波处理B、优点:融合了两种滤波法的优点对于偶然出现的脉冲性干扰,可消除由于脉冲干扰所引起的采样值偏差C、缺点:比较浪费RAM/**/ 略参考子程序1、37、一阶滞后滤波法A、方法:取a=0~1本次滤波结果=(1-a)*本次采样值+a*上次滤波结果B、优点:对周期性干扰具有良好的抑制作用适用于波动频率较高的场合C、缺点:相位滞后,灵敏度低滞后程度取决于a值大小不能消除滤波频率高于采样频率的1/2的干扰信号/* 为加快程序处理速度假定基数为100,a=0~100 */#define a 50char value;char filter(){char new_value;new_value =get_ad();return(100-a)*value + a*new_value;}8、加权递推平均滤波法A、方法:是对递推平均滤波法的改进,即不同时刻的数据加以不同的权通常是,越接近现时刻的数据,权取得越大。

种软件滤波方法DOC

种软件滤波方法DOC

种软件滤波方法DOC软件滤波是一种信号处理技术,用于减小信号中的噪声或其他干扰。

也可以说,软件滤波是通过对信号进行数字化处理来消除噪声的一种方法。

在信号处理领域中,存在多种软件滤波方法,本文将重点介绍其中的11种常见方法。

1. 均值滤波(Mean Filtering):该方法通过将信号中每个点的值替换为其周围邻域内点的平均值来降低噪声。

该方法适用于噪声较小或均匀分布的信号。

2. 中值滤波(Median Filtering):该方法通过将信号中每个点的值替换为其周围邻域内点的中值来减少噪声。

中值滤波对于脉冲噪声的抑制效果较好。

3. 高斯滤波(Gaussian Filtering):该方法使用高斯函数来模拟滤波器的响应,通过卷积运算将噪声信号平滑化。

高斯滤波适用于噪声呈高斯分布的信号。

4. 自适应滤波(Adaptive Filtering):该方法根据输入信号的特性自动调整滤波器的参数。

这种滤波方法通常用于非线性滤波,如降低背景噪声。

5. 加权滤波(Weighted Filtering):该方法根据信号的重要性对滤波器的参数进行加权调整,进而减小噪声的影响。

加权滤波常用于需要保留信号细节的应用中。

6. 限幅滤波(Clipping Filtering):该方法将信号限定在特定范围内,超出范围的部分被替换为边界值。

限幅滤波可用于去除异常值或突发噪声。

7. 自相关滤波(Autocorrelation Filtering):该方法通过计算信号与其自身的自相关函数,来消除噪声对信号的影响。

自相关滤波对于周期性噪声的抑制效果较好。

8. 卡尔曼滤波(Kalman Filtering):该方法是一种递归滤波算法,通过使用系统模型和测量值来估计信号的真实值,并根据观测到的噪声不断更新估计值。

卡尔曼滤波适用于信号中存在随机噪声和系统动力学的情况。

9. 快速傅里叶变换滤波(FFT Filtering):该方法利用快速傅里叶变换将信号从时域转换到频域,滤除频谱上的噪声成分,并将结果逆变换回时域。

滤波的应用及原理高清

滤波的应用及原理高清

滤波的应用及原理一、什么是滤波滤波是指对信号进行处理以去除不需要的成分或增强感兴趣的成分的过程。

在信号处理中,滤波被广泛应用于音频处理、图像处理、通信系统等领域。

滤波的目的是消除噪声、增强信号、提取特定频率成分等。

二、滤波的原理滤波的原理基于频域和时域的分析。

在频域中,信号可以通过傅里叶变换表示为不同频率的正弦波分量的叠加。

滤波器可以通过选择性地通过或阻断这些频率分量来改变信号的频谱特征。

在时域中,滤波器可以看作是一个系统,输入信号通过滤波器后,输出信号根据滤波器的特性变化。

三、滤波的应用1. 音频处理音频处理中常用的滤波技术有低通滤波、高通滤波、带通滤波和带阻滤波等。

其中,低通滤波器可以用于去除音频信号中的高频噪声,高通滤波器可以去除低频噪声,带通滤波器可以提取特定频率范围的信号,带阻滤波器可以去除特定频率范围的干扰信号。

2. 图像处理在图像处理中,滤波器被用来平滑图像、增强图像的轮廓、去除噪声等。

常见的图像滤波器包括均值滤波器、中值滤波器、高斯滤波器等。

均值滤波器通过计算像素周围窗口中像素的平均值来平滑图像,中值滤波器通过计算像素周围窗口中像素的中值来去除噪声,高斯滤波器通过将窗口中的像素按照高斯分布加权求和来平滑图像。

3. 通信系统在通信系统中,滤波器被用来选择性地传输特定频率的信号。

例如,调频调制(FM)系统中的低通滤波器用于去除调制信号中的高频成分;频分多址(FDMA)系统中的带通滤波器用于分离不同用户的信号。

4. 生物医学信号处理滤波在生物医学信号处理中有广泛的应用。

例如,心电图(ECG)信号可以通过滤波技术去除高频干扰,从而更准确地检测和诊断心脏疾病。

5. 數位音频播放滤波也被用于数字音频播放器中,通过去除高频噪声和混响信号,提高音频质量。

四、滤波器的分类滤波器可以根据各种不同的特征进行分类。

以下是一些常见的滤波器分类:1. 根据频率响应•低通滤波器:通过低于截止频率的信号成分,阻断高于截止频率的信号成分。

卡尔曼滤波的基本原理及应用

卡尔曼滤波的基本原理及应用
卡尔曼滤波作为一种数值估计优化方法,与应用领域的背 景结合性很强。 因此在应用卡尔曼滤波解决实际问题时,重要 的不仅仅是算法的实现与优化问题,更重要的是利用获取的领 域知识对被认识系统进行形式化描述, 建立起精确的数学模 型,再从这个模型出发,进行滤波器的设计与实现工作。
滤波器实际实现时, 测量噪声协方差 R 一般可以观测得 到,是滤波器的已知条件。 它可以通过离线获取一些系统观测 值计算出来。 通常,难确定的是过程激励噪声协方差的 Q 值, 因为我们无法直接观测到过程信号。一种方法是通过设定一个 合适的 Q,给过程信号“注入”足够的不确定性来建立一个简单 的可以产生可接受结果的过程模型。 为了提高滤波器的性能, 通常要按一定标准进行系数的选择与调整。
在上面式中,各量说明如下:
(14) (15)
A:作用在 Xk-1 上的 n×n 状态变换矩阵 B:作用在控制向量 Uk-1 上的 n×1 输入控制矩阵 H:m×n 观测模型矩阵, 它把真实状态空间映射成观测空 间 Pk-:为 n×n 先验估计误差协方差矩阵 Pk:为 n×n 后验估计误 差 协 方差 矩 阵 Q:n×n 过 程 噪 声 协 方 差 矩 阵 R:m×m 过 程 噪 声
4 结束语
采用伪线性卡尔曼滤波算法,在参数估计的收敛速度和收 敛精度上有明显的改善,在很大程度上克服了非线性问题线性 化时 ,线性化误差导致的不良结果 。 通过伪量测变量的引入 ,对 量测矩阵进行重新构造, 使得系统量测矩阵是量测角的函数, 并且具有线性形式。 该算法降低了对模型精度的要求,改进了 扩展卡尔曼滤波的发散问题,具有较好的稳定性,在一定的误
· 34 ·
软件导刊
2009 年
这种情形的一种解法,同 Talyer 级数类似,面对非线性关系时, 我们可以通过求过程方程和量测方程的偏导 来 线 性化 , [4、5] 并 计算当前估计量。 不同于基本卡尔曼滤波(KF)过程,扩展卡尔 曼 滤 波 (EKF)过 程 中 的 因 子 矩 阵 (A,W,H,K)是 时 刻 变 化 的 , 因此加下标 k(k 表示 k 时刻)以示标记。 扩展滤波器 (EKF)的 基本工作步同基本滤波器的工作步一样,两者的主要区别在于 非线性情形下需要进行线性化处理,且因子矩阵一般都随时间 变化(与时刻 k 有关)。 但是值得注意的是,经线性变换后系统 噪声及量测噪声不再服从高斯分布。

十一种通用软件滤波算法

十一种通用软件滤波算法

十一种通用软件滤波算法滤波算法是一种常用的信号处理算法,用于去除信号中的噪声、干扰或者其他不需要的成分,以提高信号质量。

通用软件滤波算法主要用于数字信号处理,以下是十一种常见的通用软件滤波算法:1. 均值滤波算法(Mean Filtering):将输入信号的每个采样值替换为其周围邻域内所有样本的平均值。

它适用于消除高频噪声。

2. 中值滤波算法(Median Filtering):将输入信号的每个采样值替换为其周围邻域内所有样本的中值。

它适用于去除椒盐噪声。

3. 加权平均滤波算法(Weighted Mean Filtering):在均值滤波算法基础上,引入权值对周围样本进行加权平均,以便更好地保留原始信号的特征。

4. 自适应均值滤波算法(Adaptive Mean Filtering):根据信号的每个采样与周围样本的灰度差异,调整均值滤波算法的滤波参数,以提高滤波效果。

5. 高斯滤波算法(Gaussian Filtering):通过计算输入信号的每个采样与其周围邻域内各个样本之间的高斯核函数权重的加权平均来滤波信号。

6. 卡尔曼滤波算法(Kalman Filtering):根据系统状态特性和测量信息,结合时间和测量的线性状态方程,通过最小化预测误差方差来估计和滤波信号。

7. 二阶无限脉冲响应滤波器算法(IIR Filtering):基于差分方程和递归方式运算的滤波算法,具有较好的频率响应,但容易产生数值不稳定和计算复杂度高的问题。

8. 有限脉冲响应滤波器算法(FIR Filtering):基于加权线性组合的方式来滤波信号,具有稳定性好、易于实现的特点。

9. 最小均方滤波算法(Least Mean Square Filtering):通过最小化滤波器的均方误差来更新滤波器权值,以逼近滤波器的最优解。

10. 快速傅里叶变换滤波算法(FFT Filtering):利用快速傅里叶变换将信号从时域转换为频域,并利用频域上的特性进行滤波。

matlab的farrow滤波

matlab的farrow滤波

matlab的farrow滤波摘要:一、引言1.介绍MATLAB 软件2.引入Farrow 滤波器概念二、Farrow 滤波器的原理1.Farrow 滤波器的定义2.Farrow 滤波器的基本原理3.Farrow 滤波器的特性三、MATLAB 中Farrow 滤波器的实现1.使用MATLAB 实现Farrow 滤波器的步骤2.MATLAB 代码展示四、Farrow 滤波器的应用1.Farrow 滤波器在信号处理中的应用2.Farrow 滤波器在图像处理中的应用3.Farrow 滤波器在通信系统中的应用五、总结1.回顾Farrow 滤波器的主要特点2.总结Farrow 滤波器在各个领域的应用3.对未来Farrow 滤波器发展的展望正文:一、引言MATLAB 是一款功能强大的数学软件,广泛应用于科学计算、数据分析、信号处理等领域。

在信号处理中,滤波器的设计与实现是非常重要的内容。

本文将介绍一种在MATLAB 中常用的滤波器——Farrow 滤波器。

二、Farrow 滤波器的原理1.Farrow 滤波器的定义Farrow 滤波器,又称为Farrow 低通滤波器,是一种基于线性时不变系统的有限脉冲响应(FIR)滤波器。

它可以有效地对模拟信号进行低通滤波,去除其中的高频成分。

2.Farrow 滤波器的基本原理Farrow 滤波器利用多抽头全极点低通滤波器的特性,通过级联多个全极点低通滤波器,实现对信号的低通滤波。

滤波器的传递函数可以表示为:H(z) = (1 - ω_n^2z^2)^(-1) * (1 - ω_1^2z^2)^(-1) * ...* (1 -ω_m^2z^2)^(-1)其中,ω_n、ω_1、...、ω_m 分别是滤波器的截止频率,m 是滤波器的阶数。

3.Farrow 滤波器的特性Farrow 滤波器具有以下特性:(1)线性相位:在正常工作范围内,Farrow 滤波器的相位变化是线性的;(2)全极点:Farrow 滤波器的极点全部位于单位圆内;(3)低通特性:Farrow 滤波器具有低通特性,可以有效地去除信号中的高频成分。

常用滤波算法的原理及应用

常用滤波算法的原理及应用

常用滤波算法的原理及应用滤波算法的概述滤波算法是数字信号处理中常用的一种技术,它的主要目的是通过去除或者抑制信号中的噪声,使得信号更加平滑和清晰。

滤波算法可以应用于各个领域,例如音频处理、图像处理、通信系统等。

本文将介绍几种常用的滤波算法的原理及其应用。

1. 均值滤波算法1.1 原理均值滤波算法是一种简单的滤波算法,它的原理是将当前像素点的值替换为周围像素点的平均值。

具体步骤如下: 1. 确定滤波窗口的大小。

2. 将滤波窗口内的所有像素点的值求平均。

3. 用平均值替换当前像素点的值。

1.2 应用均值滤波算法常用于图像处理领域,在图像去噪、平滑处理中表现良好。

同时,均值滤波算法也可以用于数字信号处理领域,去除信号中的噪声,并保持信号的平滑性。

2. 中值滤波算法2.1 原理中值滤波算法是一种非线性滤波算法,它的原理是将当前像素点的值替换为滤波窗口内像素点的中值。

具体步骤如下: 1. 确定滤波窗口的大小。

2. 将滤波窗口内的所有像素点的值排序。

3. 取排序后的中间值作为当前像素点的值。

2.2 应用中值滤波算法适用于去除椒盐噪声或者其他噪声类型的图像处理。

它的优势在于在滤波过程中能够有效地保留图像的边缘和细节信息。

3. 高斯滤波算法3.1 原理高斯滤波算法是一种线性平滑滤波算法,它的原理是通过对滤波窗口内的像素点进行加权平均来获得当前像素点的值。

具体步骤如下: 1. 确定滤波窗口的大小。

2. 计算滤波窗口内每个像素点的权重。

3. 将滤波窗口内的所有像素点的值乘以对应的权重并求和。

4. 用求和值作为当前像素点的值。

3.2 应用高斯滤波算法在图像处理领域中经常用于去噪、平滑处理,特别是对于高斯分布的噪声效果更好。

此外,高斯滤波算法也可以应用于音频处理、通信系统等领域。

4. 快速傅里叶变换滤波算法4.1 原理快速傅里叶变换(FFT)是一种快速计算傅里叶变换的算法,它将时域信号转换为频域信号。

在滤波算法中,FFT可以用于频域滤波,即将信号转换到频域进行滤波处理。

基于fpga的滤波器设计与实现

基于fpga的滤波器设计与实现

基于fpga的滤波器设计与实现基于FPGA的滤波器设计与实现一、引言滤波器是信号处理中常用的工具,用于去除信号中的噪声或不需要的频率成分。

在数字信号处理中,滤波器可以通过软件算法实现,但随着现代电子技术的发展,使用基于FPGA的滤波器可以实现更高效、实时的信号处理。

本文将介绍基于FPGA的滤波器设计与实现的方法和步骤。

二、FPGA的基本原理FPGA(Field Programmable Gate Array)是一种可编程逻辑器件,由大量的逻辑门、存储单元和可编程连接组成。

FPGA的特点是可重构性强,可以根据需要编程实现各种逻辑功能。

在数字信号处理中,可以将滤波器的算法实现在FPGA中,利用其并行处理的能力来提高处理速度和效率。

三、滤波器的基本原理滤波器可以根据其频率响应的特点分为低通滤波器、高通滤波器、带通滤波器和带阻滤波器等。

滤波器的设计目标是在保留需要的信号成分的同时,去除不需要的噪声或频率成分。

常用的滤波器设计方法有FIR滤波器和IIR滤波器。

四、基于FPGA的滤波器设计步骤1. 确定滤波器的类型和设计要求:根据信号处理的需求,确定滤波器的类型(低通、高通等)和性能指标(截止频率、通带衰减等)。

2. 确定滤波器的结构:选择合适的滤波器结构,如直接形式、级联形式等。

3. 设计滤波器的传递函数:根据滤波器的类型和设计要求,设计出满足要求的传递函数。

4. 将传递函数转化为差分方程:根据所选滤波器结构,将传递函数转化为差分方程。

5. 实现差分方程的计算:将差分方程转化为FPGA可以计算的形式,使用硬件描述语言(如Verilog、VHDL)编写计算模块。

6. 将计算模块综合到FPGA中:使用相应的工具将计算模块综合到FPGA中,生成比特流文件。

7. 下载比特流文件到FPGA:将生成的比特流文件下载到FPGA中,使其开始工作。

8. 测试和优化:对设计的滤波器进行测试,并根据测试结果进行优化,以满足设计要求。

自适应滤波器原理及matlab仿真应用

自适应滤波器原理及matlab仿真应用

自适应滤波器原理及matlab仿真应用自适应滤波器原理及MATLAB仿真应用一、引言自适应滤波器是一种能够自动调整参数以适应环境变化的滤波器。

它能够根据输入信号的特性和所需滤波效果,动态地调整滤波器的参数,从而实现对信号的优化处理。

自适应滤波器在许多领域都有广泛的应用,如通信系统、图像处理、声音处理等。

本文将介绍自适应滤波器的工作原理,并通过MATLAB仿真展示其在实际应用中的效果。

二、自适应滤波器原理自适应滤波器的核心思想是根据输入信号的统计特性以及期望输出信号的特性,通过调整滤波器的权值参数,使得滤波器输出信号尽可能接近期望输出信号。

其基本原理可以概括为以下几个步骤:1. 初始化滤波器的权值参数,一般可以设置为0或者随机值。

2. 输入信号通过滤波器后得到输出信号。

3. 根据输出信号与期望输出信号之间的误差,调整滤波器的权值参数。

4. 重复步骤2和步骤3,直到滤波器输出信号达到期望输出信号的要求。

自适应滤波器的关键在于如何调整滤波器的权值参数。

常用的调整算法有最小均方误差(LMS)算法、最小误差平方和(RLS)算法等。

这些算法通过不断迭代,逐渐调整权值参数,使得滤波器的输出信号与期望输出信号之间的误差逐渐减小,从而达到滤波的目的。

三、MATLAB仿真应用MATLAB是一种功能强大的数学计算和仿真软件,广泛应用于各个科学领域。

在自适应滤波器的仿真中,MATLAB提供了许多有用的函数和工具箱,可以方便地进行滤波器参数的计算和调整。

我们需要定义输入信号和期望输出信号。

可以使用MATLAB中的随机函数生成一组随机信号作为输入信号,然后根据需求定义期望输出信号。

在实际应用中,期望输出信号可以是某种理想信号或者已知的参考信号。

接下来,我们可以使用MATLAB中的自适应滤波器函数对输入信号进行滤波处理。

MATLAB提供了adapthfilt函数和nlms函数等用于自适应滤波的函数,可以根据需求选择合适的函数进行滤波处理。

软件滤波原理与实现

软件滤波原理与实现

软件滤波原理与实现11种经典软件滤波的原理和实现1、限幅滤波法(又称程序判断滤波法)A、方法:根据经验判断,确定两次采样允许的最大偏差值(设为A)每次检测到新值时判断:如果本次值与上次值之差<=A,则本次值有效如果本次值与上次值之差>A,则本次值无效,放弃本次值,用上次值代替本次值 B、优点:能有效克服因偶然因素引起的脉冲干扰C、缺点无法抑制那种周期性的干扰平滑度差2、中位值滤波法A、方法:连续采样N次(N取奇数)把N次采样值按大小排列取中间值为本次有效值B、优点:能有效克服因偶然因素引起的波动干扰对温度、液位的变化缓慢的被测参数有良好的滤波效果C、缺点:对流量、速度等快速变化的参数不宜3、算术平均滤波法A、方法:连续取N个采样值进行算术平均运算N值较大时:信号平滑度较高,但灵敏度较低N值较小时:信号平滑度较低,但灵敏度较高N值的选取:一般流量,N=12;压力:N=4B、优点:适用于对一般具有随机干扰的信号进行滤波这样信号的特点是有一个平均值,信号在某一数值范围附近上下波动C、缺点:对于测量速度较慢或要求数据计算速度较快的实时控制不适用比较浪费RAM4、递推平均滤波法(又称滑动平均滤波法)A、方法:把连续取N个采样值看成一个队列队列的长度固定为N每次采样到一个新数据放入队尾,并扔掉原来队首的一次数据.(先进先出原则)把队列中的N个数据进行算术平均运算,就可获得新的滤波结果N值的选取:流量,N=12;压力:N=4;液面,N=4~12;温度,N=1~4B、优点:对周期性干扰有良好的抑制作用,平滑度高适用于高频振荡的系统C、缺点:灵敏度低对偶然出现的脉冲性干扰的抑制作用较差不易消除由于脉冲干扰所引起的采样值偏差不适用于脉冲干扰比较严重的场合比较浪费RAM5、中位值平均滤波法(又称防脉冲干扰平均滤波法)A、方法:相当于“中位值滤波法”+“算术平均滤波法”连续采样N个数据,去掉一个最大值和一个最小值然后计算N-2个数据的算术平均值N值的选取:3~14B、优点:融合了两种滤波法的优点对于偶然出现的脉冲性干扰,可消除由于脉冲干扰所引起的采样值偏差C、缺点:测量速度较慢,和算术平均滤波法一样比较浪费RAM6、限幅平均滤波法A、方法:相当于“限幅滤波法”+“递推平均滤波法”每次采样到的新数据先进行限幅处理,再送入队列进行递推平均滤波处理B、优点:融合了两种滤波法的优点对于偶然出现的脉冲性干扰,可消除由于脉冲干扰所引起的采样值偏差 C、缺点:比较浪费RAM7、一阶滞后滤波法A、方法:取a=0~1本次滤波结果=(1-a)*本次采样值+a*上次滤波结果B、优点:对周期性干扰具有良好的抑制作用适用于波动频率较高的场合C、缺点:相位滞后,灵敏度低滞后程度取决于a值大小不能消除滤波频率高于采样频率的1/2的干扰信号8、加权递推平均滤波法A、方法:是对递推平均滤波法的改进,即不同时刻的数据加以不同的权通常是,越接近现时刻的数据,权取得越大。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

11种经典软件滤波的原理和实现整理:lab_ass boleft (ZOGLAB BBS斑竹> 2003.5.23软件滤波11种软件滤波方法(这个是论坛里的经典老贴了>1、限幅滤波法<又称程序判断滤波法)A、方法:根据经验判断,确定两次采样允许的最大偏差值<设为A)每次检测到新值时判断:如果本次值与上次值之差<=A,则本次值有效如果本次值与上次值之差>A,则本次值无效,放弃本次值,用上次值代替本次值B、优点:能有效克服因偶然因素引起的脉冲干扰C、缺点无法抑制那种周期性的干扰平滑度差2、中位值滤波法A、方法:连续采样N次<N取奇数)把N次采样值按大小排列取中间值为本次有效值B、优点:能有效克服因偶然因素引起的波动干扰对温度、液位的变化缓慢的被测参数有良好的滤波效果C、缺点:对流量、速度等快速变化的参数不宜3、算术平均滤波法A、方法:连续取N个采样值进行算术平均运算N值较大时:信号平滑度较高,但灵敏度较低N值较小时:信号平滑度较低,但灵敏度较高N值的选取:一般流量,N=12;压力:N=4B、优点:适用于对一般具有随机干扰的信号进行滤波这样信号的特点是有一个平均值,信号在某一数值范围附近上下波动C、缺点:对于测量速度较慢或要求数据计算速度较快的实时控制不适用比较浪费RAM4、递推平均滤波法<又称滑动平均滤波法)A、方法:把连续取N个采样值看成一个队列队列的长度固定为N每次采样到一个新数据放入队尾,并扔掉原来队首的一次数据.(先进先出原则> 把队列中的N个数据进行算术平均运算,就可获得新的滤波结果N值的选取:流量,N=12;压力:N=4;液面,N=4~12;温度,N=1~4B、优点:对周期性干扰有良好的抑制作用,平滑度高适用于高频振荡的系统C、缺点:灵敏度低对偶然出现的脉冲性干扰的抑制作用较差不易消除由于脉冲干扰所引起的采样值偏差不适用于脉冲干扰比较严重的场合比较浪费RAM5、中位值平均滤波法<又称防脉冲干扰平均滤波法)A、方法:相当于“中位值滤波法”+“算术平均滤波法”连续采样N个数据,去掉一个最大值和一个最小值然后计算N-2个数据的算术平均值N值的选取:3~14B、优点:融合了两种滤波法的优点对于偶然出现的脉冲性干扰,可消除由于脉冲干扰所引起的采样值偏差C、缺点:测量速度较慢,和算术平均滤波法一样比较浪费RAM6、限幅平均滤波法A、方法:相当于“限幅滤波法”+“递推平均滤波法”每次采样到的新数据先进行限幅处理,再送入队列进行递推平均滤波处理B、优点:融合了两种滤波法的优点对于偶然出现的脉冲性干扰,可消除由于脉冲干扰所引起的采样值偏差C、缺点:比较浪费RAM7、一阶滞后滤波法A、方法:取a=0~1本次滤波结果=<1-a)*本次采样值+a*上次滤波结果B、优点:对周期性干扰具有良好的抑制作用适用于波动频率较高的场合C、缺点:相位滞后,灵敏度低滞后程度取决于a值大小不能消除滤波频率高于采样频率的1/2的干扰信号8、加权递推平均滤波法A、方法:是对递推平均滤波法的改进,即不同时刻的数据加以不同的权通常是,越接近现时刻的数据,权取得越大。

给予新采样值的权系数越大,则灵敏度越高,但信号平滑度越低B、优点:适用于有较大纯滞后时间常数的对象和采样周期较短的系统C、缺点:对于纯滞后时间常数较小,采样周期较长,变化缓慢的信号不能迅速反应系统当前所受干扰的严重程度,滤波效果差9、消抖滤波法A、方法:设置一个滤波计数器将每次采样值与当前有效值比较:如果采样值=当前有效值,则计数器清零如果采样值<>当前有效值,则计数器+1,并判断计数器是否>=上限N(溢出> 如果计数器溢出,则将本次值替换当前有效值,并清计数器B、优点:对于变化缓慢的被测参数有较好的滤波效果,可避免在临界值附近控制器的反复开/关跳动或显示器上数值抖动C、缺点:对于快速变化的参数不宜如果在计数器溢出的那一次采样到的值恰好是干扰值,则会将干扰值当作有效值导入系统10、限幅消抖滤波法A、方法:相当于“限幅滤波法”+“消抖滤波法”先限幅,后消抖B、优点:继承了“限幅”和“消抖”的优点改进了“消抖滤波法”中的某些缺陷,避免将干扰值导入系统C、缺点:对于快速变化的参数不宜第11种方法:IIR 数字滤波器A. 方法:确定信号带宽,滤之。

Y(n> = a1*Y(n-1> + a2*Y(n-2> + ... + ak*Y(n-k> + b0*X(n> + b1*X(n-1> + b2*X(n-2> + ... + bk*X(n-k>B. 优点:高通,低通,带通,带阻任意。

设计简单(用matlab)C. 缺点:运算量大。

软件滤波的C程序样例10种软件滤波方法的示例程序假定从8位AD中读取数据<如果是更高位的AD可定义数据类型为int>,子程序为get_ad(>。

1、限副滤波/* A值可根据实际情况调整value为有效值,new_value为当前采样值滤波程序返回有效的实际值 */#define A 10char value。

char filter(>{char new_value。

new_value = get_ad(>。

if ( ( new_value - value > A > || ( value - new_value > A >return value。

return new_value。

}2、中位值滤波法/* N值可根据实际情况调整排序采用冒泡法*/#define N 11char filter(>{char value_buf[N]。

char count,i,j,temp。

for ( count=0。

count<N。

count++>{value_buf[count] = get_ad(>。

delay(>。

}for (j=0。

j<N-1。

j++>{for (i=0。

i<N-j。

i++>{if ( value_buf>value_buf[i+1] >{temp = value_buf。

value_buf = value_buf[i+1]。

value_buf[i+1] = temp。

}}}return value_buf[(N-1>/2]。

}3、算术平均滤波法/**/#define N 12char filter(>{int sum = 0。

for ( count=0。

count<N。

count++>{sum + = get_ad(>。

delay(>。

}return (char>(sum/N>。

}4、递推平均滤波法<又称滑动平均滤波法)/**/#define N 12char value_buf[N]。

char i=0。

char filter(>{char count。

int sum=0。

value_buf[i++] = get_ad(>。

if ( i == N > i = 0。

for ( count=0。

count<N,count++>sum = value_buf[count]。

return (char>(sum/N>。

}5、中位值平均滤波法<又称防脉冲干扰平均滤波法)/**/#define N 12char filter(>{char count,i,j。

char value_buf[N]。

int sum=0。

for (count=0。

count<N。

count++>{value_buf[count] = get_ad(>。

delay(>。

}for (j=0。

j<N-1。

j++>{for (i=0。

i<N-j。

i++>{if ( value_buf>value_buf[i+1] >{temp = value_buf。

value_buf = value_buf[i+1]。

value_buf[i+1] = temp。

}}}for(count=1。

count<N-1。

count++>sum += value[count]。

return (char>(sum/(N-2>>。

}6、限幅平均滤波法/**/略参考子程序1、37、一阶滞后滤波法/* 为加快程序处理速度假定基数为100,a=0~100 */ #define a 50char value。

char filter(>{char new_value。

new_value = get_ad(>。

return (100-a>*value + a*new_value。

}8、加权递推平均滤波法/* coe数组为加权系数表,存在程序存储区。

*/#define N 12char code coe[N] = {1,2,3,4,5,6,7,8,9,10,11,12}。

char code sum_coe = 1+2+3+4+5+6+7+8+9+10+11+12。

char filter(>{char count。

char value_buf[N]。

int sum=0。

for (count=0,count<N。

count++>{value_buf[count] = get_ad(>。

delay(>。

}for (count=0,count<N。

count++>sum += value_buf[count]*coe[count]。

return (char>(sum/sum_coe>。

}9、消抖滤波法#define N 12char filter(>{char count=0。

char new_value。

new_value = get_ad(>。

while (value !=new_value>。

{count++。

if (count>=N> return new_value。

delay(>。

new_value = get_ad(>。

}return value。

}10、限幅消抖滤波法/**/略参考子程序1、911、IIR滤波例子int BandpassFilter4(int InputAD4>{int ReturnValue。

int ii。

RESLO=0。

RESHI=0。

MACS=*PdelIn。

OP2=1068。

//FilterCoeff4[4]。

相关文档
最新文档