数学分析 高等数学 微积分 英语课件 上海交通大学 chapter11b
数学分析 高等数学 微积分 英语课件 上海交通大学Chapter5a
i0 n
n
i1 n
n
Example
Ex. Determine a region whose area is equal to the given
limit
(1) lim
n
2 (5 2i )10
n n i1
n
n i
(2) lim
tan
n i1 4n 4n
Definition of definite integral
Ex. Use the definition of definite integral to prove that b f (x) c is integrable on [a,b], and find cdx. a
Interpretation of definite integral
b
If f (x) 0, the integral f (x)dx is the area under the a curve y=f(x) from a to b
Idea: first, divide the time interval [a,b] into n subintervals;
then, approximate the distance di in each subinterval [ti-1,ti]
by di¼(ti-ti-1)v(xi) since v(t) does not vary toonmuch and
lim
n
i1
Si
always exists and has same value.
The distance problem
Problem: find the distance traveled by an object during the time period [a,b], given the velocity function v=v(t).
大学微积分课件(PPT幻灯片版)pptx
高阶导数计算
高阶导数的计算一般采用归纳法 或莱布尼茨公式等方法进行求解。 需要注意的是,在计算过程中要 遵循求导法则和运算顺序。
应用举例
高阶导数在物理学、工程学等领 域有着广泛的应用。例如,在物 理学中,加速度是速度的一阶导 数,而速度是位移的一阶导数; 在工程学中,梁的挠度是荷载的 一阶导数等。
03 一元函数积分学
VS
几何意义
函数$y = f(x)$在点$x_0$处的导数 $f'(x_0)$在几何上表示曲线$y = f(x)$在点 $(x_0, f(x_0))$处的切线的斜率。
求导法则与技巧总结
基本求导法则
包括常数的导数、幂函数的导数、指数函数的导数、对数函数的导 数、三角函数的导数、反三角函数的导数等。
求导技巧
连续性与可微性关系
连续性
函数在某一点连续意味着函数在 该点有定义,且左右极限相等并 等于函数值。连续性是函数的基 本性质之一。
可微性
函数在某一点可微意味着函数在 该点的切线斜率存在,即函数在 该点有导数。可微性反映了函数 局部变化的快慢程度。
连续性与可微性关
系
连续不一定可微,但可微一定连 续。即函数的连续性是可微性的 必要条件,但不是充分条件。
历史发展
微积分起源于17世纪,由牛顿和莱布尼 茨独立发展。经过数百年的完善,已成 为现代数学的重要基础。
极限思想与运算规则
极限思想
极限是微积分的基本概念,表示函数在某一点或无穷远处的变 化趋势。通过极限思想,可以研究函数的局部和全局性质。
运算规则
极限的运算包括极限的四则运算、复合函数的极限、无穷小量 与无穷大量的比较等。这些规则为求解复杂函数的极限提供了 有效方法。
高等数学-微积分第1章(英文讲稿)
高等数学-微积分第1章(英文讲稿)C alc u lus (Fifth Edition)高等数学- Calculus微积分(双语讲稿)Chapter 1 Functions and Models1.1 Four ways to represent a function1.1.1 ☆Definition(1-1) function: A function f is a rule that assigns to each element x in a set A exactly one element, called f(x), in a set B. see Fig.2 and Fig.3Conceptions: domain; range (See fig. 6 p13); independent variable; dependent variable. Four possible ways to represent a function: 1)Verbally语言描述(by a description in words); 2) Numerically数据表述(by a table of values); 3) Visually 视觉图形描述(by a graph);4)Algebraically 代数描述(by an explicit formula).1.1.2 A question about a Curve represent a function and can’t represent a functionThe way ( The vertical line test ) : A curve in the xy-plane is the graph of a function of x if and only if no vertical line intersects the curve more than once. See Fig.17 p 171.1.3 ☆Piecewise defined functions (分段定义的函数)Example7 (P18)1-x if x ≤1f(x)=﹛x2if x>1Evaluate f(0),f(1),f(2) and sketch the graph.Solution:1.1.4 About absolute value (分段定义的函数)⑴∣x∣≥0;⑵∣x∣≤0Example8 (P19)Sketch the graph of the absolute value function f(x)=∣x∣.Solution:1.1.5☆☆Symmetry ,(对称) Even functions and Odd functions (偶函数和奇函数)⑴Symmetry See Fig.23 and Fig.24⑵①Even functions: If a function f satisfies f(-x)=f(x) for every number x in its domain,then f is call an even function. Example f(x)=x2 is even function because: f(-x)= (-x)2=x2=f(x)②Odd functions: If a function f satisfie s f(-x)=-f(x) for every number x in its domain,thenf is call an odd function. Example f(x)=x3 is even function because: f(-x)=(-x)3=-x3=-f(x)③Neither even nor odd functions:1.1.6☆☆Increasing and decreasing function (增函数和减函数)⑴Definition(1-2) increasing and decreasing function:① A function f is called increasing on an interval I if f(x1)<f(x2) whenever x1<x2 in I. ①A function f is called decreasing on an interval I if f(x1)>f(x2) whenever x1<x2 in I.See Fig.26. and Fig.27. p211.2 Mathematical models: a catalog of essential functions p251.2.1 A mathematical model p25A mathematical model is a mathematical description of a real-world phenomenon such as the size of a population, the demand for a product, the speed of a falling object, the concentration of a product in a chemical reaction, the life expectancy of a person at birth, or the cost of emission reduction.1.2.2 Linear models and Linear function P261.2.3 Polynomial P27A function f is called a polynomial ifP(x) =a n x n+a n-1x n-1+…+a2x2+a1x+a0Where n is a nonnegative integer and the numbers a0,a1,a2,…,a n-1,a n are constants called the coefficients of the polynomial. The domain of any polynomial is R=(-∞,+∞).if the leading coefficient a n≠0, then the degree of the polynomial is n. For example, the function P(x) =5x6+2x5-x4+3x-9⑴Quadratic function example: P(x) =5x2+2x-3 二次函数(方程)⑵Cubic function example: P(x) =6x3+3x2-1 三次函数(方程)1.2.4Power functions幂函数P30A function of the form f(x) =x a,Where a is a constant, is called a power function. We consider several cases:⑴a=n where n is a positive integer ,(n=1,2,3,…,)⑵a=1/n where n is a positive integer,(n=1,2,3,…,) The function f(x) =x1/n⑶a=n-1 the graph of the reciprocal function f(x) =x-1 反比函数1.2.5Rational function有理函数P 32A rational function f is a ratio of two polynomials:f(x)=P(x) /Q(x)1.2.6Algebraic function代数函数P32A function f is called algebraic function if it can be constructed using algebraic operations ( such as addition,subtraction,multiplication,division,and taking roots) starting with polynomials. Any rational function is automatically an algebraic function. Examples: P 321.2.7Trigonometric functions 三角函数P33⑴f(x)=sin x⑵f(x)=cos x⑶f(x)=tan x=sin x / cos x1.2.8Exponential function 指数函数P34The exponential functions are the functions the form f(x) =a x Where the base a is a positive constant.1.2.9Transcendental functions 超越函数P35These are functions that are not a algebraic. The set of transcendental functions includes the trigonometric,inverse trigonometric,exponential,and logarithmic functions,but it also includes a vast number of other functions that have never been named. In Chapter 11 we will study transcendental functions that are defined as sums of infinite series.1.2 Exercises P 35-381.3 New functions from old functions1.3.1 Transformations of functions P38⑴Vertical and Horizontal shifts (See Fig.1 p39)①y=f(x)+c,(c>0)shift the graph of y=f(x) a distance c units upward.②y=f(x)-c,(c>0)shift the graph of y=f(x) a distance c units downward.③y=f(x+c),(c>0)shift the graph of y=f(x) a distance c units to the left.④y=f(x-c),(c>0)shift the graph of y=f(x) a distance c units to the right.⑵ V ertical and Horizontal Stretching and Reflecting (See Fig.2 p39)①y=c f(x),(c>1)stretch the graph of y=f(x) vertically bya factor of c②y=(1/c) f(x),(c>1)compress the graph of y=f(x) vertically by a factor of c③y=f(x/c),(c>1)stretch the graph of y=f(x) horizontally by a factor of c.④y=f(c x),(c>1)compress the graph of y=f(x) horizontally by a factor of c.⑤y=-f(x),reflect the graph of y=f(x) about the x-axis⑥y=f(-x),reflect the graph of y=f(x) about the y-axisExamples1: (See Fig.3 p39)y=f( x) =cos x,y=f( x) =2cos x,y=f( x) =(1/2)cos x,y=f( x) =cos(x/2),y=f( x) =cos2xExamples2: (See Fig.4 p40)Given the graph y=f( x) =( x)1/2,use transformations to graph y=f( x) =( x)1/2-2,y=f( x) =(x-2)1/2,y=f( x) =-( x)1/2,y=f( x) =2 ( x)1/2,y=f( x) =(-x)1/21.3.2 Combinations of functions (代数组合函数)P42Algebra of functions: Two functions (or more) f and g through the way such as add, subtract, multiply and divide to combined a new function called Combination of function.☆Definition(1-2) Combination function: Let f and g be functions with domains A and B. The functions f±g,f g and f /g are defined as follows: (特别注意符号(f±g)( x) 定义的含义)①(f±g)( x)=f(x)±g( x),domain =A∩B②(f g)( x)=f(x) g( x),domain =A∩ B③(f /g)( x)=f(x) /g( x),domain =A∩ B and g( x)≠0Example 6 If f( x) =( x)1/2,and g( x)=(4-x2)1/2,find functions y=f(x)+g( x),y=f(x)-g( x),y=f(x)g( x),and y=f(x) /g( x)Solution: The domain of f( x) =( x)1/2 is [0,+∞),The domain of g( x) =(4-x2)1/2 is interval [-2,2],The intersection of the domains of f(x) and g( x) is[0,+∞)∩[-2,2]=[0,2]Thus,according to the definitions, we have(f+g)( x)=( x)1/2+(4-x2)1/2,domain [0,2](f-g)( x)=( x)1/2-(4-x2)1/2,domain [0,2](f g)( x)=f(x) g( x) =( x)1/2(4-x2)1/2=(4 x-x3)1/2domain [0,2](f /g)( x)=f(x)/g( x)=( x)1/2/(4-x2)1/2=[ x/(4-x2)]1/2 domain [0,2)1.3.3☆☆Composition of functions (复合函数)P45☆Definition(1-3) Composition function: Given two functions f and g the composite func tion f⊙g (also called the composition of f and g ) is defined by(f⊙g)( x)=f( g( x)) (特别注意符号(f⊙g)( x) 定义的含义)The domain of f⊙g is the set of all x in the domain of g such that g(x) is in the domain of f . In other words, (f⊙g)(x) is defined whenever both g(x) and f (g (x)) are defined. See Fig.13 p 44 Example7 If f (g)=( g)1/2 and g(x)=(4-x3)1/2find composite functions f⊙g and g⊙f Solution We have(f⊙g)(x)=f (g (x) ) =( g)1/2=((4-x3)1/2)1/2(g⊙f)(x)=g (f (x) )=(4-x3)1/2=[4-((x)1/2)3]1/2=[4-(x)3/2]1/2Example8 If f (x)=( x)1/2 and g(x)=(2-x)1/2find composite function s①f⊙g ②g⊙f ③f⊙f④g⊙gSolution We have①f⊙g=(f⊙g)(x)=f (g (x) )=f((2-x)1/2)=((2-x)1/2)1/2=(2-x)1/4The domain of (f⊙g)(x) is 2-x≥0 that is x ≤2 {x ︳x ≤2 }=(-∞,2]②g⊙f=(g⊙f)(x)=g (f (x) )=g (( x)1/2 )=(2-( x)1/2)1/2The domain of (g⊙f)(x) is x≥0 and 2-( x)1/2x ≥0 ,that is( x)1/2≤2 ,or x ≤ 4 ,so the domain of g⊙f is the closed interval[0,4]③f⊙f=(f⊙f)(x)=f (f(x) )=f((x)1/2)=((x)1/2)1/2=(x)1/4The domain of (f⊙f)(x) is [0,∞)④g⊙g=(g⊙g)(x)=g (g(x) )=g ((2-x)1/2 )=(2-(2-x)1/2)1/2The domain of (g⊙g)(x) is x-2≥0 and 2-(2-x)1/2≥0 ,that is x ≤2 and x ≥-2,so the domain of g⊙g is the closed interval[-2,2]Notice: g⊙f⊙h=f (g(h(x)))Example9Example10 Given F (x)=cos2( x+9),find functions f,g,and h such that F (x)=f⊙g⊙h Solution Since F (x)=[cos ( x+9)] 2,that is h (x)=x+9 g(x)=cos x f (x)=x2Exercise P 45-481.4 Graphing calculators and computers P481.5 Exponential functions⑴An exponential function is a function of the formf (x)=a x See Fig.3 P56 and Fig.4Exponential functions increasing and decreasing (单调性讨论)⑵Lows of exponents If a and b are positive numbers and x and y are any real numbers. Then1) a x+y=a x a y2) a x-y=a x / a y3) (a x)y=a xy4) (ab)x+y =a x b x⑶about the number e f (x)=e x See Fig. 14,15 P61Some of the formulas of calculus will be greatly simplified if we choose the base a .Exercises P 62-631.6 Inverse functions and logarithms1.6.1 Definition(1-4) one-to-one function: A function f iscalled a one-to-one function if it never takes on the same value twice;that is,f (x1)≠f (x2),whenever x1≠x2( 注解:不同的自变量一定有不同的函数值,不同的自变量有相同的函数值则不是一一对应函数) Example: f (x)=x3is one-to-one function.f (x)=x2 is not one-to-one function, See Fig.2,3,4 ☆☆Definition(1-5) Inverse function:Let f be a one-to-one function with domain A and range B. Then its inverse function f -1(y)has domain B and range A and is defined byf-1(y)=x f (x)=y for any y in Bdomain of f-1=range of frange of f-1=domain of f( 注解:it says : if f maps x into y, then f-1maps y back into x . Caution: If f were not one-to-one function,then f-1 would not be uniquely defined. )Caution: Do not mistake the-1 in f-1for an exponent. Thus f-1(x)=1/ f(x) Because the letter x is traditionally used as the independent variable, so when we concentrate on f-1(y) rather than on f-1(y), we usually reverse the roles of x and y in Definition (1-5) and write as f-1(x)=y f (x)=yWe get the following cancellation equations:f-1( f(x))=x for every x in Af (f-1(x))=x for every x in B See Fig.7 P66Example 4 Find the inverse function of f(x)=x3+6Solution We first writef(x)=y=x3+6Then we solve this equation for x:x3=y-6x=(y-6)1/3Finally, we interchange x and y:y=(x-6)1/3That is, the inverse function is f-1(x)=(x-6)1/3( 注解:The graph of f-1 is obtained by reflecting the graph of f about the line y=x. ) See Fig.9、8 1.6.2 Logarithmic function If a>0 and a≠1,the exponential function f (x)=a x is either increasing or decreasing and so it is one-to-one function by the Horizontal Line Test. It therefore has an inverse function f-1,which is called the logarithmic function with base a and is denoted log a,If we use the formulation of an inverse function given by (See Fig.3 P56)f-1(x)=y f (x)=yThen we havelogx=y a y=xThe logarithmic function log a x=y has domain (0,∞) and range R.Usefully equations:①log a(a x)=x for every x∈R②a log ax=x for every x>01.6.3 ☆Lows of logarithms :If x and y are positive numbers, then①log a(xy)=log a x+log a y②log a(x/y)=log a x-log a y③log a(x)r=r log a x where r is any real number1.6.4 Natural logarithmsNatural logarithm isl og e x=ln x =ythat is①ln x =y e y=x② ln(e x)=x x∈R③e ln x=x x>0 ln e=1Example 8 Solve the equation e5-3x=10Solution We take natural logarithms of both sides of the equation and use ②、③ln (e5-3x)=ln10∴5-3x=ln10x=(5-ln10)/3Example 9 Express ln a+(ln b)/2 as a single logarithm.Solution Using laws of logarithms we have:ln a+(ln b)/2=ln a+ln b1/2=ln(ab1/2)1.6.5 ☆Change of Base formula For any positive number a (a≠1), we havel og a x=ln x/ ln a1.6.6 Inverse trigonometric functions⑴Inverse sine function or Arcsine functionsin-1x=y sin y=x and -π/2≤y≤π / 2,-1≤x≤1 See Fig.18、20 P72Example13 ① sin-1 (1/2) or arcsin(1/2) ② tan(arcsin1/3)Solution①∵sin (π/6)=1/2,π/6 lies between -π/2 and π / 2,∴sin-1 (1/2)=π/6② Let θ=arcsin1/3,so sinθ=1/3tan(arcsin1/3)=tanθ=s inθ/cosθ=(1/3)/(1-s in2θ)1/2=1/(8)1/2Usefully equations:①sin-1(sin x)=x for -π/2≤x≤π / 2②sin (sin-1x)=x for -1≤x≤1⑵Inverse cosine function or Arccosine functioncos-1x=y cos y=x and 0 ≤y≤π,-1≤x≤1 See Fig.21、22 P73Usefully equations:①cos-1(cos x)=x for 0 ≤x≤π②cos (cos-1x)=x for -1≤x≤1⑶Inverse Tangent function or Arctangent functiontan-1x=y tan y=x and -π/2<y<π / 2 ,x∈R See Fig.23 P73、Fig.25 P74Example 14 Simplify the expression cos(ta n-1x).Solution 1 Let y=tan-1 x,Then tan y=x and -π/2<y<π / 2 ,We want find cos y but since tan y is known, it is easier to find sec y first:sec2y=1 +tan2y sec y=(1 +x2 )1/2∴cos(ta n-1x)=cos y =1/ sec y=(1 +x2)-1/2Solution 2∵cos(ta n-1x)=cos y∴cos(ta n-1x)=(1 +x2)-1/2⑷Other Inverse trigonometric functionscsc-1x=y∣x∣≥1csc y=x and y∈(0,π / 2]∪(π,3π / 2]sec-1x=y∣x∣≥1sec y=x and y∈[0,π / 2)∪[π,3π / 2]cot-1x=y x∈R cot y=x and y∈(0,π)Exercises P 74-85Key words and PhrasesCalculus 微积分学Set 集合Variable 变量Domain 定义域Range 值域Arbitrary number 独立变量Independent variable 自变量Dependent variable 因变量Square root 平方根Curve 曲线Interval 区间Interval notation 区间符号Closed interval 闭区间Opened interval 开区间Absolute 绝对值Absolute value 绝对值Symmetry 对称性Represent of a function 函数的表述(描述)Even function 偶函数Odd function 奇函数Increasing Function 增函数Increasing Function 减函数Empirical model 经验模型Essential Function 基本函数Linear function 线性函数Polynomial function 多项式函数Coefficient 系数Degree 阶Quadratic function 二次函数(方程)Cubic function 三次函数(方程)Power functions 幂函数Reciprocal function 反比函数Rational function 有理函数Algebra 代数Algebraic function 代数函数Integer 整数Root function 根式函数(方程)Trigonometric function 三角函数Exponential function 指数函数Inverse function 反函数Logarithm function 对数函数Inverse trigonometric function 反三角函数Natural logarithm function 自然对数函数Chang of base of formula 换底公式Transcendental function 超越函数Transformations of functions 函数的变换Vertical shifts 垂直平移Horizontal shifts 水平平移Stretch 伸张Reflect 反演Combinations of functions 函数的组合Composition of functions 函数的复合Composition function 复合函数Intersection 交集Quotient 商Arithmetic 算数。
高等数学(微积分)ppt课件
曲线的凹凸性与拐点
凹凸性
若函数f(x)在区间I上二阶可导,且 f''(x)>0(或<0),则称曲线y=f(x)在 I上是凹的(或凸的)。
拐点
拐点的判定
若函数f(x)在点x0处二阶可导,且 f''(x0)=0,则可通过三阶导数f'''(x0) 的符号来判断点(x0,f(x0))是否为曲线 的拐点。
THANKS
感谢观看
非线性微分方程
通过变量替换、积分等方法求解,或 利用数值方法近似求解
级数的概念与性质
级数的定义 无穷序列的部分和序列
级数的性质 加法、减法、乘法、除法、重排等性
质
级数的收敛与发散 部分和序列有极限则级数收敛,否则 发散
常见级数及其敛散性 等差级数、等比级数、调和级数、交 错级数等,通过比较法、比值法、根 值法等方法判断其敛散性
VS
极限的性质
唯一性、局部有界性、保号性、保不等式 性、迫敛性等。
极限的运算法则
极限的四则运算法则
若两个函数的极限存在,则它们的和、差、积、商(分母不为零)的极限也存在,且等于这两 个函数极限的和、差、积、商。
复合函数的极限运算法则
设函数$y=f[g(x)]$是由函数$u=g(x)$与函数$y=f(u)$复合而成,若$lim_{x
无穷小量的定义
如果函数$f(x)$当$x to x_0$(或$x to infty$)时的极限为零,那么称函数$f(x)$为当$x to x_0$(或$x to infty$)时 的无穷小量。
2024版大学微积分课件(ppt版)
大学微积分课件(ppt 版)目录•微积分概述•极限与连续•导数与微分•积分学•微分方程•微积分在实际问题中的应用PART01微积分概述微积分的定义与发展微积分的定义微积分是研究函数的微分与积分的数学分支,微分研究函数在某一点的变化率,而积分则是研究函数在一定区间上的累积效应。
微积分的发展微积分起源于17世纪的物理学和几何学问题,经过牛顿、莱布尼兹等数学家的努力,逐渐发展成为一门独立的数学学科。
微积分的研究对象与意义研究对象微积分的研究对象是函数,包括一元函数和多元函数,主要研究函数的性质、图像、变化率以及函数间的相互关系等。
研究意义微积分在自然科学、工程技术、社会科学等领域有着广泛的应用,如求解物理问题、优化工程设计、分析经济数据等。
微积分的基本思想与方法基本思想微积分的基本思想是通过局部近似来研究函数的整体性质,即“以直代曲”、“以不变应万变”。
基本方法微积分的基本方法包括微分法和积分法。
微分法是通过求导数来研究函数的局部性质,如单调性、极值等;积分法则是通过求原函数来研究函数的整体性质,如面积、体积等。
PART02极限与连续极限的概念与性质01极限的定义:描述函数在某一点或无穷远处的变化趋势。
02极限的性质:唯一性、局部有界性、保号性、四则运算法则。
03无穷小量与无穷大量:定义、性质及比较。
极限的运算法则与存在准则极限的四则运算法则加法、减法、乘法、除法。
极限存在准则夹逼准则、单调有界准则。
连续函数的概念与性质连续函数的定义函数在某一点连续的定义及性质。
间断点及其分类第一类间断点(可去间断点、跳跃间断点)、第二类间断点。
连续函数的性质局部性质(局部有界性、局部保号性)、整体性质(有界性、最值定理、介值定理)。
连续函数的四则运算加法、减法、乘法、除法。
初等函数基本初等函数及其性质,初等函数的连续性。
复合函数的连续性复合函数连续性的判断及证明。
连续函数的运算与初等函数PART03导数与微分导数的概念与几何意义导数的定义导数的几何意义可导与连续的关系描述函数图像在某一点处的局部变化率。
(高等数学英文课件)Some exercises of CHAPTER 2
目录 上页 下页 返回 结束
P159 40.
Analysis
f0limf0hf0...
h 0
h
f 0 02 f 0 0
f0 lim f0 h f0 lim fh
h 0
h
h 0 h
h2 f h h 2
h
h
h
目录 上页 下页 返回 结束
P159 40.
Analysis
f0limf0hf0
3. Horizontal Asymptotes
alxi m fxx,blxi m fxax
yaxb
目录 上页 下页 返回 结束
P123
60. Asymptotes
f
x
x3 x2 1 x2 1
1. Horizontal Asymptotes
limf x ...
x
2. Vertical Asymptotes
rx2000011x
1. 销量为100台的边际收益.
rx20000x2 r100 2
2. 用收益函数的导数来估计当销量从每周100台增加 到每周101台时所产生的额外的收益.
r r100
3. 计算极限并解释经济意义.
lim rxlim 2 0 0 0 0x20
x
x
目录 上页 下页 返回 结束
x
2. Vertical Asymptotes
limf x x0
x?
3. Horizontal Asymptotes
a
lim x
f
x
x
lxim
2sinx x
1 x2
0
目录 上页 下页 返回 结束
P132 6.
数学分析高等数学微积分英语上海交通大学
Sol. (1) absolutely convergent (2) conditionally convergent
The ratio test
The ratio test
(1) If
lim an1 a n
n
L 1,
then an
n 1
is absolutely convergent.
converges or diverges.
n 1
(a 0)
Sol.
an
ln 1
a n
ln 1 ln a
e n
1 nln a
diverge for 0 a e
converge for a e
Alternating series
An alternating series is a series whose terms are
converge or both diverge.
(ii) when c=0, then the convergence of bn implies the convergence of an. (iii) when c , then the divergence of bn implies the
(ii) If bn is divergent and an bn for all n, then an is also
divergent.
1
Ex. Determine whether n1 2n 1 converges.
11 Sol. 2n 1 2n
So the series converges.
The comparison tests
Theorem Suppose that an and bn are series with positive terms, then
《微积分英文》课件 (2)
Types of Limits
One-sided limits
Limits approached
from one direction
Limits at infinity
Behavior of functions at
infinity
● 02
第2章 Limits and Continuity
01 Definition of a limit
Explanation of what a limit is
02 Properties of limits
Key characteristics of limits
03 Calculating limits algebraically
Graphing functions by analyzing their derivatives and key points
Higher Order Derivatives
Second derivative
Rate of change of the rate of
change
nth derivative
● 03
第3章 Differentiation
Derivatives and Rates of
Change
A derivative is defined as the rate of change of a function at a given point. Notation for derivatives includes symbols such as f'(x) or dy/dx. Derivatives can be interpreted as rates of change in various realworld applications.
高等数学英文版课件 15 Differential equations
where P, Q, R, and G are continuous functions.
If G(x) = 0 for all x, such equations are called secondorder homogeneous linear equations. (This use of the word homogeneous has nothing to do with the meaning given in Section 15.1.)
Example 3 Solve the equation 4 y 12y 9 y 0
Case 3 b2 4ac 0
In this case the roots r1 and r2 of the auxiliary equation are complex numbers, we can write
a(2rerx r 2 xerx ) b(erx rxerx ) cxerx
(2ar b)erx (ar 2 br c)xerx
0(erx ) 0(xerx ) 0
Since y1 erx and y2 xerx are linearly independent solutions, Theorem 4 provides us with the general solution:
(11) If the roots of auxiliary equation ar 2 br c 0
are the complex numbers r1 i , r2 i , then the general solution of ay by cy 0 is
y ex (c1 cos x c2 sin x)
P(x) y Q(x) y R(x) y
高等数学英文版课件PPT 05 Integrals
n
n
Ai f (xi)xi
i 1
i 1
机动 目录 上页 下页 返回 结束
Figure 3
y y=f(x)
S1 S2
Si
Sn
oa
Xi-1
Xi
x b
approximated by
y y=f(x)
Figure 4
R1 R2
o a x1 x2
Ri
Rn
Xi-1
Xi
xi
xn b
x
机动 目录 上页 下页 返回 结束
necessary to give this type of limit a special name and notation.
1. Definition of a Definite Integral
If f is a function defined on a closed interval [a, b], let
|| P || max{x1,, xn}
Step 2: Approximation—By the partition above, the area of S can be approximated by the sum of areas of n rectangles .
Using the partition P one can divide the region S into n strips
f (x)dx = the area under the graph of f from a to b.
a
In general, a definite integral can be interpreted as a
difference of areas:
微积分英文版课件
极限和连续性的关系:极限是连续 的必要条件,但不是充分条件
添加标题
添加标题
添加标题
添加标题
连续性:函数在某点或某区间上的 连续性
极限和连续性的应用:在微积分中, 极限和连续性是解决许多问题的基 础
导数:函数在 某一点的斜率, 表示函数在该
点的变化率
微分:函数在 某一点的增量, 表示函数在该
点的变化量
定义:含有两个未知函数 及其导数的方程
形式:ax^2+bx+c=0
解:通过求解特征方程得 到
应用:广泛应用于物理、 工程等领域
高阶微分方程:含有未知函数及其高阶导数的方程 线性微分方程组:含有未知函数及其导数的线性方程组 求解方法:包括积分法、幂级数法、拉普拉斯变换法等 应用领域:广泛应用于物理、化学、工程等领域
级数的形式
应用:在微积 分、数学分析、 物理等领域有
广泛应用
例子:泰勒级 数在求解微分 方程、积分方 程、傅里叶变 换等方面有重
要应用
感谢您的观看
汇报人:PPT
物理概念:力、速度、加速度、质量、能量等
几何概念:直线、平面、曲线、曲面、体积、面积等
物理和几何的结合:力与运动的关系、力与能量的关系、力与几何形状的关系等
微积分在物理和几何中的应用:微积分在力学、光学、电磁学等领域的应用,以及在几何学、 拓扑学等领域的应用。
微积分基本概念
极限:函数在某点或某区间上的极 限值
微积分在物理中 的应用:微积分 在物理中的应用 广泛,如力学、 电磁学、热力学 等
微积分在工程中 的应用:微积分 在工程中的应用 广泛,如建筑、 机械、电子等
微分方程
定义:含有一个未 知函数和一个未知 函数的导数的方程
微积分教学资料——chapter11.10-PPT精选文档30页
The Maclaurin series is:
So: In summary:
Example:
Solution:
That is:
Example:
Solution:
Example:
Solution:
……………
We can show that the remainder tend to 0 as n becomes arbitrarily large. Then:
Example:
Solution:
Multiplication and Division of Power Series
Solution: (a)
Thus:
(b)
Thus:
Example:
Solution:
Example:
Proof: Choose any positive number d such that
Then: That is:
In particular:
Example:
Solution:
Example:
Find the Maclaurin series for sinx and prove that it represents sinx for all x.
then
............. (4)
we get
Question:
Under what circumstances is a function equal to the sum of its Taylor series ?
In the case of the Taylor series, the partial sums are:
微积分英文版课件
Applications of Derivatives
Local Extrema
Discover how derivatives help identify local maximums and minimums of functions.
Mean Value Theorem
Explore the mean value theorem and its applications in calculus.
Gradients and Directional Derivatives
2
derivatives and their applications in multivariable calculus.
Learn about gradients and
directional derivatives for
Derivatives
1
Definition of a Derivative
Uncover the definition and
Differentiability and Continuity
2
fundamental properties of derivatives.
Understand the relationship
Discover the conditions for a function to be continuous and its implications.
Explore the different types of discontinuities and their characteristics.
Conclusion
Review of Key Concepts
《微积分九版》课件
微分概念
总结词
微分概念是微积分中的基础概念,它描述了函数在某一点附近的小变化。
详细描述
微分表示函数在某一点附近的小变化量,即函数值的增量与自变量增量的比值在增量趋于零时的极限 。微分的几何意义是函数图像在该点附近的一条切线。微分在近似计算、误差估计等方面有重要应用 。
积分概念
总结词
积分概念是微积分中的基础概念,它描 述了函数在某个区间上的整体效果。
弹性分析主要关注两个经济变 量之间的相对变化率,例如需 求价格弹性和供给价格弹性等 。通过计算这些弹性的导数, 可以了解它们之间的相互影响 和最优决策。
弹性分析涉及的公式包括弹性 系数的计算,例如需求价格弹 性和供给价格弹性的计算公式 。
例如,在价格制定中,企业会 计算需求价格弹性,以确定最 优的价格策略。
则描述了物体角动量的变化规律,公式为 dL/dt=M。
万有引力定律
总结词
描述物体间相互吸引的力的大小和方向。
详细描述
万有引力定律指出,任何两个物体间都存在相互吸引 的力,大小与两物体的质量成正比,与距离的平方成 反比,方向沿着两物体连线的方向。公式为 F=G(m1m2/r²)。
CHAPTER 06
《微积分九版》ppt课 件
contents
目录
• 微积分简介 • 微积分基础知识 • 微积分基本定理 • 微积分运算技巧 • 微积分在物理中的应用 • 微积分在经济学中的应用
CHAPTER 01
微积分简介
微积分的起源
微积分起源于17世纪的欧洲,是数 学的一个重要分支,主要用于研究连 续变化的量。
化趋势和最优决策。
公式
边际分析涉及的公式包 括导数和偏导数的计算 ,例如求导公式、链式
上海交大版高等数学教材
上海交大版高等数学教材高等数学是大学数学的重要组成部分,也是一门基础性的学科。
在上海交通大学,高等数学课程采用上海交大版教材。
本文将为您介绍上海交大版高等数学教材的特点和内容。
一、教材特点上海交大版高等数学教材以理论与应用相结合为特点,注重培养学生的实际问题解决能力。
教材的编写围绕“数学思维的培养、能力的提高和应用的拓宽”展开,旨在让学生真正理解数学的本质,并能将数学知识应用于实际情境中。
二、教材内容1. 微分学微分学是高等数学的重要组成部分,它研究的是函数的变化率和速率。
在上海交大版高等数学教材中,微分学内容涵盖了函数、极限、导数等基本概念和性质,以及微分中值定理、导数的应用等内容。
通过学习微分学,学生可以更好地理解函数的性质和变化规律。
2. 积分学积分学是微分学的延伸,它研究的是函数的面积、曲线长度以及变化速度的累积。
上海交大版高等数学教材中的积分学内容包括了不定积分、定积分、曲线的面积与弧长、定积分的应用等。
通过学习积分学,学生可以更好地理解函数的整体特性,并能应用积分解决实际问题。
3. 无穷级数与级数应用无穷级数是高等数学中的重要内容,它是由无穷多项式相加或相乘而得到的集合。
上海交大版高等数学教材中的无穷级数内容包括了级数的概念、级数的收敛性、常见级数的性质和求和公式等。
通过学习无穷级数,学生可以更好地理解数列和函数的性质,并能应用级数解决实际问题。
4. 偏微分方程偏微分方程是数学中的一类方程,它研究的是函数的偏导数之间的关系。
上海交大版高等数学教材中的偏微分方程内容包括了偏导数、一阶偏微分方程、二阶线性偏微分方程等。
通过学习偏微分方程,学生可以更好地理解多变量函数的性质,并能应用偏微分方程解决实际问题。
5. 多元函数微积分多元函数微积分是高等数学中的重要内容,它研究的是多变量函数的导数、积分以及它们之间的关系。
上海交大版高等数学教材中的多元函数微积分内容涵盖了多元函数的极限、偏导数、多元函数的积分等。
数学分析高等数学微积分英语课件上海交通大学chapter11b
th1e)n
(3) sin p
n 1
n
bn 1/ n1/2
lni man /bn 2
(2) diverge. take
then
bn 1/ n
lni man /bn
(3) converge for p>1 and diverge for
take
then
lni man /bn p
Theorem If the alternating series
( 1 )n 1 b n b 1 b 2 b 3 b 4 b 5 b 6 (b n 0 )
satisfien s 1 (i)
for all n (ii)
Then the alternatibnng1serbiens is convergentln.im bn 0
divergence of a n .
Example
Ex. Determine whether the following series converges.
Sol.
(1) (1)
2n2 3n (2) ndi1ver5ge. nch5 oose
n1
ln2
1 (n
The n-th term2of a3 n alt4ernating nse1riesnis of the form
where
is aa n po s( it iv1 e)n n 1 ub mn beo rr . a n ( 1 )n b n
bn
The alternating series test
positive terms. Suppose
lim an c.
数学分析 高等数学 微积分 英语课件 上海交通大学Chapter5b
there exists a number [a,b] such that
b
b
a f (x)g(x)dx f ( )a g(x)dx.
Proof. Let M max f (x), m min f (x). Since g(x) 0,
b
x[a,b]
x[a,b]
we have a g(x)dx 0 and mg(x) f (x)g(x) Mg(x).
h(x) d
b
f (t)dt f (x).
dx x
The most general form for a definite integral with varying
b(x)
limits is (x) f (t)dt. To investigate its properties, a(x)
between a and b, the definite integral defines a function:
x
g(x) a f (t)dt.
Ex. Find a formula for the definite integral with varying
x
limit g(x) a tdt.
0
Sol. d (1)
x2 t 2etdt 2x5ex2 8x2e2x.
dx 2x
(2) d x x(5 t)2 dt d x x (5 t)2 dt x (5 t)2 dt x(5 x)2.
dx 0
dx 0
0
dy
Ex. Find if
y etdt
x
cos tdt 1.
f (x) 2x 3x2 .
2
2 1 x2 x3
大学微积分课件幻灯片版
不定积分的性质
包括线性性质、积分区间可加性 、常数倍性质和积分与微分互逆 性质。
基本积分公式与法
则
包括幂函数、三角函数、指数函 数、对数函数等基本初等函数的 不定积分公式,以及分部积分法 、换元积分法等基本积分法则。
定积分的概念与性质
定积分的定义
定积分是求一个函数在闭区间上的积分值,表达形式为 ∫[a,b]f(x)dx,表示函数f(x)在区间[a,b]上的面积。
根据未知函数及其导数的次数划 分
一阶微分方程及其解法
可分离变量法
通过变量分离,将微分方程转化为可积分的 形式
齐次方程法
通过变量替换,将齐次方程转化为可分离变 量的形式
一阶线性微分方程法
利用积分因子,将一阶线性微分方程转化为 可积分的形式
二阶微分方程及其解法
二阶线性微分方程
具有常系数的二阶线性微分方程的通解结构
振动与波动方程
描述振动与波动现象的二阶线性微分方程
欧拉方程
通过变量替换,将欧拉方程转化为二阶线性微分方程进行求解
高阶微分方程的降阶法
通过变量替换或积分法,将高阶微分方程降阶为一阶或二阶微分方程进行求解
05
多元函数微积分学
多元函数的基本概念
01 02
多元函数的定义
设$D$为一个非空的$n$ 元有序数组的集合, $f$为某一 确定的对应规则。若对于每一个有序数组$( x1,x2,…,xn)∈D$,通过对应规则$f$,都有唯一确定的实 数$y$与之对应,则称对应规则$f$为定义在$D$上的$n$ 元函数。
三重积分的定义
设三元函数$f(x,y,z)$在可求体积的有界闭区域$Omega$上连续,将$Omega$任意分成$n$个小闭区域$Delta V_1,Delta V_2,…,Delta V_n$,记各小闭区域的直径中的最大值为$lambda $。若不论对$Omega $如何分割 及如何选取点$(xi_i,eta_i,zeta_i)$,只要当$lambda to 0 $时,和式$sum_{i=1}^{n} f(xi_i,eta_i,zeta_i)Delta V_i $的极限存在且唯一,则称此极限为函数 $f(x,y,z) $在区域 $Omega $上的三重积分。
数学分析 高等数学 微积分 英语课件 上海交通大学Chapter7b
function into partial fractions is the key step to integrate
the rational function.
When Q(x) contains factor (x a)k , the partial fractions
contain A1 A2 Ak .
Example: reciprocal substitution
dx
Ex. Evaluate
.
x 3x2 2x 1
Sol. Let x 1, then t
dx
1 t2
dt.
x
dx 3x2
2x
1
dt 3 2t t2
dt 22 (t 1)2
1 2
dt arcsin t 1 C arcsin x 1 C.
f (x) P(x) S(x) R(x) ,
Q(x)
Q(x)
where S and R are also polynomials and degree of R less than degree of Q.
Technique for partial fraction
For example, by long division, we can derive
changes from a to 2a, t changes from 0 to / 3.
2a a
x2 a2 x4
dx
3 0
a a4
tan t sec4
t
a
sec t
tan tdt
1
3 sin2 t cos tdt
1
sin3 t 3
3.
a2 0
《微积分》课件
微积分的历史背景
01
微积分的发展可以追溯到古代数 学,如希腊数学家阿基米德在求 面积和体积时已经有了积分学的 萌芽。
02
微积分的真正奠基人是牛顿和莱 布尼茨,他们分别独立地发展出 了微积分的基本理论,为后来的 数学发展奠定了基础。
《微积分》PPT课件
contents
目录
• 微积分的定义与历史 • 微积分的基本概念 • 微积分的应用 • 微积分的解题技巧 • 微积分的重点与难点解析 • 微积分的习题与答案解析
01
微积分的定义与历史
微积分的定义
微积分是研究函数、极限和连续性的 数学分支,通过微分和积分的方法来 研究函数的性质和变化规律。
极限的运算性质与法则
1 2
极限的运算性质
极限的四则运算法则、复合函数的极限运算法则 等。
极限的法则
极限的保号性、极限的局部有界性等。
3
注意事项
理解极限的运算法则和性质是解决极限问题的关 键,需要注意运算过程中的等价变换和放缩技巧 。
导数的几何意义与运算性质
导数的几何意义
切线的斜率、函数图像的变化率等。
习题一:极限的运算
$lim_{x to infty} frac{1}{x}$
判断下列叙述是否正 确,并说明理由
$lim_{x to 0} (1 + x)^{1/x}$
习题一:极限的运算
$lim_{x to 0} frac{sin x}{x} = 1$
$lim_{x to infty} frac{1}{x} = 0$
$lim_{x to 0} (1 + x)^{1/x} = e$
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
111111 ln2. 23456
Multiplying this series by 1 / 2 , we get
111111 1ln2. 2 4 681012 2 or 01 01 01 0 11ln2 .
2468 2
Adding these two series, we obtain
11111 3
(2) If
lim an1 a n
n
L 1 or
lim
n
a n 1 an
then a n diverges.
n 1
(3) If lim a n 1 1, the ratio test is inconclusive: that is, no a n
n
conclusion can be drawn about the convergence of a n
an
1 n(lnn)(lnlnn)
1 ( 1 ) n ln n 2 n n !
1
( 1 ) ta n( 2 ) n
n
( 3 )
( 4 )
( n 2 ) !
( ln n ) ln n
Sol. (1) diverge (2) converge (3) diverge (4) converge
where b n is a positive number.
h
5
The alternating series test
Theorem If the alternating series
( 1 )n 1 b n b 1 b 2 b 3 b 4 b 5 b 6 (b n 0 )
n 1
satisfies (i) bn1 bn for all n
A power series may converge for some values of x and diverge for other values of x. So the sum of the series is a function s (x ) c 0 c 1 x c 2 x 2 c 3 x 3
h
18
Power series
For example, the power series
xn 1xx2x3
n0
converges to s ( x ) 1 when 1x1. 1 x
(3)
If
lim
n
n
|
an
|
1,
the
root
test
is
inconclusive.
h
12
Example
n
Ex. Test the convergence of the series
n 1
a
1 n
n
Sol.
lim n
n
an
lim n n n a 1
1 a
n
(a 0)
convergent for a 1; divergent for 0a1
a1an
n (11)n
(n)
n
h
13
Rearrangements
If we rearrange the order of the term in a finite sum, then of course the value of the sum remains unchanged. But this is not the case for an infinite series.
ae an 1an lni m an 0
h
11
The root test
The root test
(1)
If
limn
n
|
an
|
L1,
then
a n is absolutely convergent.
n 1
(2)
If
limn
n
|
an
|
L1or
limn
n
|
an
|
then
n
1
a
n
diverges.
(1 )n 1( n 1 )n 1 ( 0 )
(2 )n 1( n 1 3 )n 1 1 n2
Sol. (1) converge (2) converge
Question. ( 1) n 1 n
n1 4 n 1
h
7
Absolute convergence
A series a n is called absolutely convergent if the series of absolute values | an | is convergent.
( 1) n 1
Fwohrileexathmepallet,erthneatsinergiehsanrm1 onni3c/
2 is series
absolutely is not.
convergent
A series a n is called conditionally convergent if it is convergent but not absolutely convergent.
Theorem. If a series is absolutely convergent, then it is convergent.
h
8
Example
Ex. Determine whether the following series is convergent.
(1)
sinn
n2
n1
converges or diverges.
n 1
(a 0)
Sol.
an
ln1
a n
ln1lna
e n
1 nlna
divergefor 0ae
convergefor ae
h
4
Alternating series
An alternating series is a series whose terms are
same sum s .
However, any conditionally convergent series can be rearranged to give a different sum.
h
14
Example
Ex. Consider the alternating harmonic series
or a form containing factorial, then use comparison test.
an
n31 ~ 1 3n34n22 3n3/2
For an alternating series, use alternating series test.
an
(1)n
n3 n4 1
converge or both diverge.
(ii) when c=0, then the convergence of b n implies the convergence of a n . (iii) when c , then the divergence of b n implies the
h
16
Strategy for testing series
If n-th powers appear in the series, use root test.
an nen2
If an f (n), f decreasing and positive, use integral test.
(ii)
lim
n
bn
0
Then theቤተ መጻሕፍቲ ባይዱalternating series is convergent.
Ex. The alternating harmonic series ( 1) n 1
is convergent.
n1 n
h
6
Example
Ex. Determine whether the following series converges.
(2) diverge. take bn 1/ n then lni man /bn
(3) converge for p>1 and diverge for p 1 take bn 1/ np
then lni man /bn p
h
3
Question
ln 1
Ex. Determine whether the series a n
h
17
Power series
A power series is a series of the form
cnxnc0c1xc2x2c3x3
n0
where x is a variable and c n are constants called coefficients
of series.
For each fixed x, the power series is a usual series. We can test for convergence or divergence.
1 ln2.
3 2 5 7h 4 2
15
Strategy for testing series
If
we
can
see
at
a
glance
that
lim
n
an
0
then
divergence
an
n1 10 2n1 2
If a series is similar to a p-series, such as an algebraic form,