全磷含量测定

合集下载

植物全磷的测定

植物全磷的测定

植物全磷的测定
植物全磷的测定是研究植物生长和健康状况的重要方法之一。

磷对植物的生长和发育起着关键的作用,因此了解植物组织中的总磷含量对于优化植物生长环境和施肥方案至关重要。

以下是植物全磷的测定方法:
常用的植物全磷测定方法:
1.酸溶法(酸浸法):
●原理:植物样品通过酸溶解,使有机和无机磷转化为可溶性磷酸盐,然后使用酶法或分光光度法测定磷酸盐的含量。

●步骤:
●将植物样品研磨成粉末。

●用酸(通常是盐酸和过氧化氢的混合物)溶解植物组织,将磷酸盐释放出来。

●通过分析方法(如酶法或分光光度法)测定溶液中的总磷含量。

2.硫酸钠熔融法:
●原理:植物样品与硫酸钠一起熔融,将有机和无机磷转化为可溶性磷酸盐,再通过化学方法测定磷酸盐的含量。

●步骤:
●将植物样品与硫酸钠一起进行高温熔融。

●熔融后的物质中的磷转化为磷酸盐。

●使用化学方法(如分光光度法)测定磷酸盐的含量。

3.离子色谱法:
●原理:植物样品中的磷通过离子色谱仪分离和检测。

●步骤:
●提取植物样品中的磷。

●使用离子色谱仪分析样品,测定离子峰的面积或高度,从而计算磷的浓度。

4.原子吸收光谱法:
●原理:将植物样品中的磷转化为可测量的化合物,通过原子吸收光谱法分析。

●步骤:
●溶解植物样品。

●通过化学反应将磷转化为可测量的化合物。

●使用原子吸收光谱法分析样品中的磷含量。

选择合适的测定方法取决于实验室设备、预算和样品特性。

在进行测定之前,应确保样品的准备和处理过程不会导致磷含量的损失或变化。

测定全磷和有效磷的用途

测定全磷和有效磷的用途

测定全磷和有效磷的用途引言磷是植物生长的重要营养元素之一,它在植物的能量转化和细胞分裂中起着关键的作用。

为了评估土壤的磷素含量以及其对植物的可利用性,科学家们开发了一系列的方法来测定全磷和有效磷。

本文将介绍什么是全磷和有效磷,以及它们分别在土壤研究和农业生产中的用途。

什么是全磷和有效磷?全磷指的是土壤中所有形态的磷,包括有机磷和无机磷。

有机磷主要来自植物和动物的残留物、生物体的排泄物等,而无机磷主要来自磷酸盐矿物。

全磷的测定可以提供有关土壤磷素总含量的信息。

然而,全磷并不完全代表植物可利用的磷含量,因为在土壤中,只有一部分磷对植物具有直接的利用价值。

这部分被称为有效磷。

有效磷包括土壤溶液中可溶性磷酸盐和与磷酸盐结合的可交换态磷。

测定全磷的用途测定全磷的主要目的是评估土壤磷素的总含量。

这对于确定土壤的肥力和植物的营养需求非常重要。

了解土壤的全磷含量可以帮助农民和土壤科学家制定合适的施肥计划和土壤改良措施。

此外,全磷的测定也可用于土壤监测和环境污染研究中,以评估土壤中的磷素含量和污染程度。

测定有效磷的用途测定有效磷的主要目的是了解土壤中植物可直接利用的磷含量。

有效磷的测定对于评估土壤磷肥的供应能力和植物的磷素摄取非常重要。

基于有效磷含量,可以确定农田的磷肥需求,并制定适当的磷肥管理策略,以提高植物的生长和产量。

因此,测定有效磷的结果对农民和土壤科学家来说是非常有价值的。

对于农业生产来说,合理地管理土壤的有效磷含量有助于提高农作物的质量和产量,并减少磷肥的浪费和环境污染。

测定方法和技术测定全磷和有效磷的方法和技术有很多种,常用的包括:全磷的测定方法•干化学法:通过采用干燥和高温的处理,将土壤中的有机物和水分去除,然后用酸溶解矿物质,最后测定溶液中的磷含量。

•湿化学法:将土壤样品与浓酸进行短时间的反应,溶解矿物质和有机物,然后测定溶液中的磷含量。

•燃烧法:将土壤样品进行高温氧化,将有机磷转化为无机磷,然后用酸溶液测定磷含量。

土壤全磷含量 指标

土壤全磷含量 指标

土壤全磷含量指标
土壤全磷含量是土壤中各种形态磷素的总和,包括有机磷和无机磷两大类。

其中无机磷包括矿物态磷和吸附态磷,有机磷包括核酸磷、磷脂、核蛋白等。

土壤全磷含量的高低,受土壤母质、成土作用和耕作施肥的影响很大。

土壤全磷含量的测定方法有多种,其中一种是通过燃烧法将土壤中的有机磷转化为无机磷,再利用分光光度计测定吸光度,从而计算出土壤全磷含量。

另外,也可以采用酸溶-钼锑抗比色法来测定土壤全磷含量。

土壤全磷含量是评价土壤养分的重要指标之一,也是指导施肥的重要依据。

一般来说,土壤全磷含量在0.10%~0.15%之间,如果含量低于0.05%或高于0.25%,就需要采取相应的施肥措施来调节土壤养分。

在实际应用中,测定土壤全磷含量时需要注意以下几点:
采集的土壤样品要具有代表性,能够反映该地块的整体养分状况。

测定过程中要严格按照标准方法操作,以保证测定结果的准确性和可靠性。

对于不同地块和不同作物,土壤全磷含量的要求和适宜范围也有所不同,需要根据具体情况进行施肥方案的制定。

土壤全磷含量只是评价土壤养分的一个方面,还需要结合其他指标如土壤酸碱度、有机质等综合考虑,制定合理的施肥方案。

总之,了解土壤全磷含量对于合理施肥、提高作物产量和品质具有重要意义。

在实际应用中,需要综合考虑各种因素,制定科学合理的施肥方案,以促进农业生产的可持续发展。

土壤中磷的测定(全磷、速效磷)

土壤中磷的测定(全磷、速效磷)

1土壤全磷的测定(硫酸一高氯酸消煮法)方法原理在高温条件下,土壤中含磷矿物及有机磷化合物与高沸点的硫酸和强氧化剂高氯酸作用,使之完全分解,全部转化为正磷酸盐而进入溶液,然后用钼锑抗比色法测定。

操作步骤1.在分析天平上准确称取通过100目筛(孔径为0.25mm)的土壤样品1g(精确到0.0001)置于50ml三角瓶中,以少量水湿润,并加入浓H2SO48ml,摇动后(最好放置过夜)再加入70—72%的高氯酸(HClO4)10滴摇匀。

2.于瓶口上放一小漏斗,置于电炉上加热消煮至瓶内溶液开始转白后,继续消煮20分钟,全部消煮时间约为45—60分钟。

3.将冷却后的消煮液用水小心地洗入100ml容量瓶中,冲冼时用水应少量多次。

轻轻摇动容量瓶,待完全冷却后,用水定容,用干燥漏斗和无磷滤纸将溶液滤入干燥的100ml三角瓶中。

同时做空白试验。

4.吸取滤液2—10ml于50ml容量瓶中,用水稀释至30ml,加二硝基酚指示剂2滴,用稀氢氧化钠(NaOH)溶液和稀硫酸(H2SO4)溶液调节pH至溶液刚呈微黄色。

5.加入钼锑抗显色剂5ml,摇匀,用水定容至刻度。

6.在室温高于15℃的条件下放置30分钟后,在分光光度计上以700nm的波长比色,以空白试验溶液为参比液调零点,读取吸收值,在工作曲线上查出显色液的P—mg/L数。

7.工作曲线的绘制。

分别吸取5mg/L标准溶液0,1,2,3,4,5,6ml于50ml 容量瓶中,加水稀释至约30ml,加入钼锑抗显色剂5ml,摇匀定容。

即得0,0.1,0.2,0.3,0.4,0.5,0.6,mg/LP标准系列溶液,与待测溶液同时比色,读取吸收值。

在方格坐标纸上以吸收值为纵坐标,Pmg/L数为横坐标,绘制成工作曲线。

结果计算全P %=显色液mg/L×显色液体积×分取倍数/(W×106)×100式中:显色液Pmg/L—从工作曲线上查得的Pmg/L;显色液体积—本操作中为50ml;分取倍数—消煮溶液定容体积/吸取消煮溶液体积;106—将ug换算成gW—土样重(g)。

植物全氮、全磷、全钾含量的测定

植物全氮、全磷、全钾含量的测定

...... . . . 实验报告课程名称: 土壤学实验 指导老师: 倪吾钟 成绩:__________________实验名称: 植物全氮、全磷、全钾含量的测定 同组学生: 余慧珍 一、实验目的和要求 二、实验容和原理 三、实验材料与试剂 四、实验器材与仪器五、操作方法和实验步骤 六、实验数据记录和处理 七、实验结果与分析 八、讨论、心得一、 实验目的和要求1. 掌握植物样品消煮液制备方法;2. 掌握植物全氮、磷、钾的测定与结果分析。

二、 实验容和原理1. 植物样品消煮——H 2SO 4-H 2O 2消煮法在浓H 2SO 4溶液中,植物样品经过脱水、碳化、氧化等作用后,易分解的有机物则分解。

再加入H 2O 2 ,H 2O 2在热浓H 2SO 4溶液中会分解出新生态氧,具有强烈的氧化作用,可继续分解没被H 2SO 4破坏的有机物,使有机态氮全部转化为无机铵盐。

同时,样品中的有机磷也转化为无机磷酸盐,植株中K 以离子态存在。

故可用同一消煮液分别测定N 、P 、K 。

2. 植株全氮的测定——靛酚蓝比色法经消煮待测液中氮主要以铵态氮存在,被测物浸提剂中的NH 4+,在强碱性介质中与次氯酸盐和苯酚反应,生成水溶性染料靛酚蓝,其深浅与溶液中的NH 4+-N 含量呈正比,线性围为0.05-0.5mg/l 之间。

3. 植株全磷的测定——钒钼黄比色法经消煮待测液中磷主要以磷酸盐存在,在酸性条件下,正磷酸能与偏钒酸和钼酸发生反应,形成黄色的三元杂多酸—钒钼磷酸[1]。

溶液黄色稳定,黄色的深浅与磷的含量成正相关。

4. 植株全钾的测定——火焰光度计法消煮待测液中难容硅酸盐分解,从而使矿物态钾转化为可溶性钾。

待测液中钾主要以专业: 农资1202 姓名: 平帆学号: 3120100152 日期: 2015.3.27 地点: 农生环B249装订线钾离子形式存在,用酸溶解稀释后即可用火焰光度计测定。

三、 实验器材与仪器样品:三叶草,取于东七教学楼南侧,研磨过18目筛备用;试剂:浓硫酸、300g/l H 2O 2、6mol/l NaOH 溶液、0.2%二硝基酚指示剂、酚溶液、次氯酸钠溶液、铵标准溶液(准确称量0.3142g 经105℃干燥2h 的氯化铵(NH 4Cl ),用少量水溶解,移100mL容量瓶中,用吸收液稀释至刻度。

植物全氮、全磷、全钾含量的测定

植物全氮、全磷、全钾含量的测定

实验报告课程名称:土壤学实验指导老师:倪吾钟成绩:__________________ 实验名称:植物全氮、全磷、全钾含量的测定 同组学生XX :余慧珍一、实验目的和要求二、实验内容和原理 三、实验材料与试剂四、实验器材与仪器五、操作方法和实验步骤六、实验数据记录和处理 七、实验结果与分析八、讨论、心得一、 实验目的和要求1. 掌握植物样品消煮液制备方法;2. 掌握植物全氮、磷、钾的测定与结果分析。

二、 实验内容和原理1. 植物样品消煮——H 2SO 4-H 2O 2消煮法在浓H 2SO 4溶液中,植物样品经过脱水、碳化、氧化等作用后,易分解的有机物则分解。

再加入H 2O 2 ,H 2O 2在热浓H 2SO 4溶液中会分解出新生态氧,具有强烈的氧化作用,可继续分解没被H 2SO 4破坏的有机物,使有机态氮全部转化为无机铵盐。

同时,样品中的有机磷也转化为无机磷酸盐,植株中K 以离子态存在。

故可用同一消煮液分别测定N 、P 、K 。

2. 植株全氮的测定——靛酚蓝比色法经消煮待测液中氮主要以铵态氮存在,被测物浸提剂中的NH 4+,在强碱性介质中与次氯酸盐和苯酚反应,生成水溶性染料靛酚蓝,其深浅与溶液中的NH 4+-N 含量呈正比,线性X 围为0.05-0.5mg/l 之间。

3. 植株全磷的测定——钒钼黄比色法经消煮待测液中磷主要以磷酸盐存在,在酸性条件下,正磷酸能与偏钒酸和钼酸发生反应,形成黄色的三元杂多酸—钒钼磷酸[1]。

溶液黄色稳定,黄色的深浅与磷的含量成正相关。

4.植株全钾的测定——火焰光度计法消煮待测液中难容硅酸盐分解,从而使矿物态钾转化为可溶性钾。

待测液中钾主要以钾离子形式存在,用酸溶解稀释后即可用火焰光度计测定。

三、实验器材与仪器样品:三叶草,取于东七教学楼南侧,研磨过18目筛备用;试剂:浓硫酸、300g/l H2O2、6mol/l NaOH溶液、0.2%二硝基酚指示剂、酚溶液、次氯酸钠溶液、铵标准溶液(准确称量0.3142g经105℃干燥2h的氯化铵(NH4Cl),用少量水溶解,移100mL 容量瓶中,用吸收液稀释至刻度。

《第三次全国土壤普查样品制备与检测》培训教材 3.11 全磷的测定

《第三次全国土壤普查样品制备与检测》培训教材 3.11 全磷的测定

十一、全磷11.1编制依据本方法依据《森林土壤磷的测定》(LY/T 1232-2015)酸消解-电感耦合等离子体发射光谱法编制。

11.2方法原理在高温条件下,土壤中的含磷矿物及有机磷化合物与硝酸、高氯酸和氢氟酸作用,使之完全分解,全部转化为正磷酸盐而进入溶液,然后用电感耦合等离子体发射光谱法测定。

样品经处理制成溶液后,经自动进样器引入雾化器,经雾化室被载气带入温度达6000~10000 K的等离子体焰矩,试样中组分被原子化、电离、激发,当这些激发态的粒子回到稳态时放出一定的能量(表现为一定波长的光谱),测定磷元素特定谱线的发射强度,与标准溶液相比,对样品中磷进行定量分析。

11.3试剂和材料所有试剂除注明外,均为分析纯。

分析用水应符合GB/T 6682中三级水的规格要求。

试验中所需标准滴定溶液、制剂及制品,在没有注明其他要求时均按GB/T 601、GB/T 603的规定制备。

(1)浓硝酸[ρ(HNO3)=1.41 g/mL]。

(2)高氯酸[ρ(HClO4)=1.68 g/mL]。

(3)氢氟酸[ρ(HF)=1.15 g/mL]。

(4)浓盐酸[ρ(HCl)=1.19 g/mL]。

(5)盐酸溶液[c(HCl)=3 mol/L]:浓盐酸[11.3(3)]与水体积比为1+3,均匀混合。

(6)磷标准储备液[ρ(P)=1000 mg/L]:称取105 ℃烘干2 h的磷酸二氢钾(KH2PO4,优级纯)4.3936 g,溶解后,用水定容到1 L。

或购买市售有证标准溶液。

(7)磷标准溶液[ρ(P)=100 mg/L]:吸取10.00 mL磷标准储备液[11.3(6)]于100 mL 容量瓶中,加水定容至刻度。

此磷标准溶液需现配现用。

11.4仪器和设备(1)天平(感量0.0001 g)。

(2)电热板。

(3)铂坩埚或聚四氟乙烯坩埚。

(4)电感耦合等离子体发射光谱仪(ICP-OES)。

11.5分析步骤(1)硝酸-高氯酸-氢氟酸消解待测液的制备称取过0.149 mm筛的风干试样0.1 g(精确至0.0001 g)于铂坩埚或聚四氟乙烯坩埚中,用塑料移液管加3.0 mL硝酸[11.3(1)]、1.0 mL高氯酸[11.3(2)]和5.0 mL氢氟酸[11.3(3)],盖上坩埚盖,置于电热板上,于通风橱中由低温130 ℃渐渐升至高温200 ℃加热消化,适当摇动坩埚,达到良好的除硅效果(HF与硅形成SiF4,蒸发),待冒出大量白色烟雾,继续加热至不再冒白烟为止,样品消煮成近干。

土壤中全磷测定

土壤中全磷测定

土壤中全磷测定土壤全磷分析土壤全磷测定要求把无机磷全部溶解,同时把有机磷氧化成无机磷,因此测定的第一步是样品分解,第二步是溶液中磷的测定。

一、HClO4–H2SO4消煮,钼蓝比色法1.方法原理在高温条件下,土壤中含磷矿物及有机磷化合物与高沸点的H2SO4和强氧化剂HClO4作用,分解成正磷酸盐而进入溶液。

在一定酸度下,正磷酸根与钼酸铵作用生成磷钼杂多酸,在还原剂的作用下形成“钼蓝”,使溶液呈蓝色。

蓝色深浅与磷的含量成正比,可用分光光光度法于700nm处测定。

2.仪器设备分光光度计消煮炉3.试剂(1)浓H2SO4;(2)70%~72%HClO4;(3)2,4-二硝基酚指示剂:0.2g 溶于100 mL水中;(4)4 mol?L-1氢氧化钠溶液;(5)钼锑储存溶液;a浓硫酸153 mL缓缓倒入400 mL水中,b10g 钼酸铵溶于60℃ 300 mL水中,a倒入b中,加入100 mL 5g·L-1的酒石酸锑钾溶液,用水定容摇匀,贮存于棕色试剂瓶中。

(6)钼锑抗显色剂:100 mL钼锑储存溶液中加1.5g抗坏血酸,现配现用。

(7)磷标准贮存溶液(ρ=100 mg·L-1),0.4390g 磷酸二氢钾(105℃烘2h)溶于100 mL水中,加入5mL硫酸,定容至1L;(8)磷标准溶液(ρ=5.00mg·L-1),磷标准贮存溶液准确稀释20倍。

4.操作步骤(1)样品消煮称取100目土样0.3~1 g于50 mL消化管中→ 加少量水润湿后加浓硫酸8mL,摇匀→ 加70~72%高氯酸10滴,摇匀,管口加一个小漏斗→ 加热消煮,至溶液开始转白后继续消煮20min→ 冷却后用水洗入100 mL容量瓶中→ 定容摇匀→ 静置过夜取上清液或用干燥的无磷滤纸过滤。

(同时做空白试验)(2)溶液中磷的比色测定移取澄清液或滤液2~10 mL于50ml容量瓶中→ 加水至约30 mL→ 加二硝基酚指示剂2滴→ 用4 mol?L-1 NaOH调节pH至溶液刚呈黄色→ 加钼锑抗显色剂5 mL→ 定容,摇匀→ 半小时后(高于15℃)于700nm处比色测定标准曲线分别移取5.00mg·L-1磷标准溶液0、1、2、3、4、5mL于50mL 容量瓶中,同上操作,以吸光度为纵坐标,磷浓度为横坐标绘制工作曲线。

土壤全磷测定方法

土壤全磷测定方法

土壤全磷测定方法一、引言土壤是农业生产的基础,而磷是植物生长发育所必需的重要元素之一。

因此,准确测定土壤中的全磷含量对于合理施肥和农作物高产具有重要意义。

本文将介绍几种常用的土壤全磷测定方法,包括钼酸铵法、摩根提取法和ICP法。

二、钼酸铵法钼酸铵法是一种常用的土壤全磷测定方法。

其原理是将土壤中的磷酸盐与钼酸铵在酸性条件下反应生成黄色的钼酸铵磷酸盐,并通过分光光度计测定其吸光度来计算土壤中的全磷含量。

这种方法操作简单、准确度高,被广泛应用于土壤磷的测定。

三、摩根提取法摩根提取法是一种常用的土壤全磷测定方法,其原理是通过酸性提取剂(如盐酸)将土壤中的有效磷酸盐溶解出来,然后通过分光光度计测定溶液中的磷含量来计算土壤中的全磷含量。

这种方法可以较好地模拟土壤中的有效磷酸盐释放情况,因此在研究土壤肥力和施肥效果时应用较多。

四、ICP法ICP法(Inductively Coupled Plasma)是一种高精度、高灵敏度的土壤全磷测定方法。

它利用电感耦合等离子体原子发射光谱仪对土壤样品进行分析,通过测定土壤样品中的磷元素的发射光谱强度来计算其含量。

ICP法具有快速、准确、灵敏度高等优点,被广泛应用于土壤磷的测定。

五、比较与选择以上介绍了几种常用的土壤全磷测定方法,它们各有优缺点,应根据具体情况选择适合的方法。

钼酸铵法操作简单、成本低,适用于大样品量的测定;摩根提取法模拟土壤中的有效磷酸盐释放情况较好,适用于研究土壤肥力和施肥效果;ICP法准确度高、灵敏度高,适用于高精度的磷测定。

六、总结土壤全磷测定是农业生产中重要的一环,准确测定土壤中的全磷含量对于合理施肥和农作物高产具有重要意义。

本文介绍了几种常用的土壤全磷测定方法,包括钼酸铵法、摩根提取法和ICP法。

针对不同的研究目的和条件,可以选择合适的方法进行土壤全磷测定。

通过科学、准确的测定,可以为农业生产提供重要的技术支持。

土壤全磷测定方法

土壤全磷测定方法

土壤全磷测定方法土壤中的磷(P)是植物生长所必需的营养元素之一,对于土壤的磷含量进行测定有助于合理施肥、提高农产品产量和质量,以及保护环境。

以下是常用的土壤全磷测定方法。

1. 重铁试剂法(Ammonium Molybdate-Phosphoantimonylmolybdate Method)重铁试剂法是一种常用的土壤全磷测定方法,通过把土壤样品中的磷与重铁试剂反应生成黄色混合物来测定磷含量。

具体操作步骤如下:(1)取样:从土壤样品中取出一定量的土壤样品,并将其粉碎和筛选。

(2)准备试剂:准备好重铁试剂和硝酸。

重铁试剂的配製为:取溶液A(硫酸铵铁)、溶液B(磷酸铵铬酸铁)和溶液C(酒精)加入适量的稀甲醇和水,接着加入稀盐酸,最后加入浓硫酸搅拌均匀。

(3)样品处理:将取样后的土壤样品称取一定量的土壤,加入到准备好的溶液中,通过酸处理溶解样品中的磷。

(4)沉淀:将溶液离心沉淀,将上清液倒掉,并用去离子水洗涤沉淀。

(5)显色:将洗涤后的沉淀加入到重铁试剂中,震荡均匀后放置一段时间,根据混合物的颜色密度测量磷含量。

2. 氨磷酞法(Ammonium Phosphomolybdate Method)氨磷酞法是一种快速、准确的土壤全磷测定方法。

它利用氨磷酞与土壤中的磷反应生成蓝紫色复合物来测定磷含量。

具体操作步骤如下:(1)取样:从土壤样品中取出一定量的土壤样品,并将其粉碎和筛选。

(2)准备试剂:准备好氨磷酞溶液和硝酸。

氨磷酞溶液的配製为:将氨磷酞加入适量的稀盐酸和硝酸中溶解。

(3)样品处理:将取样后的土壤样品称取一定量的土壤,加入到准备好的溶液中,通过酸处理溶解样品中的磷。

(4)显色:将溶解后的样品加入到氨磷酞溶液中,震荡均匀后放置一段时间,根据复合物的颜色密度测量磷含量。

这些方法在实验室和农田中得到广泛应用,并且都有一定的准确性和精度。

但需要注意的是,不同土壤类型和环境条件对这些测定方法的影响因素较多,所以在使用这些方法测定土壤全磷时,需要结合具体情况选择合适的方法,并进行适当的修正和校正,以确保测定结果的准确性和可靠性。

土壤全磷的检测流程

土壤全磷的检测流程

土壤全磷的检测流程一、引言土壤是植物生长的基础,其中包含的各种营养元素对于植物的生长发育至关重要。

全磷是土壤中的一种重要养分,对于植物的生长、开花和结果起着重要作用。

因此,准确测定土壤中的全磷含量对于农业生产和土壤肥力评价具有重要意义。

本文将介绍土壤全磷的检测流程。

二、样品采集在进行土壤全磷检测之前,首先需要采集土壤样品。

样品的采集应该遵循一定的规则,以保证样品的代表性。

通常情况下,可以采用“Z”字形采样法,即从同一块地选择不同深度的样品进行采集,然后混合均匀,得到最终的样品。

采样时应使用无锈的工具,避免与金属接触,以免污染土壤样品。

三、样品处理采集回来的土壤样品需要进行处理,以获得可测定全磷的样品。

首先,将样品空气干燥,去除多余的水分。

然后,将样品通过筛网进行筛选,去除大颗粒杂质。

接下来,将样品研磨成细粉末,以便后续的分析操作。

四、提取全磷提取全磷是测定土壤中全磷含量的关键步骤。

常用的提取方法有水提法和酸提法。

其中,水提法适用于大多数土壤类型,酸提法适用于含有磷酸盐矿物质的土壤。

在水提法中,将样品与一定比例的水进行混合,静置一段时间后,用滤纸过滤,得到水提取液。

在酸提法中,将样品与酸进行混合,加热一段时间后,用滤纸过滤,得到酸提取液。

提取液中的磷浓度即为全磷含量的指标。

五、测定全磷提取液中的全磷含量可以通过比色法或光度法进行测定。

其中,比色法基于磷酸盐与钼酸铵反应产生的深蓝色化合物,通过比色计测定其吸光度,进而计算出全磷含量。

光度法则是利用磷酸盐与酚酞反应产生的红色化合物,通过光度计测定其吸光度,计算全磷含量。

这两种方法都能够准确测定土壤中的全磷含量,选择合适的测定方法根据实际需要进行。

六、结果解读测定完土壤样品中的全磷后,根据测定结果可以对土壤肥力进行评价。

全磷含量高的土壤表明土壤肥力较高,适合植物生长。

相反,全磷含量低的土壤则需要补充磷肥来提高土壤肥力。

根据土壤全磷含量的测定结果,可以合理调整施肥方案,提高农作物的产量和质量。

土壤中磷的测定(全磷、速效磷)

土壤中磷的测定(全磷、速效磷)

1土壤全磷的测定(硫酸一高氯酸消煮法)方法原理在高温条件下,土壤中含磷矿物及有机磷化合物与高沸点的硫酸和强氧化剂高氯酸作用,使之完全分解,全部转化为正磷酸盐而进入溶液,然后用钼锑抗比色法测定。

操作步骤1.在分析天平上准确称取通过100目筛(孔径为0.25mm)的土壤样品1g(精确到0.0001)置于50ml三角瓶中,以少量水湿润,并加入浓H2SO48ml,摇动后(最好放置过夜)再加入70—72%的高氯酸(HClO4)10滴摇匀。

2.于瓶口上放一小漏斗,置于电炉上加热消煮至瓶内溶液开始转白后,继续消煮20分钟,全部消煮时间约为45—60分钟。

3.将冷却后的消煮液用水小心地洗入100ml容量瓶中,冲冼时用水应少量多次。

轻轻摇动容量瓶,待完全冷却后,用水定容,用干燥漏斗和无磷滤纸将溶液滤入干燥的100ml三角瓶中。

同时做空白试验。

4.吸取滤液2—10ml于50ml容量瓶中,用水稀释至30ml,加二硝基酚指示剂2滴,用稀氢氧化钠(NaOH)溶液和稀硫酸(H2SO4)溶液调节pH至溶液刚呈微黄色。

5.加入钼锑抗显色剂5ml,摇匀,用水定容至刻度。

6.在室温高于15℃的条件下放置30分钟后,在分光光度计上以700nm的波长比色,以空白试验溶液为参比液调零点,读取吸收值,在工作曲线上查出显色液的P—mg/L数。

7.工作曲线的绘制。

分别吸取5mg/L标准溶液0,1,2,3,4,5,6ml于50ml 容量瓶中,加水稀释至约30ml,加入钼锑抗显色剂5ml,摇匀定容。

即得0,,,,,,,mg/LP标准系列溶液,与待测溶液同时比色,读取吸收值。

在方格坐标纸上以吸收值为纵坐标,Pmg/L数为横坐标,绘制成工作曲线。

结果计算全P %=显色液mg/L×显色液体积×分取倍数/(W×106)×100式中:显色液Pmg/L—从工作曲线上查得的Pmg/L;显色液体积—本操作中为50ml;分取倍数—消煮溶液定容体积/吸取消煮溶液体积;106—将ug换算成gW—土样重(g)。

全氮,全磷测定

全氮,全磷测定

全氮,全磷测定方法1:实验仪器电子天平,消煮管(50毫升),小漏斗,流动分析仪,远红外消煮炉2:实验试剂混合催化剂:100g硫酸钾,10g五水合硫酸铜,于研钵中,磨细,过80目筛子,必须充分混合均匀.浓硫酸7.2N氢氧化钠:144g氢氧化钠溶于400毫升水中,充分溶解,冷却后定容到500毫升3:实验步骤:1)土样消煮,称取风干过0.25mm筛的土壤样品0.1-1g(根据土壤养分含量确定称样量),放入干燥的消煮管中(50毫升),加混合催化剂1g,摇匀,使土与催化剂充分混合,再加入5毫升浓硫酸,摇匀后,静止过夜,盖上小漏斗,置于消煮炉上,开始用小火加热(约120℃),注意防止作用过猛,待瓶内反应缓和时,提高温度(约150-180℃),当瓶内消煮液为均匀液质时,提高温度至200℃,当消煮液呈灰白色时,加高温度至240℃,待完全变为灰白稍带绿色时,继续消煮至土样消解完全,消煮时温度以硫酸在瓶内回流的高度在瓶颈上部的1/3处为好,消煮过程中,要注意观察瓶壁内是否有黑色炭粒,若有应慢慢摇晃使炭粒溶入消煮液中,煮至炭粒消失,同时做两个空白,消煮完毕后,取下消煮管,冷却,定容,定容时,先加2/3的蒸馏水,待冷却后,再定容至刻度50毫升,摇匀.2)待测液测定①全氮直接用流动分析仪测定②全磷,吸待测液8毫升,加2毫升7.2N氢氧化钠,混合均匀,用流动分析仪测定3)若为植物样品①称样量为0.01-0.1g②消煮过程中,植物样品易喷溅,开始时温度要低(80-100℃),后同土壤样品注:1)消煮过程中,要经常转动消煮管,使喷溅在瓶壁上的土粒(植物)及早回流到酸液中,并调换消煮管位置(受热不均)2)消煮炉为60孔,可放59个消煮管,另一个放感温探头3)称样时,若有样品溅到瓶壁上,加浓硫酸时,缓慢将其冲下.计算:1)全氮(ppm)=(测定值-空白)*50/m m为称样量2)全磷(ppm)=(测定值-空白)*10*50/8/mm为称样量10为待测液体积50/8为分取倍数。

植株全氮、全磷、全钾含量的测定

植株全氮、全磷、全钾含量的测定

植株全氮、全磷、全钾的测定一、待测液的制备(H2SO4—H2O2消煮法)二、植株全氮的测定(H2SO4—H2O2消煮,蒸馏法)三、植株全磷的测定(H2SO4—H2O2消煮,钒钼黄比色法)四、植株全钾的测定(H2SO4—H2O2消煮,火焰光度法一、待测液的制备(H2SO4—H2O2消煮法)1 H2SO4—H2O2消煮原理植物样品在浓H2SO4溶液中,经过脱水、碳化、氧化等一系列的作用后,易分解的有机物则分解,然后再加入H2O2,H2O2在热的浓H2SO4溶液中会分解出新生态氧,具有强烈的氧化作用,可继续分解没被H2SO4破坏的有机物,使有机态氮全部转化为无机铵盐。

同时,样品中的有机磷也转化为无机磷酸盐,故可用同一消煮液分别测定N、P、K(植株中K以离子态存在)。

2 主要仪器:开氏瓶(50ml)或消煮管、150mL三角瓶;万分之一电子天平、电热板或普通电炉等;定氮仪等。

3 操作步骤称取烘干、磨细的植物样品(过0.25 mm筛)0.3000g~0.5000g,置于50mL开氏瓶(或消煮管)中(勿将样品粘附在瓶颈上),先滴入少量水湿润样品,加浓硫酸8mL,摇匀(最好放置过夜),瓶口盖一弯颈小漏斗,在电炉上先缓缓加热,待浓硫酸分解冒大量白烟时再升高温度。

消煮至溶液呈均匀的棕黑色时,取下开氏瓶,稍冷后提起弯颈漏斗,滴加30 %H2O210滴,并不断摇动开氏瓶。

再加热(微沸)约5 min,取下,稍冷后重复滴加30 %H2O2 5~10滴,再消煮。

如此反复进行3~5次,每次添加的H2O2应逐次减少,消煮至溶液呈无色或清亮后,再加热5~10min(以赶尽剩余的H2O2 ),取下开氏瓶冷却,用少量水冲洗漏斗,洗液流入开氏瓶中。

将消煮液无损地洗入100 ml容量瓶中,用水定容,摇匀。

过滤或放置澄清后供氮、磷、钾测定。

4 注意事项:(1)消煮开始时火要小;(2)加H2O2时要等器皿少冷后,提起小漏斗,直接将H2O2滴入溶液中;(3)消煮要彻底。

土壤全磷的测定(精)

土壤全磷的测定(精)

(2) 固相中的磷: 液相中磷少,由固相磷补充,所以重要。 液相中磷(有效性高),只有0.05~0.03 kg/亩(少), 植物(小麦)吸收1~1.5 kg/亩(高出50~300倍),所 以植物吸收的磷主要来自土壤固相。
3. 土壤有效磷供应状况 指在一个生长季节内,能够被植物吸收利 用的土壤磷素。包括 (1)液相磷 (2)土壤胶体弱吸附或交换态磷
Fe3+形成配合物而掩蔽之。在钼锑抗比色法中, 允许Fe3+含量达400mg/L,因为Fe3+可与抗坏血 酸形成配合物;在H2SO4-HClO4消煮时,HClO4 又能与Fe3+成配合物,所有这些都减少了Fe3+的
干扰。
Si4+:在酸度较低时(0.25mol/L以下)可生成SiMo 杂多酸,但在P的测定中,PMo杂多酸形成的酸度 较高(在0.45mol/L以上),此酸度抑制了SiMo杂 多酸的形成。另外,用H2SO4-HClO4消煮时,由于 HClO4的脱水作用很强,使胶状Si脱水成SiO2析出, 所以少量的Si可用控制酸度的方法消除。
的碱。与重量法相比无大优点,且多了手续,如标
准酸、碱,现少用。
总之,重量法、滴定法均需沉淀重量大,即含量高
时用,而土壤中的P一般较少,所以现在普遍采用 比色法。
3、比色法:
(1) 钒钼黄法(又叫钼黄法):抗干扰离子的范
围大,灵敏度较低,适于测定含P量高的样品。 (2) 钼兰法:最早在1887年提出,后经不断研究、 改进,直到1962年Murphy等提出用抗坏血酸作为 测P的还原剂,才形成了现在的钼锑抗比色法。
稀释倍数大,结果的误差也大。
注意:比色分析要求工作曲线与样品的测定条件一
致,所以要求严格按照操作手续进行。

土壤中磷的测定(全磷、速效磷)

土壤中磷的测定(全磷、速效磷)
土壤全磷的测定硫酸一高氯酸消煮法方法原理在高温条件下土壤中含磷矿物及有机磷化合物与高沸点的硫酸和强氧化剂高氯酸作用使之完全分解全部转化为正磷酸盐而进入溶液然后用钼锑抗比色法测定
1
方法原理
在高温条件下,土壤中含磷矿物及有机磷化合物与高沸点的硫酸和强氧化剂高氯酸作用,使之完全分解,全部转化为正磷酸盐而进入溶液,然后用钼锑抗比色法测定。
(5)二硝基酚。称取0.25g二硝基酚溶于100ml蒸馏水中。
(6)钼锑抗混合色剂。在100ml钼锑贮存液中,加入1.5g左旋(旋光度+21—+22°)抗坏血酸,此试剂有效期24小时,宜用前配制。2土壤中速效磷的测定(碳酸氢钠法)
了解土壤中速效磷供应状况,对于施肥有着直接的指导意义。土壤速效磷的测定方法很多,由于提取剂的不同所得的结果也不一致。提取剂的选择主要根据各种土壤性质而定,一般情况下,石灰性土壤和中性土壤采用碳酸氢钠来提取,酸性土壤采用酸性氟化铵或氢氧化钠—草酸钠法来提取。
0.1,0.2,0.3,0.4,0.5,0.6,mg/LP标准系列溶液,与待测溶液同时比色,读取吸收值。
在方格坐标纸上以吸收值为纵坐标,Pmg/L数为横坐标,绘制成工作曲线。
结果计算
全P %=显色液mg/L×显色液体积×分取倍数/(W×106
)×100
式中:
显色液Pmgቤተ መጻሕፍቲ ባይዱL—从工作曲线上查得的Pmg/L;
、HCO-
3、CO2-
3等阴离子有利于吸附态磷的交换,因此,碳酸氢钠不仅适用于石灰性土壤,也适用于中性和酸性土壤中速效磷的提取。
待测液用钼锑抗混合显色剂在常温下进行还原,使黄色的锑磷钼杂多酸还原成为磷钼蓝进行比色。
操作步骤:
1.称取通过18号筛(孔径为1mm)的风干土样5g(精确到0.01g)于200ml三角瓶中,准确加入0.5mol/L碳酸氢钠溶液100ml,再加一小角勺无磷活性碳,塞紧瓶塞,在振荡机上振荡30分钟(振荡机速率为每分钟150—180次),立即用无磷滤纸干过滤,滤液承接于100ml三角瓶中。最初7~8ml滤液弃去。

土壤全磷测定方法

土壤全磷测定方法

土壤全磷测定方法
土壤全磷测定方法一般采用化学方法,具体步骤如下:
1. 取适量的土壤样品,在室温下干燥并过筛,取筛后的细粉末制成试样。

2. 取试样约0.5g,加入烧杯中,加入10mL的浓盐酸和2mL的浓硝酸混合酸中,使其溶解。

3. 在沸腾状态下,加入3mL的氢氧化钠溶液(20%),加入晶体锰酸钾固体,不断搅拌,直至溶液变为紫色。

4. 将溶液冷却至室温,在用去离子水调整溶液体积,使溶液体积为50mL。

5. 取适量溶液进行全磷含量的测定,一般采用分光光度计或原子吸收光谱仪等仪器进行分析。

6. 最后,将测定值乘以稀释倍数,得到土壤全磷含量。

土壤全磷测定

土壤全磷测定

土壤全磷测定
土壤全磷测定是一种测定土壤中总磷含量的方法。

土壤中磷素是植物生长所必需的营养元素之一,对植物的生长发育具有重要影响。

因此,了解土壤中的总磷含量对于合理施肥和作物生产具有重要意义。

土壤全磷测定的方法有多种,常用的方法包括酸浸法和碱浸法。

酸浸法是将土壤样品与酸溶液进行反应,将土壤中的磷素溶解出来,然后利用分析方法测定磷素的含量。

碱浸法则是将土壤样品与碱溶液反应,将土壤中的磷素转化成可溶性的磷酸盐形式,然后进行测定。

土壤全磷测定的结果可以帮助农民和土壤科学家判断土壤中磷素的供应能力和作物对磷素的需求是否匹配。

如果土壤中磷素含量过低,可以采取合理的施肥措施来提高土壤磷素含量,从而改善作物的生长状况。

反之,如果土壤中磷素含量过高,可能会对环境造成污染和浪费资源,因此需要适当调整施肥策略。

总之,土壤全磷测定是一种重要的土壤分析方法,可以帮助农民和土壤科学家了解土壤磷素含量,从而指导合理施肥和作物生产。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

全磷含量测定
方法原理
有机肥料试样采用硫酸和过氧化氢消煮,在一定酸度下,待测液中的磷酸根离子与偏钒酸和钼酸反应形成黄色三元杂多酸。

在一定浓度范围[1mg/L! 20mg/L:磷(P)]内,黄色溶液的吸光度与含磷量呈正比例关系,用分光光度法定量磷。

试剂
1 硫酸(ρ1.84)。

2 硝酸。

3 30% 过氧化氢。

4 钒钼酸铵试剂:
A液:称取25.0g钼酸铵溶于400mL水中。

B液:称取1.25g偏钒酸铵溶于300mL沸水中,冷却后加250mL硝酸(纯),冷却。

搅拌下将A液缓缓注入B液中,用水稀释至1L,混匀,贮于棕色瓶中。

5 氢氧化钠:质量浓度为10%的溶液。

6 硫酸:体积分数为5%的溶液。

7 磷标准溶液:50μg/mL。

称取0.2195g经105℃烘干2h的磷酸二氢钾(优级纯),用水溶解后,转入1L容量瓶中,加入5mL硫酸(体积分数为5%的溶液),冷却后用水定容至刻度。

该溶液1mL含磷(P)50μg。

8 2,4-(或 2,6-)二硝基酚指示剂:质量浓度为0.2%的溶液。

称取0.2g2,4-(或2,6-)二硝基酚溶于100mL水中(饱和)。

9 无磷滤纸。

分析步骤
●试样溶液制备
称取过φ0.5mm筛的风干试样0.3-0.5g(精确至0.0001g),置于开氏烧瓶底部,用少量水冲洗沾附在瓶壁上的试样,加5.0mL硫酸(纯)和1.5mL过氧化氢(30%),小心混匀,瓶口放一弯颈小漏斗,放置过夜。

在可调电炉上缓慢升温至硫酸冒烟,取下,稍冷后加15滴过氧化氢,轻轻摇动开氏烧瓶,加热10min,取下,稍冷后分次再加5-10滴过氧化氢并分次消煮,直至溶液呈无色或淡黄色清液后,继续加热10min,除尽剩余的过氧化氢。

取下稍冷,小心加水至20mL-30mL,加热至沸。

取下冷却,用少量水冲洗弯颈小漏斗,洗液收入原开氏烧瓶中。

将消煮液移入100mL容量瓶中,加水定容,静置澄清或用无磷滤纸干过滤到具塞三角瓶中,备用。

●空白溶液制备除不加试样外,应用的试剂和操作同上。

●测定
吸取5.00mL-10.00mL试样溶液(上述)(含磷0.05mg-1.0mg)于50mL容量瓶中,加水至30mL左右,与标准溶液系列同条件显色、比色,读取吸光度。

●校准曲线绘制
吸取磷标准溶液(7)0,1.0,2.5,5.0,7.5,10.0,15.0mL分别置于7个50mL容量瓶中,加入与吸取试样溶液等体积的空白溶液,加水至30mL左右,加2滴2,4-(或 2,6-)二硝基酚指示剂溶液,用氢氧化钠溶液(质量浓度为10%)和硫酸溶液(体积分数为5%)调节溶液刚呈微黄色,加10.0mL钒钼酸铵试剂,摇匀,用水定容。

此溶液为 1mL含磷(P)
0,1.0,2.5,5.0,7.5,10.0,15.0μg的标准溶液系列。

在室温下放置20min后,在分光光度计波长440nm处用1cm光径比色皿,以空白溶液调节仪器零点,进行比色,读取吸光度。

根据磷浓度和吸光度绘制标准曲线或求出直线回归方程。

分析结果的表述
肥料的全磷含量以肥料的质量分数表示,按式(4)计算:
c×V×D
全磷(P2O5)(%)= ——————×2.29×10-4
(4)
m×(1-X0)
式中:
c———由校准曲线查得或由回归方程求得显色液磷浓度,单位为微克每毫升(μg/ mL);
V———显色体积,50mL;
D———分取倍数,定容体积 /分取体积,100/5或 100/10;
m———称取试样质量,单位为克(g);
X0———风干试样的含水量;
2.29———将磷(P)换算成五氧化二磷(P205)的因数;
10-4
———将μg/g换算为质量分数的因数。

所得结果应表示至两位小数。

允许差
5.4.
6.1 取两个平行测定结果的算术平均值作为测定结果。

5.4.
6.2 两个平行测定结果允许绝对差应符合表5要求。

表5。

相关文档
最新文档