大跨径桥梁结构体系及其优化与创新
大跨径施工创新工艺优秀做法
大跨径施工创新工艺优秀做法
大跨径施工创新工艺的优秀做法包括:
1. 移动模架施工法:适用于等跨径、等截面的跨预应力连续箱梁的施工,可以缩短施工周期,提高经济效益。
在应用移动模架施工法时,纵向施工缝应设置在成桥恒载状态的零弯矩附近,以保持梁体前端处于悬臂状态。
2. 满堂支架施工法:适用于大跨径连续桥梁施工,是一种有效且常用的施工方法。
在浇筑混凝土前,应对支架和模板进行严格检查,确保尺寸、位置准确,螺栓、拉杆牢固。
3. 大跨度钢桁架分段拼装累积液压同步滑移安装施工工法:针对通航工况下安全、高效、经济、环保地完成大跨度钢桁架桥安装这一难题,采用钢桁架桥分段拼装、累积液压同步滑移就位安装的施工工法。
工艺原理是借助桁架安装临时支墩及墩顶贝雷架平台,铺设滑移轨道,在拼装胎架上分段拼装桁架,然后利用“液压同步滑移施工技术”向一侧将其累积、整体滑移到位。
这些做法均具有创新性和实用性,能够提高大跨径施工的效率和质量。
大跨径预应力混凝土连续刚构桥的现状和发展趋势
大跨径预应力混凝土连续刚构桥的现状和发
展趋势
大跨径预应力混凝土连续刚构桥是一种目前在桥梁工程领域应用广泛的重要结构,在公路、铁路、城市轻轨等领域都有广泛的应用。
该结构特点是支座数量少,受力合理,且具有均布荷载能力强、受力平稳、抗震能力好等优点,成为现代桥梁工程发展的重要代表。
随着经济发展和交通基础设施建设的不断完善,大跨径预应力混凝土连续刚构桥的应用也得到了充分关注及发展。
目前,一些设计机构在大跨径桥梁设计中已将预应力混凝土技术和连续刚构桥技术相结合,研发出了一系列高水平性能的结构体系,如采用斜拉桥式的悬索混合结构、网壳混合结构等,不仅扩大了联通地区的交通能力,且建设成本与施工时间得到了有效控制。
同时,大跨径预应力混凝土连续刚构桥也面临着新的挑战。
一方面,在桥梁抗震能力方面,随着抗震等级的提高,需要进一步提高预应力混凝土连续刚构桥的抗震性能。
另一方面,随着越来越多的城市进行地铁轻轨的建设,大跨径预应力混凝土连续刚构桥也需要适应不断变化的建设需求,包括在桥梁维护方面的技术创新、结构设计的优化等。
因此,未来大跨径预应力混凝土连续刚构桥的发展方向应该从以下几个方面进行努力:一是加强抗震性能,进一步推广高性能、高强抗震的预应力混凝土材料;二是结合新兴技术,如全息防护、感应加热接箍等,提高预应力混凝土的施工效率和工艺手段;三是完善桥梁维护技术,推进桥梁智能化、数字化的发展,实现更可持续的交通运输模式。
总的来说,大跨径预应力混凝土连续刚构桥已经成为现代桥梁工程的重要代表,其发展趋势应该也从传统的“大跨距、大流量”要努
力改进到“抗震、安全、数字化、智能化”的方向,并不断探索新的设计理念和施工技术,实现更高性价比、更可持续的发展。
大跨径连续桥梁施工技术探究
大跨径连续桥梁施工技术探究一、大跨径连续桥梁的技术特点大跨径连续桥梁一般指跨度在100米以上的桥梁,其技术特点主要表现在结构形式、施工难度和安全要求等方面。
1. 结构形式:大跨径连续桥梁的结构形式一般采用钢筋混凝土连续梁或钢桁梁,较短跨度的桥梁多为简支梁或连续刚构梁。
这些结构形式在工程实践中被证明具有较好的承载能力和变形性能,能够满足大跨度桥梁对于承载和变形的要求。
2. 施工难度:由于大跨径连续桥梁跨度较大、结构复杂,所以其施工难度较大。
首先是梁体施工的难度,由于梁体体积大、重量重,需要采用大型起重设备进行梁体吊装,同时对于梁体的预应力张拉、模板支撑等工序也需要高度的施工技术水平。
其次是梁体的整体拼装难度,梁体的拼装需要保证拼缝的准确度和施工质量,在条件限制下提高施工效率。
再次是梁体的预应力施工,对于梁体的预应力张拉、锚固等工序需要保证预应力的准确性和安全性,确保梁体的受力性能。
3. 安全要求:大跨径连续桥梁作为重要的交通设施,其安全性要求极高。
在施工过程中需要保证梁体的承载能力、变形性能和耐久性能,同时需要保证施工的安全性和施工人员的安全。
大跨径连续桥梁的施工工艺主要包括梁体制作、梁体吊装、梁体拼装、预应力施工等工序。
1. 梁体制作:梁体制作是大跨径连续桥梁施工的首要工序,包括混凝土梁体的浇筑、预应力筋的设置、模板拆除等工序。
在梁体制作过程中需要保证梁体的质量和几何尺寸,严格控制混凝土的配合比和浇筑质量。
同时需要保证梁体的预应力筋张拉和锚固工序的准确性,提高梁体的受力性能。
2. 梁体吊装:梁体吊装是大跨径连续桥梁施工的关键环节,需要采用大型起重设备进行梁体的吊装作业。
在梁体吊装过程中需要保证梁体的稳定性和安全性,严格控制吊装工艺,确保梁体的准确安装到设计位置。
3. 梁体拼装:梁体的拼装是大跨径连续桥梁施工的重要工序,需要保证梁体的拼缝的准确度和施工质量,并且需要在条件限制下提高施工效率。
在梁体拼装过程中需要保证梁体的几何尺寸和受力性能。
桥梁工程中的创新技术
桥梁工程中的创新技术桥梁工程是土木工程的重要领域之一,通过不断的技术创新,可以提升桥梁的设计、施工和维护水平,实现更加安全、耐久和高效的桥梁工程。
本文将探讨桥梁工程中的创新技术及其应用现状、发展趋势和挑战。
首先,桥梁工程中的创新技术包括大跨度桥梁技术、高性能材料技术和智能监测技术等。
例如,大跨度桥梁技术的应用使得跨越江河湖海和城市交通干道的大型桥梁得以实现,如斜拉桥、悬索桥和拱桥等。
高性能材料技术的应用提升了桥梁结构的力学性能和耐久性,如高强度钢材、高性能混凝土和复合材料等。
智能监测技术的应用使得桥梁的运行状态可以实时监测和分析,提高了桥梁的安全性和管理效率。
其次,桥梁工程中的创新技术发展趋势包括更加高效、更加智能和更加环保。
例如,随着材料科学的发展,高性能材料在桥梁工程中的应用将更加广泛,如纳米增强材料和智能材料等。
智能监测技术的发展趋势将使桥梁监测系统更加精准和高效,如无线传感器网络和大数据分析等。
环保技术的发展趋势将使桥梁建设和维护更加绿色和可持续,如低碳材料和节能技术等。
然而,桥梁工程中的创新技术在应用过程中也面临一些挑战。
一方面,创新技术的研发和应用需要大量的投入和支持,特别是对于大型桥梁项目,资金和技术门槛较高。
另一方面,桥梁工程的复杂性和环境多样性增加了创新技术应用的难度,如极端气候条件和复杂地质环境等。
此外,桥梁工程的长期性能和安全性还需要经过大量实践和验证,确保技术的可靠性和可行性。
为了解决这些问题,需要从以下几个方面推动桥梁工程创新技术的发展和应用。
首先,政府应制定和实施相关政策和法规,鼓励和支持桥梁工程创新技术的研发和应用。
例如,可以通过财政补贴、税收优惠和技术支持等手段,激励企业和研究机构开展桥梁工程创新技术的研发和应用。
其次,工程师和建筑师应加强专业知识和技能的学习和更新,掌握最新的桥梁工程创新技术和方法,提升设计和施工水平。
例如,可以通过参加专业培训、技术交流和学术研讨会等,提升自身的专业素养和创新能力。
大跨度现代悬索桥的设计创新与技术进步
大跨度现代悬索桥的设计创新与技术进步大跨度现代悬索桥的设计创新与技术进步悬索桥是一种以悬挂在主塔和桥塔之间的悬索为主体的桥梁结构,被广泛应用于现代交通建设中。
随着技术的不断进步,大跨度现代悬索桥的设计创新和技术进步也越来越引人注目。
一、设计创新大跨度现代悬索桥的设计创新包括桥面结构、主塔和桥塔的形式、悬索杆和锚固系统的改进等。
其中,桥面结构是设计的关键之一。
过去,悬索桥多采用钢箱梁桥面结构,但是随着设计技术和施工工艺的不断改进,混凝土斜拉桥的出现成为了一种新的设计形式,被多个国家广泛采用。
混凝土斜拉桥利用混凝土的强度和钢筋的韧性,可以实现更加轻巧和美观的桥梁结构。
主塔和桥塔的形式也是设计创新的一个方向。
针对风压、地震和桥面振动的考虑,主塔和桥塔形式的改进可大大降低整个桥梁的风险系数,提高使用寿命。
此外,还有钢绳锚固和悬索杆的改进也是创新的方向之一。
二、技术进步大跨度现代悬索桥的技术进步涉及多个方面,其中包括结构材料、空气动力学、地震设计、桥梁智能化和建设技术等。
结构材料的进步比较明显。
新型材料的应用可以使悬索桥变得更加轻盈和更节省材料。
高强度材料的使用可以减轻桥梁重量,同时保证足够的强度和刚度,最大限度节约成本和改善施工速度。
空气动力学也是悬索桥技术进步的一部分。
轻微的气流变化、温度变化和气压变化都会对悬索桥产生影响。
为了使悬索桥能够尽可能地减少对风的影响,现代悬索桥采用多种空气动力学技术。
例如,建造隧道或风障可以减小桥梁受到侧风的影响,减少桥面振动。
桥梁智能化是当前技术的一个热点,当然包括悬索桥在内。
如今,悬索桥在建构过程中,采用的也是数字化制造技术,通过相关算法判断桥梁结构在风、地震等情况下的承受能力,在建造过程中进行实时监测,以保证施工质量;在使用过程中,利用监测技术对桥梁的工作状态进行实时监测分析,提前预警和排查缺陷和隐患,实现信息化管理。
建设技术的革新则推动了悬索桥建造工程取得更高的效率与安全性。
大跨度桥梁的设计要点及优化措施探讨
大跨度桥梁的设计要点及优化措施探讨摘要:我国公路交通体系迅速发展,不断完善,为提高经济发挥了非常重要的作用。
而桥梁作为公路体系的重要组成部分,其在我国交通系统中的占比较大,受限于我国复杂的地质环境,各类大跨度桥梁建设规模也在逐年增加。
因此,必须掌握公路桥梁中大跨度桥梁设计重点,结合建设区域实际情况提出更为科学、有效的设计方案,保证公路桥梁中大跨度桥梁总体建设水平。
论文阐述了大跨度公路桥梁的设计要点,提出了改善大跨度公路桥梁设计水平的优化措施。
关键词:大跨度桥梁;设计要点;优化措施引言随着我国社会经济发展速度不断提高,虽然桥梁设计水平有了相应提高,能够进一步缓解大跨度桥梁设计和运行中的问题。
同时我国当前桥梁建设施工数量也在不断增加,所以,想要进一步确保大跨度桥梁建设的健康发展,就需要保证桥梁建设工作具备安全性和稳定性以及持久性的特点。
另外,对于桥梁设计工作人员来说,需要进一步完善桥梁设计的工作,将内部设计结构全面优化和完善,最终保障大跨度桥梁能够安全稳定的运行。
一、大跨度桥梁特点概述随着我国城市基础建设日益完善,桥梁作为城市重要地标及交通纽带,起到关联城市、疏导交通、美化城市的重要作用。
我国南方城市很多都将桥梁作为城市建设的重要代表之一,如长江大桥、杨浦大桥等,这些都属于大跨度桥梁。
大跨度桥梁主要是指桥梁长度、宽度较大,并且在承载能力、稳定性等方面都较为突出,这也导致了大跨度桥梁在设计中的复杂性、系统性。
大跨度桥梁具有结构规模大、结构组织规划困难、承载能力强等特点。
如图1所示,具体表现在以下四个方面:(1)项目结构规模较大。
桥梁主体结构多为大跨度结构形式,从长度、宽度等层面都突显了桥梁主体的大气、宏观。
(2)在结构组织及规划方面也较为复杂:从大跨度桥梁主体结构可以发现,很多桥梁都需要对该桥体过渡节点进行设计,并根据桥梁实际长度、宽度等进行元素融入。
(3)施工难度高。
跨度越大,工程规模越大,施工难度越大,每个细节都要处理到位。
大跨度桥梁结构设计优化分析
大跨度桥梁结构设计优化分析摘要:大跨度桥梁在现阶段越来越普遍,为了确保相应大跨度桥梁得以安全稳定构建和通行,从前期设计环节着手予以优化控制极为必要。
文章重点围绕着大跨度桥梁结构设计,首先简要介绍了当前常见的几种大跨度桥梁结构类型,然后从整体结构优化、墩台结构优化、上部结构优化以及局部优化等方面入手,探讨了如何优化大跨度桥梁结构设计效果。
关键词:大跨度;桥梁结构;优化设计引言在现阶段我国桥梁工程项目构建中,大跨度桥梁越来越常见,该类桥梁可以有效解决很多地区交通不便的问题,但是同样也面临着较高的构建压力,容易出现偏差问题。
从大跨度桥梁结构设计环节入手予以优化控制极为必要,要求设计人员在确定好相应大跨度桥梁结构类型的基础上,可以针对各个关键结构要点进行设计优化,以此更好提升设计水平,确保大跨度桥梁结构得以准确有序构建。
一、常见大跨度桥梁结构类型大跨度桥梁工程项目在当前越来越常见,有效解决了我国很多地区交通出行难题,伴随着近年来的创新发展,我国目前可供选用的大跨度桥梁结构类型越来越多,其中比较常见的类型主要有以下几种:首先,拱桥是比较常见的一类大跨度桥梁结构类型,其在我国的应用历史悠久,形成了较为丰富的经验,尤其是在当前先进技术融入后,更是促使拱桥结构的应用价值得以提升。
当前拱桥结构的应用一般主要是借助于钢筋混凝土结构或者是钢管混凝土结构进行拱桥的构建,以便较好提升其承载能力,满足上方通行诉求。
其次,大跨径斜拉桥同样也是常见的一类结构,其往往可以在应用中形成较为理想的跨越能力以及稳定性保障能力。
大跨径斜拉桥的构建主要是借助于塔柱、主梁和斜拉索进行合理设计,以便促使由此形成的大跨度桥梁结构较为协调适宜,即使在一些跨度较大的河流以及峡谷中同样能够具备优化运用效果。
另外,大跨度悬索桥结构的应用同样可以发挥积极作用,其主要借助于塔柱、锚碇、加劲梁以及主缆进行有效布置,尤其是双塔柱结构的应用,更是可以在山区等恶劣环境下得到理想运用,作用效果较为突出。
大跨度桥梁设计要点及优化措施
大跨度桥梁设计要点及优化措施摘要:社会的发展和国民经济的不断进步,社会各个行业都发生了巨大的变化,道路建设作为我国发展的重要组成因素,近些年来,较之过去也得到了很大改善,道路的建设的速度也是前所未有,大跨度桥梁作为道路施工建设的关键部分,在道路施工建设中也较为常见,一般而言大跨度桥梁的施工建设所涉及的内容十分发繁杂,尤其是对设计施工水平有着非常高的要求,如果在施工过程中难以有效把握大跨度桥梁的施工特点,就难以有效的进行科学合理的施工,从而影响大跨度桥梁的质量,严重者甚至会给社会带来难以预估的损失,为此想要强化大跨度桥梁的建设质量,就必须在对其施工建设过程中,掌握大跨度桥梁的特点,做到必要的施工优化措施,文章就大跨度桥梁设计要点进行必要的探讨分析,并在此基础上提出了可行性的的优化措施。
关键词:大跨度桥梁;设计要点;优化措施大跨度桥梁在道路建设施工中占据了非常重要的地位,尤其是在我国城乡道路建设中尤为常见,大跨度桥梁的建设,一方面能够提升道路的实用性,节约必要的道路施工建设成本,另一方面由于大跨度桥梁自身的外在性,大大提升了城市的建筑美感,对提升城市文化形象具有重要的促进作用,相对于其他国家而言,我国在大跨度桥梁建设与设计方面相应的研究方案还非常有效,这就使得大跨度桥梁在我国还有着非常大的优化空间,为此只有不断的对大跨度桥梁的设计要点以及施工方案进行必要的优化,就能有效的推进我国大跨度桥梁的向更高层次发展[1]。
一、大跨度桥梁施工优化必要性分析在桥梁施工建设过程中,充分综合考虑各方面设计施工因素尤为必要,尤其是大跨度桥梁在施工设计方面更是如此,这是以为大跨度桥梁在设计施工方面所包含的内容非常的复杂,在对其施工设计之前,需要进行多角度全方位的综合考量,如大跨度桥梁的力学分析,验算、施工设施设备等等,加上桥梁设计方案很大程度上依赖于设计工作人员的主观因素,即使在同一个地方,同一座大跨度桥梁的设计,不同社会人员所制定的大跨度桥梁设计施工方案都会出现很大的差别。
结构设计知识:大跨度拱桥结构的设计与分析
结构设计知识:大跨度拱桥结构的设计与分析大跨度拱桥是一种用于跨越较宽河流、峡谷或深谷的特殊桥梁结构。
它的设计和分析涉及到桥梁工程学、结构力学、土木工程和材料工程等多个学科。
本文将围绕大跨度拱桥的设计与分析展开,首先介绍大跨度拱桥的定义、特点和应用领域,然后从结构设计、荷载分析、材料选择和施工工艺等方面进行详细讨论。
一、大跨度拱桥的定义和特点大跨度拱桥是指主跨距离大于等于100米的拱形桥梁。
它通常用于跨越深谷、大型水体或复杂地形,能够提供较大的通行空间和承载能力。
相比于梁桥和悬索桥,大跨度拱桥具有以下特点:1.结构简洁:大跨度拱桥的结构主要由拱体和桥面组成,整体结构比较简单,便于制造和施工。
2.承载能力强:拱桥通过弧形结构将荷载分散到桥墩上,能够有效减少桥墩数量和减轻桥墩承载压力,从而提高桥梁的承载能力。
3.抗震性能好:拱形结构在受到外部力作用时能够将力传递到桥墩上,使桥梁整体受力均匀,具有较好的抗震性能。
4.美观实用:大跨度拱桥通常具有优美的造型和独特的桥梁风格,成为城市的地标建筑。
二、大跨度拱桥的设计1.结构形式选择:大跨度拱桥的结构形式可以分为单孔拱桥、多孔拱桥和连续拱桥。
在设计时需要根据实际情况选择合适的结构形式,考虑着力条件、地质条件和施工工艺等因素。
2.荷载分析:在设计大跨度拱桥时,需要进行各种荷载的分析,如自重、活载、风荷载、温度荷载和地震荷载等。
根据不同的荷载组合确定桥梁的设计荷载,进而确定桥梁的结构尺寸和材料。
3.桥墩设计:大跨度拱桥的桥墩是承受拱体和桥面荷载的重要结构部分,需要根据实际荷载条件和地质条件设计合理的桥墩形式和尺寸,以保证桥梁的稳定性和安全性。
4.梁体设计:拱桥的梁体是连接拱体和桥面的重要部分,需要根据荷载条件和结构形式设计合理的梁体形式和尺寸,确保梁体具有足够的刚度和强度。
5.材料选择:在大跨度拱桥的设计中,材料的选择是非常重要的。
通常拱体和桥面使用钢筋混凝土或钢结构,需要根据实际情况选择合适的材料,保证桥梁的耐久性和安全性。
桥梁施工技术的创新与改进
桥梁施工技术的创新与改进随着社会的发展和城市化进程的加快,桥梁作为城市交通的重要组成部分,其施工技术也面临着日益严峻的挑战。
为了提高施工效率、确保工程质量和减少对环境的影响,桥梁施工技术不断进行创新与改进。
本文将就桥梁施工技术的创新和改进进行探讨。
1. 桥梁施工材料的创新桥梁施工过程中所使用的材料是关键因素之一。
在传统的桥梁施工中,常使用的材料如钢筋混凝土和钢结构等存在一些不足之处。
为了克服这些问题,近年来,木材、玻璃纤维增强塑料和高强度钢等新材料被广泛应用于桥梁建设中。
这些新材料不仅具有耐候性好、抗腐蚀性强、施工方便等优点,而且在桥梁设计和施工中也能够满足更高的技术要求。
2. 桥梁施工工艺的改进桥梁施工工艺的改进对提高施工质量和效率起到了举足轻重的作用。
传统的桥梁施工常常需要耗费大量的人力和物力,而且施工安全隐患也较多。
为了改善这种情况,现代桥梁施工引入了先进的施工工艺,如预制构件技术、模块化施工、自动化施工等。
这些技术的应用使得桥梁的设计、制造和安装过程更加规范,大大提高了施工效率和工程质量。
3. 桥梁施工设备的创新桥梁施工设备的创新和改进也对施工工艺起到了至关重要的作用。
近年来,随着工程机械制造技术的不断进步,各种适用于桥梁施工的机械设备得到了广泛应用,如桥梁吊车、预应力拉压设备、土方开挖机械等。
这些设备不仅提高了桥梁施工的效率,还保证了施工的安全性和稳定性。
同时,使用这些机械设备还可以降低施工过程中对人力资源的需求,并减少对环境的污染。
4. 桥梁施工管理的创新桥梁施工管理的创新对工程质量和施工效率的提高也起到了重要作用。
传统的施工管理模式常常面临着信息不对称、工期延误等问题。
为了解决这些问题,建立合理的施工管理体系至关重要。
现代化的工程管理软件和信息技术的应用使得施工管理更加规范和高效。
通过实时监控、远程操作和数据分析等手段,可以及时发现和纠正施工过程中的问题,保证工程的安全和质量。
总结起来,桥梁施工技术的创新和改进是城市交通建设的必然要求。
大跨度全钢结构人行天桥的创新结构和美学设计
大跨度全钢结构人行天桥的创新结构和美学设计人行天桥是连接两侧道路、克服道路交通障碍的重要设施,对于现代城市交通、市民出行至关重要。
随着科技进步和城市发展,人行天桥的构造和设计也不断升级,更好地满足城市的需求和美学要求。
其中,大跨度全钢结构人行天桥是近年来出现的创新结构和美学设计形式,本文将对其进行分析和探讨。
一、创新的结构设计大跨度全钢结构人行天桥采用全钢结构设计,相比传统的混凝土或者钢筋混凝土结构,具有优异的强度和韧性,同时还能够有效减少桥面结构间的接缝,降低桥梁的维护成本和使用成本。
在设计上,该种结构采用了多项优化措施,使得其承载能力更大、整体性更强:1.抗震设计:大跨度全钢结构人行天桥需要具有承受地震力的能力,因此在设计之初就需要考虑到抗震的问题。
通过采用适当的高强度结构钢材和合理的支撑结构设计,提高了桥梁的抗震能力。
2.大跨度设计:一般来说,大跨度的人行天桥经常被用于连接两侧河流或者重要干道,因此设计上需要考虑到桥面的跨度和承载能力。
我们可以通过减小间距和采用适当的结构形式和钢材形状来增强承载能力。
3.轻量化设计:相比传统的混凝土桥梁,大跨度全钢结构人行天桥的整体重量较轻,也更易于维护,同时还能够减少对周边环境的影响。
二、美学的设计形式美学设计对于人行天桥来说也至关重要,它不仅仅能够提高桥梁的视觉效果,还能够为周边环境增添一些美感和文化元素。
大跨度全钢结构人行天桥在美学设计上也做了不少的探索和实践:1.钢结构的美感:相比传统的混凝土结构,全钢结构的人行天桥更具有时尚感和美感。
设计上采用的大段钢材和流畅的形状,不仅强调了桥梁的结构特性,还能够吸引不少市民前来拍照打卡。
2.灯光的设计:在夜晚,大跨度全钢结构人行天桥通过科技手段,采用了多种灯光效果,不仅能够改善夜间的行车条件,还能够增强夜间的视觉效果,给周边环境增添一些艺术魅力。
3.文化元素的加入:大跨度全钢结构人行天桥在设计上还加入了一些文化元素,如历史文化、民族文化等。
大跨径桥梁发展现状及桥梁施工临时结构设计概述
大跨径桥梁发展现状及桥梁施工临时结构设计概述
大跨径桥梁是指主跨长度超过1000米的桥梁,也是目前桥梁工程中的一项重要领域。
大跨径桥梁的发展现状主要表现在以下几个方面:
1. 技术水平不断提高:随着工程技术的发展和创新,大跨径桥梁的设计、建设和维护技术不断提高。
现代工程技术的应用,如计算机辅助设计、数字化施工等,使大跨径桥梁的建设更加安全、高效。
2. 越来越多的大跨径桥梁项目:随着城市化进程的加快和交通运输需求的增加,大跨径桥梁的建设需求也不断增加。
许多国家都纷纷展开大跨径桥梁建设项目,如中国的港珠澳大桥、美国的金门大桥等。
3. 施工技术的创新:针对大跨径桥梁的复杂施工环境和工艺要求,施工技术也在不断创新。
例如,采用了预制构件技术、超高架设技术等,提高了施工速度和质量。
大跨径桥梁施工临时结构设计包括以下几个方面:
1. 施工平台设计:大跨径桥梁施工需要建立施工平台,提供给施工人员和机械设备使用。
施工平台的设计要考虑桥梁主体结构的施工工艺,以保证施工安全和施工进度。
2. 支撑体系设计:大跨径桥梁的支撑体系是保证桥梁主体结构施工安全和正常进行的关键。
支撑体系设计要综合考虑施工负
荷、地质条件、工期等因素,确定合理的支撑方案。
3. 施工设备设计:大跨径桥梁施工需要使用各种施工设备,如起重机、脚手架等。
施工设备的设计要满足施工要求,并考虑施工现场条件,确保施工安全和施工效率。
综上所述,大跨径桥梁的发展现状积极向前,技术水平不断提高。
而大跨径桥梁施工临时结构设计也在不断创新,以适应大跨径桥梁的特殊施工需求。
桥梁施工中的新技术与创新研究
桥梁施工中的新技术与创新研究在现代社会,桥梁作为交通基础设施的重要组成部分,对于促进地区经济发展、改善人民生活水平起着至关重要的作用。
随着科技的不断进步,桥梁施工领域也涌现出了一系列新技术和创新成果,为桥梁建设带来了更高的质量、效率和安全性。
一、预制拼装技术预制拼装技术是桥梁施工中的一项重要创新。
传统的桥梁施工往往采用现场浇筑的方式,这种方法不仅施工周期长,而且受现场环境和气候条件的影响较大。
预制拼装技术则是将桥梁的构件在工厂中预先制作好,然后运输到施工现场进行拼装。
这样一来,大大缩短了施工周期,减少了现场施工的工作量和对周边环境的影响。
例如,在预制梁的制作过程中,可以采用高精度的模具和先进的混凝土浇筑工艺,确保预制梁的质量和尺寸精度。
在拼装时,通过使用大型起重机和精确的定位设备,能够快速、准确地完成桥梁构件的拼装。
此外,预制拼装技术还可以实现标准化生产,降低成本,提高工程质量的稳定性。
二、3D 打印技术3D 打印技术作为一项前沿技术,也逐渐在桥梁施工中得到应用。
通过 3D 打印,可以制造出复杂形状的桥梁构件,满足特殊的设计需求。
比如,一些具有独特造型的景观桥梁,可以利用 3D 打印技术制作出个性化的构件,增加桥梁的美观性和艺术性。
同时,3D 打印技术还能够实现材料的优化使用,减少浪费。
在打印过程中,可以根据构件的受力情况,精确地控制材料的分布,使构件在满足强度要求的前提下,减轻重量,降低成本。
三、智能监测技术桥梁在建成后需要长期的监测和维护,以确保其安全运行。
智能监测技术的出现为桥梁的健康监测提供了更高效、准确的手段。
通过在桥梁上安装各种传感器,如应变传感器、位移传感器、加速度传感器等,可以实时采集桥梁的受力、变形等数据。
这些数据通过无线传输技术发送到监控中心,利用数据分析软件进行处理和分析。
一旦发现异常情况,能够及时发出预警,为桥梁的维护和管理提供决策依据。
此外,智能监测技术还可以结合人工智能算法,对桥梁的未来状态进行预测,提前采取预防措施,延长桥梁的使用寿命。
探析大跨度桥梁设计的设计要点与优化策略
探析大跨度桥梁设计的设计要点与优化策略大跨度桥梁作为现代桥梁工程中的重要组成部分,具有跨度大、结构复杂、技术难度高等特点。
其设计要点和优化策略对于保障桥梁的安全和稳定具有重要意义。
本文将探析大跨度桥梁设计的要点和优化策略,旨在为大跨度桥梁的设计提供参考。
一、大跨度桥梁设计的要点1. 结构稳定性大跨度桥梁跨度大,结构复杂,因此结构稳定性是设计的重点之一。
在设计过程中,需要充分考虑桥梁结构受力特点,采取合理的结构形式和构造方式,确保桥梁能够承受各种外部荷载和环境影响而不失稳定性。
2. 材料选择大跨度桥梁通常采用混凝土、钢材等材料进行构造。
在设计过程中,需要根据桥梁的实际工作环境和受力情况,选用合适的材料并进行合理的组合,以确保桥梁具有足够的承载能力和使用寿命。
3. 抗风性能大跨度桥梁容易受到风力的影响,因此抗风性能是设计的重要考虑因素。
在设计过程中,需要通过风洞实验等手段分析桥梁在风载作用下的响应情况,采取相应的措施提高桥梁的抗风性能。
4. 地震防护大跨度桥梁设计还需要考虑地震的影响。
在设计过程中,需要根据桥梁的地理位置和地震烈度等因素,合理确定桥梁的抗震设防要求,并采取相应的结构措施和材料措施,提高桥梁的抗震性能。
5. 施工工艺大跨度桥梁的施工工艺具有一定的复杂性,需要充分考虑桥梁结构的实际情况和施工条件,合理确定施工方法和工序,确保施工的安全性和有效性。
二、大跨度桥梁设计的优化策略1. 结构优化大跨度桥梁的结构优化是设计的关键环节。
通过采用先进的结构优化方法,如有限元分析、参数化设计等,对桥梁结构进行优化设计,使其在保证强度和稳定性的前提下,达到结构轻量化和材料节约的效果。
2. 材料优化大跨度桥梁的材料优化是提高桥梁整体性能的重要手段。
通过选择新型材料、改进现有材料性能、优化材料组合等方式,提高材料的强度、耐久性和抗腐蚀性能,以达到延长桥梁使用寿命和减少维护成本的目的。
3. 抗风性能优化大跨度桥梁的抗风性能优化是确保桥梁安全稳定运行的重要保障。
大跨度桥梁设计中的创新结构与施工技术研究
大跨度桥梁设计中的创新结构与施工技术研究摘要:公路桥梁工程是一项重要的基础设施工程,对促进区域联通发展具有重要意义。
公路桥梁工程结构类型比较多,其中大跨度桥梁占了很大的比重。
为了提高桥梁建设水平,有必要对桥梁结构设计策略进行分析研究。
文章以大跨度公路桥梁为研究对象,介绍了跨度桥梁设计中的创新结构与施工技术要点,以供参考。
关键词:大跨度桥梁;类型;结构设计;1大跨度桥梁设计中的创新结构1.1斜拉桥结构斜拉桥是一种由主梁、塔塔和斜拉索组成的刚性结构。
通过斜拉索将桥梁主梁悬挂在塔塔上,实现跨度的支撑和传力。
斜拉桥具有较高的刚度和承载能力,适用于大跨度桥梁。
其美观独特的外观也成为现代桥梁设计的标志之一。
1.2悬索桥结构悬索桥是一种采用主梁悬挂在多根主缆上的结构形式。
主缆通过塔塔支撑,支持悬挂主梁的承载力。
悬索桥具有较高的刚度和抗风能力,并能够跨越较大的跨度。
著名的悬索桥包括旧金山金门大桥和纽约布鲁克林大桥等。
1.3拱桥结构拱桥采用拱形结构,在桥墩之间形成弧形的支撑结构。
拱桥利用拱形结构的受压能力,在大跨度情况下仍能保持较高的刚度和稳定性。
它具有较好的承载能力和美观性,被广泛应用于跨越河流和山谷的大跨度桥梁设计。
1.4预应力混凝土桥梁结构预应力混凝土桥梁通过在施工过程中施加预先设计的压应力来提高结构的强度和刚度。
通过预应力技术,可以减少混凝土的裂缝和变形,提高桥梁的寿命和稳定性。
预应力混凝土桥梁通常用于大跨度或承载要求较高的工程。
1.5创新材料应用结构在大跨度桥梁设计中,还可以采用创新的材料应用来实现轻量化和高强度的设计。
例如,碳纤维增强聚合物(CFRP)或玻璃纤维增强聚合物(GFRP)等复合材料可以用于构件的加固或替代传统的钢筋混凝土。
这些材料具有优异的抗拉强度和抗腐蚀性能,可以在大跨度桥梁设计中实现更轻、更高强度的结构。
这些创新结构和材料应用为大跨度桥梁设计提供了更多的设计选择和解决方案。
同时,创新结构的设计和施工还需要进行全面的工程分析和评估,以确保结构的安全性和可靠性。
大跨度桥梁结构形式与特点分析
大跨度桥梁结构形式与特点分析大跨度桥梁是现代城市化进程中不可或缺的重要交通基础设施。
随着城市化进程的快速推进,大跨度桥梁的需求也日益增加。
因此,对大跨度桥梁结构形式与特点的分析成为了建筑工程行业中一项重要的课题。
本文将对大跨度桥梁的结构形式与特点进行全面深入的探讨,旨在为相关从业人员提供参考与借鉴。
首先,大跨度桥梁的结构形式多种多样。
具体而言,可以分为悬索桥、斜拉桥、钢箱梁桥和拱桥等几种常见形式。
每种形式都有其独特的结构特点和适用范围。
悬索桥是一种采用大直径钢缆来支撑桥面荷载的桥梁结构。
其主要特点是悬挂在主塔上的大跨距钢缆,以及由钢缆支撑的桥面梁。
悬索桥具有结构简单、稳定可靠的优点,适用于大跨度的桥梁建设。
著名的悬索桥如赛珍珠大桥和金门大桥等。
斜拉桥是一种采用斜拉索来支撑桥面的桥梁结构。
其主要特点是通过斜拉索将桥面梁的重力荷载传导到主塔上。
斜拉桥具有结构轻巧、自重小的优点,适用于大跨度、大高度的桥梁建设。
杭州湾大桥和临江大桥等都是典型的斜拉桥。
钢箱梁桥是一种采用钢结构制成的箱型梁来作为桥面的桥梁结构。
其主要特点是梁体采用钢材,具有良好的抗弯和抗剪能力。
钢箱梁桥广泛应用于中小跨度的桥梁建设。
例如,上海南浦大桥就是典型的钢箱梁桥。
拱桥是一种采用拱形结构来支撑桥面的桥梁结构。
其主要特点是通过拱形结构使桥面承受的荷载传递到桥墩上。
拱桥具有结构稳定、造型美观的优点。
西雅图伊万斯湖大桥和罗马石桥是著名的拱桥。
其次,大跨度桥梁的特点需要重点关注。
首先,大跨度桥梁相对于小跨度桥梁来说,荷载更大、施工难度更高,对设计和施工的要求也更高。
其次,大跨度桥梁的自重较大,需要采取合适的结构形式和材料选择来保证其稳定性。
此外,大跨度桥梁还要考虑风荷载、地震作用等外部力的影响。
针对以上特点,建筑工程行业从业人员在大跨度桥梁的设计和建设中需要注意几个方面。
首先,要合理选择桥梁形式,根据具体情况选择最适合的结构形式。
其次,要充分考虑荷载和外部力的影响,进行细致的设计计算。
桥梁结构的优化设计方法与实践案例分析
桥梁结构的优化设计方法与实践案例分析引言:作为建筑工程行业的教授和专家,我从事建筑和装修工作多年,并积累了丰富的经验。
在这篇文章中,我将针对桥梁结构的设计和优化展开讨论,并且结合实践案例进行分析。
通过这篇文章,我希望能够向读者介绍桥梁结构设计的一些基本原理和方法,以及在实际工程项目中的应用。
一、桥梁结构优化设计的意义桥梁作为交通运输系统的重要组成部分,其结构设计的合理与否直接关系到桥梁的安全性、耐久性和经济性。
因此,桥梁结构的优化设计十分重要。
通过优化设计,可以最大限度地提高桥梁的承载能力,减少材料的使用量,降低造价,提高工程的效益。
二、桥梁结构优化设计的基本原理和方法1. 确定设计参数和目标:在进行桥梁结构优化设计之前,首先需要明确设计参数和目标。
设计参数包括桥梁的跨度、纵横坡度、截面形式等,而设计目标可以是承载力最大化、材料使用最小化、经济性最好等。
确定了设计参数和目标后,才能进行优化设计。
2. 建立数学模型:桥梁结构是一个复杂的力学问题,为了进行优化设计,需要建立合适的数学模型对其进行描述。
常用的数学模型包括有限元模型、弹性理论模型等。
通过建立数学模型,可以定量地分析、计算桥梁结构的力学性能,并为优化设计提供参考。
3. 选择设计变量和约束条件:在进行桥梁结构优化设计时,需要选择适当的设计变量和约束条件。
设计变量可以是桥梁的几何参数、材料参数等,而约束条件可以是承载能力的限制、材料的使用量限制等。
通过灵活选择设计变量和约束条件,可以得到不同类型的优化设计结果。
4. 优化算法和技术选择:桥梁结构的优化设计需要借助于优化算法和技术。
目前常用的优化算法包括遗传算法、模拟退火算法、粒子群算法等。
优化技术可以是单目标优化技术、多目标优化技术等。
通过选择合适的优化算法和技术,可以高效地进行桥梁结构的优化设计。
三、实践案例分析下面简要介绍一个实际的桥梁结构优化设计案例,以便读者更好地理解优化设计的过程。
在某个工程项目中,需要设计一座跨径50米的公路桥梁。
桥梁结构优化设计
桥梁结构优化设计桥梁结构优化设计桥梁结构优化设计【1】摘要:本文作者结合实际工作经验,对大跨度桥梁优化设计进行了分析探讨,提出了自己的看法。
关键词:桥梁结构;优化设计随着我国交通事业的快速发展,大跨度桥梁的发展也十分迅速。
如何在满足结构使用要求的前提下对桥梁结构进行合理的优化设计已经成为目前大跨度桥梁设计的重要内容。
目前的桥梁技术虽然已经能够很好的解决大跨度桥梁现存的问题,但是随着桥梁跨度的不断增加,向着更长、更大、更柔方向发展,为了保证其建设的可靠性、耐久性、行车的舒适性、施工的简易性以及美观性,桥梁设计以及施工人员还有更多的工作要做。
而大跨度桥梁结构优化设计的过程,也是为了更好的处理和解决桥梁结构的安全性、适用性以及经济合理性、美观性的过程。
下面就对其设计要点进行一一阐述。
1 大跨度桥梁结构优化设计1.1 局部优化大跨度桥梁的局部优化虽然不能等同于整体,但是却优于整体,可以更好的促进桥梁结构的发展。
因为对局部的优化设计变量相对较少而使研究的难度大大减小,研究的深度因而能更透彻。
目前针对大跨度桥梁的局部结构进行优化设计研究已涉及到大跨度桥梁结构设计及施工的各个方面,主要有:加劲梁横截面的优化,斜拉索或主缆的动力优化,索力调整优化,索塔的结构优化,斜拉索和吊索锚固的优化,悬索桥锚锭的优化,桥墩及基础优化。
1.1.1加劲梁横截面的优化大跨度桥梁的加劲梁主要是由钢梁、混凝土梁、混合梁和叠合梁。
就目前建成的大跨度桥梁中,主跨梁的主要形式多数以钢梁为主,钢梁与混凝土结合梁以及混凝土梁较少且相对较小。
1.1.2斜拉索或主缆的动力优化由于斜拉桥和悬索桥是当前大跨度桥梁建设的主要桥式,两者具有共同的特点,即都是由缆索支承,且桥面柔软,属于柔性结构,其阻尼值较低。
在外部激励下,拉索极易出现大幅度的振动,如风雨交加时出现的主梁和拉索之间的耦合振动引起的参数共振、拉索的自激振等等。
拉索的大幅度振动极易引起拉索锚固端的疲劳、降低了拉索的使用寿命,严重时甚至会直接影响桥梁结构的安全系数。
关于山区大跨度悬索桥设计与施工技术创新及应用-湖南省高速公路
附件:关于“山区大跨度悬索桥设计与施工技术创新及应用”的公示材料一、项目名称:山区大跨度悬索桥设计与施工技术创新及应用二、推荐单位意见该项目针对山区跨越深切峡谷的大跨度悬索桥总体布置难、常规施工技术与装备受限、风观测精度低等难题,历时八年,开展系统研究,取得了新结构、新工艺、新装备与新材料等一系列原创成果,创造性地破解了山区大跨度悬索桥的技术难题,有力地推动了我国山区公路建设。
项目首创了塔—梁分离式悬索桥新结构,为山区桥梁建设提供了一种极具竞争力的新桥型方案;首创了“轨索滑移法”悬索桥主梁架设新工艺,被世界公认为悬索桥加劲梁架设的第4种方法;研制了“轨索滑移法”悬索桥主梁架设新装备,突破了山区大跨度悬索桥建设条件的限制;开发了悬索式现场风观测新装备,破解了山区跨越深切峡谷桥梁工程现场风观测难题;发明了新型“CFRP-RPC”高性能岩锚体系,解决了传统预应力岩锚体系地下埋深大和耐久性不足的问题。
获授权发明专利8项、实用新型专利1项、国家级工法1项、省部级工法4项、发表专著1部。
项目总体达到国际领先水平,已获中国公路学会科学技术特等奖、湖南省技术发明一等奖与国际道路成就奖等奖励。
研究成果成功应用于矮寨大桥与虎跳峡金沙江大桥等工程,有力推动了桥梁科技进步,显著提升了我国交通建设企业的国际竞争力,经济、社会和环境效益显著;对于攻克山区大跨度桥梁建设难题,保障山区公路建设,服务“一带一路”国家战略,意义重大。
推荐该项目为国家科学技术进步奖一等奖。
三、项目简介随着我国交通建设的深入发展和全国路网建设的逐步完善,山区跨越深切峡谷的大跨度悬索桥日益增多,已成为山区交通建设的控制性因素。
山区大跨度悬索桥普遍面临着跨度大、峡谷深、山路险、地质与气象条件复杂等巨大挑战,常规桥型布置对环境的巨大破坏,施工技术与装备的适用性受限,复杂峡谷风场难以准确观测等问题都严重阻碍了山区交通建设。
依托工程矮寨大桥跨越近千米宽的风景名胜德夯大峡谷,桥面距谷底高355m,跨度1176m,建成时为世界上跨度最大的山区桥梁。
桥梁结构设计优化方案
桥梁结构设计优化方案
桥梁结构设计优化方案指的是通过改进和创新设计,提高桥梁结构的性能和效率,以实现更好的安全性、经济性和可持续性。
在制定优化方案时,可以考虑以下几个方面:
1. 材料选择和强度设计优化:选择适合桥梁的材料,并进行合理的强度设计,以在保证结构强度的前提下减少材料的使用量。
可以考虑使用新材料,如高性能混凝土和复合材料等,以提高桥梁的耐久性和重量轻。
2. 结构形式和布局优化:根据桥梁的跨度、地形和交通需求等情况,选择合适的结构形式和布局。
可以考虑采用悬索桥、斜拉桥、拱桥等新型结构形式,以提高桥梁的承载能力和稳定性。
3. 动力学和风载分析优化:对桥梁进行动力学和风载分析是优化设计的重要环节。
通过对桥梁的动力响应和风荷载进行精确计算和仿真,可以优化桥梁的结构和支座形式,以提高桥梁的抗震性能和抗风能力。
4. 建筑技术和施工工艺优化:在设计阶段考虑施工工艺和建筑技术,以提高施工效率和质量。
可以使用预制构件和现代建筑技术,如技术性装配式建筑(TAA)和全息影像(HDI)等,
以减少施工时间和成本,并提高桥梁的整体品质。
5. 维护和管理优化:维护和管理是桥梁寿命周期的重要组成部分。
通过合理的维护和管理策略,可以延长桥梁的使用寿命和提高运营效率。
可以利用无损检测技术和智能监测系统等,及
时发现和修复结构缺陷,以保持桥梁的安全性和可靠性。
综上所述,桥梁结构设计优化方案是多方面的,需要综合考虑材料选择、强度设计、结构形式、动力学分析、风载分析、建筑技术、施工工艺、维护管理等因素。
只有在这些方面的综合考虑下,才能实现桥梁结构设计的最优化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3-1 选 择 体 系
3. 大跨径桥梁结构体系优化(3)
⑧斜拉桥和悬索桥与其它缆索承重桥的比较
随着跨度的增大,要充分利用斜拉桥经济指标有利的一面,就要在结构体系上作变化, 通过降低斜拉桥索塔高度,改善其受力性能来降低塔的造价。这样的体系就是部分地 锚斜拉桥和斜拉悬吊协作体系(图5)。前者可有效降低主梁最大压力,后者不仅可降 低主塔高度,改善主塔受力,同时可以减小主梁压力,改善总的经济性能。
双塔悬索 桥
独柱悬索 桥 三柱悬索 桥
斜拉-悬索 协作体系
双柱悬索 桥
……
……
1. 结 构 体 系
梁桥
外部约束
内部连接
受力分配
简支梁
连续梁
连续梁
T形刚构
等截面梁
固端梁
……
连续刚构
……
变截面梁
……
1. 结 构 体 系
拱桥 外部约束 无铰拱 无推力拱 两铰拱 …… 内部连接 拱梁固结 拱梁自由 拱梁铰接 …… 受力分配 刚拱柔梁 刚拱刚梁 …… 刚梁柔拱
大跨径桥梁结构体系
拱式体系
斜拉体系
悬索体系
组合体系
3. 大跨径桥梁结构体系优化
3. 大跨径桥梁结构体系优化(1)
什么是优化
3. 大跨径桥梁结构体系优化(1)
纯理论优化 设立目标函数(单个的) 满足约束条件 求解目标函数极值
U min f ( x) gi ( x) 0 i ( x) 0
3-1 选 择 体 系
3. 大跨径桥梁结构体系优化(3)
⑨斜拉桥和悬索桥与其它缆索承重桥的经济性比较
根据我们的研究和预测,给出了各种斜拉和悬索体系以及混合体系的单位桥面造价与 跨径关系的预测图(见图7),其中900~1200m跨度范围内各种缆索体系的造价曲线较 为密集,详见图8所示。
造价/(万元/m2 )
(a) 部分地锚斜拉桥
Lac
3-1 选 择 体 系
(b) 斜拉悬吊协作体系
3. 大跨径桥梁结构体系优化(3)
⑧斜拉桥和悬索桥与其它缆索承重桥的比较
部分地锚斜拉桥和斜拉悬吊协作体系的结构刚度随自锚斜拉梁段长度与主跨比例的改 变而改变。由于悬索桥与其他体系在1400m附近形成竞争,因此对主跨1400m的缆索承 重桥进行分析,从而比较各种体系结构刚度的相对大小。
悬索桥属柔性结构,外载作用下力与变形之间呈非线性关系,结构竖向刚 度主要由重力提供。
2. 大跨径桥梁结构体系
组合体系受力特点(以斜拉悬索协作体系为例)
综合两种体系受力特点。 对两种体系取长补短,提高悬索桥刚度,降低斜拉桥主梁压力。 可在不同部分采用不同材料,能充分发挥材料作用。
2. 大跨径桥梁结构体系
10 9 8 7 6 5 4 3 2 1
RC斜拉桥 自锚式悬索桥(L<500m) 10亿/公里 结合梁斜拉桥 深水锚碇悬索桥 浅水锚碇悬索桥 岸上锚碇悬索桥 岩石锚悬索桥 30亿/公里 25亿/公里 斜拉悬吊协作体系 部分地锚斜拉桥 钢斜拉桥
跨径/m
o
200 400 600 RC 结合梁 斜拉桥 斜拉桥 400 700
梁式桥
三跨连续梁 多跨连续梁 上承式 中承式 下承式 单承重面 斜靠拱 连拱 独塔斜拉桥 双塔斜拉桥 多塔斜拉桥 独柱斜拉桥 双柱斜拉桥 三柱斜拉桥 单塔悬索桥 双塔悬索桥 多塔悬索桥 独柱悬索桥 双柱悬索桥 三柱悬索桥 连续刚构 梁拱组合 斜拉-悬吊 协作体系 …… …… ……
拱式桥
桥梁
斜拉桥
悬索桥
组合体系
房屋 ……
2. 大跨径桥梁结构体系
适用于大 跨度的体 系?
2. 大跨径桥梁结构体系
主要受力构件的受力特性
结构的传力路径
结构体系的刚度
2. 大跨径桥梁结构体系
梁桥受力特点
竖向荷载作用下无水平反力
同跨经下,梁桥内弯矩最大
需用抗弯、抗拉能力强的材料建造
传力路径最远
2. 大跨径桥梁结构体系
拱桥受力特点 承重结构是拱圈 或拱肋,竖向荷载作 用下,桥墩和桥台承 受水平推力。 水平力产生的弯 矩,基本抵消了在拱 内由荷载引起的弯矩。 拱主要承受压力, 可充分发挥抗拉性能 差而抗压性能好的圬 工材料的作用。 故,不能用超高 强材料做为主拱。
1. 结 构 体 系
什么是结构 体系?
海诺〃恩格尔 “结构内部荷载的传递方式以及为保 持结构内部平衡而形成的内力状态”
国内学者
“结构主要的受力系统”
1. 结 构 体 系
结构功能
结构体系
结构形式
结构受力形态
1. 结 构 体 系
结构功能
1. 结 构 体 系
结构形式
1. 结 构 体 系
结构受力形态
3. 大跨径桥梁结构体系优化(3)
⑦桥跨布置的影响
从布跨上看,悬索桥边跨布置的灵活性大,除三跨悬索桥外,还可以布置成单跨和双 跨,边中跨比一般在0.2~0.5之间。而斜拉桥边跨要平衡中跨,边中跨比一般在0.35~0.5 之间。对于主跨相同的两种桥型而言,斜拉桥的总长度要增加。
(a) 单跨悬索桥——江阴长江大桥
可见,斜拉桥的塔高在相同跨度时为悬索桥塔高的1.5~2.0倍,加上其断面尺寸较悬索桥 大,因此其桥塔造价将高于悬索桥桥塔。
3-1 选 择 体 系
3. 大跨径桥梁结构体系优化(3)
⑤锚碇的影响
悬索桥主缆需由庞大的锚碇锚固,在陆地上重力式锚碇的造价一般占悬索桥造价的 25%左右。如果锚碇需要建在水中,则造价还将大幅增加; 斜拉桥的拉索直接分散锚固在梁上,形成自锚体系。
3-1 选 择 体 系
(b) 双跨悬索桥——舟山西堠门大桥
3. 大跨径桥梁结构体系优化(3)
⑦桥跨布置的影响
当跨越同一水域时,为了避免水中锚碇,必须增大悬索桥的跨度;而斜拉桥的主跨跨 度则可根据通航要求而定,相对较小。例如,1964年通车的英国Forth悬索桥,为利用 地形采用隧道式锚碇,将主跨增加到1006m;由于交通量的增长和主缆钢丝的腐蚀问 题,于2007年决定在Forth桥附近新建一座桥梁代替旧桥,新建方案采用了双向分孔通 航的三塔四跨斜拉桥,跨度为325+650+650+325m,如图4所示。斜拉桥方案既满足了 通航要求,又减小了主跨跨径,从而降低了全桥造价。
下面以缆索承重桥为例,说明体系选择的思考方法
3. 大跨径桥梁结构体系优化(3)
③力学与经济性能
图1 具有全部受拉构件的纯缆索体系的基本形式
悬索桥增设的加劲梁只起传力作用,用钢量一般为420~580kg/m2,在2000m跨度内用 钢量随跨径的变化不大 ; 斜拉桥的加劲梁则代替了纯缆索体系中的水平索受力),使拉索用钢量大大降低,仅 相当于同跨径悬索桥的60%左右; 斜拉桥跨径小于500m时,主梁轴力对钢箱梁设计的影响不明显,主梁的多功能性提高 了斜拉桥的经济性能; 在小于400m的跨径范围内,主梁可以采用预应力混凝土箱梁; 在小于700m的跨径范围内,可以采用结合梁,更能够提高其经济性能;
体系优化的特点(a)
概念设计
关注体系 的参数特性和 对体系力学性 能的影响。 关注体系 的形式和总体 力学性能。
初步设计
技术设计
桥梁设计阶段
关注细节 设计和结构安 全。
施工设计
3. 大跨径桥梁结构体系优化(2)
体系优化的特点(b)
体系受力性能
总体力学 性能,动力性 能,整体稳定 性……
造价
优劣评价
外界对结构体系 的约束
结构内部荷载的 传递方式
Hale Waihona Puke 主要受力构件间 的受力分配
1. 结 构 体 系
结构形式 梁桥 单跨 多跨 …… 上乘式 下乘式 斜靠拱 …… 拱桥 中乘式 单承重面 连拱 斜拉桥 独塔斜拉 桥 多塔斜拉 桥 双柱斜拉 桥 …… 双塔斜拉 桥 独柱斜拉 桥 三柱斜拉 桥 悬索桥 独塔悬索 桥 多塔悬索 桥 组合体系 梁拱组合
河势
概念 生成 ……
航运
概念 选择
设计原则
桥梁方案
概念 设计
桥轴线选择
主跨跨径
分孔布局
3-1 选 择 体 系
设计流程图
3. 大跨径桥梁结构体系优化(3)
②布跨确定后由体系的各种性能决定体系的选择
力学与经济性能 ( 相 同评 的判 安标 全准 度 )
耐久性 桥跨布置的灵活性
可施工性级结构的刚度
3-1 选 择 体 系
斜拉桥占优区
800
1200 1000 钢主梁 斜拉桥 1100
1400 1400
1600
1800
2000
2200
2400
2600
2800
3000
3200
3400
斜拉悬吊协作体系
200 适用跨径范围
部分地锚斜拉桥
1800
2300
浅水锚碇悬索桥占优区
3-1 选 择 体 系
岸上锚碇悬索桥竞争区
200 900
1100
2300 岩石锚悬索桥占优区
5000
3. 大跨径桥梁结构体系优化(3)
⑨斜拉桥和悬索桥与其它缆索承重桥的经济性比较
根据我们的研究和预测,给出了各种斜拉和悬索体系以及混合体系的单位桥面造价与 跨径关系的预测图(见图7),其中900~1200m跨度范围内各种缆索体系的造价曲线较 为密集,详见图8所示。
⑥单位造价随跨径变化 在主跨小于约1100m的范围 3-1 内,相同跨径的斜拉桥性 能优于岸上锚碇悬索桥。 选 但随着跨度的增加,斜拉 桥塔、梁的用材指标快速 择 上升,斜拉桥和悬索桥的 体 经济性对比将发生逆转。 从这个意义上看,斜拉桥 系 的跨度适用范围不是由其 极限跨径确定的,而是由 其力学和经济性能确定的。
主要是结 构的材料用量 和施工费用。