黄昆固体物理习题-第六章 金属电子论
固体物理答案第六章1
原点,即 Rs 0,6个最近邻
的坐标分别为
y
a,0
, a,0
,
a 2
,
3 2
a
a 2
,
3a 2
,
a 2
,
3a 2
,
o
x
a 2
,
3a 2
a
对于s态电子,各个最近邻
的交迭积分皆相等, 令 Jsn J ,则得 固体物理答案第六
章1
e e e iπ 2 axk iπ 2 axk iπ ax ( k 3 k y)
对比(1)式,即得
v k v k
电子占有某个状态的几率只同该状态的能量有关。 因为
E k E k,电子占有
k
状态和
k状态的几率相同。
而由 v k v k 知道,这两个状态的电子电流互相抵消,
因此,无外场时,晶体中总电流为零。
固体物理答案第六 章1
6.5 应用紧束缚方法于一维单原子链,如只计及最近邻原子间 的相互作用,
此处
E kE m i n 4Jk2 aE m i n h 22 m kb * 2
mb*
h2
8J 2a2
为能带底部电子的有效质量。
固体物理答案第六 章1
显然, mb* 0 ,即能带底部电子的有效质量为正值。
在能带顶附近,k1 k,k0,代入(2)式,并应用泰
2a
勒级数公式展开,得
E kE 0A 2 Jco s2 a k E 0A 2 Jco 2 a s k
(2)
而速度 v 1 dE h dk
代入(2)式,并应用关系式
h
dk dt
Fe
固体物理答案第六
《固体物理·黄昆》第六章
由于 F 外 只是外场对电子的作用力,它并不是电子所 受的合外力,因此, k并不是电子的真实动量,而 是电子的准动量就不难理解了。
在讨论晶体中电子的准经典运动时, k 是一个很有 用的量,它往往比电子的真实动量 mv 更有用。这 是因为在 k 空间中去理解电子的运动往往比在真实 空间中更容易。
电子的有效质量和电子的准动量是两个人为引入的 物理量,至少我们可以在形式上不必考虑晶格力, 而只考虑外场力对电子运动的影响。
倒有效质量张量的分量为:
1 2E 2 k k
倒有效质量张量对角化
若选kx, ky, kz在张量主轴方向上,则倒有效质量张量 可对角化。
2E k 2 x 1 0 2 0 0 2E k 2 y 0 0 0 2E k 2 z
第六章 晶体中电子在电场和磁场中的运动
对第二类问题:
讨论晶体中的电子在外加场的作用下的运动规律。外 加场包括: 电场、磁场、杂质势场等。通常外场与晶 体的势场相比弱许多,可用电子在晶体周期性势场中 的本征态为基础进行讨论。 方法一 :求解在外加势场 U 时电子的薛定谔方程 方法二:满足一定条件下将电子的运动近似当作经典粒 子来处理。如均匀电、磁场中各种电导效应。
F vk dt dk vk d (k ) vk
三、 加速度和有效质量
1 电子准经典运动的两个基本关系式 v k E k
电子的速度分量 电子的加速度分量
dv 1 F 比较,可定义有效质量m*和 与牛顿定律 dt m
1 dk E ( k ) 1 ( ) dt k k 2
第六章 晶体中电子在电场和磁场中的运动
人们对晶体中电子的关注主要分为两大块:
固体物理第六章 金属电子论
由于发射热电子的能量必须大于势井的深度,所以要求:
1 mV 2 x 2
实际上, 所以有:
(
1 mV 2
2
E F ) k BT
mv 2 2 k BT
m 3 E F / k BT dn 2 ( ) e e 2
dvx dvy dvz
同经典情况 完全类似。 同样可以得出量子理论所相应的电流表示式:
V dk 在体积 dk 内包含的量子态数为:2 3 ( 2 )
统计平均的电子数为: f ( E ) 2V 3 dk (2 )
• 能级E上的平均电子数为: f ( E ) N ( E )dE
2. 费米能级
• T=0K时 • ∴ • T≠0K时
EF
的确定:
0 EF EF 此时f(E) ≈1
电子系统的热容为: CV
近自由电子为例:
[
2
3
0 N ( EF )(k BT )]k B
讨论晶体中电子的热容量: 对于近自由电子:N ( E ) 4V ( 2m ) 3 / 2 E 1/ 2
h2
在费米能级处:
N(E0 ) F
3N 2E0 F
2
k BT 代入上面的公式得: CV N 0 ( 0 )k B 即: Cv T 2 EF 可见,与温度成线性关系。 而前面讨论晶格振动时, bT 3 T 得到晶格振动的热容量是 在一般温度下: 与温度的三次方成正比。 而当温度接近0K时: 物理解释是什么? bT 3 T
• 定积分: • 所以: • 附近展开
1 2 (e 1)(e 1) d 3
2
N Q( EF )
1 2 Q( EF )( k BT ) 2 6
固体物理学_答案(黄昆)
《固体物理学》习题解答黄昆原著韩汝琦改编 (陈志远解答,仅供参考)第一章晶体结构1.1、解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。
因此,可以把这些原子或离子构成的晶体看作是很多刚性球紧密堆积而成。
这样,一个单原子的晶体原胞就可以看作是相同的小球按点阵排列堆积起来的。
它的空间利用率就是这个晶体原胞所包含的点的数目n 和小球体积V 所得到的小球总体积nV 与晶体原胞体积Vc 之比,即:晶体原胞的空间利用率,VcnV x =(1)对于简立方结构:(见教材P2图1-1) a=2r ,V=3r 34π,Vc=a 3,n=1 ∴52.06r8r34ar 34x 3333=π=π=π=(2)对于体心立方:晶胞的体对角线BG=x 334a r 4a 3=⇒=n=2, Vc=a 3∴68.083)r 334(r 342ar342x 3333≈π=π⨯=π⨯=(3)对于面心立方:晶胞面对角线BC=r 22a ,r 4a 2=⇒= n=4,Vc=a 374.062)r 22(r344ar344x 3333≈π=π⨯=π⨯=(4)对于六角密排:a=2r 晶胞面积:S=6260sin a a 6S ABO ⨯⨯=⨯∆=2a 233晶胞的体积:V=332r 224a23a 38a 233C S ==⨯=⨯n=1232126112+⨯+⨯=6个74.062r224r 346x 33≈π=π⨯=(5)对于金刚石结构,晶胞的体对角线BG=3r 8a r 24a 3=⇒⨯= n=8, Vc=a 334.063r338r 348ar348x 33333≈π=π⨯=π⨯=1.2、试证:六方密排堆积结构中633.1)38(a c2/1≈= 证明:在六角密堆积结构中,第一层硬球A 、B 、O 的中心联线形成一个边长a=2r 的正三角形,第二层硬球N 位于球ABO 所围间隙的正上方并与这三个球相切,于是: NA=NB=NO=a=2R.即图中NABO 构成一个正四面体。
黄昆版固体物理学课后答案解析答案 (2)
《固体物理学》习题解答黄昆 原着 韩汝琦改编 (陈志远解答,仅供参考)第一章 晶体结构、解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。
因此,可以把这些原子或离子构成的晶体看作是很多刚性球紧密堆积而成。
这样,一个单原子的晶体原胞就可以看作是相同的小球按点阵排列堆积起来的。
它的空间利用率就是这个晶体原胞所包含的点的数目n 和小球体积V 所得到的小球总体积nV 与晶体原胞体积Vc 之比,即:晶体原胞的空间利用率, VcnVx = (1)对于简立方结构:(见教材P2图1-1) a=2r , V=3r 34π,Vc=a 3,n=1∴52.06r8r34a r 34x 3333=π=π=π=(2)对于体心立方:晶胞的体对角线BG=x 334a r 4a 3=⇒= n=2, Vc=a 3∴68.083)r 334(r 342a r 342x 3333≈π=π⨯=π⨯= (3)对于面心立方:晶胞面对角线BC=r 22a ,r 4a 2=⇒= n=4,Vc=a 3(4)对于六角密排:a=2r 晶胞面积:S=6260sin a a 6S ABO ⨯⨯=⨯∆=2a 233 晶胞的体积:V=332r 224a 23a 38a 233C S ==⨯=⨯ n=1232126112+⨯+⨯=6个(5)对于金刚石结构,晶胞的体对角线BG=3r 8a r 24a 3=⇒⨯= n=8, Vc=a 3、试证:六方密排堆积结构中633.1)38(ac 2/1≈=证明:在六角密堆积结构中,第一层硬球A 、B 、O 的中心联线形成一个边长a=2r 的正三角形,第二层硬球N 位于球ABO 所围间隙的正上方并与这三个球相切,于是:NA=NB=NO=a=2R.即图中NABO 构成一个正四面体。
…、证明:面心立方的倒格子是体心立方;体心立方的倒格子是面心立方。
证明:(1)面心立方的正格子基矢(固体物理学原胞基矢):123()2()2()2a a j k a a i k a a i j ⎧=+⎪⎪⎪=+⎨⎪⎪=+⎪⎩r r r r r rr r r由倒格子基矢的定义:1232()b a a π=⨯Ωr r r31230,,22(),0,224,,022a a a a a a a a a a Ω=⋅⨯==r r rQ ,223,,,0,()224,,022i j ka a a a a i j k a a ⨯==-++r rr r r r r r同理可得:232()2()b i j k ab i j k aππ=-+=+-r rr r r r r r 即面心立方的倒格子基矢与体心立方的正格基矢相同。
固体物理金属电子论作业答案
E48 1040 F m 2 105V m 1 9.25 1017 m 1.6 1019 C
Cl+离子位移:
l
Eeff
q
3.29 1040 F m 2 105V m 1 2.06 1016 m 1.6 1019 C
2m 2 9.1110 kg
8.711019 J 5.44eV
EF 0 8.7110 19 J TF 63116 K 23 k B 1.38 10 J / K
2)费米波矢
k F 3 n
2
1/ 3
(3 3.142 5.86 1022 cm3 )1/ 3 1.20 108 cm1
•传统硅基集成电路的栅介电材料和互连介质材料均为SiO2,但随集成度的提高, 需要提高栅介电的介电常数,而互连介质的介电常数最好能降低。根据克劳修斯莫索提关系,请试给出你认为可行的技术措施。 答:根据克劳修斯-莫索提关系,介电常数与原子密度和原子极化率有关。 提高介电常数:掺N(致密度或极化率提高)或采用其它氧化物(ZrO2、HfO2等) 降低介电常数:掺F(利用F离子强束缚电子特性降低极化率)或制备多空SiO2或 采用有机材料。
3) 费米速度
0 2 EF k F 1.05 10 34 J s vF 1.20 1010 m 1 m m 9.1110 31 kg
1.38 106 m / s 1.38 108 cm / s
3.用a3代表每个原子占据的体积,若金属中的自由电子气体在温 度为0K时能级被填充到kF0=(62)1/3/a,试计算每个原子的价电子 数目?并导出电子气在温度0K时的费米能的表达式? 解:假设价电子数位Z,则电子浓度为: n
黄昆固体物理课后习题答案6
黄昆固体物理课后习题答案6第六章⾃由电⼦论和电⼦的输运性质思考题1.如何理解电⼦分布函数)(E f 的物理意义是: 能量为E 的⼀个量⼦态被电⼦所占据的平均⼏率[解答]⾦属中的价电⼦遵从费密-狄拉克统计分布, 温度为T 时, 分布在能级E 上的电⼦数⽬1/)(+=-Tk E E BF e gn ,g 为简并度, 即能级E 包含的量⼦态数⽬. 显然, 电⼦分布函数11)(/)(+=-Tk E E BF e E f是温度T 时, 能级E 的⼀个量⼦态上平均分布的电⼦数. 因为⼀个量⼦态最多由⼀个电⼦所占据, 所以)(E f 的物理意义⼜可表述为: 能量为E 的⼀个量⼦态被电⼦所占据的平均⼏率. 2.绝对零度时, 价电⼦与晶格是否交换能量[解答] 晶格的振动形成格波,价电⼦与晶格交换能量,实际是价电⼦与格波交换能量. 格波的能量⼦称为声⼦, 价电⼦与格波交换能量可视为价电⼦与声⼦交换能量. 频率为i ω的格波的声⼦数11/-=Tk i B i e n ωη.从上式可以看出, 绝对零度时, 任何频率的格波的声⼦全都消失. 因此, 绝对零度时, 价电⼦与晶格不再交换能量.3.你是如何理解绝对零度时和常温下电⼦的平均动能⼗分相近这⼀点的[解答]⾃由电⼦论只考虑电⼦的动能. 在绝对零度时, ⾦属中的⾃由(价)电⼦, 分布在费密能级及其以下的能级上, 即分布在⼀个费密球内. 在常温下, 费密球内部离费密⾯远的状态全被电⼦占据, 这些电⼦从格波获取的能量不⾜以使其跃迁到费密⾯附近或以外的空状态上, 能够发⽣能态跃迁的仅是费密⾯附近的少数电⼦, ⽽绝⼤多数电⼦的能态不会改变. 也就是说, 常温下电⼦的平均动能与绝对零度时的平均动能⼀定⼗分相近. 4.晶体膨胀时, 费密能级如何变化[解答] 费密能级3/2220)3(2πn m E Fη=,其中n 是单位体积内的价电⼦数⽬. 晶体膨胀时, 体积变⼤, 电⼦数⽬不变, n 变⼩, 费密能级降低.5.为什么温度升⾼, 费密能反⽽降低[解答]当0≠T 时, 有⼀半量⼦态被电⼦所占据的能级即是费密能级. 温度升⾼, 费密⾯附近的电⼦从格波获取的能量就越⼤, 跃迁到费密⾯以外的电⼦就越多, 原来有⼀半量⼦态被电⼦所占据的能级上的电⼦就少于⼀半, 有⼀半量⼦态被电⼦所占据的能级必定降低. 也就是说, 温度升⾼, 费密能反⽽降低.6.为什么价电⼦的浓度越⼤, 价电⼦的平均动能就越⼤[解答]由于绝对零度时和常温下电⼦的平均动能⼗分相近,我们讨论绝对零度时电⼦的平均动能与电⼦浓度的关系.价电⼦的浓度越⼤价电⼦的平均动能就越⼤, 这是⾦属中的价电⼦遵从费密-狄拉克统计分布的必然结果. 在绝对零度时, 电⼦不可能都处于最低能级上, ⽽是在费密球中均匀分布. 由式3/120)3(πn k F =可知, 价电⼦的浓度越⼤费密球的半径就越⼤,⾼能量的电⼦就越多, 价电⼦的平均动能就越⼤. 这⼀点从和式看得更清楚. 电⼦的平均动能E 正⽐与费密能0F E , ⽽费密能⼜正⽐与电⼦浓度3/2n:()3/222032πn mE Fη=,()3/2220310353πn mE EF η==.所以价电⼦的浓度越⼤, 价电⼦的平均动能就越⼤.7.对⽐热和电导有贡献的仅是费密⾯附近的电⼦, ⼆者有何本质上的联系[解答]对⽐热有贡献的电⼦是其能态可以变化的电⼦. 能态能够发⽣变化的电⼦仅是费密⾯附近的电⼦. 因为, 在常温下, 费密球内部离费密⾯远的状态全被电⼦占据, 这些电⼦从格波获取的能量不⾜以使其跃迁到费密⾯附近或以外的空状态上, 能够发⽣能态跃迁的仅是费密⾯附近的电⼦, 这些电⼦吸收声⼦后能跃迁到费密⾯附近或以外的空状态上.对电导有贡献的电⼦, 即是对电流有贡献的电⼦, 它们是能态能够发⽣变化的电⼦. 由式)(00ε+=v τe E f f f可知, 加电场后,电⼦分布发⽣了偏移. 正是这偏移)(0εv τe E f部分才对电流和电导有贡献. 这偏移部分是能态发⽣变化的电⼦产⽣的. ⽽能态能够发⽣变化的电⼦仅是费密⾯附近的电⼦, 这些电⼦能从外场中获取能量, 跃迁到费密⾯附近或以外的空状态上. ⽽费密球内部离费密⾯远的状态全被电⼦占拒, 这些电⼦从外场中获取的能量不⾜以使其跃迁到费密⾯附近或以外的空状态上. 对电流和电导有贡献的电⼦仅是费密⾯附近电⼦的结论从式xk Sxx ESv e j Fετπ?=d 4222和⽴⽅结构⾦属的电导率E S v e k S xF ?=?d 4222τπσ看得更清楚. 以上两式的积分仅限于费密⾯, 说明对电导有贡献的只能是费密⾯附近的电⼦.总之, 仅仅是费密⾯附近的电⼦对⽐热和电导有贡献, ⼆者本质上的联系是: 对⽐热和电导有贡献的电⼦是其能态能够发⽣变化的电⼦, 只有费密⾯附近的电⼦才能从外界获取能量发⽣能态跃迁.8.在常温下, 两⾦属接触后, 从⼀种⾦属跑到另⼀种⾦属的电⼦, 其能量⼀定要达到或超过费密能与脱出功之和吗[解答] 电⼦的能量如果达到或超过费密能与脱出功之和, 该电⼦将成为脱离⾦属的热发射电⼦. 在常温下, 两⾦属接触后, 从⼀种⾦属跑到另⼀种⾦属的电⼦, 其能量通常远低于费密能与脱出功之和. 假设接触前⾦属1和2的价电⼦的费密能分别为1F E 和2F E , 且1F E >2F E , 接触平衡后电势分别为1V 和2V . 则两⾦属接触后, ⾦属1中能量⾼于11eV E F -的电⼦将跑到⾦属2中. 由于1V ⼤于0, 所以在常温下, 两⾦属接触后, 从⾦属1跑到⾦属2的电⼦, 其能量只⼩于等于⾦属1的费密能.9.两块同种⾦属, 温度不同, 接触后, 温度未达到相等前, 是否存在电势差为什么[解答]两块同种⾦属, 温度分别为1T 和2T , 且1T >2T . 在这种情况下, 温度为1T 的⾦属⾼于0FE 的电⼦数⽬, 多于温度为2T 的⾦属⾼于0F E 的电⼦数⽬. 两块⾦属接触后, 系统的能量要取最⼩值, 温度为1T 的⾦属⾼于0F E 的部分电⼦将流向温度为2T 的⾦属. 温度未达到相等前, 这种流动⼀直持续. 期间, 温度为1T 的⾦属失去电⼦, 带正电; 温度为2T 的⾦属得到电⼦, 带负电, ⼆者出现电势差.10.如果不存在碰撞机制, 在外电场下, ⾦属中电⼦的分布函数如何变化[解答]如果不存在碰撞机制, 当有外电场ε后, 电⼦波⽮的时间变化率ηεe t -=d d k .上式说明, 不论电⼦的波⽮取何值, 所有价电⼦在波⽮空间的漂移速度都相同. 如果没有外电场ε时, 电⼦的分布是⼀个费密球, 当有外电场ε后, 费密球将沿与电场相反的⽅向匀速刚性漂移, 电⼦分布函数永远达不到⼀个稳定分布. 11.为什么价电⼦的浓度越⾼, 电导率越⾼[解答]电导σ是⾦属通流能⼒的量度. 通流能⼒取决于单位时间内通过截⾯积的电⼦数(参见思考题18). 但并不是所有价电⼦对导电都有贡献, 对导电有贡献的是费密⾯附近的电⼦. 费密球越⼤, 对导电有贡献的电⼦数⽬就越多. 费密球的⼤⼩取决于费密半径3/12)3(πn k F =.可见电⼦浓度n 越⾼, 费密球越⼤, 对导电有贡献的电⼦数⽬就越多, 该⾦属的电导率就越⾼.12.电⼦散射⼏率与声⼦浓度有何关系电⼦的平均散射⾓与声⼦的平均动量有何关系[解答]设波⽮为k 的电⼦在单位时间内与声⼦的碰撞⼏率为),',(θΘk k , 则),',(θΘk k 即为电⼦在单位时间内与声⼦的碰撞次数. 如果把电⼦和声⼦分别看成单原⼦⽓体, 按照经典统计理论, 单位时间内⼀个电⼦与声⼦的碰撞次数正⽐与声⼦的浓度.若只考虑正常散射过程, 电⼦的平均散射⾓θ与声⼦的平均波⽮q 的关系为由于F k k k ==', 所以ηηF F k q k q 222sin==θ.在常温下, 由于q <ηηF F k q k q ==θ.由上式可见, 在常温下, 电⼦的平均散射⾓与声⼦的平均动量q η成正⽐.13.低温下, 固体⽐热与3T 成正⽐, 电阻率与5T 成正⽐, 2T 之差是何原因[解答]按照德拜模型, 由式可知, 在甚低温下, 固体的⽐热34)(512D B V T Nk C Θπ=.⽽声⼦的浓度-=-=mB mB T k pT k ce v e D V n ωωωωωωπωω0/2320/1d 231d )(1ηη,作变量变换T k x B ωη=,得到甚低温下333232T v Ak n p Bηπ=,其中∞-=021d xe x x A .可见在甚低温下, 固体的⽐热与声⼦的浓度成正⽐. 按照§纯⾦属电阻率的统计模型可知, 纯⾦属的电阻率与声⼦的浓度和声⼦平均动量的平⽅成正⽐. 可见, 固体⽐热与3T 成正⽐, 电阻率与5T 成正⽐, 2T 之差是出⾃声⼦平均动量的平⽅上. 这⼀点可由式得到证明. 由可得声⼦平均动量的平⽅286220/240/3321d 1d )(T v v Bk e v e v q s p B T k s T k p D B D B =--=??ωωωωωωωωηηηη,其中∞∞--=02031d 1d x xe x x e x x B 。
黄昆固体物理课后习题答案6
第六章 自由电子论和电子的输运性质思 考 题1.如何理解电子分布函数)(E f 的物理意义是: 能量为E 的一个量子态被电子所占据的平均几率[解答]金属中的价电子遵从费密-狄拉克统计分布, 温度为T 时, 分布在能级E 上的电子数目1/)(+=-T k E E B F e g n ,g 为简并度, 即能级E 包含的量子态数目. 显然, 电子分布函数11)(/)(+=-T k E E B F e E f是温度T 时, 能级E 的一个量子态上平均分布的电子数. 因为一个量子态最多由一个电子所占据, 所以)(E f 的物理意义又可表述为: 能量为E 的一个量子态被电子所占据的平均几率.2.绝对零度时, 价电子与晶格是否交换能量[解答]晶格的振动形成格波,价电子与晶格交换能量,实际是价电子与格波交换能量. 格波的能量子称为声子, 价电子与格波交换能量可视为价电子与声子交换能量. 频率为i ω的格波的声子数11/-=T k i B i e n ω .从上式可以看出, 绝对零度时, 任何频率的格波的声子全都消失. 因此, 绝对零度时, 价电子与晶格不再交换能量.3.你是如何理解绝对零度时和常温下电子的平均动能十分相近这一点的[解答]自由电子论只考虑电子的动能. 在绝对零度时, 金属中的自由(价)电子, 分布在费密能级及其以下的能级上, 即分布在一个费密球内. 在常温下, 费密球内部离费密面远的状态全被电子占据, 这些电子从格波获取的能量不足以使其跃迁到费密面附近或以外的空状态上, 能够发生能态跃迁的仅是费密面附近的少数电子, 而绝大多数电子的能态不会改变. 也就是说, 常温下电子的平均动能与绝对零度时的平均动能一定十分相近.4.晶体膨胀时, 费密能级如何变化[解答]费密能级3/2220)3(2πn m E F=,其中n 是单位体积内的价电子数目. 晶体膨胀时, 体积变大, 电子数目不变, n 变小, 费密能级降低.5.为什么温度升高, 费密能反而降低[解答]当0≠T 时, 有一半量子态被电子所占据的能级即是费密能级. 温度升高, 费密面附近的电子从格波获取的能量就越大, 跃迁到费密面以外的电子就越多, 原来有一半量子态被电子所占据的能级上的电子就少于一半, 有一半量子态被电子所占据的能级必定降低. 也就是说, 温度升高, 费密能反而降低.6.为什么价电子的浓度越大, 价电子的平均动能就越大[解答]由于绝对零度时和常温下电子的平均动能十分相近,我们讨论绝对零度时电子的平均动能与电子浓度的关系.价电子的浓度越大价电子的平均动能就越大, 这是金属中的价电子遵从费密-狄拉克统计分布的必然结果. 在绝对零度时, 电子不可能都处于最低能级上, 而是在费密球中均匀分布. 由式3/120)3(πn k F =可知, 价电子的浓度越大费密球的半径就越大,高能量的电子就越多, 价电子的平均动能就越大. 这一点从和式看得更清楚. 电子的平均动能E 正比与费密能0F E , 而费密能又正比与电子浓度3/2n :()3/22232πn m E F =,()3/2220310353πn m E E F ==.所以价电子的浓度越大, 价电子的平均动能就越大.7.对比热和电导有贡献的仅是费密面附近的电子, 二者有何本质上的联系[解答]对比热有贡献的电子是其能态可以变化的电子. 能态能够发生变化的电子仅是费密面附近的电子. 因为, 在常温下, 费密球内部离费密面远的状态全被电子占据, 这些电子从格波获取的能量不足以使其跃迁到费密面附近或以外的空状态上, 能够发生能态跃迁的仅是费密面附近的电子, 这些电子吸收声子后能跃迁到费密面附近或以外的空状态上.对电导有贡献的电子, 即是对电流有贡献的电子, 它们是能态能够发生变化的电子. 由式)(00ε⋅∂∂+=v τe E f f f可知, 加电场后,电子分布发生了偏移. 正是这偏移 )(0ε⋅∂∂v τe E f部分才对电流和电导有贡献. 这偏移部分是能态发生变化的电子产生的. 而能态能够发生变化的电子仅是费密面附近的电子, 这些电子能从外场中获取能量, 跃迁到费密面附近或以外的空状态上. 而费密球内部离费密面远的状态全被电子占拒, 这些电子从外场中获取的能量不足以使其跃迁到费密面附近或以外的空状态上. 对电流和电导有贡献的电子仅是费密面附近电子的结论从式x k S x x E S v e j F ετπ∇=⎰d 4222和立方结构金属的电导率 E S v e k S x F ∇=⎰d 4222τπσ 看得更清楚. 以上两式的积分仅限于费密面, 说明对电导有贡献的只能是费密面附近的电子.总之, 仅仅是费密面附近的电子对比热和电导有贡献, 二者本质上的联系是: 对比热和电导有贡献的电子是其能态能够发生变化的电子, 只有费密面附近的电子才能从外界获取能量发生能态跃迁.8.在常温下, 两金属接触后, 从一种金属跑到另一种金属的电子, 其能量一定要达到或超过费密能与脱出功之和吗[解答]电子的能量如果达到或超过费密能与脱出功之和, 该电子将成为脱离金属的热发射电子. 在常温下, 两金属接触后, 从一种金属跑到另一种金属的电子, 其能量通常远低于费密能与脱出功之和. 假设接触前金属1和2的价电子的费密能分别为1F E 和2F E , 且1F E >2F E , 接触平衡后电势分别为1V 和2V . 则两金属接触后, 金属1中能量高于11eV E F -的电子将跑到金属2中. 由于1V 大于0, 所以在常温下, 两金属接触后, 从金属1跑到金属2的电子, 其能量只小于等于金属1的费密能.9.两块同种金属, 温度不同, 接触后, 温度未达到相等前, 是否存在电势差 为什么[解答]两块同种金属, 温度分别为1T 和2T , 且1T >2T . 在这种情况下, 温度为1T 的金属高于0F E 的电子数目, 多于温度为2T 的金属高于0F E 的电子数目. 两块金属接触后, 系统的能量要取最小值, 温度为1T 的金属高于0F E 的部分电子将流向温度为2T 的金属. 温度未达到相等前, 这种流动一直持续. 期间, 温度为1T 的金属失去电子, 带正电; 温度为2T 的金属得到电子, 带负电, 二者出现电势差.10.如果不存在碰撞机制, 在外电场下, 金属中电子的分布函数如何变化[解答]如果不存在碰撞机制, 当有外电场ε后, 电子波矢的时间变化率 εe t -=d d k .上式说明, 不论电子的波矢取何值, 所有价电子在波矢空间的漂移速度都相同. 如果没有外电场ε时, 电子的分布是一个费密球, 当有外电场ε后, 费密球将沿与电场相反的方向匀速刚性漂移, 电子分布函数永远达不到一个稳定分布.11.为什么价电子的浓度越高, 电导率越高[解答]电导σ是金属通流能力的量度. 通流能力取决于单位时间内通过截面积的电子数(参见思考题18). 但并不是所有价电子对导电都有贡献, 对导电有贡献的是费密面附近的电子. 费密球越大, 对导电有贡献的电子数目就越多. 费密球的大小取决于费密半径3/12)3(πn k F =.可见电子浓度n 越高, 费密球越大, 对导电有贡献的电子数目就越多, 该金属的电导率就越高.12.电子散射几率与声子浓度有何关系 电子的平均散射角与声子的平均动量有何关系[解答]设波矢为k 的电子在单位时间内与声子的碰撞几率为),',(θΘk k , 则),',(θΘk k 即为电子在单位时间内与声子的碰撞次数. 如果把电子和声子分别看成单原子气体, 按照经典统计理论, 单位时间内一个电子与声子的碰撞次数正比与声子的浓度.若只考虑正常散射过程, 电子的平均散射角θ与声子的平均波矢q 的关系为由于F k k k ==', 所以F F k q k q 222sin==θ.在常温下, 由于q <<k , 上式可化成 F F k q k q ==θ.由上式可见, 在常温下, 电子的平均散射角与声子的平均动量q 成正比. 13.低温下, 固体比热与3T 成正比, 电阻率与5T 成正比, 2T 之差是何原因[解答]按照德拜模型, 由式可知, 在甚低温下, 固体的比热 34)(512D B V T Nk C Θπ=.而声子的浓度⎰⎰-=-=m B m B T k p T k ce v e D V n ωωωωωωπωω0/2320/1d 231d )(1 ,作变量变换 T k x B ω =,得到甚低温下 333232T v Ak n p Bπ=, 其中 ⎰∞-=021d x e x x A .可见在甚低温下, 固体的比热与声子的浓度成正比.按照§纯金属电阻率的统计模型可知, 纯金属的电阻率与声子的浓度和声子平均动量的平方成正比. 可见, 固体比热与3T 成正比, 电阻率与5T 成正比, 2T 之差是出自声子平均动量的平方上. 这一点可由式得到证明. 由可得声子平均动量的平方286220/240/3321d 1d )(T v v Bk e v e v q s p B T k s T k p D B D B =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=⎰⎰ωωωωωωωω ,其中⎰⎰∞∞--=02031d 1d x x e x x e x x B 。
黄昆 固体物理 讲义 第六章
在 k 空间, E = E F 的等能面称为费米面。 1.
E F 的确定
-2CREATED BY XCH
REVISED TIME: 05-5-12
固体物理学_黄昆_第六章 金属电子论_20050406
V 电子按能量的统计分布 : dZ = N ( E )dE —— N ( E ) 状态密度 在 E − E + dE 之间状态数(量子态数) 在 E − E + dE 之间的电子数: dN = f ( E ) N ( E )dE
1 e
E − EF k BT
+1
0 0
当温度 T = T K , E > E F 的状态中, 电子填充的几率增大,E < E F 如果 E F = E F 不随时间变化,
0
的状态中,电子填充的几率减小。费密分布函数在 E F = E F 左右的增加和减小是对称的。如图
0
XCH006_005 所示。 —— 对于近自由电子, N ( E ) ∝ E
3 0 dE = E F 5
结果:在绝对零度下,电子仍具有相当大的平均能量。这是因为电子必须满足泡利不相容原理,每
REVISED TIME: 05-5-12 -3CREATED BY XCH
固体物理学_黄昆_第六章 金属电子论_20050406
个能量状态上只能容许两个自旋相反的电子。这样所有的电子不可能都填充在最低能量状态。 绝对温度 T ≠ 0 时金属中电子费密能量
—— EF是费米能量或化学势:体积不变的情况下,系统增加一个电子所需的自由能。
电子的总数: N =
∑ f (E )
i i
—— 对所有的本征态求和
在温度 T ≠ 0 的情况时:在 E = E F , f ( E F ) =
固体物理学_金属电子论之驰豫时间近似和导电率公式
06_04_驰豫时间近似和导电率公式 —— 金属电子论
3 导电率公式 —— 固体的各向异性,导电率是一个张量
06_04_驰豫时间近似和导电率公式 —— 金属电子论
f 0 dk 2q (k ) v (k ) v (k ) 3 E (2 )
06_04_驰豫时间近似和导电率公式 —— 金属电子论
—— 特鲁德关于金属电子模型的假设
电子与原子实的碰撞是随机事件
—— 可以改变电子运动的方向
每次碰撞后,电子的运动方向也是随机的
忽略电子与电子的碰撞
06_04_驰豫时间近似和导电率公式 —— 金属电子论
—— 特鲁德关于金属电子模型的假设 电子与原子实连续两次发生碰撞的时间间隔 —— 平均自由时间 时间里,电子发生碰撞的次数为 1 —— dt时间里碰撞的次数 —— 单位时间内电子发生碰撞的几率
与 无关
—— 积分中其余的因子都是球对称__积分结果间近似和导电率公式 —— 金属电子论
各向同性
06_04_驰豫时间近似和导电率公式 —— 金属电子论
f 0 [k (k )] 导电率 0 dE 2 * 3 m E q
驰豫时间和有效质量
06_04_驰豫时间近似和导电率公式 —— 金属电子论
—— 根据金属电导论,可以得出电子的自由程
—— 因为在低温时
费密能量处电子的速度要比v0高出几个数量级 —— 导电率主要取决于费米面附近电子的贡献
06_04_驰豫时间近似和导电率公式 —— 金属电子论
nq m
2
根据能量均分定理
—— 室温下
—— 电子的自由程 —— 实际电子的自由程在低温下可达到
06_04_驰豫时间近似和导电率公式 —— 金属电子论
黄昆版固体物理学课后答案解析答案 (3)
《固体物理学》习题解答黄昆 原着 韩汝琦改编 (陈志远解答,仅供参考)第一章 晶体结构、解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。
因此,可以把这些原子或离子构成的晶体看作是很多刚性球紧密堆积而成。
这样,一个单原子的晶体原胞就可以看作是相同的小球按点阵排列堆积起来的。
它的空间利用率就是这个晶体原胞所包含的点的数目n 和小球体积V 所得到的小球总体积nV 与晶体原胞体积Vc 之比,即:晶体原胞的空间利用率, VcnVx = (1)对于简立方结构:(见教材P2图1-1) a=2r , V=3r 34π,Vc=a 3,n=1∴52.06r8r34a r 34x 3333=π=π=π= (2)对于体心立方:晶胞的体对角线BG=x 334a r 4a 3=⇒= n=2, Vc=a 3∴68.083)r 334(r 342a r 342x 3333≈π=π⨯=π⨯= (3)对于面心立方:晶胞面对角线BC=r 22a ,r 4a 2=⇒= n=4,Vc=a 3(4)对于六角密排:a=2r 晶胞面积:S=6260sin a a 6S ABO ⨯⨯=⨯∆=2a 233 晶胞的体积:V=332r 224a 23a 38a 233C S ==⨯=⨯n=1232126112+⨯+⨯=6个(5)对于金刚石结构,晶胞的体对角线BG=3r 8a r 24a 3=⇒⨯= n=8, Vc=a 3、试证:六方密排堆积结构中633.1)38(ac 2/1≈=证明:在六角密堆积结构中,第一层硬球A 、B 、O 的中心联线形成一个边长a=2r 的正三角形,第二层硬球N 位于球ABO 所围间隙的正上方并与这三个球相切,于是:NA=NB=NO=a=2R.即图中NABO 构成一个正四面体。
…、证明:面心立方的倒格子是体心立方;体心立方的倒格子是面心立方。
证明:(1)面心立方的正格子基矢(固体物理学原胞基矢):123()2()2()2a a j k a a i k a a i j ⎧=+⎪⎪⎪=+⎨⎪⎪=+⎪⎩r r r r r rr r r由倒格子基矢的定义:1232()b a a π=⨯Ωr r r31230,,22(),0,224,,022a a a a a a a a a a Ω=⋅⨯==r r rQ ,223,,,0,()224,,022i j ka a a a a i j k a a ⨯==-++r rr r r r r r 同理可得:232()2()b i j k ab i j k aππ=-+=+-r rr r r r r r 即面心立方的倒格子基矢与体心立方的正格基矢相同。
固体物理(黄昆)
PART ONE 填空问题Q01_01_001 原胞中有p 个原子。
那么在晶体中有3支声学波和33p −支光学波?Q01_01_002 按结构划分,晶体可分为7大晶系, 共14布喇菲格子?Q01_01_004 面心立方原胞的体积为314a Ω=;其第一布里渊区的体积为334(2)*a πΩ= Q01_01_005 体心立方原胞的体积为32a Ω=;第一布里渊区的体积为332(2)*a πΩ= Q01_01_006 对于立方晶系,有简单立方、体心立方和面心立方三种布喇菲格子。
Q01_01_007 金刚石晶体是复式格子,由两个面心立方结构的子晶格沿空间对角线位移 1/4 的长度套构而成,晶胞中有8个碳原子。
Q01_01_008 原胞是最小的晶格重复单元。
对于布喇菲格子,原胞只包含1个原子;Q01_01_009 晶面有规则、对称配置的固体,具有长程有序特点的固体称为晶体;在凝结过程中不经过结晶(即有序化)的阶段,原子的排列为长程无序的固体称为非晶体。
由晶粒组成的固体,称为多晶。
Q01_01_010 由完全相同的一种原子构成的格子,格子中只有一个原子,称为布喇菲格子。
满足ij j i b a πδ2=⋅G G ⎩⎨⎧≠===)(0)(2j i j i π 关系的1b G ,2b G ,3b G 为基矢,由322211b h b h b h G h K K K K ++=构成的格子,称作倒格子。
由若干个布喇菲格子相套而成的格子,叫做复式格子。
其原胞中有两个以上的原子。
Q01_03_001 由N 个原胞构成的晶体,原胞中有l 个原子,晶体共有3lN 个独立振动的正则频率。
Q01_03_002 声子的角频率为ω,声子的能量和动量表示为ω=和q K =。
Q01_03_003 光学波声子又可以分为纵光学波声子和横光学波声子,它们分别被称为极化声子和电磁声子Q01_03_004 一维复式原子链振动中,在布里渊区中心和边界,声学波的频率为 ⎪⎩⎪⎨⎧→±==0,02,)2(211q a q M πβω;光学波的频率⎪⎪⎩⎪⎪⎨⎧±=→=a q m q 2)2(0)2(21212πβµβωQ01_04_001 金属的线度为L ,一维运动的自由电子波函数ikx e Lx 1)(=ψ;能量m k E 222==;波矢的取值Ln k π2= Q01_04_002 电子在三维周期性晶格中波函数方程的解具有()()ik r kr e u r k ψ⋅=K K K K K K 形式?式中()k u r K K 在晶格平移下保持不变。
固体物理 第6章 金属电子论2
同样可以看出,电导率的贡献主要来自附近的情况
�
(2π ) v f (k) ,就可以直接计算电流密度.
2
j =
∫ f (k )v(k )dk
(2)碰撞项-由于晶格原子的振动或者杂质的存在等原因,电子不 断发生从一个状态到另一状态的改变,电子态的这种变化叫做散射. vv v v 定义单位时间由 k →k ′ 的跃迁几率 Θ(k, k′) .这里仅考虑自旋不变的跃迁
§6-3 分布函数和波耳兹曼方程 v v v v 以 f 0 [ E (k ),T ]表示费米分布函数,则单位体积内处于 k → k + dk 态范 v 围的电子数即电子数密度为: v
v v v v 平衡分布时,由于E(k) =E(k) ,分布函数f0[E(k),T] 对于两态 k , k 是对称 的,因此不会表现出宏观电流. v v j 当存在外场时,很快形成稳定的电流密度: = σE ,稳定的电流分 布反映了恒定外场下,电子达到一个新的定态统计分布,假定对应分 v 布函数 f (k) ,则总的电流密度: vv v v v 2e
f f0 v τ(k) 其中 f 0 指平衡时的费米函数, 为描述系统趋于平衡所用时间的参 量,称为驰豫时间.通过求解关于分布函数的方程: b a =
τ
v 2e j = 可以得到分布函数,再利用 ( 2π ) 2
v 一般表示:j = 2e 2 v v v v v f 0 τ v ( k )[ v ( k ) E ] 3 ∫ E (2 π ) E=E
vv vv dk vv v v 对于定态问题:k rv f (k , r,t) + ( dt ) k f (k , r ,t) = b a ,如果问题的分布函数
又和位置无关(如一根均匀导线内的情形),则波耳兹曼方程可以 v 简化为: e E v f ( kv ) = b a
固体物理答案第六章
第六章自由电子论和电子的输运性质习题1. 一金属体积为V ,电子总数为N ,以自由电子气模型(1)在绝热条件下导出电子气的压强为 其中.5300F NE U = (2)证明电子气体的体积弹性模量【解答】(1)在绝热近似条件下,外场力对电子气作的功W 等于系统内能的增加dU ,即式中P 是电子气的压强.由上式可得由此得到(2将2.证明费米能其中n 作变量变换则有即T k E B F e +1由上式解得3.证明解法二:电子总数由以上两式解得4.由同种金属制做的两金属块,一个施加30个大气压,另一个承受一个大气压,设体积弹性模量为21110m N ,电子浓度为328105m ⨯,计算两金属块间的接触电势差.【解答】两种金属在同一环境下,它们的费密能相同,之间是没有接触电势差的.但当体积发生变化,两金属的导电电子浓度不同,它们之间将出现接触电势差.设压强为0时金属的费密能为F E ,金属1受到一个大气压后,费密能为1F E ,金属2受到30个大气压后,费密能为2F E ,则由《固体物理教程》(6.25)式可知,金属1与金属2间的接触电势差由上边第3题可知由《固体物理教程》(2.10)式可知,固体的体积变化V ∆与体积弹性模量K 和压强P 的关系为所以两金属的接触电势差将代入两金属的接触电势差式子,得5.若磁场强度B 沿z 轴,电流密度沿x 轴,金属中电子受到的碰撞阻力为P P ,/τ-是电子的动量,试从运动方程出发,求金属的霍尔系数.【解答】电子受的合力 ()().B v mv B v P dt P d F ⨯+--=⨯+--==ετετ(1) 由于电子受的阻力与它的速度成正比,所以电场力与阻力平衡时的速度是最高平均速度,此时电子的加速度变为0,(1)式化成().B v me v ⨯+-=ετ(2) 因为电流的方向沿x 轴,平衡后,电子沿z 轴方向和y 轴的速度分量为0.因此,由(2)式得,x x m e v ετ-=(3)0=y ε=图6.3x j =和(5R H 得到 R H 其中l 令则(W 式中F τ是费密面上的电子的平均自由时间.电子的平均自由时间F τ和平均速度F v 与平均自由程l的关系是而平均速度由下式求得于是得到 ()2102223F B mE T k nl k π=.7.设沿xy 平面施加一电场,沿z 轴加一磁场,试证,在一级近似下,磁场不改变电子的分布函数,并用经典力学解释这一现象. 【解答】在只有磁场和电场情况下,《固体物理教程》(6.47)式化成由上式可解得考虑到外界磁场和电场对电子的作用远小于原子对电子的作用,必有f k ∇0f k ∇≈.于是有相当好的近似所以 可见在一级近似下,磁场对分布函数并无贡献.由经典理论可知,电子在磁场中运动受到一洛伦兹力B v e ⨯-,该力与电子的运动方向v 垂直,它只改变电子的运动方向,并不增加电子的能量,即不改变电子的能态.也就是说,从经典理论看,磁场不改变电子的分布函数. 8.0f 是平衡态电子分布函数,证明【解答】金属中导电电子处于平衡态时,其分布函数 ()110+=-T k E E B F e f .令则有 9.立方晶系金属,电流密度j 与电场ε和磁场B 的关系是εεβεαεσ2B B B B j -•+⨯+= ,式中 其中10.其中B A >(1(2(1所以 *m F v = A B 于是因为B A >,所以A 金属电子的费米速度大.(2)如果外电场沿x 方向,则x 方向的电场x ε与电流密度x j 的关系(参见《固体物理教程》6.84式)为上式积分沿费米面进行.将上式与比较,可得立方晶系金属的电导率 在费米面是一球面的情况下,上式积分为其中利用了v E k =∇.将关系式代入电导率式得可见B 金属的电导率大.11.求出一维金属中自由电子的能态密度、费米能级、电子的平均动能及一个电子对比热的贡献.【解答】设一维一价金属有N 个导电电子,晶格常数为α.如图6.4所示,在dE E E +-图6.4一维金属中自由电子的能带 能量区间波矢数目为利用自由电子的能量于波矢的关系可得dE E E +-能量区间的量子态数目由此得到能态密度其中=E F E ,所以能量E 图6.5其中能量其中平均一个电子所具有的能量利用分布积分,得到利用《固体物理教程》(6.7)和(6.10)两式得平均一个电子对热容量的贡献为13.证明热发射电子垂直于金属表面运动的平均动能为T k B ,平行于表面运动的平均动能也是T k B .【解答】当无外加电场,温度也不太高时,金属中的价电子是不会脱离金属的,因为金属中的价电子被原子实紧紧的吸引着,电子处于深度为0E 一势阱中.如图6.6所示,要使最低能级上的电子逃离金属,它至少要从外界获得0E 的能量.要使费米面上的电子逃离金属,它至少要从外界获得()F E E -=0ϕ的能量.为方便计,取一单位体积的金属.在k 空间内k d范围内的电子数目图6.6深度为0E 势阱其中转换成速度空间,则在v d v v+→区间内的电子数目 式中利用了关系对于能脱离金属的热发射电子,其能量E 必满足()ϕ>-F E E 对大多数金属来说,T k B >>ϕ,所以必有 式中已取于是设金属表面垂直于z 轴,热发射电子沿z 轴方向脱离金属,则要求而速度分量v 利用积分公式得到利用积分公式得到 0E 因为在v 利用积分公式14.其中(0F E N 式中于是由此可得(),100F F E N E =--- 15.每个原子占据的体积为3a ,绝对零度时价电子的费密半径为计算每个原子电子数目.【解答】由《固体物理教程》(6.4)式可知,在绝对零度时导电电子的费密半径现在已知一金属导电电子的费密半径所以,该金属中导电电子的密度 3a 是一个原子占据的体积,由此可知,该金属的原子具有两个价电子.16.求出绝对零度时费密能0F E 、电子浓度n 、能态密度()0F E N及电子比热e V C 与费密半径0F k 的关系. 【解答】绝对零度时电子的费密半径电子浓度n 与费密半径的关系是 由《固体物理教程》(6.3)式可得到绝对零度时电子的费密能与费密半径的关系为由《固体物理教程》(5.103)式可知,自由电子的能态密度是由此可得由《固体物理教程》(6.13)式可知平均一个电子对热容量的贡献为因为所以一个电子的热容与费密半径的关系为17.【解答】F k 将漂移速度将代入上式,近的少数电子由于n <<'18.则A 由上式的到齐次方程的通解为 τt e B - .电子漂移速度满足的方程的解为 d v =τt e B - ().10t i e i m e ωωττε+-当电子达到稳定态后,上式右端的第一项趋于0.于是d v =().10t ie i m e ωωττε+- 按照经典理论,电流密度j 与漂移速度d v ,电导σ和电场强度ε的关系为j =()().102εωσωτεω=+=-t i d e t i m ne v ne 由上式得其中如果设电场为则有19.求出立方晶系金属的积分1P 、32P P和 【解答】由《固体物理教程》(6.119),(6.120)和(6.123)三式得以上三式中的面积分是在一个等能面上进行,对于等能面是球面的情况,面积分的值E =因为另外21.,方向与温与正向温差电流反向,条件更不可少其实此问题用6.19题的结果也可证明.忽略费密能随温度的变化,则将6.19题的21P P 和代入上式,得22.当金属中存在温度梯度时,电子分布函数()x f 可以看成是平衡分布函数0f 的刚性平移,证明平移量为.【解答】 当金属中存在温度梯度时,导电子的分布函数变成了(参见《固体物理教程》6.116式) 其中v 是电子的平均速度,n 是电子浓度,ε是温差电场.将代入上式得到将上式与下式比较得到上式表明,当金属中存在温度梯度时,导电电子的分布函数()k f 可看成平衡分布函数()k f0在波矢空间里的刚性平移,平移量为。
黄昆固体物理习题-第六章 金属电子论
6.1 解:在绝对零度时,等能面近似为球面
第六章习题参考解答
6.2在低温下金属钾的摩尔热容量的实验结果为:设一个摩尔的金属钾有个电子,一摩尔的电子对热容的贡献求钾的费米温度T F 和德拜温度ΘD 。
解:(本题将书上的题目稍微修改了一下)
费米温度
与实验结果比较
德拜定律
与实验结果比较
德拜温度
6.3若将银看成具有球形费米面的单价金属计算以下各量:
1)费密能量和费密温度
2)费密球半径
3)费密速度
4)费密球面的横截面积
5)在室温以及低温时电子的平均自由程
银质量密度
原子量
电阻率
解(1)费密能量和费密温度费密能量
费密温度
(2)费密球半径
(3)费密速度
(4)费密球面的横截面积
是与轴之间的夹角
(5)在室温以及低温时电子的平均自由程
电导率
弛豫时间
平均自由程
0K到室温之间的费密半径变化很小
平均自由程
代入数据得到:
6.4设N个电子组成简并电子气,体积为V,证明T=0K时
1)每个电子的平均能量
2)自由电子气的压强满足
解:
自由电子的能态密度
T=0 K,费米分布函数
电子平均能量
将电子气看作是理想气体,压强电子总数
6.5,6.6,6.7题略。
固体物理 第六章
1928年索末菲首先将费米狄拉克统计用于电子 气体,发展了量子的金属自由电子气体模型, 克服了经典模型明显的不足,成功地解决了电 子气的热容量问题,以及特鲁特模型所遇到的 困难。
[ 2 V (r )] (r ) (r ) 2m
其中V(r)为电子在金属中的势能,为电子的本 征能量。忽略电子 - 离子实的相互作用,在凝 胶图像下V(r)为常数势,可简单地取为零。
Q( E )
V 2mE0 3 2 ( ) 3 2 2
固体物理第六章
固体物理第六章
2
为确定材料的电学特性,我们有两个任务, 确定晶体中的电子特性,确定晶体中非常 大量电子的统计特性。由于电子在半导体、 金属中的数目非常巨大,我们不可能跟踪 每一个粒子的运动。因此我们将讨论晶体 中电子的统计规律,注意在确定电流的统 计规律时泡利不相容原理是非常重要的因 素。
在自由电子近似下,电子在状态空间的等能 面为球面,我们先来求自由电子气的态密度 分布,波矢小于k的状态数正比于半径为k的 球体积。
固体物理第六章 固体物理第六章
4 3 4 2mE 3 2 k ( ) 3 3 2
Q( E ) 2
3
V 4 2mE 3 2 ( ) (2 ) 3 3 2
k (r )
1 ik e V
固体物理第六章
金属中的自由电子 一、导带电子状态 ik r 晶体中的电子波函数为b1och波 k ( r ) e uk ( r )
在自由电子近似下: k ( r )
2k 2 1 ikr e E (k ) 2m V
固体物理第六章
固体物理第六章
根据统计力学原理,热平衡下,能量为E的 能级被电子占据的几率为; 1 f ( E ) ( E ) kT e 1 (EF)为化学势,或称为费米能级,可通过求系 统粒子总数的方法来获得,它代表在体积不 变的条件下,系统增加一个电子所需的自由 能。 f(E) 称为费米分布函数,它表示能量为 E 的一个量子状态被电子占据的几率,也可看 做该状态上的平均电子数,因为热力学几率 指该状态上的平均电子数。
黄昆版固体物理学课后答案解析答案 (1)
《固体物理学》习题解答黄昆 原着 韩汝琦改编 (陈志远解答,仅供参考)第一章 晶体结构、解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。
因此,可以把这些原子或离子构成的晶体看作是很多刚性球紧密堆积而成。
这样,一个单原子的晶体原胞就可以看作是相同的小球按点阵排列堆积起来的。
它的空间利用率就是这个晶体原胞所包含的点的数目n 和小球体积V 所得到的小球总体积nV 与晶体原胞体积Vc 之比,即:晶体原胞的空间利用率, VcnVx = (1)对于简立方结构:(见教材P2图1-1)a=2r , V=3r 34π,Vc=a 3,n=1 ∴52.06r8r34a r 34x 3333=π=π=π= (2)对于体心立方:晶胞的体对角线BG=x 334a r 4a 3=⇒= n=2, Vc=a 3∴68.083)r 334(r 342a r 342x 3333≈π=π⨯=π⨯= (3)对于面心立方:晶胞面对角线BC=r 22a ,r 4a 2=⇒= n=4,Vc=a 3(4)对于六角密排:a=2r 晶胞面积:S=6260sin a a 6S ABO ⨯⨯=⨯∆=2a 233 晶胞的体积:V=332r 224a 23a 38a 233C S ==⨯=⨯ n=1232126112+⨯+⨯=6个 (5)对于金刚石结构,晶胞的体对角线BG=3r 8a r 24a 3=⇒⨯= n=8, Vc=a 3、试证:六方密排堆积结构中633.1)38(a c 2/1≈= 证明:在六角密堆积结构中,第一层硬球A 、B 、O 的中心联线形成一个边长a=2r 的正三角形,第二层硬球N 位于球ABO 所围间隙的正上方并与这三个球相切,于是: NA=NB=NO=a=2R.即图中NABO 构成一个正四面体。
…、证明:面心立方的倒格子是体心立方;体心立方的倒格子是面心立方。
证明:(1)面心立方的正格子基矢(固体物理学原胞基矢):123()2()2()2a a j k a a i k a a i j ⎧=+⎪⎪⎪=+⎨⎪⎪=+⎪⎩r r r r r rr r r由倒格子基矢的定义:1232()b a a π=⨯Ωr r r31230,,22(),0,224,,022a a a a a a a a a a Ω=⋅⨯==r r rQ ,223,,,0,()224,,022i j ka a a a a i j k a a ⨯==-++r rr r r r r r同理可得:232()2()b i j k ab i j k aππ=-+=+-r rr r r r r r 即面心立方的倒格子基矢与体心立方的正格基矢相同。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6.1 解:在绝对零度时,等能面近似为球面
第六章习题参考解答
6.2在低温下金属钾的摩尔热容量的实验结果为:设一个摩尔的金属钾有个电子,一摩尔的电子对热容的贡献求钾的费米温度T F 和德拜温度ΘD 。
解:(本题将书上的题目稍微修改了一下)
费米温度
与实验结果比较
德拜定律
与实验结果比较
德拜温度
6.3若将银看成具有球形费米面的单价金属计算以下各量:
1)费密能量和费密温度
2)费密球半径
3)费密速度
4)费密球面的横截面积
5)在室温以及低温时电子的平均自由程
银质量密度
原子量
电阻率
解(1)费密能量和费密温度费密能量
费密温度
(2)费密球半径
(3)费密速度
(4)费密球面的横截面积
是与轴之间的夹角
(5)在室温以及低温时电子的平均自由程
电导率
弛豫时间
平均自由程
0K到室温之间的费密半径变化很小
平均自由程
代入数据得到:
6.4设N个电子组成简并电子气,体积为V,证明T=0K时
1)每个电子的平均能量
2)自由电子气的压强满足
解:
自由电子的能态密度
T=0 K,费米分布函数
电子平均能量
将电子气看作是理想气体,压强电子总数
6.5,6.6,6.7题略。