(完整版)五种方法搞定变力做功问题
如何求变力做功
F 图1如何求变力做功在高中阶段求变力做功的问题是很常见的。
既可以运用公式W=FScos α来求解,又可以运用动能定理、功能原理等来求解。
对于具体问题要具体分析。
为此笔者在教学中总结了以下几种方法。
一、运用公式W=FScos α求解在不知物体初、末位置的速度时,就无法运用动能定理或功能原理求解,只有将变力转化为恒力,依据功的定义式W=FScos α求解。
例1 如图1所示,某个力F 作用于半径为R 的圆盘, 力F 的大小不变,但方向始终与过力的作用点的圆盘的切线 一致,则转动圆盘一周该力做多少功。
分析与解 在转动转盘一周过程中,力F 的方向时刻变化,但每一瞬时力F 总是与该瞬时的速度同向(切线方向),既F 在每瞬时与转盘转过的极小位移∆s 同向。
这样,无数瞬时的极小位移∆s 1,∆s 2,∆s 3…∆s n 都与当时的F 方向同向。
因而在转动一周过程中,力F 做的功应等于在各极小位移段所做功的代数和。
即W=F ∆s 1+F ∆s 2+…F ∆s n= F(∆s 1+∆s 2+∆s 3+…∆s n )=F 2πR当变力始终与速度在同一直线上或成某一固定角度时可把曲线运动或往复运动的路线拉直考虑,在各小段位移上将变力转化为恒力用W=FScos α计算功,而且变力所做功等于变力在各小段所做功之和。
再者,若问题中的变力与位移成线形关系,即F=ks+b ,其F-s 图象如图2所示。
则图中阴影部分的面积大小在数值上等于变力所做功的大小,即W=)(21221s s F F -+。
也就是说,变力F 由F 1线形地变化到F 2的过程中所做的功等于该过程的平均力221F F F +=-所做的功。
二、用动能定理求解动能定理告诉我们,外力对物体所做的功等于物体动能的变化,即W 外 =∆E K ,W 外系指物体受到的所有外力对物体所做功的代数和,∆E K 是物体动能的变化量。
例2 如图3所示,质量为m 的物块在半径为R 的半球形容器中从上部边缘A 由静止起下滑,滑到最底点B时对容器底部的压力为2mg 。
求变力做功的8种思路
求变力做功的8种思路张家港市塘桥高级中学施 坚功是中学物理中的重要概念,它体现了力对物体的作用在空间上的累积过程.物体受到力的作用,并且在力的方向上发生一段位移,就叫做力对物体做了功. αcos Fs W =,式中F 应是恒力.但实际问题中经常遇到变力,那变力做功如何求解呢?下面结合典型问题,指明求变力做功的八种思路.思路1、微元法:若参与做功的变力,其仅力的大小不变,而方向改变,且力与位移的夹角确定不变,则可通过微分累积W N W ∆⋅=求解.【例1】 在一粗糙的水平面上,动摩擦因素为μ,一小滑块质量为m 在某小孩手的水平拉力的作用下做匀速圆周运动,则一小滑块转动一周的过程中,水平拉力、摩擦力分别做功多少?[解析]:手的水平拉力始终在圆周的切线方向上,故可以把圆周均匀分割成N 段(N 足够大),每段位移为s ∆,则每一小段s ∆上都可以认为水平拉力(滑动摩擦力)方向不变且与位移s ∆方向一致(相反),且mg f F μ==.每一小段上拉力做功s F W∆⋅=∆,所以,Rmg R F s N F W N W W f F πμπ22⋅=⋅=∆⋅⋅=∆⋅==,即:水平拉力、摩擦力分别做功:R mg πμ2,R mg πμ2-.点评:手的拉力和摩擦力是变力,但经微分后将变力转化为恒力,再用公式求解.思路2、均值法:若参与做功的变力,其仅力的大小改变,而方向不变,且大小随位移线性变化,则可通过求出变力的平均值等效代入公式θscos F W =求解.【例2】 用铁锤将一铁钉击入木块,设木块对铁钉的阻力与铁钉进入木块内的深度成正比.在铁锤击第一次时,能把铁钉击入木块内1cm .问击第二次时,能击入多少深度?(设铁锤每次做功相等)[解析]:此题可根据阻力与深度成正比这一特点,将变力求功转化为求平均阻力的功,进行等效替代.铁锤每次做功都用来克服铁钉阻力做的功,但摩擦阻力不是恒力,其大小与深度成正比,kx f F =-=,可用平均阻力来代替. 如图1-1,第一次击入深度为1x ,平均阻力1121kx F =,做功为2111121kx x F W ==.第二次击入深度为1x 到2x ,平均阻力)(21212x x k F +=,位移为12x x -,做功为)(21)(21221222x x k x x F W -=-=.两次做功相等:21W W =.得:cm x x 41.1212==,即:cm x x x 41.012=-=∆.点评:对于线形变化的变力,可以取其平均值,将变力转化为恒力,进而求该力的功. 思路3、图象法(示功图求解):若参与做功的变力,方向与位移方向始终一致而大小随时变化,我们可作出该力随位移变化的图象.如图1-2,那么所示的阴影面积,即为变力做的功.【例3】图所示,做直线运动的物体所受的合外力与物体运动距离的对应关系.已知物体的质量为kg 4.10.开始处于静止状态,求s 12末物体的速度多大?[解析]:物体所受的合外力是变力.根据s F -图中曲线下所围的“面积”表示力的功的物理意义,可求得)()()(总J W 52612426622=-⨯+-⨯+⨯=,再由动能定理求得102==mW v 总)/(s m点评:根据示功图中曲线所围的“面积”表示功的物理意义,直接求变力的功.例2也可以利用图象法,类似匀变速直线运动的t v -图象而作出x F -图象.[解析]:因为阻力kx F =,以F 为纵坐标,F 方向上的位移x 为横坐标,作出x F -图象(图1-4),曲线上面积的值等于F 对铁钉做的功.由于两次做功相等,故有:21S S =(面积),即:))((2121121221x x x x k kx -+=,即:cm x x x 41.012=-=∆.思路4、t P Pt W==公式法:已知恒定功率或平均功率的条件下,机车等的变力做功转化为功率求解,化难为易.【例4】 质量为M 的汽车,沿平直的公路加速行驶,当汽车的速度为1v 时,立即以不变的功率行驶,经过距离s ,速度达到最大值2v .设汽车行驶过程中受到的阻力f 始终不变.求汽车的速度由1v 增至2v 的过程中所经历的时间及牵引力做的功.[解析]:汽车以恒定功率运动,此过程中的牵引力是变力.当加速度减小到0时,即牵引力等于阻力时,速度达到最大值.由于汽车的功率恒定,故变力(牵引力)的功可用Pt W=计算.对汽车加速过程中由动能定理有22122Mv Mv fs Pt -=-又2P f = 联立得:221222)(v s P v v M t +-=22122)(v Ps v v M Pt W +-==点评:运用Pt W =,将恒定功率作用下的机械做功转化为易确定的因素,另辟蹊径. 思路5、动能定理法:若参与做功的变力,方向与大小都变化,导致无法直接由αcos Fs W =求变力F 做的功.这时可利用动能定理:αscos F W 合总合=∆==k E W ;但此法只能求合力做的功.【例5】 如图所示,质量为m 的物体被细绳牵引着在光滑水平面上做匀速圆周运动,O 为一光滑孔,当拉力为F 时,转动半径为R ;当拉力为8F 时,物体仍做匀速圆周运动,其转动半径为2R ,在此过程中,外力对物体做的功为: A .27FRB 、47FR C 、23FR D 、FR 4 解析:该题显然是一个变力问题,但通常有学生利用平均力法求解,即θscos F W =.此题中绳上拉力需提供向心力,方向时刻改变,不能利用平均力法求解.则可以从功能关系入手,而且绳上拉力是合外力,则动能定理:20212121mv mv W -=合,又圆周运动:Rv mF 02=;2821R v m F =,结合以上三式,得:FR FR FR mv mv W 2321221212021=-=-=合.故选C .点评:对于物体的始末状态的动能是已知的,则在这种情境下的变力做功用动能定理显得方便简捷.思路6、功能关系法:能是物体做功的本领,功是能量转化的量度.因此,对于大小、方向都随时变化的变力F 所做的功,可以通过对物理过程的分析,从能量转化多少的角度来求解.【例6】 一质量为m 的小球,用长为L 的轻绳悬挂于O 点,小球在水平力F 作用下,从平衡位置P 点很缓慢地移到Q 点,如图所示,此时悬线与竖直方向夹角为θ,则拉力F 所做的功为:A .θcos mgLB .()θcos 1-mgLC .θsin FLD .[解析]:解物理题必须注意把握题中的关键词,比如此题中“很缓慢”三字,表明拉力F 所做的功并未增加物体的动能,根据题意恰恰是提高了势能,即:)cos 1(θ-=∆=mgl E W P F (或理解成据功能原理:F 的功增加了小球的机械能),B 正确.C 选项则是利用了恒力做功公式W=Fscos θ,但事实上F 不是恒力.如图,三球受T mg F 、、,且θmgtg F =,则在上拉过程中,↑↑F ,θ.C 选项不正确.故选B .点评:如果系统所受的外力和内力(除重力、弹力外)所做的功的代数和等于系统的机械能的增量,且这些力中有变力做功,机械能的增量易求,用功能关系(或功能原理)求解简便. 思路7、等效替代法:等效思想是物理教学中一种重要思维方法.当恒力与变力大小相等且在做功数值上相等情况下,可以用恒力替代变力求功.【例7】 如图所示,某人用大小不变的力F 拉着放在光滑水平面上的物体,开始时与物体相连接的绳与水平面间的夹角为α,经一段时间后,绳与水平面间的夹角为β,已知图中的高度为h ,求绳的拉力T 对物体做的功.(绳的质量、滑轮质量及绳与滑轮间的摩擦不计)[解析]:物体由初态运动到终点,所受的绳子拉力是变力(变方向),但在题设条件下,人的拉力F 对绳的端点做的功就等于绳的拉力T 对物体做的功.故可用恒力F 的功替代变力T 的功.绳端的位移大小为)sin 1sin 1(21βα-=-=∆h s s s 则:)sin 1sin 1(βα-=∆⋅==Fh s F W W F T点评:当恒力与变力大小相等且在做功数值上相等情况下,可以用恒力替代变力求功. 思路8、借助守恒定律求解:能量守恒定律、机械能守恒定律是物理学中极为重要的规律,为求功提供了另一条重要思路,尤其是变力做功问题.【例8】 如图所示,一根轻的刚性杆长为l 2,中点和右端各固定一个质量为m 的小球,左端O 为水平转轴.开始时杆静止在水平位置,释放后将向下摆动,求从开始释放到摆到竖直位置的过程中,杆对B 球做了多少功?[解析]:如果没有A 球,杆上只有B 球,摆到最低点B 球的速度为1v ,根据机械能守恒定律有.21212mv l mg =所以gl v 21= 现在杆上有A 、B 两球,设摆到最低点时B 球速度为2v ,则A 球速度为22v ,系统仍满足机械能守恒的条件,有22.22)2(21212v m mv mgl l mg +=+ 解出gl v 5242=B 球两次末动能之差就是轻杆对B 球做的功,即mgl mv mv W B 5221212122=-=杆对 点评:系统内只有重力和弹力做功,当弹力是变力时,求这个变力功可借助能量守恒定律(尤其是机械能守恒定律).小结:变力做功的求解对学生的思维鉴别力、跳跃性提出了较高的要求,采用平均力法、图象法、动能定理还是功能关系,必须对物理情景分析透彻,而后决定取舍.当然.有时方法不是单一的,如例2,而且适当地一题多解可以提高学生的思维深度和开阔性.图8。
变力做功的求解方法
变力做功的求解方法功是一个基本物理量,功是能量转化的量度.因此,功的计算在中学物理中占有十分重要的地位.中学阶段所学的功的计算公式W=FS COS α只适用于计算恒力做功情况,但如果是变力做功,一般不能用该公式去计算.那么,在高中知识的范围内如何处理有关变力做功的问题呢?本文介绍几种常见的求解方法.一、 用动能定理求解动能定理告诉我们,外力对物体所做的功等于物体动能的变化,其表达式是W 外=ΔE k,W 外是指物体受到的所有外力对物体所做功的代数和,ΔE k是物体动能的变化量.如果我们所研究的多个力中,只有一个力是变力,其余的都是恒力,而且这些恒力所做的功比较容易计算,研究对象本身的动能增量也比较容易计算时,用动能定理就可以求出这个变力所做的功.例1.如图1所示,一质量为m 的小球,用长为L 的轻绳悬挂在O 点,小球在水平拉力F 的作用下,从平衡位置A 点缓慢地移到B 点,求力F 所做的功?分析:小球从A 点拉到B 点时,受重力、绳子的拉力和水平拉力F ,由受力分析知F=mg tan θ,随着θ的增大,F也增大,故F 是变力,因此不能直接用W=FS COS θ计算.解:从A 缓慢拉到B ,由动能定理得:WF-WG=ΔEK,因为小球缓慢移动,速度可视为零,即动能的变化量ΔEK为零,则有:WF=WG=mgL(1-COS θ) .二、用机械能守恒定律求解如果物体只受重力和弹力作用或只有重力和弹力做功时,所研究的系统的机械能守恒.如果重力和弹力中有一个力是变力,这个变力所做的功就可用机械能守恒定律求解.例2.一条均匀铁链的长度为a,置于足够高的光滑桌面上,如图2所示.铁链的下垂部分长度为b,并由静止开始从桌上滑下,当铁链的最后一节离开桌面时,求铁链的速度及在这一过程中重力所做的功为多少?分析:铁链在下落过程中,下垂部分不断增长,因此,这部分所受的重力是变力,整个铁链的运动也是在该变力作用下的运动,是变力做功问题.解:取桌面为零势能面,设整个铁链质量为m,下垂部分质量为m0.则有:ab m m =0,m a b m =0, 链条开始下滑时:动能E k1=0,势能E p1=-2b m0g=-a b 22mg,机械能E 1=E k1+E p1=-ab 22mg, 设链条全部离开桌面时的瞬时速度为v,此时:动能E k2=21mv2,势能E p2=-2a mg,机械能E 2=21mv2-2a mg, 根据机械能守恒定律有E 1=E 2,即:-ab 22mg=21mv2-2a mg, 解得:v=ab a g )(22-.因此,在这一过程中重力所做的功为:W G=ΔE k=21mv2-0=)(222b a amg -. 三、用功能原理求解如果系统除重力和弹力之外的力对物体做功,系统的机械能就会发生变化,而且这些力做了多少功,系统就有多少机械能发生变化,这就是功能原理.如果这些力是变力或只有一个变力做功,而其它力对物体做的功和系统机械能的变化量容易求得,就可以用功能原理求解变力做功问题.例3.质量为m 的均匀链条长为L ,自然堆放在光滑的水平面上,现用力F 将其一端竖直向上缓慢地提起,求该链条另一端刚好离开水平面时拉力F 所做的功?分析:链条上提过程中提起部分的重力逐渐增大,作用在链条上的拉力是变力,因此不能直接用W=FS COS α计算.根据功能原理,上提过程中拉力F 所做的功等于机械能的增量,故可以用功能原理求解.解:当链条刚被全部提起时,动能没有变化,重心升高了L ,故机械能增加量为:ΔE=mgL ,根据功能原理知力F 所做的功为:W=mgL .四、用公式W=Pt 求解将功率的定义式P=t W 变形,得W=Pt .在求解交通工具牵引力做功问题时经常用到此公式. 例4.质量为5×105kg 的机车,以恒定功率从静止开始起动,所受阻力是车重的0.06倍,机车经过5min速度达到最大值108km /h ,求机车的功率和机车在这段时间内所做的功?分析:因机车的功率恒定,当机车从静止开始达到最大速度的过程中,牵引力不断减小,当速度达到最大值时,机车所受牵引力达到最小值,与阻力相等.在这段时间内机车所受阻力可认为是恒力,牵引力是变力,因此,机车做功不能直接用W=FS COS α求解,但可用公式W=Pt 来计算.解:根据题意,机车所受阻力f =kmg ,当机车速度达到最大值v max时,机车牵引力F=f =kmg ,故机车的功率为:P=FVmax=kmgv max=0.06×5×105×10×3600101083⨯W=9×106W, 根据W=Pt,得机车所做的功为:W=9×106×300J =2.7×109J.五、用图象法求解如果力F 随位移的变化关系明确,始末位置清楚,可在平面直角坐标系内画出F —x 图象,图象下方与坐标轴所围的“面积”即表示功。
求变力做功的六种方法
求变力做功的六种方法都匀市民族中学:王方喜在高中阶段求变力做功问题,既是学生学习和掌握的难点,也是教师教学的难点。
本文举例说明了在高中阶段求变力做功的常用方法,比如微元累积(求和)法、平均力等效法、功率的表达式PtW=、F-x图像、用动能定理、等效代换法等来求变力做功。
一、运用微元积累(求和)法求变力做功求変力做功还可以用微元累积法,把整个过程分成极短的很多段,在极短的每一段里,力可以看成是恒力,则可用功的公式求每一段元功,再求每一小段上做的元功的代数和。
由此可知,求摩擦力和阻力做功,我们可以用力乘以路程来计算。
用微元累积法的关键是如何选择恰当的微元,如何对微元作恰当的物理和数学处理,微元累积法对数学知识的要求比较高。
例1如图1-1所示,某人用力F转动半径为R的转盘,力F的大小不变,但方向始终与过力的作用点的转盘的切线一致,则转动转盘一周该力做多少功.图1-1【分析与解答】在转动转盘一周过程中,力F的方向时刻变化,但每一瞬时力F总是与该瞬时的速度同向(切线方向),即F在每瞬时与转盘转过的极小位移Δs同向.这样,无数瞬时的极小位移Δs1,Δs2,Δs3…Δsn都与当时的F方向同向.因而在转动一周过程中,力F做的功应等于在各极小位移段所做功的代数和.即W=FΔs1+FΔs2+…FΔsn=F(Δs1+Δs2+Δs3+…Δsn)=F2πR【总结】变力始终与速度在同一直线上或成某一固定角度时,可把曲线运动或往复运动的路线拉直考虑,在各小段位移上将变力转化为恒力用W=FLcosθ计算功,而且变力所做功应等于变力在各小段所做功之和。
【检测题1-1】如图1-2所示,有一台小型石磨,某人用大小恒为F、方向始终与磨杆垂直的力推磨,设施力点到固定转轴的距离为L,在使磨转动一周的过程中,推力做了多少功?图1-2 【检测题1-2】小明将篮球以10 m/s的初速度,与水平方向成30°角斜向上抛出,被篮球场内对面的小虎接到,小明的抛球点和小虎的接球点离地面的高度都为1.8 m.由于空气阻力的存在,篮球被小虎接到时的速度是6 m/s.已知篮球的质量m=0.6 kg,g取10 m/s2.求:(1)全过程中篮球克服空气阻力做的功;(2)如果空气阻力恒为5 N,篮球在空中飞行的路程.二、运用平均力等效法求变力做功当力的方向不变,而大小随位移线性..变化时(即F=kx+b),可先求出力的算术平均值221FFF+=,再把平均值当成恒力,用功的计算式求解。
变力做功的六种常见计算方法
变力做功的六种常见计算方法第一种方法是曲线切线式。
在物体沿曲线运动的情况下,可以通过计算力的切线分量与物体速度的乘积来确定变力做功的大小。
具体计算方法是,首先需要确定物体在其中一时刻的速度,然后取该时刻的力的切线分量(即与物体速度方向相同的力的分量),最后将该切线分量与物体速度的乘积相乘,即可得到变力做功的大小。
第二种方法是常力法。
在物体受到一定的恒定力作用下,可以通过计算力与物体位移方向的夹角的余弦值再乘上力的大小来确定变力做功的大小。
具体计算方法是,首先需要确定力的大小,然后确定物体的位移方向与力的方向之间的夹角,最后将位移方向与力的方向之间夹角的余弦值乘以力的大小,即可得到变力做功的大小。
第三种方法是分力法。
当物体受到多个力的作用时,可以通过计算各个力的分力与物体位移方向之间的夹角的余弦值再分别乘上各个分力的大小来确定变力做功的大小,然后将各个分力的做功求和即可得到变力做功的总大小。
第四种方法是连续变力法。
在物体受到连续变化的力作用下,可以通过将力的大小关于物体位移的函数表示出来,然后对该函数进行积分来确定变力做功的大小。
具体计算方法是,首先需要确定力对物体位移的函数关系式,然后对该函数进行积分,最后得到的积分值即为变力做功的大小。
第五种方法是有功做功法。
在物体受到非保守力作用下,可以通过计算力的非保守分量与物体位移的乘积再加上势能变化的大小来确定变力做功的大小。
具体计算方法是,首先需要确定力的保守分量与非保守分量,然后将非保守分量与位移的乘积相加,再加上势能变化的大小,即可得到变力做功的大小。
第六种方法是负功做功法。
在物体受到反向力作用下,可以通过计算该反向力的绝对值与物体位移的乘积再乘上负一来确定变力做功的大小。
具体计算方法是,首先需要确定反向力的大小,然后将反向力的绝对值与位移的乘积相乘,并将结果乘以负一,即可得到变力做功的大小。
综上所述,变力做功的六种常见计算方法分别是曲线切线式、常力法、分力法、连续变力法、有功做功法和负功做功法。
(完整)求解变力做功的十种方法
求解变力做功的十种方法功是高中物理的重要概念,对力做功的求解也是高考物理的重要考点,恒力的功可以用公式直接求解,但变力做功就不能直接求解了,需要通过一些特殊的方法,本文结合具体的例题,介绍十种解决变力做功的方法.一. 动能定理法例1. 一质量为m 的小球,用长为L 的轻绳悬挂于O 点,小球在水平力F 作用下,从平衡位置P 点很缓慢地移到Q 点,如图1所示,此时悬线与竖直方向夹角为θ,则拉力F 所做的功为:( )A :θcos mgLB :)cos 1(θ-mgL C.:θsi n FL D:θcos FL分析:在这一过程中,小球受到重力、拉力F 、和绳的弹力作用,只有重力和拉力做功,由于从平衡位置P 点很缓慢地移到Q 点.,小球的动能的增量为零。
那么就可以用重力做的功替代拉力做的功。
解:由动能定理可知:0=-G F W W )cos 1(θ-==mgL W W G F故B 答案正确。
小结:如果所研究的物体同时受几个力的作用,而这几个力中只有一个力是变力,其余均为恒力,且这些恒力所做的功和物体动能的变化量容易计算时,利用动能定理可以求变力做功是行之有效的。
二。
微元求和法例2. 如图2所示,某人用力F 转动半径为R 的转盘,力F 的大小不变,但方向始终与过力的作用点的转盘的切线一致,则转动转盘一周该力做多少功。
解:在转动转盘一周过程中,力F 的方向时刻变化,但每一瞬时力F 总是与该瞬时的速度同向(切线方向),即F 在每瞬时与转盘转过的极小位移∆∆∆s s s 123、、……∆s n 都与当时的F 方向同向,因而在转动一周过程中,力F做的功应等于在各极小位移段所做功的代数和,即:W F s F s F s F s F s s s s F Rn n =++++=++++=()()∆∆∆∆∆∆∆∆1231232……·π小结:变力始终与速度在同一直线上或成某一固定角度时,可化曲为直,把曲线运动或往复运动的路线拉直考虑,在各小段位移上将变力转化为恒力用W Fs =cos θ计算功,而且变力所做功应等于变力在各小段所做功之和。
(完整版)五种方法搞定变力做功问题
五种方法搞定变力做功一.微元法思想。
当物体在变力作用下做曲线运动时,我们无法直接使用θcos s F w •=来求解,但是可以将曲线分成无限个微小段,每一小段可认为恒力做功,总功即为各个小段做功的代数和。
例1. 用水平拉力,拉着滑块沿半径为R 的水平圆轨道运动一周,如图1所示,已知物块的质量为m ,物块与轨道间的动摩擦因数为μ。
求此过程中摩擦力所做的功。
思路点拨:由题可知,物块受的摩擦力在整个运动过程中大小不变,方向时刻变化,是变力,不能直接用求解;但是我们可以把圆周分成无数小微元段,如图2所示,每一小段可近似成直线,从而摩擦力在每一小段上的方向可认为不变,求出每一小段上摩擦力做的功,然后再累加起来,便可求得结果 图1图2把圆轨道分成无穷多个微元段,摩擦力在每一段上可认为是恒力,则每一段上摩擦力做的功分别为,,…,,摩擦力在一周内所做的功二、平均值法当力的大小随位移成线性关系时,可先求出力对位移的平均值221F F F +=,再由αcos L F W =计算变力做功。
如:弹簧的弹力做功问题。
例2静置于光滑水平面上坐标原点处的小物块,在水平拉力F 作用下,沿x 轴方向运动(如图2甲所示),拉力F 随物块所在位置坐标x 的变化关系(如图乙所示),图线为半圆.则小物块运动到x 0处时的动能为 ( ) A .0 B .021x F mC .04x F m πD .204x π【精析】由于W =Fx ,所以F-x 图象与x 轴所夹的面积表示功,由图象知半圆形的面积为04m F x π.C 答案正确.三.功能关系法。
功能关系求变力做功是非常方便的,但是必须知道这个过程中能量的转化关系。
例3 如图所示,用竖直向下的恒力F 通过跨过光滑定滑轮的细线拉动光滑水平面上的物体,物体沿水平面移动过程中经过A 、B 、C 三点,设AB =BC ,物体经过A 、B 、C 三点时的动能分别为E KA ,E KB ,E KC ,则它们间的关系一定是:A .E KB -E KA =E KC -E KB B .E KB -E KA <E KC -E KB C .E KB -E KA >E KC -E KBD .E KC <2E KBF x 0FxF •Ox 0图2-甲图2乙【精析】此题中物块受到的拉力是大小恒定,但与竖直方向的夹角逐渐增大,属于变力,求拉力做功可将此变力做功转化为恒力做功问题.设滑块在A 、B 、C 三点时到滑轮的距离分别为L 1、L 2、L 3,则W 1=F (L 1-L 2),W 2=F (L 2-L 3),要比较W 1和W 2的大小,只需比较(L 1-L 2)和(L 2-L 3)的大小.由于从L 1到L 3的过程中,绳与竖直方向的夹角逐渐变大,所以可以把夹角推到两个极端情况.L 1与杆的夹角很小,推到接近于0°时,则L 1-L 2≈AB ,L 3与杆的夹角较大,推到接近90°时,则L 2-L 3≈0,由此可知,L 1-L 2> L 2-L 3,故W 1> W 2.再由动能定理可判断C 、D 正确.答案CD.四.应用公式Pt W =求解。
[求解变力做功的五种方法]变力做功
[求解变力做功的五种方法]变力做功1.微元法适用于大小不变的力所做功的计算,此种情况可以通过分割求和的物理方法来求变力的功。
把曲线运动分成若干小段,每一小段上都可认为是恒力做功,再累计求和。
计算时由于力的大小不变,在累加时可以提出来,剩下的各小段累加得到的结果就等于物体通过的总路程。
我们可以通过力与物体通过的路程及其夹角的乘积来计算这一情况下大小不变的力所做功的问题。
如图所示,某个力F=10N作用于半径为R=1m的转盘的边缘上,力F的大小保持不变,但方向保持在任何时刻均与作用点的切线一致,则转动一周这个力做的总功为()。
A.0JB.20JC.10JD.20J解析:分段计算功,然后用求和的方法求变力所做的功。
可以把圆弧分成1、2、3。
,总功W=F1+ F2+ F3+。
= F(1+2+3+。
)= F·2R=20J。
故答案为:B。
2.平均法对方向不变、大小随位移发生线性变化(即力与位移成一次函数关系)的力做功问题,可以通过平均力来计算这种变力的功。
这种方法也可以用来求解弹簧的弹力做的功。
用铁锤把小铁钉钉入木板,设木板对钉子的阻力与钉进木板的深度成正比。
已知铁锤第一次将钉子钉进d,如果铁锤第二次敲钉子时对钉子做的功与第一次相同,那么,第二次钉子进入木板的深度是多少?解析:钉子钉入木板过程中随着深度的增加,阻力成正比地增加,这属于变力做功问题。
由于力与深度成正比,可将变力等效为恒力来处理。
.据题意可得第一次打击有:;第二次打击有:。
由以上两式可得。
用图象法求解变力做功问题在F—图象中,图线与坐标轴围成的面积表示功。
对于方向不变,大小随位移线性变化的力,作出F—图象,求出图线与坐标轴所围成的面积,就求出了变力所做的功。
一立方体木块,边长0.2m,放在水池中,恰在此时有一半浮出水面而处于静止状态,若池深1m,用力将木块慢慢推至池底,在这一过程必须对木块做多少功?(水的密度)解析:木块的重力。
作出整个过程的F-图象,梯形面积即为变力的功,有。
高中物理:变力做功怎么求?
高中物理:变力做功怎么求?功的求法是高中物理教学的重点和难点之一,教材上的公式:,只适用于恒力做功的情况,对于某些变力做功的问题,在高中阶段也要求学生掌握,而学生遇到变力做功的问题时,常常感到无处着手。
下面,对变力做功求解方法的问题进行总结:方法一:微元累积法将物体的位移分割成许多小段,因小段很小,每一小段上作用在物体上的力可以视为恒力,这样就将变力做功转化为在无数多个无穷小的位移上的恒力所做元功的代数和。
此法在中学阶段,常应用于求解力的大小不变、方向改变或者方向不变、大小改变的变力做功问题。
例1、如图1所示,半径为R,孔径均匀的圆形弯管水平放置,小球在管内以足够大的初速度在水平面内做圆周运动,设开始运动的一周内,小球与管壁间的摩擦力大小恒为,求小球在运动的这一周内,克服摩擦力所做的功。
解析:将小球运动的轨迹分割成无数个小段,设每一小段的长度为,它们可以近似看成直线,且与摩擦力方向共线反向,如图2所示,元功,而在小球运动的一周内小球克服摩擦力所做的功等于各个元功的和,即方法二:力的平均值法当某个力的方向不变,但其大小随位移均匀变化时,可以用力的初始值F1和末状态值F2的平均值来计算变力所做的功。
例2、如图3所示,在光滑的水平面上,劲度系数为k的弹簧左端固定在竖直墙上,右端系着一小球,弹簧处于自然状态时,小球位于O点,今用外力压缩弹簧,使其形变量为x,当撤去外力后,求小球到达O点时弹簧的弹力所做的功。
解析:弹簧的弹力为变力,与弹簧的形变量成正比,在题设条件下,弹力的初始值为,终值为,故弹力的平均值为,则弹力所做的功。
方法三:图像法在题设情况下,如果能找出力F与位移s的函数关系,则在F-s 的平面直角坐标系中,作出F随s变化的图像,那么,图像与横坐标轴所围成的图形的面积即是F对物体在某一段位移上所做功的数值。
例3、用质量为5kg的均匀铁索从10m深的井中吊起质量为20kg 的重物,在这个过程中至少要做多少功(取g=10m/s2)解析:在吊起重物的过程中,作用在重物和铁索上的力至少应等于重物和铁索的重力,但在吊起过程中铁索的长度逐渐缩短,故拉力也逐渐减少,即拉力是一个随距离变化的变力,拉力随深度s的变化关系为所以力随距离是均匀变化,作出拉力的F-s图线,则拉力所做的功可以用图4中梯形的面积来表示显然,此题亦可以用方法二求解。
求解变力做功的“五法”
第26点求解变力做功的“五法”1.变力的功=力×路程当力的大小不变而方向始终与运动方向相同或相反时,这类力所做的功等于力和路程的乘积,如滑动摩擦力、空气阻力等做的功.2.变力的功=平均力×x cos α当力的方向不变,大小随位移线性变化时,可先求出力的平均值F=F1+F22,再由W=F x cos α计算.3.变力的功=功率×时间当变力的功率P一定时,可用W=Pt求功.4.变力的功=“面积”作出变力F随位移x变化的图像,图像与横轴所夹的“面积”即为变力做的功,如图1中阴影部分所示.图15.变力的功=动能变化-其他恒力所做的功当物体受到变力(也可只受变力)及其他恒力作用引起物体的动能发生变化时,根据动能定理知,变力的功等于动能变化减去其他恒力所做的功.对点例题如图2所示,有一台小型石磨,某人用大小恒为F、方向始终与磨杆垂直的力推磨.假设施力点到固定转轴的距离为L,在使磨转动一周的过程中,推力做了多少功?图2解题指导因力F的大小恒定,且始终与运动方向相同,故F的功等于力乘以路程,即W=F·2πL=2πFL答案2πFL一质量为2 kg的物体,在水平恒定拉力的作用下以某一速度在粗糙的水平面上做匀速运动,当运动一段时间后,拉力逐渐减小,且当拉力减小到零时,物体刚好停止运动,图3中给出了拉力随位移变化的关系图像.已知重力加速度g=10 m/s2.根据以上信息能精确得出或估算得出的物理量有()图3A.物体与水平面间的动摩擦因数B.合外力对物体所做的功C.物体匀速运动时的速度D.物体运动的时间答案ABC解析物体做匀速运动时,受力平衡,则f=F=7 N;再由滑动摩擦力公式可求得物体与水平面间的动摩擦因数;故A正确;4 m后物体做减速运动,图像与坐标轴围成的面积表示拉力做的功,则由图像中减速过程包括的方格数可知拉力所做的功;再由摩擦力与位移的乘积求出摩擦力的功;则可求得总功;故B正确;已求出物体合外力所做的功;则由动能定理可求得物体开始时做匀速运动时的速度;故C正确;由于不知道具体的运动情况,无法求出减速运动的时间,故D错误.。
解题技巧:变力做功求解五法
变 力 做
二、用平均力 求变力功
功
三、用F-x图
求
象求变力功
解
五
四、用动能定
法
理求变力功
五、利用微元 法求变力功
一、化变力为恒力求变力功
• 变力做功直接求解时,通常都比较复杂, 但若通过转换研究的对象,有时可化为恒 力做功,可以用W=Flcos α求解。此法常 常应用于轻绳通过定滑轮拉物体的问题中。
二、用平均力求变力功
• 在的求方解向变不力变功,时而,若物力体间的受做大到小线的不性力是变随化时 • 大小随位移是成线性变化的, • 即力均匀变化时,则可以认为物体
受力到作一用大,F小1、为F2F分=别2为(F物1+体F初2)的、恒末
态所受到的力,然后用公式W= • F lcos α求此力所做的功。
•
•图5-1-7
• [解析] 由F-x图象可知,在木块运动之前,弹簧
弹力随弹簧伸长量的变化是线性关系,木块缓慢
移动时弹簧弹力不变,图线与横轴所围梯形面积
即为拉力所做的功,即W= 1 ×(0.6+0.4)×40 J
=20 J。
2
• [答案] 20 J
四、用动能定理求变力功
应用动能定理 • 动能定理既适用于直线运动,也适的用优于越曲性
• W=W′=FfΔx=2πRFf。
• [答案] 2πRFf
•图5-1-10
[小结]
• 虽然求变力做功的方法较多,但不同的方 法所适用的情况不相同,如
• 化变力为恒力求变力功的方法适用于力的 大小不变方向改变的情况;
• 利用平均力求变力功的方法,适用于力的 方向不变,其大小随位移均匀变化的情况;
• 利用F-x图象求功的方法,适用于已知所 求的力的功对应的力随位移x变化的图象已 知,且面积易于计算的情况。
求解变力做功的八种方法
求解变力做功的八种方法在物理学中,做功是指力对物体施加作用力并使其产生位移的过程中所做的功。
而当作用力是变化的时候,求解变力做功就变得相对复杂。
本文将介绍八种常用的方法来求解变力做功问题,帮助读者更好地理解这一物理概念。
一、分割法分割法是将变力分割成多个小的力,然后分别计算每个小力在相应的位移上所做的功,再将它们累加起来。
通过将变力离散化,我们可以近似所需求解的变力做功。
二、辅助函数法辅助函数法是将变力关于位移进行积分,得到一个辅助函数,再通过求导的方法求解变力做功。
这个方法需要对变力进行积分和求导,适用于一些特殊的变力情况。
三、力的分解法力的分解法是将变力分解成两个简化的力,一般是平行和垂直于位移的力,然后分别计算每个简化力在相应的位移上所做的功,再将它们相加。
通过将变力进行分解,我们可以将复杂的问题简化为分别求解两个力的功的问题。
四、动能定理法动能定理法利用了动能的变化与外力做功的关系,即外力做功等于物体动能的变化。
通过对物体的动能变化进行分析,我们可以求解变力做功的问题。
五、引入势函数法引入势函数法是将变力与势函数建立联系,通过势函数的导函数来求解变力做功。
这个方法需要找到一个合适的势函数,适用于一些具有简单势函数形式的变力情况。
六、平均值法平均值法是将变力近似为一个平均力,然后计算该平均力在整体位移上所做的功。
虽然这种方法只是对变力做功的近似,但在一些情况下可以提供一个比较准确的结果。
七、图形法图形法是通过绘制力与位移之间的图形来求解变力做功。
通过图形分析,我们可以计算图形下的面积或曲线的积分,进而得到变力做功的值。
八、牛顿第二定律法牛顿第二定律法利用了牛顿第二定律与功的关系,即力乘以位移等于质量乘以加速度乘以位移。
通过将力进行分解,我们可以将变力做功的问题转化为求解加速度和位移的问题。
综上所述,以上八种方法是常用的求解变力做功的方法。
在实际问题中,根据具体情况选择合适的方法求解变力做功问题,可以帮助我们更好地理解力学中的变力概念,并解决具体的物理问题综合上述八种方法,我们可以看出,求解变力做功问题的方法有多种多样,每种方法在不同情况下都有其适用性和限制性。
求解变力做功的十种方法
求解变力做功的十种方法变力做功是指力的大小和方向在作功过程中发生变化的情况。
下面将介绍十种常见的变力做功的方法。
1.拉力做功:当一个物体被施加拉力时,拉力在作功过程中的大小和方向都是持续变化的。
通常情况下,拉力的大小会逐渐增加,直到物体被拉到目标位置。
这个过程中拉力所做的功等于力的大小乘以物体的位移。
2.推力做功:推力做功与拉力做功类似,只不过是力的方向相反。
当一个物体被施加推力时,推力也会在作功过程中发生变化,直到物体被推到目标位置。
推力所做的功也等于力的大小乘以物体的位移。
3.弹力做功:当一个物体被施加弹性势能时,弹力会在作功过程中发生变化。
例如,当拉伸弹簧时,弹簧的劲度系数会导致拉力的大小随着弹簧的伸长而增加。
弹力所做的功等于力的大小乘以物体的位移。
4.阻力做功:当一个物体受到空气阻力或其他形式的阻力时,阻力会在作功过程中发生变化。
通常情况下,阻力的大小与物体的速度成正比。
因此,在物体运动时,阻力所做的功等于力的大小乘以物体的速度与位移之积。
5.重力做功:当一个物体被抬高或下落时,重力会在作功过程中发生变化。
抬高物体时,重力的大小会减小,而下落时则会增大。
重力所做的功等于力的大小乘以物体的高度。
6.磨擦力做功:当一个物体受到摩擦力时,摩擦力会在作功过程中发生变化。
通常情况下,摩擦力的大小与物体的接触面积和物体间的粗糙程度有关。
磨擦力所做的功等于力的大小乘以物体的位移。
7.引力做功:当一个物体受到另一个物体的引力作用时,引力会在作功过程中发生变化。
例如,当地球绕太阳运动时,引力的大小会随着地球到太阳的距离的变化而变化。
引力所做的功等于力的大小乘以物体的位移。
8.中心力做功:中心力是指作用在物体上的力总是指向物体的中心。
例如,当一个物体沿着圆形轨道运动时,中心力会在作功过程中发生变化,因为物体距离中心的距离在变化。
中心力所做的功等于力的大小乘以物体的位移。
9.引力做功:引力做功是指一个物体由于受到其他物体的引力而发生位移时,引力所做的功。
变力做功的五种常见办法
专题:变力做功根据变力的特点,求变力做功的五种常用方法(1)平均值法:当力F的仅大小发生变化,且F与s成线性关系(F随s均匀变化)时,F的平均F̅=F1+F22,用W=F̅∙s计算F做的功。
典型模型:弹簧(2)图象法:如果知道力F随位移s的变化规律即图像,变力F做的功W可用F−s图线与s轴所围成的面积表示。
功的正负由力和位移方向判断。
如下图,阴影部分即为功的大小。
例:如图所示,弹簧的一端固定,另一端连接个物块,弹簧质量不计。
物块(可视为质点)的质量为m,在水平面上沿x轴运动,与水平面间的动摩擦因数为μ。
以弹簧原长时物块的位置为坐标原点O,当弹簧的伸长量为x时,物块所受弹簧弹力大小为F=kx,k为劲度系数。
当物块由x1向右运动到x3,然后由x3返回到x2,求在这个过程中,弹所做的功。
x1→x3:F̅1=F1+F32=k(x1+x3)2, W1=−F̅1(x3−x1)=−k(x32−x12)2x3→x2:F̅2=F2+F32=k(x2+x3)2, W1=F̅2(x3−x2)=k(x32−x22)2⟹W=W1+W2=k(x12−x22)2例:在上例中请画出F随x变化的示意图;并根据F−x图象求物块沿x轴从O点运动到位置x1的过程中弹力所做的功。
图像如图:W=12F1x1=12kx12(3)分段法(或微元法):当力的大小不变,力的方向时刻与速度同向(或反向)时,把物体的运动过程分为很多小段,这样每一小段可以看成直线,先求力在每一小段上的功,再求和即可,力做的总功W=Fs路(或W=−Fs路)。
空气阻力和滑动摩擦力做功可以写成力与路程的乘积就是这个原理。
如图:力F 大小不变,方向始终沿着两个14圆形玻璃管将一个小球拉至最高点过程中,拉力做功:W=F×π2(R+r)又如:小球以一定初速度向上抛出,受到的空气阻力始终为重力的110,则最终小球静止在地面上,则阻力对小球做的功W=−fs路(4)等效替代法(或转换法):若某一变力做的功和某一恒力做的功相等,则可以用求得的恒力的功来替代变力做的功。
变力做功求解五法
功201509231.做功的两个因素:力和物体在力的方向上发生的位移.2.功的公式:W=Fs cos_α,其中F为恒力,α为F的方向与位移s方向的夹角;功的单位:焦耳(J);功是标(矢、标)量.3.考点一:1.根据力和位移方向之间的夹角判断此法常用于恒力做功的判断.2.根据力和瞬时速度方向的夹角判断此法常用于判断质点做曲线运动时变力的功.如人造地球卫星.3.从能的转化角度来进行判断此法常用于判断相互联系的两个物体之间的相互作用力做功的情况.例如车M静止在光滑水平轨道上,球m用细线悬挂在车上,由图中的位置无初速地释放,则可判断在球下摆过程中绳的拉力对车做正功.因为绳的拉力使车的动能增加了.又因为M和m构成的系统的机械能是守恒的,M增加的机械能等于m减少的机械能,所以绳的拉力一定对球m做负功.【例】长为L的轻质细绳悬挂一个质量为m的小球,其下方有一个倾角为θ的光滑斜面体,放在水平面上,开始时小球与斜面刚刚接触且细绳恰好竖直,如图所示,现在用水平推力F缓慢向左推动斜面体,直至细绳与斜面体平行,则下列说法中正确的是().A.由于小球受到斜面的弹力始终与斜面垂直,故对小球不做功B.细绳对小球的拉力始终与小球的运动方向垂直,故对小球不做功C.小球受到的合外力对小球做功为零,故小球在该过程中机械能守恒D.若水平面光滑,则推力做功为mgL(1-cos θ)变力功的计算在中学物理中占有十分重要的地位,中学阶段所学的功的计算公式W=FS cosα,只能用于恒力做功情况,对于变力做功的计算则没有一个固定公式可用,但高考中变力做功问题也是经常考查的一类题目。
现结合例题分析变力做功的五种求解方法。
一、化变力为恒力求变力功力做功直接求解时,通常都比较复杂,但若通过转换研究的对象,有时可化为恒力做功,可以用W=Fl cos α求解。
此法常常应用于轻绳通过定滑轮拉物体的问题中。
[例1] 如图所示,某人用大小不变的力F拉着放在光滑水平面上的物体,开始时与物体相连接的绳与水平面间的夹角是α,当拉力F作用一段时间后,绳与水平面间的夹角为β。
求解变力做功问题的五种方法
求解变力做功问题的五种方法在高中阶段,应用做功公式W=FScosα来解题时,公式中F只能是恒力。
如果F是变力,就不能直接应用公式W=FScosα来求变力做功问题。
但是题目中又经常出现变力做功问题,下面介绍五种求解变力做功问题的方法。
一:将变力做功转化为恒力做功来求解我们知道变力做功不可以直接用公式W=FScosα来计算,但有些情况下,将变力转化成恒力做功,就可以用公式直接求解。
例题1:如图1所示,人用大小不变的力F拉着放在光滑平面上的物体,开始时与物体相连的绳子和水平面间的夹角是α,当拉力F作用一段时间后,绳子与水平面的夹角是β,图中的高度是h,求绳子拉力T对物体所做的功,(绳的质量,滑轮的质量和绳与滑轮之间的摩擦均不计)。
分析与解答:在物体向右运动过程中,绳子拉力T是一个变力,是变力做功问题。
但是拉力T大小等于力F的大小,且力F是恒力。
因此,求绳子拉力T对物体所做的功就等于力F所做的功。
由图可知,力F的作用点移动的位移大小为:ΔS=S1-S2。
则:W T=W F=FΔS=F(S1-S2)=Fh(1/sinα-1/sinβ).二:用动能定理来求解我们知道,动能定理的内容:外力对物体所做的功等于物体动能的增量。
如果我们研究物体所受的外力中只有一个是变力,其他力都是恒力,而且这些力做功比较容易求,就可以用动能定理来求变力做功。
例题2:如图2所示,质量为2kg的物体从A点沿半径为R的粗糙半球内表面以10m/s 的速度开始下滑,到达B点时的速度变为2m/s,求物体从A点运动到B点的过程中,摩擦力所做的功是多少?分析及解答:物体从A点运动到B点的过程中,受到重力G、弹力N和摩擦力f三个力作用,在运动过程中,摩擦力f的方向和大小都发生改变,因此摩擦力f是变力,是变力做功问题。
物体从A点运动到B点的过程中,弹力N不做功,重力G做功为零。
物体所受的三个力中摩擦力在物体从A点运动到B点的过程中对物体所做的功,就等于物体动能的变化量,则W外=W f=ΔE k=1/2mV B2-1/2mV A2=-96(J).三:用机械能守恒定律来求解我们知道,物体只受重力和弹力作用或只有重力和弹力做功时,系统的机械能守恒。
三维设计名师点睛变力做功求解五法巧解题
二、用平均力求变力功
• 在的求方解向变不力变功,时而,若物力体间的受做大到小线的不性力是变随化时 • 大小随位移是成线性变化的, • 即力均匀变化时,则可以认为物体
受力到作一用大,F小1、为F2F分=别2为(F物1+体F初2)的、恒末
态所受到的力,然后用公式W= • F lcos α求此力所做的功。
• [典例2] 把长为l的铁钉钉入木板中,每打击一 次给予的能量为E0,已知钉子在木板中遇到的
• 阻力与钉子进入木板的深度成正比,
• 比例系数为k。问此钉子全部进入木板需要打 击几次?
求出力关于位 移的平均值
三、用F-x图象求变力功
• 在F-x图象中,图线与x轴所围“面积”的 代数和就表示力F在这段位移所做的功,且 位于x轴上方的“面积”为正,位于x轴下 方的“面积”为负,但此方法只适用于便 于求图线所围面积的V-t情图况象中。的面积表示位移
变 力 做
二、用平均力 求变力功
功
三、用F-x图
求
象求变力功
解
五
四、用动能定
法
理求变力功
五、利用微元 法求变力功
一、化变力为恒力求变力功
• 变力做功直接求解时,通常都比较复杂, 但若通过转换研究的对象,有时可化为恒 力做功,可以用W=Flcos α求解。此法常 常应用于轻绳通过定滑轮拉物体的问题中。
• (1)A与B间的距离;
• (2)水平力F在前5 s内对
物块做的功。
•图5-1-8
五、利用微元法求变力功
• 将物体的位移分割成许多小段,因小段很 小,每一小段上作用在物体上的力可以视 为恒力,这样就将变力做功转化为在无数 多个无穷小的位移上的恒力所做元功的代 数和。此法在中学阶段, 常应用于求解力的大小不变、方向改变的 变力做功问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
五种方法搞定变力做功
.微元法思想。
当物体在变力作用下做曲线运动时,我们无法直接使用w F ?scos来求解,但是可以
将曲线分成无限个微小段,每一小段可认为恒力做功,总功即为各个小段做功的代数和。
例1.用水平拉力,拉着滑块沿半径为R的水平圆轨道运动一周,如图1所示,已知物块的
质量为m,物块与轨道间的动摩擦因数为。
求此过程中摩擦力所做的功。
思路点拨:由题可知,物块受的摩擦力在整个运动过程中大小
不变,方向时刻变化,是变
力,不能直接用求解;但是我们可以把圆周分
成无数小微元段,如图2所示,每一小段可近似成直线,从而摩擦力在每一小段上的方向可认为不变,求出每一小段上摩擦力做的功,然后再累加起来,便可求得结果图1
图2
把圆轨道分成无穷多个微元段每一段上可认为是恒力,则每一段上摩擦力做的功分别为
,摩擦力在
摩擦力在一周内所做的功
、平均值法
当力的大小随位移成线性关系时,可先求出力对位移的平均值
L F 1 F 2 —
F ------------- ,再由W FLcos 计算变力做功。
如:弹簧的弹力做功 2
问题。
例2静置于光滑水平面上坐标原点处的小物块,
在水平拉力F 作 用下,沿x 轴方向运动(如图 2甲所示),拉力F 随物块所在位置坐标 x
面积表示功,由图象知半圆形的面积为
F m X 。
. C 答案 4 正确. 三.功能关系法。
功能关系求变力做功是非常方便的,但是必须知道这个过程中能量的转化关系。
例3如图所示,用竖直向下的恒力 F 通过跨过光滑定滑轮的细线拉动光滑水平面上的物体, 物体沿水平面移动过程中经过 A 、B 、C 三点,设AB=BC ,物体经
过A 、B 、C 三点时的动能分别为 E KA , E KB , E KC ,则它们间的关系 _宀曰
疋疋:
A . E K
B -E KA =E K
C -E KB B . E KB -E KA <E KC -E KB
到X 0处时的动能为 ( ) A . 0
B . -F m X o 2
C . F m X o
D . 2 X o
4
4 【精析】由于 W = F X ,所以F-x 图象与X 轴所夹的
的变化关系(如图乙所示),图线为半圆•则小物块运动
o n ~~F ? 图2乙
C. E KB-E KA>E KC-E KB D . E KC <2E KB
【精析】此题中物块受到的拉力是大小恒定,但与竖直方向的夹角逐渐增大,属于变力,
求拉力做功可将此变力做功转化为恒力做功问题.
设滑块在A 、B 、C 三点时到滑轮的距离分别 为 L i 、L 2、L 3,则 W I =F(L I -L 2),W 2=F(L 2-L 3),要比较 W 和 W 的大小,只需比较(L 1-L 2)和(L 2-L 3) 的大小•由于从 L i 到L 3的过程中,绳与竖直方向的夹角逐渐变大,所以可以把夹角推到两个 极端情况.L i 与杆的夹角很小,推到接近于 0。
时,则L i -L 2~ AB L 3与杆的夹角较大,推到接 近90°时,则L 2-L 3",由此可知,L i -L 2> L 2-L 3,故W i > W 2.再由动能定理可判断 C 、D 正确.答 案CD.
四.应用公式W Pt 求解。
当机车以恒定功率工作时,在时间 f 内,牵引力做的功 w Pt 。
例4.质量为m 的机车,以恒定功率从静止开始启动,所受阻力是车重的
k 倍,机车经过 时间t 速度达到最大值V m 。
求机车在这段时间内牵引力所做的功。
解析:机车以恒定功率启动,从静止开始到最大速度的过程中,所受阻力不变,但牵引力
是变力,因此,机车的牵引力做功不能直接用公式
W FScos 来求解,但可用公式 W Pt 来计算。
根据题意,机车所受阻力 f kmg 。
且当机车速度达到最大值时,F 牵 f 。
所以机车的功率为:P
F 牵V max fV max kmgV max 。
根据W Pt ,机车在这段时间内牵引力所做的功为:
W 牵 Pt kmgv m t 。
五• F S 图象法。
在F S 图像中,图线与坐标轴围成的面积在数值上表示力
F 在相应的位移上对物体做的
功。
这一点对变力做功问题也同样适用。
例5.如图4所示,一个劲度系数为:的轻弹簧,一端固定在墙壁上,在另一端沿弹簧的轴 线施一水平力将弹簧拉长,求在弹簧由原长开始到伸长量为 程中拉力所做的功。
如果继续拉弹簧,在弹簧的伸长量由
到x 2的过程中,拉力又做了多少功?
解析:在拉弹簧的过程中,拉力大小始终等于弹簧弹力的大
小,根据胡克定律可知,拉力 F kx 。
作出F x 关系图象,如图5所示,由图可知 AOx 1的面积在数值上等于把弹簧拉伸了 x 1
过程中拉力所做的功。
梯形Ax 1x 2B 的面积在数值上等于弹簧伸 长量由X i 增大到X 2过程
X 1增大 / 图4
即:W 1 1 1 2 -kx 1x 1 - kx 1 。
2 2
中拉力所做的功。
1 1
2 2
即:W2— (kx1 kx2)(x2 x-i) — k(x2 x1 )。
2 2
以上所列举的方法只是物理学中常见的方法,跟多的还是要带着学生进
步的思考和训练, 才能掌握好变力做功的情况。