地层破裂压力试验

合集下载

第二节地层破裂压力知识分享

第二节地层破裂压力知识分享

第二节地层破裂压力第二节 地层破裂压力 在井下一定深度裸露的地层,承受流体压力的能力是有限的,当液体压力达到一定数值时会使地层破裂,这个液体压力称为地层破裂压力(Fracture pressure ),一般用f p 表示。

使用最广泛的地层破裂压力预测是Hubbert-Willis 模式和Haimson-Fairhurst 模式。

破裂压力数据应用于钻井、修井、压裂、试油井下测试等井下工艺技术,钻井大多数是在裸眼中进行的,所以破裂压力数据在钻井方面尤为重要,它是钻井之前的井身结构设计,套管强度计算、钻井液密度设计等钻井工程设计内容的关键参数,特别是在一个新的区块开发之前,破裂压力这一数据为就重中之重了。

它决定着在这一新的区域内的所有钻井方案是否正确,并能否顺利执行和能否顺利完成。

压裂作业时,地层破裂力学模型如图 1.1所示。

此时,地层裂隙受地应力与压裂液共同作用。

考虑深层水力压裂主成垂直裂缝,且裂缝穿透整个煤层。

地应力与压裂液应力的最终有效合应力在裂隙壁面上是拉应力,当其合成应力强度因子K 达到临界值时,裂隙就开始失稳延伸。

地层的破裂压力对钻井液密度确定、井身结构和压裂设计施工等有着重要的指导作用。

从上世纪五六十年代,国内外就开始对地层破裂压力进行了研究,并取得了一系列的成果。

H-W 模型1957年Hubbert 和Willis 根据三轴压缩试验首次提出了地层破裂压力预测模式即H-W 模式指出破裂压力等于最小水平主应力加地层孔隙压力P p ,垂直有效主应力等于上覆压力P v 减P p 最小水平主应力在其1/3到1/2范围内,预测公式为:式中:f P — 地层破裂压力;p P — 地层空隙压力;v P — 上覆岩层压力;模型中上覆压力梯度为1的假设显然不符合实际,最小水平主应力为1/3到1/2垂直有效主应力范围的假设通常也带来偏低的结果。

1967年Matthews 和Kelly 在H-W 模式中引入了骨架应力系数i K :)(p v i p f P -P K P P += 4-7 地层正常压实时,i K 反映了地层实际骨架应力状况其值由区块内已有破裂压力资料确定,i K 系数曲线的绘制需要大量实际压裂资料,限制了此方法的应用。

地层破裂压力

地层破裂压力

第四节地层破裂压力一、地层破裂压力的重要性为了合理进行井身结构设计(套管层次、下入深度)和制定钻井施工措施,除了掌握地层压力梯度剖面外,还应了解不同深度处地层的破裂压力。

在钻井中,合理的钻井液密度不仅要略大于地层压力,还应小于地层破裂压力,这样才能有效地保护油气层,使高低压油气层不受钻井液损害,避免产生漏、喷、塌、卡等井下复杂情况,为全井顺利钻进创造条件,以获得高速、低成本、安全高效钻井。

地层破裂压力还是确定关井极限套压的重要依据之一。

二、影响地层破裂压力的主要因素地层的破裂压力首先取决于其自身的特性。

这些特性主要包括地层中天然裂缝的发育情况,他的强度(主要是抗拉伸强度)及其弹性常数(主要是泊松比)的大小。

地层中孔隙压力的大小也对其破裂压力有很大的影响。

一般来说,地层的孔隙压力越大,其破裂压力也越高。

从力学角度看来,地层的破裂是地层受力作用的结果,除了流体压力的作用外,也和地层中存在的地应力大小有很大的关系。

在地下埋藏着的岩层中,由于受其上方覆盖岩层的重力作用和构造运动的影响,作用着地应力。

这种地应力在不同的地区和不同的油田构造断块里是不同的。

通常,三个主方向上的地应力是不相等(如图1-4-1)。

即有:σx≠σy≠σz (4-1)1、上覆岩层压力图中σz表示上覆岩层压力(有时也用P0表示),它是由深度H以上岩层的重力产生的。

如果地层孔隙压力是P p,则有σz=σz′+P p (4-2)式中,σz′称为“有效上覆岩层压力”。

它表示扣除孔隙压力的影响后,直接作用在岩层骨架颗粒上的应力。

也称为骨架应力。

2、水平地应力根据该地区有无受到构造运动的影响以及构造运动的形态,可将水平地应力分为三种情况。

(1)未受到地质构造运动扰动过的沉积较新的连续沉积盆地,属于水平均匀地应力状态。

其水平地应力只来源于上覆岩层的重力作用。

设地下岩层为各向同性,均质的弹性体,则根据地层在水平方向上的应变受到约束的条件可以导出:бx′=бy′=μ*бz′/(1-μ) (4-3)式中:бx′、бy′—水平方向的两个有效的主地应力,且有бx′=бx-Pp (4-4)бy′=бy-Pp (4-5)式中:бz′—有效地上覆岩层压力,MPaPp—孔隙压力,MPaμ—地层的泊松比,0<μ<0.5μ/(1-μ)—称为侧压系数由(4-3)可见,бz′>бx′=бy′(2)受到地质构造运动的影响,但构造力在水平各个方向上均相同。

地层破裂试验.

地层破裂试验.
9
四、试验程序(续)
7.试验的最高极限泵压是固井后的套管抗内压试验 压力。 如果地层泄漏/破裂试验的泵压已达到极限泵压, 地层还没有泄漏/破裂,就终止试验。这时的极限 泵压,就是地层没泄漏/破裂时的最大试验泵压。 地漏试验/破裂试验压力曲线示意图见图11-1

10
四、试验程序(续)
地漏试验/破裂试验压力曲线示意图
(Psi)
XXX 9-5/8 2725 2725 1.16 47#,BTC,N80, 3000 7.25 3200 3500
井别
XXX 井眼尺寸 井深 井眼垂深 地层压力梯度 套管抗内压强度 套管鞋静压 返回体积 当量密度 试验日期
平台/钻机 26 2728 2728 1.28 9300 3161 4.25 1.97 XXX
7
四、试验程序
试验程序
1. 对套管进行压力试验后,钻出套管浮鞋及新地 层3-5米。 2. 循环与调整钻井液性能,要求密度均匀和10分 钟的静切力尽可能低。 3. 起钻头进入套管鞋内,关环形防喷器。 4. 固井泵向井内注入30桶±泥浆,要求固井泵以 40、80和120升/分的的低泵速循环,记录注入 量及泵压; 5. 固井管线试压到预计使地层破裂的泵压再加 6.89兆帕。 6. 用固井泵以选定的泵速,向钻杆内开始恒定地 泵入,记录泵压、泵入量和时间,并绘制泵压 对泵入量的变化曲线。
6
4. 准备好压力记录纸; 5. 根据作业者做地漏试验的要求,可在泵头 排出端安装合适量程的压力表,便于查看 压力(注意:打紧2”高压由壬头后再装压 力表,拆时,装表时反之。) 6. 通知井队,输送20桶泥浆到固井计量柜, 保持搅拌; 7. 收集数据,如套管数据、套管鞋垂深、井 内泥浆密度,预测地层破裂梯度、破裂压 力等;

地层压力公式

地层压力公式

地层压力公式1.静液压力Pm(1)静液压力是由静止液柱的重量产生的压力,其大小只取决于液体密度和液柱垂直高度。

在钻井中钻井液环空上返速度较低,动压力可忽略不计,而按静液压力计算钻井液环空液柱压力。

(2)静液压力 Pm 计算公式:Pm= 0.0098ρ mHm(2 —1)式中 Pm ——静液压力, MPa ;ρ m——钻井液密度, g/cm3 ;Hm ——液柱垂直高度,m。

(3)静液压力梯度 Gm 计算公式:Gm= Pm/ Hm = 0.0098ρm(2 —2)式中 Gm ——静液压力梯度,MPa/m 。

2.地层压力Pp(1)地层压力是指地层孔隙中流体具有的压力,也称地层孔隙压力。

(2)地层压力 Pp 计算公式:Pp= 0.0098ρ pHp(2 —3)式中 Pp——地层压力, MPa;ρ p ——地层压力当量密度,g/ cm3 ;Hm ——地层垂直高度,m。

(3)地层压力梯度 Gp 计算公式:Gp= Pp/ Hp = 0.0098ρp(2 —4)式中 Gp——静液压力梯度,MPa/ m。

(4) 地层压力当量密度ρp计算公式:ρp= Pp/ 0.0098Hm =102Gp(2 -5)在钻井过程中遇到的地层压力可分为三类:a.正常地层压力:ρp=1.0~1.07g/cm3;b.异常高压:ρ p>1.07g/ cm3 ;c.异常低压:ρ p<1.0g/ cm3 。

3.地层破裂压力Pf地层破裂压力是指某一深度处地层抵抗水力压裂的能力。

当达到地层破裂压力时,使地层原有的裂缝扩大延伸或使无裂缝的地层产生裂缝。

从钻井安全方面讲,地层破裂压力越大越好,地层抗破裂强度就越大,越不容易被压漏,钻井越安全。

一般情况下,地层破裂压力随着井深的增加而增加。

所以,上部地层 ( 套管鞋处 ) 的强度最低,易于压漏,最不安全。

(1)地层破裂压力 Pf 计算公式:Pf= 0.0098ρ fHf(2 - 6)式中 Pf ——地层破裂压力,MPa;ρ f ——地层破裂压力当量密度,g/ cm3 ;Hf ——漏失层垂直高度,m 。

地层破裂(漏失)压力试验

地层破裂(漏失)压力试验
数据处理 2、有关参数的计数 地层实际的漏失压力或破裂压力等于地层漏失或破裂时的地面表压加上井内钻井液的静液压力。
四、地层破裂压力试验
数据处理 2、有关参数的计数 地层实际的漏失压力或破裂压力等于地层漏失或破裂时的地面表压加上井内钻井液的静液压力。
2.3、最小水平主地应力 Pmin=PGS+0.00981ρH 式中 Pmin—最小水平主地应力,MPa; PGS—瞬时停泵地面表压,MPa。 2.4、岩石抗拉强度,MPa, St=PGF-PGR 式中: St—试漏层岩石抗拉强度,MPa; PGR—重张时地面表压,MPa。
一、地层破裂压力
地层破裂压力是指某一深度地层发生破碎和裂缝时所能承受的压力。当达到地层破裂压力时,地层原有的裂缝扩大延伸或无裂缝的地层产生裂缝。
一、地层破裂压力
一般情况(遵循压实规律)下,地层破裂压力随着井深的增加而增大。 在钻井时,钻井液柱压力的下限要保持与地层压力相平衡,实现压力控制。而其上限则不能超过地层的破裂压力,以避免压裂地层造成井漏。
五、现场地层漏失压力试验
五、现场地层漏失压力试验
某井试漏时井深1206米,泵排量16.35升∕冲,钻井液密度1.20克∕厘米3
累计泵冲
立压(kPa)
累计泵冲
立压(kPa)
5
836
45
14986
10
2991
50
15015
15
5123
55
15021
20
7264
60
15018
25
9391
试漏前的准备 试漏层段 确定: (SY 5430—92)《地层破裂压力测定套管鞋试漏法 》 试漏层段应选在套管鞋下第一个3~5m厚的易漏层。 井控教科书:当钻至套管鞋以下第一个砂岩层时(或出套管鞋3-5米), Q/SYCQZ《长庆区域钻井井控实施细则》钻出套管鞋进入地层5 m ~ 15 m, 《长庆油田钻井井控实施细则》钻出套管鞋进入第一个砂层3-5m时

地破压力试验操作程序

地破压力试验操作程序

地破压力试验操作程序
(1)钻穿水泥塞,钻入套管鞋以下第一个砂层3~5m,充分循环钻井液,使进出口性能趋于一致,然后将钻具上提至套管鞋内。

(2)井内完全灌满钻井液后,停泵关好半封闸板防喷器。

(3)用水泥车低排量(O.8~1.32l/s)由钻杆泵入钻井液。

(4)每泵入20L钻井液,静待2min或一直等压力趋于稳定。

(5)记录泵入钻井液累计量Q与相应的立管压力Pd。

(6)重复4、5步骤直到压力偏离最高压力并逐渐下降趋于平缓,进行瞬时停泵,记录瞬时停泵压力。

(7)当压力达到井口承压设备中的最小额定工作压力或套管承受的压力达到套管最小抗内压强度的80%时仍未被压裂,应停止试验。

(8)将原始数据录入井史,绘制压力Pd—Q曲线,确定出地层漏失压力PL和破裂压力P1。

(9)打开节流阀泄压,打开闸板防喷器。

(10)求出破裂压力的当量钻井液密度。

ρf=ρm试+PL/0.0098Hf
式中: ρf--—破裂压力当量密度,g/cm3;
ρm试—试验所用的钻井液密度,g/cm3;
PL—地层漏失时的井口压力,MPa;
Hf—套管鞋处垂深,m。

程序是可以查标准的,需要注意的以下几点
一是泵的排量一定要小。

2楼说的0.8-1.32完全适合。

二是地层的不同,有些地层做不出来的,脆性地层只做承压试验,应有所区别。

三是最好实现自动化。

试压泵连接打印机,打印初试验曲线。

防止作弊。

地层破裂压力测定套管鞋试漏法

地层破裂压力测定套管鞋试漏法

SY 5430-92 地层破裂压力测定套管鞋试漏法1主题内容与适用范围本标准规定了用套管鞋试漏法确定地层破裂压力的试漏前的准备工作、试漏程序、试漏数据的采集及处理方法。

本标准适用于石油天然气钻井中地层破裂压力的测定。

2试漏前的准备2.1利用预测模式或邻井资料估算试漏层的破裂压力。

2.2根据2.1条估算结果及钻井液密度,选择合适的泵型和井口装置。

2.3井口安装后, 采用封堵器清水试压, 闸板防喷器以下整体试压到额定工作压力, 稳压时间不少于3min, 允许压降不超过0.7~1.0Mpa。

2.4校验立管和环空压力表。

2.5试漏层段应选在套管鞋下第一个3~5m厚的易漏层。

3 2.6调整钻井液性能, 保证均匀稳定, 以满足试漏施工要求。

4试漏程序3.1钻头提至套管鞋以上, 井内灌满钻井液, 关井。

3.2采用从钻具水眼或环空两种方式中的一种向井内泵入钻井液。

裸眼长度在5m以内的选用0.7~1L/s排量, 超过5m的选用2~4L/s排量。

5 3.3为了求取试漏层最小主地应力和岩石抗拉强度数据,地层压裂后应进行停泵和重张压力测量。

6 3.4当压力达到井口承压设备中的最小额定工作压力或套管承受的压力达到套管中的最小抗内压强度80%时仍未被压裂, 应停止试验。

7试漏数据的采集4.1日期、时间、井号、井深、套管尺寸及下深、地层及岩性、钻井液密度、注入泵型号、缸套直径及冲数。

4.2每间隔20~50L泵入量或每间隔10~20s(泵速恒定)记录一次相应泵压和注入量或时间。

开始时记录点间隔可大些, 后期应加密记录点。

正循环泵入时, 泵压由立管或井口压力表读数千。

环空泵入时由环空压力表读数。

4.3地层压裂后, 停泵1~2min, 每间隔10~20s记录一次泵压。

4.4待泵压相对稳定后, 重新开泵1~2min, 每间隔10~20s记录一次重张压力。

5 试漏数据处理5.1作图a. 若采集的数据是间隔时间和相应泵压, 作成如图1所示的试漏曲线。

井控技术管理复习题与答案

井控技术管理复习题与答案

技术管理井控复习题一、单选题1、一般说来,地层孔隙压力越大,其破裂压力就越()。

A、增加B、不变C、减小D、迅速减小2、地层破裂压力试验适用于()的地层。

A、脆性岩层B、砂岩或泥(页)岩C、碳酸岩D、所有地层3、按塔里木油田规定,地破压力试验最高压力不得大于井口设备的额定工作压力和井口套管抗内压强度的()两者之较小值。

A、 60%B、70%C、 80%D、 100%4、在钻井或大修井时,()要保持与地层压力相平衡,既不污染油气层,又能提高钻速,实现压力控制。

A、环空压降B、液柱压力的上限 C 、液柱压力的下限D、抽吸压力的上限5、钻井过程中如果其它条件不变,钻井液密度增加则钻速()。

A、增加B、降低 C 、不变D、忽高忽低6、下列四种工况下,井底压力最小的是()。

A、起钻B、下钻C、静止D、钻进7、在钻进过程中如果其它条件不变,地层压力增加则机械钻速()。

A、增加B、降低C、不变D、无法确定8、钻井液静液柱压力的大小与()有关。

9、(A、井径B、井斜C、钻井液密度和垂深D、井径和垂深)等于从地表到地下某处连续地层水的静液柱压力。

A、正常地层压力B、异常高压C、异常低压 D 、水柱压力10、在钻井或大修井时,()则不能超过地层的破裂压力,以避免压裂地层造成井漏。

A、抽吸压力的上限B、液柱压力的上限C、液柱压力的下限 D 、环空压降11、异常高压的形成包括但不限于:()。

A、地层流体的运移B、地下水位低于地面上千米C、采油后未补充水D、砂岩透镜体周围的页岩受到侵蚀12、d 指数和 dc 指数就是在()的基础上发展起来的一种随钻监测地层压力的一种方法。

A、岩石强度法B、遗传算法C、测井法D、机械钻速法13、按塔里木油田规定,浅气井采用() MPa的压力附加值。

A、 1.5 ~ 3.5B、2.0 ~4.0C、 3.0 ~ 5.0D、0.07 ~0.1514、()是指某一深度的地层发生破碎或裂缝时所能承受的压力。

井控证考试题及答案

井控证考试题及答案

井控证考试题及答案一、单选题1、一般说来,地层孔隙压力越大,其破裂压力就越()。

CA、增加B、不变C、减小D、迅速减小2、地层破裂压力试验适用于()的地层。

BA、脆性岩层B、砂岩或泥(页)岩C、碳酸岩D、所有地层3、按塔里木油田规定,地破压力试验最高压力不得大于井口设备的额定工作压力和井口套管抗内压强度的()两者之较小值。

CA、60%B、70%C、80%D、100%4、在钻井或大修井时,()要保持与地层压力相平衡,既不污染油气层,又能提高钻速,实现压力控制。

A、环空压降B、液柱压力的上限C、液柱压力的下限D、抽吸压力的上限5、钻井过程中如果其它条件不变,钻井液密度增加则钻速()。

BA、增加B、降低C、不变D、忽高忽低6、下列四种工况下,井底压力最小的是()。

AA、起钻B、下钻C、静止D、钻进7、在钻进过程中如果其它条件不变,地层压力增加则机械钻速()。

AA、增加B、降低C、不变D、无法确定8、钻井液静液柱压力的大小与()有关。

CA、井径B、井斜C、钻井液密度和垂深D、井径和垂深9、()等于从地表到地下某处连续地层水的静液柱压力。

AA、正常地层压力B、异常高压C、异常低压D、水柱压力10、在钻井或大修井时,()则不能超过地层的破裂压力,以避免压裂地层造成井漏。

BA、抽吸压力的上限B、液柱压力的上限C、液柱压力的下限D、环空压降11、异常高压的形成包括但不限于:()。

AA、地层流体的运移B、地下水位低于地面上千米C、采油后未补充水D、砂岩透镜体周围的页岩受到侵蚀12、d指数和dc指数就是在()的基础上发展起来的一种随钻监测地层压力的一种方法。

AA、岩石强度法B、遗传算法C、测井法D、机械钻速法13、按塔里木油田规定,浅气井采用()MPa的压力附加值。

CA、1.5~3.5B、2.0~4.0C、3.0~5.0D、0.07~0.1514、()是指某一深度的地层发生破碎或裂缝时所能承受的压力。

DA、地层坍塌压力B、地层孔隙压力C、地层承压能力D、地层破裂压力15、按塔里木油田规定:钻井地质设计要提供全井段的地层孔隙压力梯度,目的是()。

地层漏失实验

地层漏失实验

地层漏失试验程序1.1.1 试漏层位:二开后钻揭新地层5~10m做地层破裂压力试验。

1.1.2 试漏程序:(1)试验前循环调节钻井液性能,保证钻井液性能均匀,以满足试验施工要求。

(2)上提钻头至套管鞋内,井内灌满钻井液,关井。

(3)用水泥车或试压泵采用从钻具水眼或环空两种方式中的一种向井内泵入钻井液。

裸眼长度在5m以内的选用0.7~1.0L/s的排量,超过5m的选用2~4L/s的排量。

(4)为了求取试漏层最小主地应力和岩石抗拉强度数据,地层压裂后应进行停泵和重张压力测量。

(5)当压力达到井口承压设备中的最小额定工作压力或套管承受的压力达到套管中的最小抗内压强度80%时仍未被压裂,应停止试验。

1.1.3 试漏数据采集:(1)日期、时间、井号、井深、套管尺寸及下深、地层及岩性、钻井液密度、注入泵型号、缸套直径及冲数。

(2)每间隔20~50L泵入量或每间隔10s(泵速恒定)记录一次相应泵压和注入量或时间。

开始时记录点间隔可大些,后期应加密记录点。

正循环泵入时,泵压由立管或井口压力表读数。

环空泵入时由环空压力表读数。

(3)地层压裂后继续泵入直到记录出压力平稳段后停泵,停泵每间隔10s记录一次泵压,直至记录出泵压平稳段。

(4)待泵压相对稳定后,重新开泵压开地层,继续泵入钻井液直至再次出现压力平稳段停泵,每间隔10s记录一次重张压力。

(5)详细记录试验过程中的压力与排量变化情况,特别要读出破裂压力值、裂缝延伸压力、瞬时停泵开始压力、停泵后压力下降的拐点、重新开泵后的裂缝重张压力、裂缝延伸压力等各项数据。

1.1.4 试漏结果:根据采集的数据做出如下图所示的试漏曲线;有关参数的计算: a .漏失压力H G L L ρ00981.0+P =P式中:L P ——漏失压力,MPa ;GL P ——漏失时地面压力,MPa ; ρ——钻井液密度,g/cm 3; H ——试漏层深度,m 。

b .破裂压力H G F F ρ00981.0+P =P式中:F P ——试漏层破裂压力,MPa ;GF P ——破裂时地面压力,MPa 。

第二节地层破裂压力

第二节地层破裂压力

第二节 地层破裂压力在井下一定深度裸露的地层,承受流体压力的能力是有限的,当液体压力达到一定数值时会使地层破裂,这个液体压力称为地层破裂压力(Fracture pressure ),一般用f p 表示。

使用最广泛的地层破裂压力预测是Hubbert-Willis 模式和Haimson-Fairhurst 模式。

破裂压力数据应用于钻井、修井、压裂、试油井下测试等井下工艺技术,钻井大多数是在裸眼中进行的,所以破裂压力数据在钻井方面尤为重要,它是钻井之前的井身结构设计,套管强度计算、钻井液密度设计等钻井工程设计内容的关键参数,特别是在一个新的区块开发之前,破裂压力这一数据为就重中之重了。

它决定着在这一新的区域内的所有钻井方案是否正确,并能否顺利执行和能否顺利完成。

压裂作业时,地层破裂力学模型如图1.1所示。

此时,地层裂隙受地应力与压裂液共同作用。

考虑深层水力压裂主成垂直裂缝,且裂缝穿透整个煤层。

地应力与压裂液应力的最终有效合应力在裂隙壁面上是拉应力,当其合成应力强度因子K 达到临界值时,裂隙就开始失稳延伸。

地层的破裂压力对钻井液密度确定、井身结构和压裂设计施工等有着重要的指导作用。

从上世纪五六十年代,国内外就开始对地层破裂压力进行了研究,并取得了一系列的成果。

H-W模型1957年Hubbert和Willis根据三轴压缩试验首次提出了地层破裂压力预测模式即H-W模式指出破裂压力等于最小水平主应力加地层孔隙压力Pp,垂直有效主应力等于上覆压力Pv 减Pp最小水平主应力在其1/3到1/2范围内,预测公式为:式中:f P — 地层破裂压力;p P — 地层空隙压力;v P — 上覆岩层压力;模型中上覆压力梯度为1的假设显然不符合实际,最小水平主应力为1/3到1/2垂直有效主应力范围的假设通常也带来偏低的结果。

1967年Matthews 和Kelly 在H-W 模式中引入了骨架应力系数i K :)(p v i p f P -P K P P += 4-7 地层正常压实时,i K 反映了地层实际骨架应力状况其值由区块内已有破裂压力资料确定,i K 系数曲线的绘制需要大量实际压裂资料,限制了此方法的应用。

地层破裂压力计算方法研究进展及应用

地层破裂压力计算方法研究进展及应用

DOI:10.16660/ki.1674-098X.2004-9912-2780地层破裂压力计算方法研究进展及应用张广权 王丹丹(中国石化勘探开发研究院 北京 100083)摘 要:地层破裂压力预测不仅是钻井工程设计的基础,更是油气田经济高效开发的保障。

影响破裂压力的因素较多,与地层岩石弹性性质、孔隙压力、裂缝发育状况以及地应力等因素有关。

国内外在该参数的计算方面研究较多,很多研究人员提出了很多不同的计算方法,并且大量应用于现场实践中。

国外具有代表性的两种模式为Hubbert-Willis模式和Haimson-Fairhurst模式、三种计算方法包括伊顿法、史蒂芬法、安德森法。

国内主要有以黄荣樽为代表的一系列学者,通过改进模型、增加参数,建立了适合我国复杂地区的计算方法。

经过大量的实践和应用表明,地层破裂压力的预测在钻井工程和储气库评价和建设过程中起着极其重要的作用,是一个非常重要、不能忽视的参数。

关键词:地层破裂压力 孔隙压力 地应力 储气库 钻井工程中图分类号:TE142 文献标识码:A 文章编号:1674-098X(2020)08(b)-0024-05 Research Progress and Application of Calculation Method ofFormation Fracture PressureZHANG Guangquan WANG Dandan(Sinopec Petroleum Explorastion and Production Research Institute, Beijing, 100083 China) Abstract: Prediction of formation fracture pressure is not only the basis of drilling engineering design, but also the guarantee of economic and efficient development of oil and gas fields. There are many factors that affect the fracture pressure. It is related to the elastic property of rock, pore pressure, fracture development and in-situ stress. In terms of calculation methods of formation rupture pressure, many domestic and foreign scholars have proposed calculation methods, and they are widely used in field practice. During which, there are two representative models abroad: Hubbert-Willis model and Haimson-Fairhurst model, and three representative calculation methods, including Eaton method, Stephen method, and Anderson method. By improving the model and adding parameters, a series of domestic scholars, represented by Huang Rongzun, have established a calculation method suitable for China’s complex areas. A large number of practices and applications have shown that the prediction of formation fracture pressure plays an extremely important role in the evaluation and construction of drilling engineering and gas storage, and is a very important parameter that cannot be ignored.Key Words: Fracture pressure; Pore pressure; Geostress; Gas storage; Drilling engineering地层破裂压力在油田开发过程中应用越来越广泛,该参数在油田上应用较为广泛,多应用于钻井、压裂、试油等工艺技术,以及在地下储气库选址、建设过程中,该参数尤为重要,关系到储气库能否安全平稳运行。

第二节地层破裂压力

第二节地层破裂压力

第二节 地层破裂压力在井下一定深度裸露的地层,承受流体压力的能力是有限的,当液体压力达到一定数值时会使地层破裂,这个液体压力称为地层破裂压力(Fracture pressure ),一般用f p 表示。

使用最广泛的地层破裂压力预测是Hubbert-Willis 模式和Haimson-Fairhurst 模式。

破裂压力数据应用于钻井、修井、压裂、试油井下测试等井下工艺技术,钻井大多数是在裸眼中进行的,所以破裂压力数据在钻井方面尤为重要,它是钻井之前的井身结构设计,套管强度计算、钻井液密度设计等钻井工程设计内容的关键参数,特别是在一个新的区块开发之前,破裂压力这一数据为就重中之重了。

它决定着在这一新的区域内的所有钻井方案是否正确,并能否顺利执行和能否顺利完成。

压裂作业时,地层破裂力学模型如图所示。

此时,地层裂隙受地应力与压裂液共同作用。

考虑深层水力压裂主成垂直裂缝,且裂缝穿透整个煤层。

地应力与压裂液应力的最终有效合应力在裂隙壁面上是拉应力,当其合成应力强度因子K 达到临界值时,裂隙就开始失稳延伸。

地层的破裂压力对钻井液密度确定、井身结构和压裂设计施工等有着重要的指导作用。

从上世纪五六十年代,国内外就开始对地层破裂压力进行了研究,并取得了一系列的成果。

H-W 模型1957年Hubbert 和Willis 根据三轴压缩试验首次提出了地层破裂压力预测模式即H-W 模式指出破裂压力等于最小水平主应力加地层孔隙压力P p ,垂直有效主应力等于上覆压力P v 减P p 最小水平主应力在其1/3到1/2范围内,预测公式为:式中:f P — 地层破裂压力;p P — 地层空隙压力;v P — 上覆岩层压力;模型中上覆压力梯度为1的假设显然不符合实际,最小水平主应力为1/3到1/2垂直有效主应力范围的假设通常也带来偏低的结果。

1967年Matthews 和Kelly 在H-W 模式中引入了骨架应力系数i K :)(p v i p f P -P K P P += 4-7 地层正常压实时,i K 反映了地层实际骨架应力状况其值由区块内已有破裂压力资料确定,i K 系数曲线的绘制需要大量实际压裂资料,限制了此方法的应用。

石油钻井地破压力实验步骤

石油钻井地破压力实验步骤

用液压试验测定地层破裂压力的方法步骤
钻开套管鞋以下第一个砂层,一般钻进3—5m,最多钻进lOm新地层。

(1)循环调整钻井液性能,保证钻井液密度均匀,上提钻头至套管鞋内,关闭防喷器。

(2)缓慢启动泥浆泵,或使用专用试压泵,以0.66—1.32升/秒的排量向井内注入钻井液。

(3)按一定的时间间隔记录注入量和立管压力。

并作出地层破裂压力试验曲线图。

(4)从图上确定漏失压力PL、破裂压力PR和传播压力Pro的值。

PL——开始偏离直线之点的压力(MPa)。

PR——最大压力点的压力(MPa)。

Pro——压力趋于平缓点的压力(MPa)。

(5)确定地层破裂压力梯度。

根据漏失压力PL值计算压力梯度。

Gf=O.0098ρm+PL/H
(6)确定最大允许钻井液密度。

ρmax=ρm+102PL/H-Sf
式中:ρmax——最大允许钻井液密度(g/cm3)。

ρm——原钻井液密度(g/cm3)。

H——测试井深(m)。

PL——漏失压力(MPa/m)。

Gf——破裂压力梯度(MPa/m)。

Sf——安全附加系数,表层取O.06g/cm3,技术套管取0.12g/cm3。

地层压力-地层破裂压力-地层坍塌压力预检测

地层压力-地层破裂压力-地层坍塌压力预检测

地层破裂压力和坍塌压力预测摘要地层破裂压力和地层坍塌压力是钻井工程设计的重要依据,对确定合理的钻井液密度和其他钻井参数有重要意义。

在参考了一些书籍和相关论文的基础上,对地层破裂压力和坍塌压力的预测方法做出了较为系统的总结。

地层破裂压力的预测主要有H-W模式和H-F模式,包括伊顿法、黄荣樽法、安德森法等;地层坍塌压力的预测主要基于井壁岩石剪切和拉伸破坏的原理。

关键词:破裂压力;坍塌压力;预测第一章前言地层破裂压力是指使地层产生水力裂缝或张开原有裂缝时的井底流体压力。

它是钻井和压裂设计的基础和依据。

如何准确地预测地层破裂压力,对于预防漏、喷、塌、卡等钻井事故的发生及确保油气井压裂增产施工的成功有着重要的意义。

地层坍塌压力是指随着钻井液密度的降低,井眼围岩的剪应力水平不断提高,当超过岩石的抗剪强度时,岩石发生剪切破坏时的临界井眼压力。

它的确定对于确定合理的钻井液密度和钻井设计及施工有重要意义。

地层三项压力研究历史及发展现状:✧八十年代以前,地层孔隙压力以监测为主,地层破裂压力预测处于经验模式阶段,如马修斯-凯利模式、伊顿模式等。

没有地层坍塌压力的概念。

✧八十年代,提出了地层坍塌压力的概念,从理论上对地层三个压力进行了公式推导。

✧九十年代以来,一般根据岩石力学的基本原理由地应力和地层的抗拉强度预测地层的破裂压力,进入实用技术开发阶段。

目前,地层三项压力预测技术已经得到广泛的重视,也从各个方面对其进行了研究和应用:●室内实验研究方法(研究院)●地震层速度法(石大北京)●常规测井资料法(华北钻井所、石大)●页岩比表面积法(Exxon)●人造岩心法(Norway)●岩屑法(Amoco、石油大学)●LWD、SWD法(厂家)●经验模式法(USA)第二章 地层三项压力预测机理2.1 地应力模型1、各向同性模型利用电缆地层测试或压力恢复测试资料,在不考虑构造应力影响情况下,各向同性模型计算水平应力公式为:()p p b x P P P PR PR αασ+-⎪⎪⎭⎫⎝⎛-=01(2-1) 式中:PR — 泊松比;Pob — 上覆岩层压力;Pp — 孔隙流体压力;α — Biot 常量。

第四章地层压力检测与地层破裂压力

第四章地层压力检测与地层破裂压力
第四章地层压力检测与地层破裂压力
图3--8
第四章地层压力检测与地层破裂压力
(2)dc指数法
dc指数法:dc指数法是通过分析钻进动 态数据来检测地层压力的一种压力方法。 动态数据中主要是钻速、大钩载荷、转 速、扭矩以及钻井液参数。
第四章地层压力检测与地层破裂压力
3、钻进后检测地层压力
1)声波时差法:
例 如图3-4 所示,设4000米处为正常压力,水的 密度1.02g /cm3,气的密度为0.0959g /cm3,则4000 米处的压力
P4000=9.811.02 4000 =40MPa
则308-9.8(0.095)(4000-3000)=39.08Mpa
第四章地层压力检测与地层破裂压力
第四章地层压力检测与地层破裂压力
2)构造运动
构造运动是地层自身的运动。它引起各地层 之间相对位置的变化。由于构造运动,圈闭 有地层流体的地层被断层、横向滑动、褶皱 或侵入所挤压。促使其体积变小,如果此流 体无出路,则意味着同样多的流体要占据较 小的体积。因此,压力变高。如图3-2所示。
第四章地层压力检测与地层破裂压力
技术套管以下:mmax=mf-0. 12g /cm3。
第四章地层压力检测与地层破裂压力
最大允许关井套压与井内钻井液密度 的关系
地层最大破裂压力MPa
5
M
表示钻井液密度为1.4最大允许 关井套压为5MPa
1.4 最大破裂压力当量钻井液密度
第四章地层压力检测与地层破裂压力
注意事项;
1、实验压力不应超过地面设备、套管的承压能力。 2、在钻进几天后进行液压实验时,可能由于岩屑堵 塞了岩石孔隙,导致实验压力很高,这是假象,应注 意。
第四章地层压力检测与地层破裂压力

地层破裂(漏失)压力试验

地层破裂(漏失)压力试验
在某些情况下,如地层孔隙度极低或 裂缝闭合,漏失压力可能接近或等于 破裂压力。
试验原理概述
地层破裂(漏失)压力试验是通过向地 层施加压力,观察地层发生破裂或漏 失时的压力变化,从而获取地层的破 裂压力和漏失压力。
地层破裂(漏失)压力试验广泛应用于 石油、天然气、水文地质等领域,为 油气田开发、地下水资源评估等提供 重要的地质参数。
试验目的
确定地层的破裂压力和漏失压 力,为钻井、完井和采油工程 提供重要参数。
评估地层的稳定性,预测地层 可能出现的破裂和漏失风险, 为钻井、完井和采油工程提供 安全保障。
了解地层的渗透性和流体流动 能力,为油藏工程提供基础数 据,优化油田开发方案。
02
地层破裂(漏失)压力试验原理
破裂压力与漏失压力的定义
破裂压力
地层破裂时所需的压力,通常是 指地层孔隙、裂缝或矿物晶体发 生破裂时所承受的压力。
漏失压力
地层发生漏失时所需的压力,即 流体通过地层孔隙、裂缝或矿物 晶体发生流动时所承受的压力。
破裂压力与漏失压力的关系
破裂压力通常大于漏失压力,因为地 层在发生破裂之前,其孔隙、裂缝或 矿物晶体已经具有一定的连通性,允 许流体流动。
试验过程中,需要记录地层在不同压 力下的变化情况,如孔隙水压、裂缝 开度等,以评估地层的物理性质和潜 在的工程地质问题。
03
试验设备与材料
试验设备
01
02
03
04
压力表
用于测量地层破裂时的压力, 确保精度和稳定性。
试验管
用于模拟地层,通常由耐压、 耐腐蚀的材料制成。
连接器
用于将试验管连接在一起,保 证密封性和压力传递的准确性
确定试验目的
明确试验的目标,是为了测定地层的破裂压 力还是漏失压力。

地层破裂(漏失)压力试验

地层破裂(漏失)压力试验

四、地层破裂压力试验 注意事项
1、实验压力不应超过地面设备、套管的承压能力。
2、在钻进几天后进行液压实验时,可能由于岩屑堵
塞了岩石孔隙,导致实验压力很高,这是假象, 应注意。 3、液压试验只适用于砂、页岩为主的地区,对于石 灰岩、白云岩等地层的液压实验尚待解决。
五、现场地层漏失压力试验
试漏前的准备
=11.512+0.00981×1.2×1206 =25.709MPa 最大允许关井套压:Pamax=PL-0.00981ρ用H试 =25.709-0.00981×1.2×1206 =11.512MPa Pamax=PCL-0.00981(ρ用-ρ试) H试 =11.512-0.00981(1.2-1.2)×1206 =11.512MPa
1、预测法——应用经验公式预测地层破裂
压力,作为钻井设计的依据。
2、验证法——在下套管固井后,必须进行 试漏试验,以验证预测的破裂压力。
二、确定地层破裂(漏失)压力的方法 DPSIP
CSIP
在做地层破裂压 力试验时,在套管鞋 以上钻井液的静液压 力和地面回压的共同 作用下,使地层发生 破裂而漏失
疏松地表层
1.00 1.02 1.04 1.06
1.08 1.10 1.12 1.14
1.16 1.18 1.20 1.22
图 3—11 漏失压
五、现场地层漏失压力试验
五、现场地层漏失压力试验
五、现场地层漏失压力试验
某井试漏时井深1206米,泵排量16.35升∕冲,钻井液密度 1.20克∕厘米3
累计泵冲 5 10 立压(kPa) 836 2991 累计泵冲 45 50 立压(kPa) 14986 15015
15
20 25 30 35
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图3--13
pf
从图上
确定以下; Pf---破裂压力,单位为Mpa;
计算有关数值:
计算地层破裂压力Pf。 Pf = PL+0。0098mHf 式中 Pf---地层破裂压力,Mpa; PL---漏失压力,Mpa; Hf---套管鞋处垂深,m。 计算地层破裂压力梯度Gf
地层最大破裂压力MPa
5
M 表示钻井液密度为1.4最大允许 关井套压为5MPa
1.4
最大破裂压力当量钻井液密度
地层破裂压力实验目的:
1、确定最大使用的泥浆密度。
2、实测地层破裂压力。
Gf
pf Hf
Gf---地层破裂压力梯度,Mpa。
确定最大允许钻井液密度mmax
通常表层套管安全附加压力Sf=0.06g /cm3,
技术套管Sf=0.12g /cm3,
则表层套管以下:mmax=mf-0.06g /cm3, 技术套管以下:mmax=mf-0. 12g /cm3。
最大允许关井套压与井内钻井液密度 的关系
2)实验步骤 井眼准备---钻开套管鞋以下第一个砂层 后,循环钻井液,使钻井液密度均匀稳定。 上提钻具,关封井器。 以小排量,一般以0.8--1.32L / s的排量缓 慢向井内灌入钻井液。 记录不同时间的注入量和立管压力。 一直注到井内压力不在升高并有下降 (地层已经破裂漏失),停泵,记录数据后,从节 流阀写泄压。 从直角坐标内做出注入量和立管压力的 关系曲线。如图
相关文档
最新文档