确定磁场最小面积的方法

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

确定磁场最小面积的方法

电磁场内容历来是高考中的重点和难点。近年来求磁场的问题屡屡成为高考中的热点,而这类问题单纯从物理的角度又比较难求解,下面介绍几种数学方法。

一、几何法

例1. 一质量为m、电荷量为+q的粒子以速度v

,从O点沿y轴正方向射入磁感应强度为B的圆形匀强磁场区域,磁场方向垂直纸面向外,粒子飞出磁场区域后,从b处穿过x 轴,速度方向与x轴正方向的夹角为30°,同时进入场强为E、方向沿与x轴负方向成60°角斜向下的匀强电场中,通过了b点正下方的c点,如图1所示,粒子的重力不计,试求:(1)圆形匀强磁场区域的最小面积;

(2)c点到b点的距离。

图1

解析:(1)先找圆心,过b点逆着速度v的方向作直线bd,交y轴于d,由于粒子在磁场中偏转的半径一定,且圆心位于Ob连线上,距O点距离为圆的半径,据牛顿第二定律有:

Bqv m v R

2

=①

解得R

mv

qB

=0②

过圆心作bd的垂线,粒子在磁场中运动的轨迹如图2所示:要使磁场的区域有最小面积,则Oa应为磁场区域的直径,由几何关系知:

图2

r

R

=cos30°③

由②③得r mv qB

=

320

所以圆形匀强磁场的最小面积为:

S r m v q B

min

==ππ2

20

2

22

34 (2)带电粒子进入电场后,由于速度方向与电场力方向垂直,故做类平抛运动,由运动的合成知识有:

s vt ·°sin30=

④ s at ·°cos3012

2

=

⑤ 而a qE m

=

联立④⑤⑥解得s mv Eq

=430

2

二、参数方法

例2. 在xOy 平面内有许多电子(质量为m 、电荷量为e ),从坐标原点O 不断地以相同的速率v 0沿不同方向射入第一象限,如图3所示。现加一个垂直于xOy 平面向里,磁感应强度为B 的匀强磁场,要使这些电子穿过磁场区域后都能平行于x 轴向x 轴正向运动。求符合该条件磁场的最小面积。

图3

解析:由题意可知,电子是以一定速度从原点O 沿任意方向射入第一象限时,先考察速度沿+y 方向的电子,其运动轨迹是圆心在x 轴上的A 1点、半径为R mv qB

=

的圆。该电子沿圆弧OCP 运动至最高点P 时即朝x 轴的正向,可见这段圆弧就是符合条件磁场的上边界,见图5。当电子速度方向与x 轴正向成角度θ时,作出轨迹图4,当电子达到磁场边界时,速度方向必须平行于x 轴方向,设边界任一点的坐标为S x y (),,由图4可知:

图4

x R y R R ==-sin cos θθ,,消去参数θ得: x y R R 222+-=()

可以看出随着θ的变化,S 的轨迹是圆心为(0,R ),半径为R 的圆,即是磁场区域的下边界。

上下边界就构成一个叶片形磁场区域。如图5所示。则符合条件的磁场最小面积为扇形面积减去等腰直角三角形面积的2倍。

图5

S r R mv eB min

=⨯-⎛⎝ ⎫⎭⎪=-⎛⎝ ⎫⎭

⎪21

414222202

ππ

带电粒子在磁场中运动之磁场最小范围问题剖析

江苏省扬中高级中学 刘风华

近年来在考题中多次出现求磁场的最小范围问题,这类题对学生的平面几何知识与物理知识的综合运用能力要求较高。其难点在于带电粒子的运动轨迹不是完整的圆,其进入边界未知的磁场后一般只运动一段圆弧后就飞出磁场边界,运动过程中的临界点(如运动形式的转折点、轨迹的切点、磁场的边界点等)难以确定。下面我们以实例对此类问题进行分析。

一、磁场范围为圆形

例1 一质量为、带电量为的粒子以速度

从O 点沿

轴正方向射入磁感强度

为的一圆形匀强磁场区域,磁场方向垂直于纸面,粒子飞出磁场区后,从处穿过

轴,速度方向与轴正向夹角为30°,如图1所示(粒子重力忽略不计)。

试求:(1)圆形磁场区的最小面积;

(2)粒子从O点进入磁场区到达点所经历的时间;

(3)点的坐标。

解析:(1)由题可知,粒子不可能直接由O点经半个圆周偏转到点,其必在圆周运动不到半圈时离开磁场区域后沿直线运动到点。可知,其离开磁场时的临界点与O点都在圆周上,到圆心的距离必相等。如图2,过点逆着速度的方向作虚线,与轴相交,由于粒子在磁场中偏转的半径一定,且圆心位于轴上,距O点距离和到虚线上

点垂直距离相等的点即为圆周运动的圆心,圆的半径。

由,得。弦长为:,

要使圆形磁场区域面积最小,半径应为的一半,即:,面积

(2)粒子运动的圆心角为1200,时间。

(3)距离,故点的坐标为(,0)。

点评:此题关键是要找到圆心和粒子射入、射出磁场边界的临界点,注意圆心必在两临界点速度垂线的交点上且圆心到这两临界点的距离相等;还要明确所求最小圆形磁场的直径等于粒子运动轨迹的弦长。

二、磁场范围为矩形

例2如图3所示,直角坐标系第一象限的区域存在沿轴正方向的匀强电场。现有一质量为,电量为的电子从第一象限的某点(,)以初速度沿轴

的负方向开始运动,经过轴上的点(,0)进入第四象限,先做匀速直线运动然后进入垂直纸面的矩形匀强磁场区域,磁场左边界和上边界分别与轴、轴重合,电子偏转后恰好经过坐标原点O,并沿轴的正方向运动,不计电子的重力。求

(1)电子经过点的速度;

(2)该匀强磁场的磁感应强度和磁场的最小面积。

解析:(1)电子从点开始在电场力作用下作类平抛运动运动到点,可知竖直方向:,水平方向:。

解得。而,所以电子经过点时的速度为:

相关文档
最新文档