流体力学第四章 流体阻力和能量损失

合集下载

《工程流体力学》第四章 流动损失

《工程流体力学》第四章  流动损失
只有当惯性力(升力或沉力)的作用比粘性阻力作用大到 一定程度时,旋涡才可能迁移、掺混和发展,使层流变为 紊流。
层流受到扰动后 主导作用:粘性稳定作用 粘性稳定作用:使扰动衰减下来 流动:变为层流 主导作用:惯性扰动作用 粘性作用:无法使扰动衰减下来 流动:变为紊流
雷诺数正是反映了惯性力和粘性力的对比关系, 能判别流态。
在波峰上侧断面受压缩,流动截面积A变小,流速V增加, 压强p变小 在波峰下侧与上侧相反,A增加,V变小,p增加
在波谷上侧断面,A增加,V变小,p增加 在波谷下侧断面,A变小, V增加,p变小
结果出现由波谷指向波峰的两种压差Dp,Dp’
其中Dp使波动弯曲加剧,波幅增大; 而Dp’大到一定程度后,使流线两侧产生从波谷向另一波 峰流动的二次流,其作用是使波谷处受吸力,波峰处有惯 性力。
2、运动参数的时均值: 时均流速V:某点瞬时速度V在足够长时间段内的平均值
流速脉动->切应力、压强也产生脉动 如,对压强同样有:
对时均流动和脉动流动分别进行研究。
定常紊流流动:对时均流动,时均速度和时均压强不随时 间而变的紊流流动。 有关定常流动规律,如连续方程、伯努利方程等都可用。
但紊流中还要考虑脉动影响 脉动->横向掺混->各流层间质量、动量、热量和悬浮 含量的分布大大平均化 动量交换->紊流阻力大大增加 紊流脉动速度时均值:0 在工程上采用紊流度概念:表示紊流随机性质
Q流速高于VK的流动状态:极不稳定,稍有扰动,就转变 为紊流,对实际工程来说,总是有扰动的。 上临界速度对工程实际没有意义,而下临界速度就成为 判断流态的界限。 下临界速度也被称为临界速度。
雷诺实验还揭示了不同流动状态下流动损失规律。 不同流速下截面1到截面2的流动损失hw:画在对数坐标上

流体力学 第四章 流动阻力和能量损失(第一次)

流体力学 第四章 流动阻力和能量损失(第一次)
2
基准线 z1 1
z
0
z2 2
0
水力坡度: 常用符号 J 表示, J= hf / L。 含义: 单位长度流程上的水头损失。
核心问题4: 恒定气流能量方程
z1 +
p1 γ
+ α1v12 2g
=
z2
+
p2 γ
+ α2v22 2g
+ hw
恒定总流伯努利方程是在不可压缩这样的流动模 型基础上提出的,但在流速不高(小于 68m / s ) ,压 强变化不大的情况下,同样可以应用于气体。
这篇文章用实验说明水流分为层流与紊流两种形态,并提出以 无量纲数Re作为判别两种流态的标准。雷诺于1886年提出轴 承的润滑理论,1895年在湍流中引入应力的概念。他的成果 曾汇编成《雷诺力学和物理学课题论文集》两卷。
其相应的水头损失称局部水头损失(hm)。 局部水头损失一般发生在管道入口、转弯、突扩 (缩)、三通、阀门等附近的局部流段上。
总水头损失
hw hf hm
液流产生水头损失的两个条件
(1) 液体具有粘滞性。 (2) 由于固体边界的影响,液流内部质点 之间产生相对运动。 液体具有粘滞性是主要的,起决定性作用。
1、理想流体
总水头线
v2 z p 常数 H
2g
b
v12 / 2g
c
p1 /
b'
v22 / 2g
静水头线 c'
速 位压 度 置强 水 水水 头 头头






线
线


1

z1
0
a
总 水 头 线

《流体力学》第四章 流动阻力和能量损失4.8-4.9

《流体力学》第四章 流动阻力和能量损失4.8-4.9
ζ:局部阻力系数
2
实验研究表明:局部损失和沿程损失一样,不 同的流态遵循不同的规律。
如果流体以层流经过局部阻碍,而且受干扰后仍能 保持层流的话,局部阻力系数为: B
z=
Re
要使局部阻碍处受边壁强烈干扰的流动仍能保 持层流,只有当Re远小于2000才有可能。因此, 以紊流的局部损失讨论为主。
局部阻碍的种类很多,但按其流动特性 来分,主要是过流断面的扩大或收缩、流动 方向的改变、流量的合入与分出三种基本形 式以及这几种形式的不同组合。
2 a 1v12 a 2 v2 hm = 2g 2g v2 + (a 02 v2 - a 01v1 ) g
av a v v2 hm = + (a 02 v2 - a 01v1 ) 2g 2g g
(v1 - v2 ) hm = 2g
2
2 1 1
2 2 2
(取动能、动量修正系数均为1)
突然扩大的水头损失等于以平 均流速差计算的流速水头。 断面突然扩大时的水流图形
gQ p1 A2 - p2 A2 + g A2 ( Z1 - Z 2 ) = (a 02 v2 - a 01v1 ) g
Q = v2 A2 p1 p2 v2 ( Z1 + ) - ( Z 2 + ) = (a 02v2 - a 01v1 ) g g g
将上式代入能量方程
2 p1 a 1v12 p2 a 2 v2 hm = ( Z1 + + ) - (Z2 + + ) g 2g g 2g
Re=1000000时弯管的局部阻力系数
序号 断面形状 R/d(R/b) 1 圆形 方形 h/b=1.0 矩形 h/b=0.5 矩形 h/b=2.0

流体力学第四章:流体阻力及能量损失

流体力学第四章:流体阻力及能量损失
减小摩擦阻力的方法
优化物体表面粗糙度、使用润滑剂、改变流体的流速和方 向等。
形状阻力
形状阻力
由于物体形状的不同,流体在绕过物体时产生的阻力。
形状阻力公式
$F_s = frac{1}{2} rho u^2 A C_s$,其中$C_s$为形状阻力系数, 与物体形状、流体性质和流速有关。
减小形状阻力的方法
详细描述
汽车设计中的流体阻力优化主要包括车身形 状设计和空气动力学套件的应用。设计师会 采用流线型设计来减小空气阻力,同时也会 采用导流板、扰流板等空气动力学套件来调 整汽车周围的空气流动,以提高汽车的行驶
稳定性、减小风噪,并降低燃油消耗。
THANKS FOR WATCHING
感谢您的观看
详细描述
船舶航行中的流体阻力主要来自船体与水之间的摩擦力以及水对船体的冲击力。为了减小流体阻力, 船舶设计师通常会采用流线型设计,优化船体表面的光滑度,以及减少不必要的突出物,从而提高航 行效率。
管道流动中的能量损失
总结词
管道中流体流动时,由于流体与管壁之 间的摩擦以及流体内部的湍流等效应, 会产生能量损失。
根据伯努利方程、欧拉方程等计算公式,结合物体的形状、速度和流体密度等 参数进行计算。
02 流体阻力现象
摩擦阻力
摩擦阻力
由于流体与物体表面的相对运动产生摩擦而形成的阻力。
摩擦阻力公式
$F_f = frac{1}{2} rho u^2 A C_f$,其中$rho$为流体密 度,$u$为流速,$A$为流体与物体接触的表面积,$C_f$ 为摩擦阻力系数。
流体力学第四章流体阻力及能量损 失
目录
• 流体阻力的概念 • 流体阻力现象 • 能量损失原理 • 流体阻力的减小方法 • 实际应用案例

流体力学流动阻力及能量损失

流体力学流动阻力及能量损失

d
4 144 1.( 27 m/s) 2 3600 3.14 0.2
由式
l V 2 64 l V 2 64 1000 1.27 2 hf 16.57 (m 油柱) d 2 g Re d 2 g 1587 .5 0.2 2 9.806
d ,管长 l 【例 】 输送润滑油的管子直径 8mm 15m ,如图所示。 2/s,流量 3/s,求油箱的水头 油的运动黏度 12cmQ m 15 106 (不计局部损失)。 h
第四节 圆管中的层流运动
一、恒定 1.恒定均匀流的沿程水头损失 列1-1和2-2截面的 B Bernoulli 方程: 均匀流, v1=v2
第四节 圆管中的层流运动
一.流动特性 层流(laminar flow),亦称片流:是指流 体质点不相互混杂,流体作有序的成层流动。 特点: (1)有序性。水流呈层状流动,各层的质点互 不混掺,质点作有序的直线运动。 (2)粘性占主要作用,遵循牛顿内摩擦定律。 (3)能量损失与流速的一次方成正比。 (4)在流速较小且雷诺数Re较小时发生。
4Q 4 12104 (m/s) V 2 0 . 239 d 3.14 0.0082
雷诺数
Re Vd 0.239 0.008 127.5 2000 6 1510


为层流列截面1-1和2-2的伯努利方程
图6-12 润滑油管路
pa pa V12 V 22 h 1 0 2 hf g 2g g 2g
第一节
流动阻力及水头损失 的 分类与计算
一.流体阻力和水头损失的分类 沿层阻力: 几何边界不变的管段上产生的 阻力hf 沿层损失: 由沿层阻力引起的能量损失 局部阻力: 几何边界发生急剧变化的管 段上产生的阻力hm 局部损失: 由沿层阻力引起的能量损失 ∑ hl= ∑ hf+ ∑ hm

流体力学第四章流动阻力与管路水力计算

流体力学第四章流动阻力与管路水力计算
图4-7 水力光滑管和水力粗糙管
第四章 流动阻力与管路水力计算
3.湍流阻力与流速分布 (1)湍流阻力 在湍流中,流体内部不仅存在着因流层间的时均流 速不同而产生的粘滞切应力τ1,而且还存在着由于脉动使流体质 点之间发生动量交换而产生的惯性切应力τ2。
第四章 流动阻力与管路水力计算
(2)湍流速度分布 实验证明,流体在管道中作湍流运动时,过流 断面上的速度分布如图4-8所示。
第四章 流动阻力与管路水力计算
第四章 流动阻力与管路水力计算
3.圆管层流运动时的沿程阻力系数
第四章 流动阻力与管路水力计算
第四章 流动阻力与管路水力计算
解:v=Q/A=4Q/π=4×75×/π×m/s=0.96m/s 二、圆管湍流的沿程损失计算 实际工程中,除少数流动为层流外,绝大多数都属于湍流运动, 因此湍流的特征和运动规律在解决工程实际问题中有重要的作用。 1.湍流脉动现象与时均法
第四章 流动阻力与管路水力计算
均匀流动是指流速大小和方向均沿流程不变的流动。由于这种流 动只能发生在壁面(截面形状、大小、表面粗糙度等)不发生任 何变化的直管段上,所以在均匀流动时,只有沿程损失,没有局 部损失。为了寻找沿程损失的变化规律,需要先建立沿程损失和 沿程阻力之间的关系式,又称为均匀流动方程式。
第四章 流动阻力与管路水力计算
图4-8 湍流速度分布
第四章 流动阻力与管路水力计算
4.湍流沿程阻力系数的确定 由于湍流的复杂性,至今还不能完全通过理论推导的方法确定湍 流沿程阻力系数l,只能借助实验研究总结一些经验或半经验公式。 (1)尼古拉兹实验 为了得到l的变化规律,尼古拉兹在类似图4-2所 示的实验台上,采用人工粗糙管(管内壁上均匀敷有粒度相同的砂 粒)进行了大量实验。

流体力学中的流体阻力与压力损失

流体力学中的流体阻力与压力损失

流体力学中的流体阻力与压力损失流体力学是研究流动流体的力学性质和规律的学科。

在流体力学中,流体阻力和压力损失是两个重要的概念。

本文将详细讨论流体阻力和压力损失的概念、计算方法以及影响因素。

一、流体阻力流体阻力是指流体在流动中受到的阻碍力。

在实际的流动过程中,流体与管道壁面或物体表面之间会发生摩擦,从而使流体受到阻碍。

流体阻力可以通过以下公式计算:阻力 = 0.5 ×流体密度 ×流速² ×流体阻力系数 ×流体截面积其中,流体密度是指流体的质量除以体积,单位为千克/立方米;流速是指流体在单位时间内通过某一点的体积,单位为米/秒;流体阻力系数是一个与流体性质相关的常量;流体截面积是指垂直于流动方向的截面面积,单位为平方米。

流体阻力的大小与流体的流速、流体性质以及流体所受到的摩擦力密切相关。

在实际工程中,需要考虑阻力对工程设备的影响,合理设计和选择管道和泵等设备,以降低流体阻力的损失。

二、压力损失压力损失是指流体在流动过程中由于阻力而引起的压力下降。

流体在流动过程中,摩擦力会导致流体流速的减小,从而使流体所受到的压力降低。

压力损失可以通过以下公式计算:压力损失 = 流体密度 ×重力加速度 ×高度差 + 0.5 ×流体密度 ×流速² ×流体阻力系数 ×管道长度其中,流体密度是指流体的质量除以体积,单位为千克/立方米;重力加速度是指重力对单位质量物体所产生的加速度,单位为米/秒²;高度差是指流体流动过程中的不同高度之差,单位为米;流速是指流体在单位时间内通过某一点的体积,单位为米/秒;流体阻力系数是一个与流体性质相关的常量;管道长度是指从开始点到结束点的距离,单位为米。

压力损失的大小与流体的密度、流速、管道长度以及流体所受到的阻力密切相关。

在实际工程中,需要合理设计管道系统,以降低压力损失的程度,保证流体能够正常流动。

《流体力学》第四章 流动阻力和能量损失4.6-4.7

《流体力学》第四章 流动阻力和能量损失4.6-4.7

第七节
非圆管的沿程损失
怎么把非圆管折合成圆管? 水力半径 当量直径 A R 水力半径:过流断面面积和湿周之比。
1 2 d d 对于圆管: R A 4 d 4
de = 4 R
2ab 对于矩形管: d e = a+ b
对于方形管:
de = a
非圆管流中的流态判断的临界雷诺
λ计算公式
紊流光滑区: 1 2 lg Re 2.51 (尼古拉兹 光滑区公式)
紊流粗糙区: (尼古拉兹 粗糙区公式)
0.3164 0.25 Re
(布拉修斯公式)
K 0.11 d
0.25
1
3.7d 2 lg K
(希弗林松公式)
半经验公式
纯经验公式
紊流过渡区
0.06 0.04 A

Ⅴ Ⅲ Ⅳ
B A
0.02
2×103 5 104
C 2 5
2
l
曲线的比较
5
105
106
A:尼古拉兹曲线 B:2英寸镀锌钢管 C:5英寸新焊接钢管
在光滑区工业管道的实验曲线和尼古拉兹曲线是重叠 的,因此,流动位于阻力光滑区时,工业管道λ的计算 可以采用尼古拉兹的实验结果。
在粗糙区,工业管道和尼古拉兹的实验曲线都是 与横坐标轴平行。这就存在用尼古拉兹粗糙区公式 计算工业管道的可能性。问题在于如何确定工业管 道的K值。 当量糙粒高度:和工业管道粗糙区λ值相等的同 直径尼古拉兹粗糙管的糙粒高度。
数仍为2000。 应用当量直径计算非圆管的能量损 失,并不适用于所有情况。
对矩形、方形、三角形结果接近, 但对长缝形和星形断面差别较大。 应用于层流时,误差较大。

《工程流体力学》第四章 流动损失

《工程流体力学》第四章  流动损失

1、运动参数的脉动: 紊流特征:旋涡结构 紊流运动:旋涡迁移掺混的随机运动
精密测速仪测定流场中M点瞬时速度:随机变化曲线 运动参数的脉动(脉动现象):在足够长时段T内,随机 值具有围绕某一“平均值”而上下变动的现象
紊流脉动:各空间点的速度、压强等物理量,随时间围 绕某一“平均值”作不规则变化的流动现象。
(b)继续开大阀门C:B管中流速增大,有色液体的流动并 无变化,仍为层流。
当B管中平均流速达到某一值时,层流开始转变紊流 —— 临界状态(临界区)。
临界状态:流束发生动荡、分散、个别地方出现中断。
(c)再稍开大阀门C:B管中流速超过临界值VK’,则有色 液体不再呈现流束动荡和分散中断,而破碎掺混变成一种 紊乱的流动状态,有色流体质点布满B管中—紊流。
管中水流为紊流。
(2)保持层流的最大流速就是临界流速:
流态分析:
层流:各流层互不掺混,只有粘性引起的各流层间的滑动 摩擦阻力。
紊流:许多大大小小的涡体动荡于各流层间,有粘性阻力, 惯性阻力。(由质点掺混,互相碰撞所引起的)
紊流阻力>>层流阻力
层流到紊流的转变过程:
假设流体原来作直线层流运动,由于某种原因干扰,流层 发生波动。
水力半径:截面面积A与流体湿周长c之比 水力半径表征截面的流通能力: A增加,c变小,则流体流通能力增加。
几种断面的水力半径:
当量直径de:当非圆管的水力半径 = 圆管的水力半径时, 这时圆管的直径就是非圆管的当量直径。 如当非圆管的水力半径R = 圆管的水力半径d/4时, 则圆管的直径d = 4R为非圆管的当量直径de。
上临界速度VK’不稳定:受试验设备,周围环境影响很大 (1)当管壁光滑,入口平滑,周围干扰较小时:VK’可达到 较高值。即速度较大时,层流才转变为紊流 (2)当管壁粗糙,周围干扰较大时, VK’可达到的值较小。 即速度较小时,层流就转变为紊流

两种液体阻力及能量损失形式

两种液体阻力及能量损失形式

两种液体阻力及能量损失形式一、引言在日常生活中,我们经常会遇到液体阻力和能量损失的现象,特别是在涉及流体力学的领域。

液体阻力是指液体流动过程中对物体运动的阻碍,而能量损失则是指由于液体阻力所引起的能量消耗。

这两种现象在工程、物理学和运动学等领域都具有重要的意义。

本文将介绍两种主要的液体阻力形式和能量损失形式,并探讨它们对物体运动和系统效率的影响。

二、两种液体阻力形式1. 粘滞阻力粘滞阻力是液体流动中最常见的一种形式。

液体的粘滞阻力是由于其内部的分子之间相互作用而产生的,当物体在液体中运动时,粘滞阻力将阻碍其运动,并使其速度减慢。

粘滞阻力的大小与液体的粘度有关,粘度越大,粘滞阻力也越大。

2. 惯性阻力惯性阻力是液体流动中的另一种重要形式。

惯性阻力是由于液体内部的流动速度不均匀而产生的,当物体在液体中高速运动时,惯性阻力会由于液体的流动速度产生较大的压力差,从而产生一个相对于流动方向的反作用力。

惯性阻力的大小与物体的速度和形状有关,速度越大,形状越流线型,惯性阻力也越大。

三、两种能量损失形式1. 粘性耗散粘性耗散是由于液体粘滞阻力引起的能量消耗。

当物体在液体中运动时,液体分子会因为相互摩擦而产生能量损失。

这种能量损失是由液体分子间摩擦产生的,因此与液体粘度和物体的运动速度有关。

粘性耗散会使得物体的动能转化为热能,从而引起能量的损失。

2. 惯性耗散惯性耗散是由于液体惯性阻力引起的能量消耗。

当物体在液体中高速运动时,液体的流动速度不均匀,从而产生了惯性阻力。

这种惯性阻力会导致能量的损失,使得物体的动能转化为其他形式的能量,比如声能等。

惯性耗散的大小与物体的速度和形状有关,速度越大,形状越流线型,惯性耗散也越大。

四、阻力和能量损失对物体运动的影响液体的阻力和能量损失对物体运动具有很大影响。

液体的阻力会对物体的速度和加速度产生影响。

粘滞阻力和惯性阻力都会使物体的速度减小,并且粘滞阻力对速度的减小影响更为显著。

工程流体力学课件4流动阻力和水头损失

工程流体力学课件4流动阻力和水头损失
产生原因
流体流经局部障碍时,流动状态发生急剧变化,产生漩涡 和二次流,使得流体的速度分布和方向发生变化,导致水 头损失。
影响因素
局部障碍的形式、流体流速、流体性质等。
总水头损失
总水头损失
01
指流体在管道或渠道中流动过程中所损失的总水头,
等于沿程水头损失和局部水头损失之和。
计算方法
02 总水头损失等于沿程水头损失和局部水头损失的代数
水利工程中的流动阻力与水头损失分析
水利工程中的流动阻力来 源
在水利工程中,流动阻力主要来自水体与边 界的摩擦力、水流内部的各种阻力等。这些 阻力会导致水头损失,影响水利工程的正常 运行。
水头损失对水利工程效益 的影响
水头损失的大小直接影响到水利工程的效益 。在设计水利工程时,应充分考虑水头损失 的影响,合理选择水泵和水轮机的型号,确
保工程效益最大化。
THANKS
工程流体力学课件4流 动阻力和水头损失
目录
Contents
• 流动阻力的概念 • 水头损失的种类 • 流动阻力和水头损失的计算 • 工程实例分析
01 流动阻力的概念
定义与分类
定义
流动阻力是指流体在流动过程中受到的阻碍作用,导致流体机械能的损失。
分类
分为内阻力和外阻力。内阻力是由于流体内部摩擦力引起的,如层流内摩擦力 和湍流内摩擦力;外阻力是指流体在流动过程中受到的外部阻碍,如流体与管 道壁面的摩擦力。
计算公式
阻力系数通常通过实验测定,也可以通过经验公式进行估算。常用的经验公式有达西韦斯巴赫公式和莫迪图等。
影响因素
阻力系数的大小受到流体的物理性质、管道的几何形状和尺寸、流动状态等多种因素的 影响。在工程实际中,需要根据具体情况进行实验测定或经验估算。

流体力学-第四章-流动阻力和能量损失(章结)

流体力学-第四章-流动阻力和能量损失(章结)

K(mm) 管道材料 K(mm)
表面光滑砖风道
4.0
度锌钢管
0.15
矿渣混凝土板风道 1.5
钢管
0.046
钢丝网抹灰风道 10~15
铸铁管
0.25
胶合板风道
1.0
混凝土管
0.3~3.0
墙内砌砖风道
5~10 木条拼合圆管 0.18~0.9
确定沿程阻力系数的方法:
(1)经验公式 (2)莫迪图 (3)查相关手册
二、等效过程
(1)用实验方法对某种材料的管道进行沿程损 失实验,测出 和 hf ;
(2)再用达西公式计算出λ;
hf
l d
2
2g
(3)用尼古拉兹阻力平方区公式计算出绝对
粗糙度K。
1
(1.74 2 lg d )2
2K
此时的K值在阻力的效果上是与人工粗糙管的管 道粗糙度相当的,故称其为当量粗糙度。
莫迪(Mood渐扩管 (d)减缩管
(e)折弯管
(f)圆弯管
(g)锐角合流三通
(h)圆角分流三通
在局部阻碍范围内损失的能量,只占局部损失中 的一部分,另一部分是在局部阻碍下游一定长度的 管段上损耗掉的,这段长度称为局部阻碍的影响长 度。受局部阻碍干扰的流动,经过影响长度后,流 速分布和紊流脉动才能达到均匀流动的正常状态。
核心问题2 水力半径、湿周、当量直径
以上讨论的都是圆管,圆管是最常用的断面形式。 但工程上也常用到非圆管的情况。例如通风系统 中的风道,有许多就是矩形的。如果设法把非圆 管折合成圆管来计算,那么根据圆管制定的上述 公式和图表,也就适用于非圆管了。这种由非圆 管折合到圆管的方法是从水力半径的概念出发, 通过建立非圆管的当量直径来实现的。

流体阻力

流体阻力
P1 1 τ 2
令:
则:
hl12 h f
h f ( z1 p1
α l P2

) ( z2
p2
G

)
(1)
再对流段进行受力分析: 截面1-1总压力:P1A 截面2-2总压力:P2A
P1
1
r
τ
2
流段1-2的重力:γA l cosα
作用在流段面上的总摩擦力:τl 2πr 列力平衡:
阀门C逐渐开小使流速减少,从而使流态由紊流转变为层流的临界流速
vk称为下临界流速。
下临界流速vk <上临界流速vk’ 实验进一步表明:对于特定的流动装置上临界流速vk’是不固定的,但是 下临界流速vk却是不变的。以后所指的临界流速即是下临界流速。
速度逐渐减小
速度逐渐增大
二、流态的判别准则——雷诺数(Reynolds Number) 3、进一步的实验证明,除了流速v对流态有影响之外,管 道直径D、流体密度ρ和粘度μ对流态也有影响。
第四章 流动阻力与能量损失
伯努利方程式
p1 v12 p2 v22 z1 z2 hl12 2g 2g

2 u1 2g
2 u2 2g
其中hl1-2是因克服截面1-1 与2-2之间的阻力即单位 重量的流体所消耗的机械 能(或压头),称为压头 损失 本章将着重讨论该项。
P1/γ
紊流中某一瞬间,某一点瞬时速度为:
u u u 同理p p p
二、紊流的切向应力
层流运动:切向应力表现为内摩擦力引起的摩擦切向应力 紊流运动:切向应力表现为内摩擦力引起的摩擦切向应力 和横向脉动速度引起的附加切向应力(或者说: 脉动引起动量交换产生的惯性切应力

流体力学第四章-黏性流体的运动和阻力计算

流体力学第四章-黏性流体的运动和阻力计算
Pgh qvpvq12 dL 4 8v 2 q
6、层流起始段长度——见课本74页
*4.4 圆管中的湍流流动
30
一、脉动现象与时均值
1、这种在定点上的瞬时运动参数随时间而发生波动的现象称为
脉动。
2、时均法分析湍流运动
u u u'
如取时间间隔T,瞬时速度在T时间内的平均值称为时间平均 速度,简称时均速度,即
二局部阻力某段管道上流体产生的总的能量损失应该是这段管路上各种能量损失的迭加即等于所有沿程能量损失与所有局部能量损失的和用公式表示为三总能量损失能量损失的量纲为长度工程中也称其为水头损失221圆管层流时的运动微分方程牛顿力学分析法可参考课本71页的ns方程分析法取长为dx半径为r的圆柱体不计质量力和惯性力仅考虑压力和剪应力则有pdpdxdprdxdpdrdudxdpdrdu根据牛顿粘性定律再考虑到则有dr图41圆管层流的速度和剪应力分布25在过流断面的任一半径r处取一宽度为dr的圆环如图42所示
u1
Tudt1
T(uu')dt1
Tudt1
T
u'dt
T0
T0
T0
T0
u1
T
u'dt
T0
时均压强
p
1
T
pdt
T0
.
二、湍流的速度结构、水力光滑管和水力粗糙管
31
1.湍流的速度结构 管中湍流的速度结构可以划分为以下三个区域:
(1)粘性底层区(层流底层):在靠近管壁的薄层区域内,流 体的粘性力起主要作用,速度分布呈线性,速度梯度很大,这 一薄层叫粘性底层。如图所示。
湍流 层流的临界速度 ——下临界流速
v c ——上临界速度
v c ——下临界速度

流体力学4

流体力学4
下临界流速 vk :紊流状态改变为层流状态时的 速度。
实验证明: vk << vk
层流 过渡流 紊流
vk
流速
vk
二、流动状态与水头损失的关系
在雷诺实验中,用测压管测定两点间的水头损失hf, 并测定管中流体均速v,作出hf-v的关系图 结论:v < vk 时,层流,沿程损失 hf与v的关系为OA直线;hf=k1v

0 =Ri 计算均匀流动水头损失的基本公式
式中:τ0—流段表面单位面积上所受摩擦力; R—过水断面的水力半径; i-水力坡度。
i hf / l
水力坡度:单位长度的沿程损失。
第四节 流体在圆管中的层流运动
一、均匀流动中内摩擦力的分布规律
均匀流动水头损失:
0 =Ri
设过水断面最大半径为r0,则水力半径 R=r0/2,
四、圆管层流中的沿程损失
由圆管平均速度公式 得:
32 i v 2 d0
i hf l
v
i 2 d0 32
又由水力半径
得:
hf

32 l v k1 v 2 d0
式中: k 32 l 1 d 02
,为常量。
以速度水头的形式表示hf,则:
hf
32 l 32 l v 2 64 l v 2 v v 2 2 d0 ( g) d 0 2 v v d 02 2g
则: 0 = r0 i

2
取半径为r的圆柱形流段,设其表面切应力为τ,则
r = i 2

r = 0 r0
均匀流动中内摩擦切应力的分布规律 物理意义:圆管均匀流的过水断面上,切应力呈直线分 布,管壁处切应力为最大值τ0,管轴处切应力为零。

第一篇 流体力学第四章 阻力损失与管路计算

第一篇 流体力学第四章 阻力损失与管路计算
• 有了当量直径,只要用de 代替d,就可利用圆管的计算公式来进行非圆 管沿程损失的计算,即
上一页
返回
第四节 局部损失的计算
• 局部损失可按下式计算:
• 局部损失的计算可以转化为求局部阻力系数ζ 的问题.对于不同的局部 阻碍,有不同的局部阻力系数ζ 值,其多数通过试验确定,并编制成专用 计算图、表,供计算时查用.表4-1列出了各种常用管件的局部阻力系 数ζ值.应当注意,表4-1中的ζ 值都是针对某一过流断面的平均流速而 言的,查表时必须与指定的断面流速相对应,凡未注明的,均应采用局部 阻碍以后断面的平均流速.
• 根据流体的边界情况,将流动阻力和能量损失分为两种形式:一种是沿 程阻力与沿程能量损失;另一种是局部阻力与局部能量损失.
下一页 返回
第一节 流动阻力与能量损失
• 如图4-1所示,水箱侧壁上连接一根由三段不同直径的管段所组成的 管路.在边壁沿程不变的管段上(1-2、2-3、3-4、4-5段), 阻碍流体流动的阻力沿程基本不变,这类阻力称为沿程阻力.为克服沿 程阻力而产生的能量损失称为沿程能量损失.沿程损失以水柱高度表 示时,称为沿程水头损失,用符号hf 表示.图中的hf12、hf23、hf34、 hf45就是相应1-2、2-3、3-4、4-5各管段的沿程水头 损失.图中整个管路的沿程水头损失等于各管段的沿程水头损失之和, 即
• 人们很早以前就发现沿程损失与流速之间存在着某种关系,但直到1 883年,英国物理学家雷诺在他做的试验中揭示了流体运动存在着 两种流态,这才认识到沿程损失与流速的关系与流态密切相关.
• 雷诺试验的装置如图4-2所示,水箱A 中水位恒定,水流通过玻璃管B 恒定出流,阀门K 用来调节管内流量,容器D 中盛有颜色水,颜色水可以 经过细管E 注入玻璃管B 中.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

du dr 将上式与均匀流基本方程式联立,得 du r g J dr 2 gJ 分离变量 积分 du r dr 2
r y r0 u
gJ 2 u r c 4
确定积分常数。当 r = r0,u = 0 时,
代入上式得
gJ 2 2 u r0 r 4
0 g
r0 J 2

r g J 2
式中 r0 为圆管半径,τ为任意半径 r 处的切应力。
二、圆管中的层流
由雷诺实验知,层流运动时质点间相互不掺混,流动呈现 一种平行于管轴的分层运动状态。又由液体的黏滞性知,层间 的摩擦力满足牛顿内摩擦定律, y
du dy
对于圆管,y = r0- r ,于是
1 v u max 2
比较最大流速
利用流速分布公式分别求得动能修正系数和动量修正系 数为
3 u dA 3 2 v A 2 u dA 4 2 v A 3
沿程水头损失的计算

D r0 2

hf J l
代入
32 lv hf gD 2
gJ 2 v r0 8
vcr v vcr vcr vcr
紊流=>过渡状态
紊流 层流
v vcr ——上临界速度 vcr vcr
——下临界速度
流态的判别
雷诺数 工程上取
Re
d
Recr 2000
当Re≤2000时,流动为层流;当Re>2000时,即 认为流动是紊流。 对于非圆形截面管道:
4.1 沿程损失和局部损失
1. 沿程损失:
达西——魏斯巴赫公式 :
式中 :

——沿程阻力系数(无量纲)
L ——管子的长度 d ——管子的直径

——管子有效截面上的: h j 2g
——局部损失系数(无量纲)
一般由实验测定
3. 总能量损失:
hw hf hj
雷诺数
Re
de
A de 4
——当量直径
4.3 圆管中的层流流动
一、均匀流动方程式
设圆管恒定均匀流段1-2,作用于流段上的压力、壁面切力与重力相平衡,即

FP1 FP 2 FG cos FV 0
p1 A τ0 1 z1 τ0 α FG 2 p2 z2 l
p1 A p2 A gAl cos 0 Pl 0
u x u x u x
瞬时轴向速度与时均速度图
p p p'
时均参数不随时间改变的紊流流动称为准定常流动或时均定常
4.4 紊流运动 二、雷诺应力 t
定义: 流体质点在相邻流 层之间的交换,在流层之间 进行动量交换,增加能量损 dv x 失 v t ( t ) dy
能量损失的量纲为长度,工程中也称其为水头损 失
4.2 层流和紊流
粘性流体两种流动状态:

7
紊流
层流
一、雷诺实验
实验装置
5 6 1
2
3
4
排水 进水
Osborne Reynolds (1842-1916)
实验说明:
a.
v 0 vcr
层流=>过渡状态
b.
c. d.
v vcr
gJ 2 c r0 4
上式为圆管过流断面上的流速分布公式,为抛物线方程。
将 r = 0 代入上式,得管轴处最大流速为
u max
流量
r0
gJ 2 r0 4
平均流速
gJ 2 2 gJ 4 Q udA 0 r0 r 2 πrdr πr0 4 8 gJ 2 v r0 8
, , t vx vy
y

vx vx vy x
o
脉动速度示意图
普朗特的混合长假说 :
dv x t l dy
2
dv t t x dy
与 μ 不同,它不是流体的属性,它只 决定于流体的密度、时均速度梯度和混合 长度
将 z1- z2= lcosα代入上式,并以
ρgA除之,整理得
p1 p2 0 Pl z1 g z2 g gA
又由1-2断面伯努利方程得
p1 p2 z1 g z 2 g hf
,整理得
哈根-泊肃叶(Hagen-Poiseuille)公式。再整理成达西公式
的形式
64 l v 2 64 l v 2 l v2 hf vD D 2 g Re D 2 g D 2g
沿程阻力系数
64 Re
对于圆管层流,有
速度分布.
ro2 r 2 u J 4
umax ro2 J 4
第4章 流动阻力和能量损失
第四章 流体阻力和能量损失
第一节 沿程损失和局部损失 第二节 层流与紊流、雷诺数 第三节 圆管中的层流运动 第四节 紊流运动的特征和紊流阻力 第五节 尼古拉兹实验

第四章 流体阻力和能量损失
第六节 工业管道紊流阻力系数计算式子 第七节 非圆管的沿程损失 第八节 管道流动的局部损失 第九节 减小阻力的措施

4.1 沿程损失和局部损失
——沿程水头损失(Friction head loss)

② ③
边界对水流的摩擦阻力损失一部分机械能
流层之间的相互摩擦力损失一部分机械能 紊流、大小尺度不同的旋涡 ——局部水头损失(Local head loss),边界层的分离产 生旋涡要产生额外的水头损失,由于边界形状突然改 变而产生 。
旋转抛物面分布
最大流速:
平均流速: 沿程阻力系数:
Q vl 2 rdr umax v A A 2
64 Re
4.4 紊流运动
4.4 紊流运动
一、紊流流动时均值
时均速 度
1 ux t
vxi
xi dt
u
0
t
v x
脉动速度 ux
o
v xi
t
vx
t
瞬时速度 同理 流
故有
0 Pl 0l hf gA gR
0 gR
hf gRJ l

上式称均匀流基本方程式,该式反映了均匀流沿程水头损失 与切应力的关系。式中: τ0—所取总流表面的切应力; R—所取总流的水力半径; J—所取总流单位长度的水头损失,称水力坡度。 若总流为圆管流动,则
相关文档
最新文档