解耦控制系统

合集下载

第七章 解耦控制系统

第七章 解耦控制系统

pij 第一放大系数(开环增益) qij 第二放大系数(闭环增益)
2. 相对增益与相对增益矩阵
第一放大系数pij (开环增益) 指耦合系统中,除Uj到Yi通道外,其它通道 全部断开时所得到的Uj到Yi通道的静态增益; 即,调节量 Uj 改变了 Uj 所得到的 Yi 的变化 量 Yi 与 Uj 之比,其它调节量 Uk ( k≠j )均 不变。 pij可表示为:
通过计算过程的微分分别计算出第一放大系数和 第二放大系数,从而得到相对增益矩阵。
另一种方法是增益矩阵计算法
先计算第一放大系数,再由第一放大系数直接计 算第二放大系数,从而得到相对增益矩阵。
2. 相对增益与相对增益矩阵
增益矩阵计算法
即由第一放大系数直接计算第二放大系数。
2. 相对增益与相对增益矩阵
的根所决定。即特征方程的根具有负实部, 两个关联回路是稳定的。
1. 耦合过程及其要解决的问题
通常认为,在一个多变量被控过程中,如果每一个被控
变量只受一个控制变量的影响,则称为无耦合过程,其分 析和设计方法与单变量过程控制系统完全一样。
存在耦合的多变量过程控制系统的分析与设计中需要解决 的主要问题: 1. 如何判断多变量过程的耦合程度? 2. 如何最大限度地减少耦合程度? 3. 在什么情况下必须进行解耦设计,如何设计?
1. 耦合过程及其要解决的问题
稳定性如何判别?
1. 耦合过程及其要解决的问题
当两个回路有关联时,则闭环稳定性由特征方程:
Q(s) [1 G11 (s)Gc1 (s)][1 G22 (s)Gc 2 (s)] G12 (s)G21 (s)Gc1 (s)Gc 2 (s) 0
式中
K 22 h11 K11 K 22 K12 K 21

解耦控制系统

解耦控制系统

2023/5/24
5
9.1.2 被控对象的典型耦合结构
对于具有相同数目的输入量和输出量的被控对象,典型的 耦合结构可分为P规范耦合和V规范耦合。
图9-3为P规范耦合对象。
2023/5/24
6
它有n个输入和n个输出,并且每一个输出变量
Yi(i=1,2,3,…,n)都受到所有输入变量Ui(i=1,2,3,…,n)的影响。 如果用pij(s)表示第j个输入量Uj与第 i个输出量Yi之间的传递函数, 则P规范耦合对象的数学描述式如下:
2023/5/24
13
对于一个耦合系统,因为每一个控制变量不只影响一 个被控变量,所以只计算在所有其他控制变量都固定 不变的情况下的开环增益是不够的。因此,特定的被 控变量Yi对选定的控制变量的响应还取决于其他控制 变量处于何种状况。
对于一个多变量系统,假设 Y是包含系统所有被
控变量Yi的列向量;U是包含所有控制变量Uj的列向量。 为了衡量系统的关联性质首先在所有其它回路均为开
从而求得耦合系统的相对增益ij。
2023/5/24
25
(2) 直接计算法 现以图9-7所示双变量耦合系统为例说明如何由第一放
大系数直接求第二放大系数。引入P矩阵,式(9-10)可写 成矩阵形式,即
Y Y 1 2 p p1 21 1p p1 2 2 2 U U 1 2 K K 1 21 1K K 1 2 2 2 U U 1 2 (9-14)
(9-13)
2023/5/24
24
从上述分析可知,第一放大系数pij是比较容易 确定的,但第二放大系数qij则要求其他回路开环增 益为较为复杂,特别是多变量系统。
事实上,由式(9-12)和式(9-13)可看出,第 二放大系数qij完全取决于各个第一放大系数pij,这 说明有可能由第一放大系数直接求第二放大系数,

第十章_解耦

第十章_解耦

第10章 解耦控制系统当再同一设备或装置上设置两套以上控制系统时,就要考虑系统间关联的问题。

其关联程度可通过计算各通道相对增益大小来判断。

如各通道相对增益都接近于1,则说明系统间关联较小;如相对增益于1差距较大,则说明系统间关联较为严重。

对于系统间关联比较小的情况,可以采用控制器参数整定,将各系统工作频率拉开的办法,以削弱系统间的关联的影响。

如果系统间关联非常严重,就需要考虑解耦的办法来加以解决。

解耦的本质是设置一个计算装置,去抵消过程中的关联,以保证各个单回路控制系统能独立地工作。

为了便于分析,下面对2×2系统的关联及其解耦方法进行研究。

具有关联影响的2×2系统的方块图如图10—1所示。

从图10—1可看出,控制器c 1的输出p 1(s )不仅通过传递函数G 11(s )影响Y 1,而且通过交叉通道传递函数G 21(s )影响Y 2。

同样控制器c 2的输出p 2(s )不仅通过传递函数G 22(s )影响Y 2,而且通过交叉通道传递函数G 12(s )影响Y 1。

上述关系可用下述数学关系式进行表达:Y 1(s )=G 11(s )P 1(s )+G 12(s )P 2(s )(10—1) Y 2(s )=G 21(s )P 1(s )+G 22(s )P 2(s )(10—2)将上述关系式以矩阵形式表达则成:⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡)()()()()()()()(212221121121s P s P s G s G s G s G s Y s Y (10—3)或者表示成:Y (s )=G (s )P (s )(10—4)式中 Y (s )——输出向量;P (s )——控制向量;G (s )——对象传递矩阵:⎥⎦⎤⎢⎣⎡=)()()()()(22211211s G s G s G s G s G (10—5)所谓解耦控制,就是设计一个控制系统,使之能够消除系统之间的耦合关系,R 1) R 2图10—1 2×2关联系统方块图而使各个系统变成相互独立的控制回路。

解耦控制的基本原理

解耦控制的基本原理

解耦控制的基本原理解耦控制是一种常见的设计原则和方法,它旨在将复杂的系统分解成独立的模块,以降低系统的耦合度,提高可维护性和可扩展性。

本文将从解耦控制的基本原理、实现方法、应用场景等方面进行介绍和分析。

一、解耦控制的基本原理解耦控制的基本原理是通过降低模块之间的依赖程度,使得系统中的各个模块可以独立地进行开发、测试和维护。

具体来说,解耦控制主要包括以下几个方面的原理:1. 模块化设计:将系统划分为多个模块,每个模块负责处理特定的功能或任务。

模块之间通过定义清晰的接口进行通信,而不是直接依赖于具体的实现细节。

2. 松耦合:模块之间的依赖关系应尽量降低,使得修改一个模块不会对其他模块产生影响。

常见的实现方式包括使用接口、回调函数等。

3. 单一职责原则:每个模块应该只负责一个特定的功能或任务,避免一个模块承担过多的责任,以减少模块之间的依赖。

4. 分层架构:将系统划分为多个层次,每个层次负责不同的功能。

上层的模块只依赖于下层模块的接口,而不依赖于具体的实现。

二、解耦控制的实现方法解耦控制的实现方法多种多样,根据具体的应用场景和需求可以选择不同的方法。

以下是一些常用的实现方法:1. 接口隔离原则:定义清晰的接口,每个模块只依赖于自己需要的接口,而不依赖于其他模块不需要的接口。

这样可以避免模块之间的不必要的耦合。

2. 依赖注入:通过将依赖关系的创建和管理交给外部容器来实现解耦。

模块只需要声明自己需要的依赖,由外部容器来负责注入具体的实现对象。

3. 事件驱动:模块之间通过发布-订阅模式进行通信,一个模块发生的事件会被其他模块接收并进行相应的处理。

这样可以实现模块之间的解耦。

4. 消息队列:模块之间通过消息队列进行通信,一个模块将消息发送到队列中,其他模块从队列中获取消息并进行相应的处理。

消息队列可以实现模块之间的异步解耦。

三、解耦控制的应用场景解耦控制在软件开发中有着广泛的应用场景,下面列举几个常见的场景:1. 分布式系统:在分布式系统中,各个节点之间需要进行通信和协作。

工业过程控制工程课件10.解耦控制

工业过程控制工程课件10.解耦控制

C1
C2
C1 y20 C1 C2
y20 C2
C1
C2
变量配对举例(续)
6. 进行合适的变量配对 ( 假设C1 >y20 >C2 ):
u10
y20 C2 C1 C2
y10 , u20
C1 y20 C1 C2
y10
y20 C2
C1 C1
C2 y20
C1 C2
C1 y20 C1 C2 y20 C2 C1 C2
12 22
1 j 2 j
1n
2n
• • • • • •
yi
i1
i 2
ij
in
• • • • • •
yn n1
n2
nj
nn
相对增益系数的计算方法1
输入输出稳态方程
u1(s)
y1(s) y1 K11u1 K12u2
u2(s)
y2(s) y2 K21u1 K22u2
p11
多变量系统中的耦合
u1(s)
y1(s)
u2(s) ...
MIMO 过程
y2(s) ...
un(s)
yn(s)
基本问题:若采用SISO控制器,如何进行 输入输出变量之间的配对?
多回路PID 控制
相对增益的概念
第一放大系数 pij:在其它控制量 ur (r≠j)均不变的前
提下, uj 对yi 的开环增益
y1 u1
u2
K11
y1
K11u1 K12
y2
K21u1 K 22
q11
y1 u1
y2
K11
K12 K21 K 22
11
1
1 K12 K21

(工业过程控制)10.解耦控制

(工业过程控制)10.解耦控制
动态解耦
在系统运行过程中,通过动态调整控制参数或策略,实现耦合的 实时解耦。
解耦控制的方法与策略
状态反馈解耦
通过引入状态反馈控制 器,对系统状态进行实 时监测和调整,实现解
耦。
输入/输出解耦
通过合理设计输入和输 出信号,降低变量之间
的耦合程度。
参数优化解耦
通过对系统参数进行优 化调整,改善耦合状况, 实现更好的解耦效果。
通过线性化模型,利用线性控制理论设计控制器,实现系统 解耦。
非线性解耦控制
针对非线性系统,采用非线性控制方法,如滑模控制、反步 法等,实现系统解耦。
状态反馈与动态补偿解耦控制
状态反馈解耦控制
通过状态反馈技术,将系统状态反馈 到控制器中,实现系统解耦。
动态补偿解耦控制
通过动态补偿器对系统进行补偿,消 除耦合项,实现系统解耦。
特点
解耦控制能够简化系统分析和设计过 程,提高系统的可维护性和可扩展性 ,同时降低系统各部分之间的相互影 响,增强系统的鲁棒性。
解耦控制的重要性
01
02
03
提高系统性能
通过解耦控制,可以减小 系统各部分之间的相互干 扰,提高系统的整体性能。
简化系统设计
解耦控制能够将复杂的系 统分解为若干个独立的子 系统,简化系统的分析和 设计过程。
调试和维护困难
耦合问题增加了系统调试和维护的难度,提高了运营成本。
解耦控制在工业过程控制中的实施
建立数学模型
01
对工业过程进行数学建模,明确各变量之间的耦合关系。
选择合适的解耦策略
02
根据耦合程度和系统特性,选择合适的解耦策略,如状态反馈、
输出反馈等。
控制器设计
03

解耦控制的基本原理

解耦控制的基本原理

解耦控制的基本原理解耦控制是一种通过拆分控制系统成为多个相对独立的子系统,从而实现对系统的分析、设计和调节的控制策略。

其基本原理是将控制系统分解成互不影响的几个子系统,并用相应的子控制器来单独控制每个子系统的行为。

这样做的好处是可以减少系统的复杂性,提高系统的可调节性和可靠性,同时也方便了系统的分析和优化。

1.系统拆分:将整个控制系统分解为若干个子系统,每个子系统对应一个相对独立的动态行为。

通过这种方式,将控制系统的复杂度分解为多个较简单的子系统,从而减少控制的难度。

2.子系统控制:为每个子系统设计相应的控制器,以独立地控制每个子系统的动态行为。

通过精确地控制每个子系统的输入和输出,可以实现对整个控制系统的有效控制。

3.反馈控制:每个子系统的控制器可以通过反馈控制的方式,根据系统输出与期望输出之间的差异来调整输入信号。

这样可以实时地修正系统的误差,使系统更加稳定和可靠。

4.信息交互:通过适当的信息交互,将各个子系统的状态和参数信息传递给其他子系统,以实现协同工作。

这样可以保证整个控制系统的统一性和一致性。

电力系统是一个由多个发电机、负荷和输电线路组成的复杂网络。

为了保证电力系统的稳定运行,需要对电力系统进行控制和调节。

解耦控制在电力系统中的应用主要包括两个方面:解耦发电机和解耦负荷。

解耦发电机是指将电力系统中的每个发电机视为一个独立的子系统,并为每个发电机设计相应的控制器。

这样可以实现对发电机的独立控制,使各个发电机之间的影响减小,从而提高电力系统的稳定性。

解耦负荷是指将电力系统中的每个负荷视为一个独立的子系统,并为每个负荷设计相应的控制器。

这样可以实现对负荷的独立控制,使各个负荷之间的影响减小,从而提高电力系统的可靠性。

在电力系统中,可以通过测量发电机的频率、电压和功率等参数,并基于这些测量结果进行分析和优化。

通过控制发电机的输入信号,可以调整发电机的输出功率,从而实现电力系统的稳定供电。

类似地,通过测量负荷的功率需求和电压电流等参数,并基于这些测量结果进行分析和优化。

计算机解耦控制系统装置

计算机解耦控制系统装置

第 3 章解耦控制系统3.1多变量解耦控制系统概述3.2解耦控制理论3.3解耦控制方法与设计3.3.1 解耦控制系统分类及解耦方法3.3.2 解耦控制方案3.3.3 解耦控制中的问题3.4解耦控制算法3.5几种先进解耦控制理论的介绍3.1 多变量解耦控制系统概述工业生产过程中的被控对象往往是多输入多输出系统(MIMO ,如冶金工业中的钢坯加热炉的多段炉温,轧机中的厚度与板型;电力工业中发电机组的蒸汽压力与温度;石化工业中的精馏塔顶部产品流量和成分、底部产品流量和成分;国防工业中的飞行控制、风动稳定段总压和试验段马赫数等,都是需要控制而又是彼此关联的量。

多变量系统的控制就是调整被控系统的多个输入作用使系统输出达到某些指定的目标。

在实际的工业过程中,常常遇到的多变量系统具有不确定性,也就是系统的某些参数位置或时变或受到未知的随机干扰。

因此,现代工业过程本身就是是一个复杂的变化过程,在现代化的工业生产中,为了达到指定的生产要求,不断出现一些较复杂的设备或装置。

然而,这些设备或装置的本身所要求的被控制参数往往较多,相应的,决定和影响这些参数的原因也不止一个。

随着生产规模的不断扩大化,对控制的要求也越来越高。

而且,在一个生产过程中,要求控制的变量以及操作往往不止一对,需要设置的控制回路也不止一个。

因此,必须设置多个控制回路对该种设备进行控制。

由于控制回路的增加,往往会在它们之间造成相互影响、相互干扰的作用。

因此大多数工业过程控制是一个相互关联的多输入多输出过程。

在这样的过程中,一个输入将影响到多个输出,而一个输出也将受到多个输入的影响。

也即系统中一些控制回路的输入信号对其它回路的输出都有影响,而一些回路的输出又会受到其它输入的作用。

如果将一对输入输出称为一个控制通道,则在各通道之间存在相互作用,我们把这种输入与输出间、通道与通道间复杂的相互影响与相互作用的因果关系称为过程变量或通道间的耦合。

由此看来,要想一个输入只去控制一个输出几乎不可能,这就构成了“耦合”系统。

解耦控制系统

解耦控制系统
数和第二放大系数, 从而得到相对增益矩阵。 ▪ 另一种方法是增益矩阵计算法 ▪ 先计算第一放大系数, 再由第一放大系数直
接计算第二放大系数, 从而得到相对增益矩 阵。
10
相对增益系数的计算方法1
输入输出稳态方程
u1(s)
y1(s) y1 K11u1 K12u2
u2(s)
y2(s) y2 K21u1 K22u2
0
0 Gp22 (s)
Gp11(s)Gp22
(s)
1
Gp12
(s)Gp21(s)
Gp22 (s) Gp21(s)
Gp12 (s)Gp11(s)
Gp11(s)
0
0 Gp22 (s)
Gp11(s)Gp22 (s)
G
p11
(
s)G
p
22
(s)
G
p12
(
s)G
p
21
(s)
Gp11(s)Gp21(s)
G
p11
(
s)G
p
22
(s)
G
p12
(
s)G
p
21
(s)
Gp22 (s)Gp12 (s)
G
p11
(
s)G
p
22
(s)
G
p12
(
s)G
p
21
(s)
Gp11(s)Gp22 (s)
G
p11
(
s)G
p
22
(s)
G
p12
(
s)G
p
21
(s)
29
3.解耦控制系统设计
R1
Gc1(s) Uc1 Gp11(s) Y1

解耦控制 ppt课件

解耦控制 ppt课件
Y Y1 2((SS))G 0.1.1 (G S .).2.2 .(S.0)..U U .1 2((S S))
ppt课件
9
实现对角解耦后的等效系统框图
U1(S)
GP(S)
Uc1(S)
G (S)
U2(S)
Uc2(S)
根据解耦要求,解耦后的等效传递函数矩阵为对角阵。即:
Y Y1 2((S S)) G 0.1.1 (G S .).2.2 .(S .0 ). .U U .1 2((S S))
耦合对象的传函矩阵为 G(S)G G1211((SS))....G G ..1..22..2((SS)) 解耦环节的传函矩阵为 GP(S)Gቤተ መጻሕፍቲ ባይዱGP P121(1(SS))....G G ..P P..12..2(2(SS))
U U C C 1 2 ((S S)) G G P P 1 2((1 1 S S))..G G ..P P .1 .2(.2 .(2 S S ..)) U U 1 2((S S))
第一章 解耦控制系统
被控过程的耦合现象及对控制过程的影响 解耦控制系统 ※解耦控制系统设计 解耦控制中的问题 相对增益(自学)
ppt课件
1
1.1被控过程的耦合现象及对控制过程的影响 图1-1为某精馏塔温度控制系统
在石油化工生产中,使用的原料和反 应后的产物多是由若干组分组成的混合 物,常需要进行分离得到比较纯的组分 作为中间产品或最终产品。要进行蒸馏 处理。精馏塔是由精馏塔身、冷凝器和 再沸器等基本部件构成。 被控参数:塔顶温度T1和塔底温度T2, 控制变量:塔顶回流量QL和加热蒸汽流 量QS T1C:塔顶温度控制器,其输出u1控制 回流调节阀,调节塔顶回流量QL,实现 塔顶温度T1控制。 T2C:塔底温度控制器,其输出u2控制 再沸器加热蒸汽调节阀,调节加热蒸汽 量QS,实现塔底温度T2控制。

解耦控制系统PPT课件模板

解耦控制系统PPT课件模板
不当的解耦控制策略可能导致系统出 现新的稳定性问题,如振荡或发散。
解耦控制系统的未来发展方向
智能化解耦控制
多目标优化解耦控制
利用人工智能和机器学习技术,实现自适 应、自学习的解耦控制策略。
研究如何同时优化多个性能指标,实现更 全面的系统性能提升。
网络化解耦控制
鲁棒性解耦控制
针对网络化控制系统,研究如何实现有效 的解耦控制策略。
多变量系统问题
在许多实际工业过程中,系统常常存在多个输入和输出变量,这些变量之间可 能存在耦合关系,导致系统难以控制。解耦控制系统旨在解决这一问题。
解耦控制系统的定义
控制策略
解耦控制系统是一种通过某种控制策 略,使得多变量系统中的各个变量之 间尽可能减少耦合关系的控制系统。
目的
解耦控制系统的目的是提高系统的可 控制性和可观测性,使得各个输出变 量能够独立地被控制,从而更好地实 现系统的性能优化和稳定运行。
06
结论
解耦控制系统的重要性和意义
提高系统性能 解耦控制系统能够将耦合的多个 过程或子系统进行解耦,从而提 高每个子系统的性能和稳定性。
增强系统可靠性 解耦控制系统能够降低子系统之 间的耦合程度,减少系统故障的 传播和扩散,统的设计能够简化系 统结构,降低系统复杂性和控制 难度,提高系统的可维护性和可 扩展性。
详细描述
在能源领域中,解耦控制系统主要用于控制各种能源设备和系统,如风力发电、太阳能发电、火力发电等。通过 解耦控制技术,可以实现能源设备的快速响应和精确控制,提高能源的产出和利用率,降低能耗和环境污染。
04
解耦控制系统的优势与挑战
解耦控制系统的优势
提高系统性能
解耦控制系统能够将复杂系统 分解为多个独立的子系统,从

第五章6 解耦过程控制系统-12

第五章6 解耦过程控制系统-12
(1)自治原则:对于多变量控制系统,由于系统间的关联, 因此,在设计时应合适地对被控变量与操纵变量配对,使它们 的相对增益尽量接近1.从而把多变量控制系统转化为自治的单 变量控制系统。 (2)解耦原则:当控制系统中各个变量之间的关联严重时,需 要选择合适的解耦控制方法。
(3)协调跟踪原则:将控制系统 分解为若干具有自治功能的 控制系统,可以减小系统之间的关联,但并未根本解决关联问 题。因此应对各个自治的控制系统进行协调,组成协调控制系 统。
μ1 k11g11(s) k21g21(s) y1
μ1 Gc1(s) μ2 k22g22 (s)
k11g11 (s)
y1
k12g 12(s) μ2
k22g22 (s)
Gc2(s)
y1
y2
系统按单变量系统设计,调节器参数按单变量整定 方法整定。
21
(2) λij的非对角元素接近于1,对角元素为0,表示过程控制通 道选择不合适,需要更换输入/输出间的配对关系。
单 变 量 控 制 系 统
3
实际生产过程 有多个被控量 互相影响、互相 关联、互相耦合
多输入、多 输出系统 多个控制回路
一控制量变化
多被控量变化
设计系统时,必须注意工艺过 程中各个参数间的相关情况
4
解耦控制系统的系统特点:
解耦控制系统一般都是多输入多输出系统,而且输入和输出之间 的关系是复杂的耦合,一个输入量影响多个输出量,一个输出量受多 个输入量的影响。 实际被控对象不同,输入、输出之间的关系也不同。被控对象的 某个输出和某个输出具有明显的“一一对应”的“依赖”性,而其他 输出和输出 的相互关系则很弱,可以忽略。此时的多输入多输出关系 ,可以简化为多个单输入单输出的单回路控制系统,而把其他的影响 因素看成干扰。

解耦控制系统

解耦控制系统

PT
FT
u2
图 6-8 关联严重的控制系统

6.5.2. 相对增益


令某一通道在其它系统均为开环时的放大系数与该一通道在 其它系统均为闭环时的放大系数之比为 λij,称为相对增益, 则 yi u j u λ ij y yi u j 上式中分子项外的下标u表示除了uj以外,其它都保持不变, 即都为开环;分母项外的下标y表示除了yi以外,其它y都保 持不变,即其它系统都为闭环系统。
u y λ y λ
1 1 2
11 21
u λ λ
12 22
2
u1
k11
y1
k21 k12 u2 k22 y2
பைடு நூலகம்
图 6-9 双输入双输出对象静态特性框
被控变量与操纵变量间 正确匹配
串接解耦控 制
控制器的参数整 定 减少控制回路
6.5.4. 串接解耦控制

串接解耦装置D(s)的作用是使G(s)•D(s) 的积 成为对角阵,这样关联就消除了。要求 G(s)D(s)之积为对角阵,对其非零元素又有三 类方法。

对角线矩阵法 单位矩阵法 前馈补偿法
6.5.5.工业应用实例

某乙烯装置裂解炉的解耦控制。它具有四组并 联的裂解炉管,每组炉管对应于8个烧嘴。每 组有燃料油的控制阀。原料油(煤油、柴油等) 经预热至590 0C后进入裂解炉管进行裂解,生 成乙烯、丙烯,丁烯、甲烷、乙烷、丙烷…… 等。为了减少炉管结焦和提高乙烯等产品收率, 需要降低裂解炉管内的油气分压,因此须按一 定的比率加入稀释蒸汽。原料油和稀释蒸汽的 比率应该控制好。
6.5. 解耦控制系统

6.5.1. 系统的关联分析

多变量控制系统解耦的条件

多变量控制系统解耦的条件

品质管理十个误区在激烈的市场竞争中,只有靠品质才能赢得市场,要有效的达到品质管理的目标,必须由企业的管理层开始做起,那么品质管理的误区有哪些?误区之一:片面依赖于事后把关质量部门,就是单纯的质量检验部门,只有质量检验功能,而没有或弱化了质量管理体系保持功能、质量改进和完善功能。

宁愿将大量的人力、物力和精力投入到质量检验和不合格品处理,而不愿意将丝毫的资源投入到质量管理体系保持、改进和完善。

事前策划不落实,事中控制不到位,事后再追究不合格责任也不会有很好的效果。

忽视质量管理体系全面、系统控制,结果就是质量问题频发、合格率水平得不到提高、不良成本居高不下,向质量要效益也就是一句空话。

误区之二:忽视科学的措施和方法最主要的表现为:更多的依靠个人经验和喜好行事,以人为因素为主导,管理行为存在较大的主观随意性,而抛开文件化的质量管理体系,不讲究质量管理措施和方法的科学性、合理性。

与现代质量管理的科学原则相比,忽视科学的措施和方法,类似于“头痛医头、脚痛医脚”和漫无目标地将资源、精力分散到各种不知是否正确的事情上。

因此,忽视科学的措施和方法的质量管理,不得要领,自然不会有明显成效,事倍功半甚至徒劳。

误区之三:不注重质量管理体系系统的建设和完善片面强调员工个人改进而不注重质量管理体系系统的建设和完善,忽视了系统环境对个人意识和能力的影响,没有认识到两者的相辅相成的关系。

凡出现质量问题,只向员工个人追究责任,而不寻找质量管理体系的系统漏洞和缺陷。

片面要求员工提高改进个人意识和技能,而忽视创造员工提高改进意识和技能的条件,不提供培训资源、管理制度保障和激励等改进的环境。

陷于处理具体的质量问题、不合格品泥潭,只知道埋头“发现问题-处理问题-再发现问题”的无穷恶性循环,并将问题的原因归咎于员工个人素质的不足,只知追究员工的不合格责任,而忽视导致这些质量问题的管理体系系统漏洞和缺陷。

误区之四:对不良品质现象只治标不治本对不良品质现象只治标不治本,就好比治理环境污染,只清理污染物,而不去堵塞污染的源头,结果是永远忙于“污染-清理-再污染”的无尽循环。

北京信息科技大学 自动化专业 实验三 系统解耦控制

北京信息科技大学 自动化专业 实验三  系统解耦控制

实验三 系统解耦控制一、实验目的1、 掌握解耦控制的基本原理和实现方法。

2、 学习利用模拟电路实现解耦控制及实验分析。

二、实验仪器1、 TDN —AC/ACS 型自动控制系统实验箱一台2、 示波器3、 万用表三、实验原理与内容一般多输入多输出系统的矩阵不是对角阵,每一个输入量将影响所有输出量,而每一个输出量同样受到所有输入量的影响,这种系统称为耦合系统。

系统中引入适当的校正环节使传递矩阵对角化,实现某一输出量仅受某一输入量的控制,这种控制方式为解耦控制,其相应的系统称为解耦系统。

解耦系统输入量与输出量的维数必相同,传递矩阵为对角阵且非奇异。

1、 串联控制器()c G s 实现解耦。

图3-1用串联控制器实现解耦耦合系统引入控制器后的闭环传递矩阵为1()[()()()]()()p c p c s I G s G s H s G s G s -Φ=+ (3-1)左乘[()()()]p c I G s G s H s +,整理得1()()()[()()]p c G s G s s I H s s -=Φ-Φ (3-2)式中()s Φ为所希望的对角阵,阵中各元素与性能指标要求有关,在()H s 为对角阵的条件下,1[()()]I H s s --Φ仍为对角阵, 11()()()[()()]c p G s G s s I H s s --=Φ-Φ (3-3)设计串联控制器()c G s 可使系统解耦。

2、 用前馈补偿器实现解耦。

解耦系统如图3-2,图3-2 用前馈控制器实现解耦解耦控制器的作用是对输入进行适当变换实现解耦。

解耦系统的闭环传递函数1()[()]()()p p d s I G s G s G s -Φ=+ (3-4) 式中()s Φ为所希望的闭环对角阵,经变换得前馈控制器传递矩阵1()()[()]()d p p G s G s I G s s -=+Φ (3-5)3、 实验题目双输入双输出单位反馈耦合系统结构图如图。

第七章 解耦控制

第七章 解耦控制

(yi j ) | ur (yi j ) | yr
越大, pij与qij相差越大, 说明别的
回路的闭合与否对yi和µ控制通道影响越大, 即µ对yi的控制 j j 作用越弱。
20
相对增益与耦合程度
◆当通道的相对增益接近于1, 例如0.8<λij <1.2, 则表明其它通 道对该通道的关联作用很小; 无需进行解耦系统设计。 ◆当相对增益小于零或接近于零时, 说明使用本通道调节器不 能得到良好的控制效果. 或者说, 这个通道的变量选配不适当, 应重新选择. ◆当相对增益0.3<λ<0.7或λ>1.5时, 则表明系统中存在着非 常严重的耦合. 需要考虑进行解耦设计或采用多变量控制系统 设计方法.
PC QC
h t/40 - 1 例3. P152例7-1 μ1 p0 p1 h p p2 0 p1 - p2 p1 p0 p2
p1
PT
h
DT
μ2 p1 - p2 p0 p2 p0 p1 p0 p2
p0
p2
μ1
μ2
14
2. 矩阵法 由第一放大系数经过计算得到第二放大系数从而得到相对增 益矩阵
y2为定值, µ 2是变化的
y1 第一放大系数 p11 u1
K11
u2
y2 K 21u1 y1 K11u1 K12 K 22
第二放大系数
相对增益
11
1 K12 K 21 1 K11 K 22
12
相对增益ij的计算,直接根据定义得
p11 K11 K 22 q11 K11 K 22 K12 K 21 p12 K12 K 21 12 q12 K12 K 21 K11 K 22 p K12 K 21 21 21 q21 K12 K 21 K11 K 22 p22 K11 K 22 22 q22 K11 K 22 K12 K 21
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
系统的正常工作,使之不能投入运行。
图9-1所示是化工生产中的精馏塔温度控制方案。 ul的改变不仅仅影响y1,同时还会影响y2;同样 地,u2的改变不仅仅影响y2,同时还会影响y1。因此, 这两个控制回路之间存在着相互关联、相互耦合。这 种相关与耦合关系如图9-2所示。 耦合是过程控制系统普遍存在的一种现象。耦合 结构的复杂程度主要取决于实际的被控对象以及对控 制系统的品质要求。因此如果对工艺生产不了解,那 么设计的控制方案不可能是完善的和有效的。
变量都不变的情况下,找出各通道的开环增益,记作 矩阵Q。它的元素qij的静态值称为Uj与Yi通道的第二放 大系数。它是指利用闭合回路固定其它被控变量时, Uj与Yi的开环增益。qij可以表为
qij
Yi U j
Yk const
(9-7)
pij与qij之比定义为相对增益或相对放大系数ij,ij
可表示为
前面所讨论的控制系统中,假设过程只有一个被
控变量(即输出量),在影响这个被控变量的诸多因 素中,仅选择一个控制变量(即输入量),而把其它 因素都看成扰动,这样的系统就是所谓的单输入单输 出系统。
但实际的工业过程是复杂的,往往有多个过程参
数需要进行控制,影响这些参数的控制变量也不只有 一个,这样的系统称之为多输入多输出系统。当多输 入多输出系统中输入和输出之间相互影响较强时,不 能简单地化为多个单输入单输出系统,此时必须考虑 到变量间的耦合,以便对系统采取相应的解耦措施后 再实施有效的控制。
确定各变量之间的耦合程度是多变量耦合控制系 统设计的关键问题。
常用的耦合程度分析方法有两种:直接法和相对 增益法。
相对增益分析法将在后面详细介绍,下面简要介 绍直接法。
例9-1 试用直接法分析图9-5所示双变量耦合系统的 耦合程度。
解 用直接法分析耦合程度时,一般采用静态耦合结
构。所谓静态耦合是指系统处在稳态时的一种耦合结 构,与图9-5动态耦合系统对应的静态耦合结构如图96所示。
的被控变量Yi的影响程度。而且这种影响程度是相对于过程中 其他控制变量对该被控变量Yi而言的。
对于一个耦合系统,因为每一个控制变量不只影响一 个被控变量,所以只计算在所有其他控制变量都固定 不变的情况下的开环增益是不够的。因此,特定的被 控变量Yi对选定的控制变量的响应还取决于其他控制 变量处于何种状况。
它是指控制变量Uj改变了一个Uj时,其它控制变量 Uk (kj)均不变的情况下,Uj与Yi之间通道的开环增益。 显然它就是除Uj到Yi通道以外,其它通道全部断开时 所得到的Uj到Yi通道的静态增益,pij可表示为
pij
Yi U j
Uk const
(9-6)
然后,在所有其它回路均闭合,即保持其它被控
Y1 p11U1 p12U2 p1nUn
Y2
p21U1
p21U2
p2nUn
Yn pn1U1 pn1U2 pnnUn
Y = PU
p11 p12



P
=
p21
p22
p1n
p2n
pn1 pn 2 pnn
9.2 解耦控制系统的分析
9.2.1 耦合程度的分析
9.1 解耦控制的基本概念
9.1. l 控制回路间的耦合
在一个生产过程中,被控变量和控制变量往往不 止一对,只有设置若干个控制回路,才能对生产过程 中的多个被控变量进行准确、稳定地调节。
在这种情况下,多个控制回路之间就有可能产生 某种程度的相互关联、相互耦合和相互影响。而且这 些控制回路之间的相互耦合还将直接妨碍各被控变量 和控制变量之间的独立控制作用,有时甚至会破坏各
ij
pij qij
U Yij
Ukconst
YiБайду номын сангаасUj
Ykconst
(9-8)
由相对增益ij元素构成的矩阵称为相对增益矩阵。

11 12 1n
Λ
21
22
2n
(9-9)
n1
n2
nn
如果在上述两种情况下,开环增益没有变化,即相对增益
ij=l,这就表明由Yi和Uj组成的控制回路与其它回路之间没有关
9.1.2 被控对象的典型耦合结构
对于具有相同数目的输入量和输出量的被控对象,典型的 耦合结构可分为P规范耦合和V规范耦合。
图9-3为P规范耦合对象。
它有n个输入和n个输出,并且每一个输出变量
Yi(i=1,2,3,…,n)都受到所有输入变量Ui(i=1,2,3,…,n)的影响。 如果用pij(s)表示第j个输入量Uj与第 i个输出量Yi之间的传递函数, 则P规范耦合对象的数学描述式如下:
对于一个多变量系统,假设 Y是包含系统所有被
控变量Yi的列向量;U是包含所有控制变量Uj的列向量。 为了衡量系统的关联性质首先在所有其它回路均为开
环,即所有其它控制变量都保持不变的情况下,得到
开环增益矩阵P 。这里记作
Y= P U
(9-5)
其中,矩阵P的元素pij的静态值称为Uj到Yi通道的第 一放大系数。
由图9-6可得 U U1 2 R R12 Y Y12; Y Y1 2 5U 3U 11 U 42U2
化简后得 Y1 1143R171R2 0.928R160.142R92
Y2
5 28R1
6 7R2
0.178R160.857R21
由上两式可知,Y1 主要取决于R1,但也和R2有关。而 Y2主要取决于R2,但也和R1有关。方程式中的系数则代表每 一个被控变量与每一个控制变量之间的耦合程度。系数越大,
联。这是因为无论其它回路闭合与否都不影响Uj到Yi通道的开 环增益。
如果当其它控制变量都保持不变时Yi不受Uj的影响,那么ij为
零,因而就不能用Uj来控制Yi。
如果存在某种关联,则Uj的改变将不但影响Yi,而且还影响 其它被控变量Yk (ki)。因此,在确定第二放大系数时,使其它 回路闭环,被控变量Yk保持不变,则其余的控制变量Uk (kj)必
则耦合程度越强;反之,系数越小,则耦合程度越弱。
9.2.2 相对增益分析法
1.相对增益矩阵的定义
相对增益可以:
➢ 确定过程中每个被控变量相对每个控制变量的响应特性,并 以此为依据去构成控制系统。
➢ 相对增益还可以指出过程关联的程度和类型,以及对回路控 制性能的影响。 相对增益可以评价一个预先选定的控制变量Uj对一个特定
相关文档
最新文档