最优化算法实验报告

合集下载

最优化实验报告

最优化实验报告

最优化实验报告《最优化实验报告:优化方法在生产过程中的应用》摘要:本实验报告通过对生产过程中的优化方法进行研究和实验,探讨了优化方法在生产过程中的应用。

通过实验结果分析,发现优化方法在生产过程中能够有效提高生产效率和降低成本,对企业的生产经营具有重要的意义。

1. 研究背景随着全球经济的发展和竞争的加剧,企业在生产过程中需要不断提高效率、降低成本,以保持竞争优势。

优化方法作为一种有效的管理工具,在生产过程中的应用备受关注。

因此,本实验旨在研究和探讨优化方法在生产过程中的应用效果。

2. 实验设计本实验选取了某工厂的生产线作为研究对象,通过对生产过程的观察和数据收集,确定了生产过程中存在的问题和瓶颈。

然后,针对这些问题和瓶颈,设计了不同的优化方法,并进行了实验验证。

3. 实验方法在实验中,我们采用了多种优化方法,包括线性规划、遗传算法、模拟退火算法等。

通过对比不同优化方法的效果,找到了最适合该生产过程的优化方法。

4. 实验结果实验结果表明,优化方法在生产过程中能够显著提高生产效率和降低成本。

通过优化方法的应用,生产线的生产能力得到了提升,生产成本也得到了有效控制。

这些结果为企业的生产经营带来了明显的好处。

5. 结论通过本次实验的研究和实验,我们得出了结论:优化方法在生产过程中的应用能够有效提高生产效率和降低成本,对企业的生产经营具有重要的意义。

因此,企业应该重视优化方法的应用,不断探索和创新,以提高自身的竞争力和持续发展能力。

综上所述,本实验报告通过对生产过程中的优化方法进行研究和实验,得出了优化方法在生产过程中的应用效果显著的结论,为企业的生产经营提供了重要的参考。

希望本实验报告能够对相关领域的研究和实践提供一定的借鉴和启发。

最优化算法实验2-0.618法与斐波那契法

最优化算法实验2-0.618法与斐波那契法

0.618法(斐波那契法)的Matlab 实现实验目的:1、通过本次实验了解线性搜索,加深对试探法的理解2、根据0.618法(斐波那契法)的算法步骤编写相应的Matlab 程序,并利用matlab 程序计算求解实验要求:1、学习MATLAB 利用0.618法(斐波那契法)解决最优化问题的程序设计方法。

2、对问题进行编程和解决问题。

3、按照格式规范,撰写计算机实践报告。

实验内容:1. 0.618法的基本思想:通过取代试探点和进行函数值的比较,使包含极小点的搜索区间不断缩短,当区间长度缩短到一定程度时,区间上各点的函数值均接近极小值点的近似。

使用前提:要求所考虑区间上的目标函数是单峰函数,即在这个区间上只有一个局部极小点的函数。

2.算法步骤:步 1.选取初始数据。

确定初始搜索区间[]11,b a 和精确要求t>0,设置初始试探点11,μλ,)(618.0)(382.011111111a b a a b a -+=-+=μλ计算。

,令和1)()(11=k μϕλϕ 步 2.比较目标函数值。

若)(1λϕ>)(1μϕ,转步3;否则转步4。

步 3.若t b k k ≤-λ,则停止计算,输出k μ;否则,令:)(618.0:),(:)(,:,:,:111111k k k k k k k k k k k k a b a b b a -+=====++++++μμϕλϕμλλ计算)(11+k μϕ,转步2。

步4.若t a k k ≤-μ,则停止计算,输出k λ;否则,令)(382.0:),(:)(,:,:,:111111k k k k k k k k k k k k a b a b a a -+=====++++++λλϕμϕλμμ计算)(11+k λϕ,转步2。

3.编写0.618法Matlab 程序求解最优化问题y=cos3x 在区间[1,2]上的最优值.4.参照0.618法算法为例编写菲波那切法Matlab 程序.。

最优化方法实验报告

最优化方法实验报告

最优化方法实验报告一、实验目的:本实验旨在通过使用最优化方法来解决实际问题,探究最优化方法在不同场景下的适用性和效果,并对比不同最优化方法的优缺点。

二、实验原理:三、实验过程:1.准备工作确定要解决的问题,并确定问题的数学模型。

例如,可以选择一个具有约束条件的优化问题,如线性规划问题。

2.实验步骤(1)选择最优化方法根据实际问题的特点选择适合的最优化方法。

例如,如果问题具有多个局部最优解,可以选择遗传算法来避免陷入局部最优。

(2)实现算法根据选择的最优化方法,编写相应的算法实现代码。

可以使用编程语言如Python来实现算法。

(3)进行实验使用实际数据或人工生成的数据来测试算法的效果。

根据实验结果评估算法的性能,并对比不同算法的效果。

3.结果分析通过对比不同算法的效果,分析各种方法的优缺点,评估其适用性和可靠性。

四、实验结果与讨论:在本次实验中,我们选择了一个线性规划问题作为例子,使用了遗传算法和优化算法来求解。

具体问题为:有两种产品A和B,产品A的利润为5元,产品B的利润为10元。

每天可以生产的产品总数为50。

产品A的生产量不超过30,产品B的生产量不超过20。

求解在满足以上约束条件下,如何安排生产计划使得总利润最大。

我们首先使用了优化算法来求解。

通过编写代码,使用优化算法来最大化总利润。

结果发现,在满足约束条件的情况下,总利润最大为350元。

然后,我们使用了遗传算法来求解。

遗传算法是一种模仿生物进化过程的算法,通过选择、交叉和变异等操作来优化解。

在实验中,我们设置了一组初始解作为遗传算法的种群,并通过不断迭代优化解。

结果发现,在相同的迭代次数下,遗传算法得到的结果比优化算法更优,总利润最大为400元。

通过对比两种算法的结果,我们发现遗传算法相对于优化算法在该问题上具有更好的性能。

遗传算法通过不断迭代寻找更好的解,能够更好地避免陷入局部最优。

五、实验结论:本实验通过使用最优化方法来解决一个实际问题,对比了优化算法和遗传算法的效果。

最优化方法实验报告(2)

最优化方法实验报告(2)

最优化方法实验报告Numerical Linear Algebra And ItsApplications学生所在学院:理学院学生所在班级:计算数学10-1学生姓名:甘纯指导教师:单锐教务处2013年5月实验三实验名称:无约束最优化方法的MATLAB实现实验时间: 2013年05月10日星期三实验成绩:一、实验目的:通过本次实验的学习,进一步熟悉掌握使用MATLAB软件,并能利用该软件进行无约束最优化方法的计算。

二、实验背景:(一)最速下降法1、算法原理最速下降法的搜索方向是目标函数的负梯度方向,最速下降法从目标函数的负梯度方向一直前进,直到到达目标函数的最低点。

2、算法步骤用最速下降法求无约束问题n R()min的算法步骤如下:xxf,a )给定初始点)0(x ,精度0>ε,并令k=0;b )计算搜索方向)()()(k k x f v -∇=,其中)()(k x f ∇表示函数)(x f 在点)(k x 处的梯度;c )若ε≤)(k v ,则停止计算;否则,从)(k x 出发,沿)(k v 进行一维搜索,即求k λ,使得)(min )()()(0)()(k k k k v x f v x f λλλ+=+≥; d )令1,)()()1(+=+=+k k v x x k k k k λ,转b )。

(二)牛顿法1、算法原理牛顿法是基于多元函数的泰勒展开而来的,它将)()]([-)(1)(2k k x f x f ∇∇-作为搜索方向,因此它的迭代公式可直接写出来:)()]([)(1)(2)()(k k k k x f x f x x ∇∇-=-2、算法步骤用牛顿法求无约束问题n R x x f ∈),(min 的算法步骤如下:a )给定初始点)0(x ,精度0>ε,并令k=0;b )若ε≤∇)()(k x f ,停止,极小点为)(k x ,否则转c );c )计算)()]([,)]([)(1)(2)(1)(2k k k k x f x f p x f ∇∇-=∇--令;d )令1,)()()1(+=+=+k k p x x k k k ,转b )。

最优化算法实验报告

最优化算法实验报告

基于Matlab的共轭梯度算法指导老师:姓名:学号:班级:日期:基于Matlab的共轭梯度算法一、实验目的及要求(1)熟悉使用共轭梯度法求解无约束非线性规划问题的原理;(2)在掌握原理的基础上熟练运用此方法解决问题(3)学会利用计算机语言编写程序来辅助解决数学问题;(4)解决问题的同时分析问题,力求达到理论与实践的统一;(5)编写规范的实验报告.实验内容二、实验原理1.基本思想:把共轭性与最速下降方法相结合,利用已知点处的梯度构造一组共轭方向,并沿这组方向进行搜索,求出目标函数的极小点。

根据共轭方向的基本性质,这种方法具有二次终止性。

在各种优化算法中,共轭梯度法是非常重要的一种。

其优点是所需存储量小,具有步收敛性,稳定性高,而且不需要任何外来参数。

2.程序流图:三、实验代码通过查阅相关资料,编写一个基于Matlab的共轭梯度算法,具体代码如下:function f=grad_2d(x0,t)%用共轭梯度法求已知函数f(x1,x2)=x1^2+2*x2^2-4*x1-2*x1*x2的极值点%已知初始点坐标:x0%已知收敛精度:t%求得已知函数的极值:fx=x0;syms xi yi a; %定义自变量,步长为符号变量f=xi^2+2*yi^2-4*yi-2*xi*yi; %创建符号表达式ffx=diff(f,xi); %求表达式f对xi的一阶求导fy=diff(f,yi); %求表达式f对yi的一阶求导fx=subs(fx,{xi,yi},x0); %代入初始点坐标计算对xi的一阶求导实值fy=subs(fy,{xi,yi},x0); %代入初始点坐标计算对yi的一阶求导实值fi=[fx,fy]; %初始点梯度向量count=0; %搜索次数初始为0while double(sqrt(fx^2+fy^2))>t %搜索精度不满足已知条件s=-fi; %第一次搜索的方向为负梯度方向if count<=0s=-fi;elses=s1;endx=x+a*s; %进行一次搜索后的点坐标f=subs(f,{xi,yi},x); %构造一元搜索的一元函数φ(a)f1=diff(f); %对函数φ(a)进行求导f1=solve(f1); %得到最佳步长aif f1~=0ai=double(f1); %强制转换数据类型为双精度数值elsebreak %若a=0,则直接跳出循环,此点即为极值点endx=subs(x,a,ai); %得到一次搜索后的点坐标值f=xi^2+2*yi^2-4*xi-2*xi*yi;fxi=diff(f,xi);fyi=diff(f,yi);fxi=subs(fxi,{xi,yi},x);fyi=subs(fyi,{xi,yi},x);fii=[fxi,fyi]; %下一点梯度向量d=(fxi^2+fyi^2)/(fx^2+fy^2);s1=-fii+d*s; %下一点搜索的方向向量count=count+1; %搜索次数加1fx=fxi;fy=fyi; %搜索后终点坐标变为下一次搜索的始点坐标endx,f=subs(f,{xi,yi},x),count %输出极值点,极小值以及搜索次数end四、实验结果在命令窗口输入:f=grad_2d([1,1],0.0000001)输出结果如下:x =4.0000 2.0000f =-8.0000count = 75f =-8.0000当在命令窗口输入如下命令时:f=grad_2d([2,1],0.0000001)x =4.0000 2.0000f =-8.0000count =22f =-8.0000当在命令窗口输入如下命令时:f=grad_2d([2,1],0.001)x = 3.9996 1.9999f =-8.0000count =12f =-8.0000由以上结果可知:(1.)初始点不同搜索次数不同(2.)无论初始点为多少,精度相同时最终结果极值点都是(4.0000,2.0000)(3.)当初始点相同时,若精度不一样搜索次数和最终结果会有差异但大致相同。

最优化(实验一)

最优化(实验一)

桂林电子科技大学数学与计算科学学院实验报告最优解为:x=(2,0,1,0); 最优函数值为:-8。

()()123123123max23.22222320,1,2if x x x xs t x x xx x xx i⎧=--⎪-+≤⎪⎨-+-≤-⎪⎪≥=⎩Lingo程序与运行结果:最优解为:x=(1,0,0);函数最优解为:2。

()()1231212312max 564.225353415100,1,2,3i f x x x x s t x x x x x x x x i ⎧=++⎪+≤⎪⎪++≤⎨⎪+≤⎪⎪≥=⎩Lingo 程序与运行结果为:实例 1 某工厂生产甲、乙两种产品。

已知生产甲种产品t 1需耗A 种矿石t 10、B 种矿石t 5、煤t 4;生产乙种产品t 1需耗A 种矿石t 4、B 种矿石t 4、煤t 9。

每t 1甲种产品的利润是600元,每t 1乙种产品的利润是1000元。

工厂在生产这两种产品的计划中要求消耗A 种矿石不超过t 300、B 种矿石不超过t 200、煤不超过t 360。

甲、乙两种产品应各生产多少,能使利润总额达到最大?化为数学线性规划模型为:()12121212max 6001000.10*4*3005*4*2004*9*3600,1,2i f x x x s t x x x x x x x i ⎧=+⎪+<=⎪⎪+<=⎨⎪+<=⎪⎪≥=⎩Lingo 程序与运行结果为:甲、乙两种产品应各生产12.41379t 、34.48276t ,能使利润总额达到最大,最大利润为:41931.03。

实例2 设有A 1,A 2两个香蕉基地,产量分别为60吨和80吨,联合供应B 1,B 2,B 3三个销地的销售量经预测分别为50吨、50吨和40吨。

两个产地到三个销地的单位运价如下表所示:表1(单位运费:元/吨)问每个产地向每个销地各发货多少,才能使总的运费最少?化为数学线性规划模型:()()111213212223111213212223112112221323min 600300400400700300.608035050400,1,2,1,2,3ij f x x x x x x x s t x x x x x x x x x x x x x i j ⎧=+++++⎪++=⎪⎪++=⎪⎪+=⎨⎪+=⎪⎪+=⎪≥==⎪⎩Lingo 程序与运行结果为:A1到B2发货50t ,A1到B3发货10t ,A2到B1发货50t ,A2到B3发货30t ,才能使总的运费最少,最少值为48000。

最优化方法实验

最优化方法实验

《最优化方法》实验报告实验序号:01 实验项目名称:线性规划及MATLAB应用《最优化方法》实验报告实验序号:02 实验项目名称:0.618黄金分割法的应用结果分析:根据以上结果可知,在区间[0,3]上,函数g(x)=x^3-2*x+1的最小值点在x=0.9271处,此时最小值为0。

第二题:P50 例题3.1程序:function [t,f]=golden3(a,b) %黄金分割函数的m文件t2=a+0.382*(b-a);f2=2*(t2)^2-(t2)-1;t1=a+0.618*(b-a); %按照黄金分割点赋值,更准确可直接算f1=2*(t1)^2-(t1)-1;while abs(t1-t2)>0.16; %判定是否满足精度if f1<f2a=t2;t2=t1;f2=f1;t1=a+0.618*(b-a);f1=2*(t1)^2-(t1)-1;elseb=t1;t1=t2;f1=f2;t2=a+0.382*(b-a);f2=2*(t2)^2-(t2)-1;endendt=(t1+t2)/2; %满足条件取区间中间值输出第四题:P64 T3程序:function [t,d]=newtow2(t0)t0=2.5;t=t0-(4*(t0)^3-12*(t0)^2-12*(t0)-16)/(12*(t0)^2-24*(t0)-12);k=1;T(1)=t;while abs(t-t0)>0.000005t0=t;t=t0-(4*(t0)^3-12*(t0)^2-12*(t0)-16)/(12*(t0)^2-24*(t0)-12); k=k+1;T(k)=t;endt1=t0;d=(t1)^4-4*(t1)^3-6*(t1)^2-16*(t1)+4;kTend运行结果:当x(0)=2.5当x(0)=3四.实验小结:1.通过这次实验,加深了对0.618法的理解。

2.在学习0.618法的过程中,又巩固了倒数、求解函数值等相关知识。

最优化算法实验报告(附Matlab程序)

最优化算法实验报告(附Matlab程序)

最优化方法(Matlab)实验报告—— Fibonacci 法一、实验目的:用MATLAB 程序实现一维搜索中用Fibonacc 法求解一元单峰函数的极小值问题。

二、实验原理:(一)、构造Fibonacci 数列:设数列{}k F ,满足条件:1、011F F ==2、11k k k F F F +-=+则称数列{}k F 为Fibonacci 数列。

(二)、迭代过程:首先由下面的迭代公式确定出迭代点:111(),1,...,1(),1,...,1n k k k k k n k n k k k k k n k F a b a k n F Fu a b a k n F λ---+--+=+-=-=+-=-易验证,用上述迭代公式进行迭代时,第k 次迭代的区间长度缩短比率恰好为1n kn k F F --+。

故可设迭代次数为n ,因此有 11121211221111223231()()......()()n n n n n n n n nF F F F F F b a b a b a b a b a F F F F F F F ------=-=⨯-==⨯-=- 若设精度为L ,则有第n 次迭代得区间长度 111()n n nb a Lb a LF -≤-≤ ,即就是111()nb a L F -≤,由此便可确定出迭代次数n 。

假设第k 次迭代时已确定出区间 [,]k k a b 以及试探点,[,]k k k k u a b λ∈并且k k u λ<。

计算试探点处的函数值,有以下两种可能: (1) 若()()k k f f u λ>,则令111111111,,()()()k k k kk k k k n k k k k k n ka b b f f F a b a F λλμλμμ++++--++++-=====+-计算 1()k f μ+的值。

(2)()()k k f f u λ≤,则令111121111,,()()()k k k kk k k k n k k k k k n ka ab f f F a b a F μμλμλλ++++--++++-=====+-计算1()k f λ+ 的值。

最优化算法实验报告模板

最优化算法实验报告模板

注意事项
(本页交实验报告时不打印!)
要求:实验报告字体为小四号宋体,单倍行距!!!
评分标准:
1.内容步骤:过程结果是否完整,对结果要有必要分析和结论,每
个结果要指出相应源程序的文件名!对于应用的数值方法要有必要的算法描述和流程图(实验报告中不要附程序代码!)。

2.练习解答:对练习思考题的解答是否完整、合理。

3.难点分析:是否实事求是的分析实验难点及解决方案。

4.算法描述及算法流程图:书写规范,准确。

5.程序代码:书写是否规范,是否有精确恰当的注释等。

6.发现抄袭的雷同实验报告,一律以零分计!!!
注意
机房内不允许进行与本课程无关的活动!!!
最优化算法课程实验报告实验名称
1。

高校优化算法实验报告

高校优化算法实验报告

一、实验背景与目的随着科学技术的不断发展,优化算法在各个领域中的应用越来越广泛。

为了提高算法的效率和解的质量,本实验旨在让学生深入了解优化算法的基本原理,并通过实际操作掌握算法的设计与实现。

通过本次实验,学生能够:1. 理解优化算法的基本概念和分类;2. 掌握常见优化算法的原理和实现方法;3. 能够运用优化算法解决实际问题;4. 培养学生的创新思维和动手能力。

二、实验内容与步骤本次实验选取了以下三种优化算法进行实践:遗传算法、模拟退火算法和粒子群优化算法。

1. 遗传算法(1)算法原理遗传算法是一种模拟自然界生物进化过程的优化算法。

它通过模拟自然选择、交叉和变异等过程,不断优化解的质量。

(2)实现步骤① 定义问题参数:包括染色体编码、种群规模、交叉概率、变异概率等。

② 初始化种群:随机生成一定数量的染色体。

③ 适应度评估:计算每个染色体的适应度值。

④ 选择:根据适应度值选择优秀染色体。

⑤ 交叉:将选中的染色体进行交叉操作,生成新的后代。

⑥ 变异:对后代进行变异操作,增加种群的多样性。

⑦ 更新种群:将新后代替换部分旧染色体。

⑧ 重复步骤③至⑦,直到满足终止条件。

2. 模拟退火算法(1)算法原理模拟退火算法是一种基于物理退火过程的优化算法。

它通过模拟固体在高温下的退火过程,使系统逐渐达到最低能量状态。

(2)实现步骤① 初始化参数:包括初始温度、冷却速率、终止条件等。

② 随机生成初始解。

③ 计算当前解的适应度值。

④ 随机生成一个新解。

⑤ 计算新解的适应度值。

⑥ 按照一定概率接受新解。

⑦ 降温:降低温度。

⑧ 重复步骤③至⑥,直到满足终止条件。

3. 粒子群优化算法(1)算法原理粒子群优化算法是一种基于群体智能的优化算法。

它通过模拟鸟群或鱼群的社会行为,寻找问题的最优解。

(2)实现步骤① 初始化参数:包括粒子数量、惯性权重、个体学习因子、全局学习因子等。

② 初始化粒子位置和速度。

③ 计算每个粒子的适应度值。

④ 更新粒子的个体最优位置和全局最优位置。

最优化方法实验报告(1)

最优化方法实验报告(1)

最优化方法实验报告(1)最优化方法实验报告Numerical Linear Algebra And Its Applications学生所在学院:理学院学生所在班级:计算数学10-1学生姓名:甘纯指导教师:单锐教务处2013年5月实验一实验名称:熟悉matlab基本功能实验时间: 2013年05月10日星期三实验成绩:一、实验目的:在本次实验中,通过亲临使用MATLAB,对该软件做一全面了解并掌握重点内容。

二、实验内容:1. 全面了解MATLAB系统2. 实验常用工具的具体操作和功能实验二实验名称:一维搜索方法的MATLAB实现实验时间: 2013年05月10日星期三实验成绩:一、实验目的:通过上机利用Matlab数学软件进行一维搜索,并学会对具体问题进行分析。

并且熟悉Matlab软件的实用方法,并且做到学习与使用并存,增加学习的实际动手性,不再让学习局限于书本和纸上,而是利用计算机学习来增加我们的学习兴趣。

二、实验背景:(一)0.618法(黄金分割法),它是一种基于区间收缩的极小点搜索算法,当用进退法确定搜索区间后,我们只知道极小点包含于搜索区间内,但是具体哪个点,无法得知。

1、算法原理黄金分割法的思想很直接,既然极小点包含于搜索区间内,那么可以不断的缩小搜索区间,就可以使搜索区间的端点逼近到极小点。

2、算法步骤用黄金分割法求无约束问题min (),f x x R ∈的基本步骤如下:(1)选定初始区间11[,]a b 及精度0ε>,计算试探点:11110.382*()a b a λ=+-11110.618*()a b a μ=+-。

(2)若k k b a ε-<,则停止计算。

否则当()()k k f f λμ>时转步骤(3)。

当()()k k f f λμ≤转步骤(4)。

(3)置11111110.382*()k kk k k k k k k k a b b a b a λλμμ+++++++=??=??=??=+-?转步骤(5)(4)置11111110.382*()k k k k k k k k k k a a b a b a μμλλ+++++++=??=??=??=+-?转步骤(5)(5)令1k k =+,转步骤(2)。

最优化实验报告

最优化实验报告

最优化实验报告引言最优化问题是在给定一组约束条件下寻找使目标函数达到最优值的变量值的过程。

在现实世界中,最优化问题广泛应用于各个领域,例如经济学、工程学和计算机科学等。

本实验报告旨在介绍最优化实验的一般步骤,并通过一个具体例子来说明。

实验步骤步骤一:明确问题在开始最优化实验之前,首先要明确问题。

明确问题包括确定目标函数和约束条件。

目标函数是需要优化的函数,约束条件是对变量的限制。

步骤二:选择优化算法根据问题的特点和要求,选择适当的优化算法。

常见的优化算法包括梯度下降法、遗传算法和模拟退火算法等。

选择合适的算法可以提高最优化问题的求解效率和精度。

步骤三:建立数学模型在进行最优化算法的实现之前,需要将问题转化为数学模型。

数学模型描述了目标函数和约束条件之间的关系。

建立数学模型可以帮助我们更好地理解问题,并为后续的实验提供准确的求解方法。

步骤四:实现算法根据选择的优化算法和建立的数学模型,实现相应的算法。

使用编程语言编写代码,根据数学模型和算法的要求进行计算和优化。

步骤五:分析结果在完成算法的实现后,需要分析优化结果。

分析结果包括计算目标函数的最优值和最优解,并对结果进行可视化展示。

通过分析结果,可以评估算法的性能和有效性。

步骤六:优化实验根据分析结果,对实验进行优化。

优化实验可以包括调整算法的参数、改进数学模型和修改约束条件等。

通过多次优化实验,可以逐步提高算法的性能和求解效果。

实例分析我们以一个简单的线性规划问题为例来说明最优化实验的步骤。

假设我们有两种产品A和B,每个产品的利润分别为3和5。

产品A需要2个单位的资源1和3个单位的资源2,产品B需要1个单位的资源1和2个单位的资源2。

现在我们需要决定生产多少个产品A和B,使得总利润最大,同时满足资源的限制条件。

步骤一:明确问题目标函数:maximize3A+5B约束条件:2A+B≤6,3A+2B≤12,A,B≥0步骤二:选择优化算法在这个例子中,我们选择线性规划算法来解决最优化问题。

最优化实验报告(单纯形法的matlab程序,lingo程序)

最优化实验报告(单纯形法的matlab程序,lingo程序)

最优化实验报告(单纯形法的matlab程序,lingo程序)实验一:线性规划单纯形算法一、实验目的通过实验熟悉单纯形法的原理,掌握Matlab 循环语句的应用,提高编程的能力和技巧。

二、实验用仪器设备、器材或软件环境Windows Xp 操作系统 ,Matlab6.5,计算机三、算法对于一般的标准形式线性规划问题(求极小问题),首先给定一个初始基本可行解。

设初始基为B,然后执行如下步骤:(1).解B Bx b =,求得1Bx B b -=,0,N B B x f c x ==令计算目标函数值 1(1,2,...,)i m B bi -=i 以b 记的第个分量(2).计算单纯形乘子w, B wB C =,得到1B wC B -=,对于非基变量,计算判别数1i i i B i i z c c B p c σ-=-=-,令 max{}k i i i Rz c σ∈=-,R 为非基变量集合若判别数0k σ≤ ,则得到一个最优基本可行解,运算结束;否则,转到下一步(3).解k k By p =,得到1k k y B p -=;若0k y ≤,即k y 的每个分量均非正数,则停止计算,问题不存在有限最优解,否则,进行步骤(4). (4).确定下标r,使{}min ,0t rrktktk b b tk y y t y y >=>且r B x 为离基变量。

k x 为进基变量,用k p 替换r B p ,得到新的基矩阵B ,返回步骤(1)。

对于极大化问题,可以给出完全类似的步骤,只是确定进基变量的准则不同。

对于极大化问题,应令min{}k k j j z c z c -=-四、计算框图是否是否开始初始可行解B令1,0,BN B B x B b b x f c x -====计算单纯形乘子1B w c B -=,计算判别数,i j j wp c j R σ=-∈(非基变量)令max{,}kj j R σσ=∈0?k σ≤得到最优解解方程kk By p =,得到1k k y B p -=。

最优化方法实验报告

最优化方法实验报告

最优化方法实验报告optimization method Experiment Report学生所在学院:理学院学生所在班级:信息1学生姓名:教务处20014年5 月最优化方法实验报告书说明:1.下面程序在MATLAB R2012a 中均能正常运行。

2.程序之间有关联。

实验一熟悉MATLAB基本功能(2学时)实验的目的和要求:在本次实验中,通过亲临使用MATLAB,对该软件做一全面了解并掌握重点内容。

实验内容:1、全面了解MATLAB系统2、实验常用工具的具体操作和功能学习建议:本次实验在全面了解软件系统基础之上,学习和熟悉一些MATLAB的基础用途,重点掌握优化工具箱函数选用的内容。

重点和难点:优化工具箱函数选用。

利用Matlab的优化工具箱,可以求解线性规划、非线性规划和多目标规划问题。

具体而言,包括线性、非线性最小化,最大最小化,二次规划,半无限问题,线性、非线性方程(组)的求解,线性、非线性的最小二乘问题。

另外,该工具箱还提供了线性、非线性最小化,方程求解,曲线拟合,二次规划等问题中大型课题的求解方法,为优化方法在工程中的实际5.大型方法的演示函数下面以我们最常用的线性规划模型求解函数linprog作为典型对优化工具箱进行简单的介绍。

linprog函数功能:求解线性规划问题。

在命令窗口,键入doc linprog,得到下图(该图为帮助窗口)数学模型:其中f,x,b,beq,lb和ub为向量,A和Aeq 为矩阵。

语法:x = linprog(f,A,b,Aeq,beq)x = linprog(f,A,b,Aeq,beq,lb,ub)x = linprog(f,A,b,Aeq,beq,lb,ub,x0)x = linprog(f,A,b,Aeq,beq,lb,ub,x0,options)[x,fval] = linprog(...)[x,fval,exitflag] = linprog(...)[x,fval,exitflag,output] = linprog(...)[x,fval,exitflag,output,lambda] = linprog(...)描述:x = linprog(f,A,b)求解问题 min f'*x,约束条件为A*x <= b。

最优化方法课程实验报告

最优化方法课程实验报告

项目一 一维搜索算法(一)[实验目的]编写加步探索法、对分法、Newton 法的程序。

[实验准备]1.掌握一维收搜索中搜索区间的加步探索法的思想及迭代步骤; 2.掌握对分法的思想及迭代步骤; 3.掌握Newton 法的思想及迭代步骤。

[实验内容及步骤] 编程解决以下问题:1.用加步探索法确定一维最优化问题的搜索区间,要求选取.加步探索法算法的计算步骤: (1)选取初始点,计算.给出初始步长,加步系数,令。

(2) 比较目标函数值.令k k k h t t +=+1,计算 )(11++=k k t ϕϕ,若k k ϕϕ<+1,转(3),否则转(4)。

(3) 加大探索步长.令,同时,令,转(2)。

(4) 反向探索.若,转换探索方向,令,转(2)。

否则,停止迭代,令。

加步探索法算法的计算框图12)(min 30+-=≥t t t t ϕ2,1,000===αh t ])0[)(0[max 00t t t ,或,∈⊂∞+∈)(00t ϕϕ=0>h 1α>0=k k k h h α=+1,k t t =,1+=k k t t 1k k =+0=k ,k k h h -=1+=k t t 11min{}max{}k k a t t b t t ++==,,,程序清单加步探索法算法程序见附录1实验结果运行结果为:2.用对分法求解,已知初始单谷区间,要求按精度,分别计算.对分法迭代的计算步骤:(1)确定初始搜索区间],[b a ,要求。

(2) 计算],[b a 的中点)(21b ac +=. (3) 若0)(<'c ϕ,则c a = ,转(4);若0)(='c ϕ,则c t =*,转(5);若0)(>'c ϕ,则c b = ,转(4).)2()(min +=t t t ϕ]5,3[],[-=b a 3.0=ε001.0=ε'()0'()0a b ϕϕ<>,(4) 若ε<-||b a ,则)(21*b a t +=,转(5);否则转(2). (5) 打印*t ,结束对分法的计算框图程序清单对分法程序见附录2实验结果运行结果为:3.用Newton 法求解,已知初始单谷区间,要求精度.Newton 法的计算步骤12)(min 3+-=t t t ϕ]1,0[],[=b a 01.0=ε(1) 确定初始搜索区间],[b a ,要求 (2) 选定0t(3) 计算(4) 若 ε≥-||0t t ,则t t =0,转(3);否则转(5). (5) 打印 ,结束.Newton 法的计算框图程序清单Newton 法程序见附录3实验结果运行结果为:'()0'()0a b ϕϕ<>,000'()/"()t t t t ϕϕ=-()t t ϕ,项目二 一维搜索算法(二)[实验目的]编写黄金分割法、抛物线插值法的程序。

最优化实验报告

最优化实验报告

最优化方法综合训练一、实验目的通过matlab 上机编程加深对线性规划问题的理解,初步认识线性支持向量机(LSVM )。

二、实验要求线性支持向量机的数学模型如下:min w b δξ、、、 δ+C{∑=ni 1ξi } (1) s.t. (,)1i i i y w x b ξ<>++≥ ,i=1,2,……l i w δ≤, i=1,2,……l0i ξ≥,i=1, 2,……l其分类规则为: f(x)=sgn{<*w ,x>+*b } (2) 这里*w ,*b 是模型(1)的最优解,x 是待预测类别标号的样本。

要求生成训练集和测试集,根据给定的训练集,求解模型(1),并用分类规则(2)来预测测试集样本的类别,分别给出训练集和测试集的判准率,并给出所求得的*w ,*b 。

三、实验步骤1.生成训练集和测试集。

利用rand 函数生成随机数,因为rand()生成的随机数是均匀分布的,随机数大于0.3的概率即为70%,小于等于0.3的概率为30%,同理可以处理分类时的80%概率。

给定数据库规模为(m+m1)×n ,其中m 为训练样本数,m1为测试样本数,n 为每个样本的属性个数。

这里取m=200,m1=100,n=10。

2.求解模型(1)。

利用matlab的optim工具箱中的linprog()函数。

其一般格式为:x = linprog(f,A,b,Aeq,beq,lb,ub)其中f为目标函数系数矩阵,A为约束条件系数矩阵,b为不等式约束右侧的常数矩阵,lb为变量的下界。

Ub为变量的上界。

给定的训练样本集数目为200,根据这200个求解方程(1),先确定解向量X的分量。

根据题目给出的方程,解向量X的分量处理如下:1)分量1到分量10为w,i=1……10;i2)分量11为b;3)分量12为δ;3)分理13到分量212为ξ,i=1……200;i即X有212个分量。

又因为约束方程有220个,因此A为220x212矩阵,b为220x1矩阵,f 为1x212矩阵。

自动化系本硕贯通《最优化方法》实验

自动化系本硕贯通《最优化方法》实验

自动化系本硕贯通《最优化方法》实验最优化方法是自动化系的一门重要课程,它主要介绍了最优化理论和应用方法。

本实验是为了帮助学生更好地掌握最优化方法的基本原理和应用技巧,设计了一个实验项目。

本文将详细介绍该实验项目的目标、实验步骤和实验结果,并分析实验结果和实验过程中的问题和解决方法。

一、实验目标最优化方法实验的目标是通过设计一个最优化问题的实例,学习应用最优化方法解决问题的基本原理和具体方法。

通过该实验,学生应能了解最优化问题的数学模型,掌握不同最优化方法的特点和适用范围,学会使用编程软件实现最优化算法的程序代码。

二、实验步骤1.确定最优化问题:在本实验中,我们选择了一个简单的连续函数的最优化问题作为实验对象。

该问题的目标是找到函数的极小值点。

2.构建数学模型:根据实验问题的具体要求,我们将函数表示为一个数学模型。

在本实验中,模型是一个连续函数。

3.选择最优化方法:根据问题的特点,选择最适合的最优化方法。

在本实验中,我们选择了梯度下降法作为最优化方法。

4. 编写程序代码:根据所选择的最优化方法,编写程序代码来实现最优化算法。

在本实验中,我们使用Python语言编写程序代码。

5. 运行程序代码:通过运行程序代码,得到最优化问题的解。

在本实验中,我们使用Python的解释器来运行程序代码。

6.分析实验结果:根据得到的最优化问题的解,分析问题的最优解是否满足问题的要求。

三、实验结果通过实验,我们得到了最优化问题的解。

分析实验结果可以发现,得到的最优解符合要求。

经过多次实验,最优解的准确率达到了较高的水平。

四、问题与解决方法在实验过程中,我们也遇到了一些问题。

主要有两个问题:第一,最优化方法在一些情况下存在局部最优解的问题;第二,程序代码的运行时间较长。

针对第一个问题,我们可以考虑采用其他最优化方法。

例如,可以尝试使用遗传算法或模拟退火算法来解决问题。

这些方法具有较强的全局能力,可以更好地避免陷入局部最优解。

中北大学最优化实验报告

中北大学最优化实验报告

中北大学实验报告课程名:最优化方法任课教师:李卉专业:数学与应用数学学号:14080141姓名:2015/2016学年第2学期中北大学理学院《最优化方法》课程实验 第1次实验报告一、实验内容及基本要求实验项目名称:黄金分割法程序设计实验类型:设计型每组人数:1实验内容及要求:内容:能够应用MATLAB 或C++设计黄金分割法的程序,并用实例进行验证要求:能够独立完成程序的设计及验证二、实验题目利用黄金分割法求函数()232tan x x x φ=-在[]0,1上的极小点。

取容许误差410ε-=,510δ-=三、实验步骤及结果1)、建立y 函数M 文件(fun_gs.m )function y= fun_gs(x)y=3*x^2-2*tan(x);end2)、建立求解极小值点的M 文件(Untitled5.m )function gs(x)a=0;b=1;eps=0.0001;i=100;a1=b-0.618*(b-a);a2=a+0.618*(b-a);y1=fun_gs(a1);y2=fun_gs(a2);for k=1:i;if (abs(b-a)<=eps)y=fun_gs((b+a)/2);break;elseif (y1<=y2)y2=fun_gs(a1);b=a2;a2=a1;a1=b-0.618*(b-a);y1=fun_gs(a1);elsey1=fun_gs(a2);a=a1;a1=a2;a2=a+0.618*(b-a);y2=fun_gs(a2);endi=i+1;endendia0=(b+a)/2y=fun_gs((b+a)/2)end实验结果:根据实验结果可知:迭代次数i =120 ,极小值点a0 =0.3895 ,在极小点处的函数值为y =-0.3658.《最优化方法》课程实验 第2次实验报告一、实验内容及基本要求实验项目名称:牛顿法程序设计实验类型:设计型每组人数:1实验内容及要求:内容:能够应用MATLAB 或C++设计牛顿法的程序,并用实例进行验证要求:能够独立完成程序的设计及验证二、实验题目利用牛顿法程序求解()()()2222121min 431x R f x x x x ∈=-+-该问题有精确解()()1,1,0T x f x **==。

最优化实验报告

最优化实验报告

最优化实验报告最优化实验报告引言:最优化是一种重要的数学方法,它在各个领域都有广泛的应用。

本实验旨在通过一个具体的案例,探索最优化方法在实际问题中的应用,以及优化算法对问题求解的效果。

一、问题描述:本实验中,我们将研究一个经典的最优化问题:背包问题。

背包问题是一个组合优化问题,目标是在给定的背包容量下,选择一组物品放入背包,使得背包中物品的总价值最大化。

具体来说,我们有一组物品,每个物品有一个重量和一个价值,背包有一定的容量限制。

我们的目标是选择一组物品,使得它们的总重量不超过背包容量,且总价值最大。

二、问题分析:背包问题是一个经典的组合优化问题,可以用多种方法求解。

在本实验中,我们将尝试使用两种常见的最优化算法:贪心算法和动态规划算法。

1. 贪心算法:贪心算法是一种简单但有效的最优化方法。

它每次选择当前看起来最优的解,然后逐步构建最终解。

在背包问题中,贪心算法可以按照物品的单位价值(即价值与重量的比值)进行排序,然后依次选择单位价值最高的物品放入背包。

贪心算法的优点是简单快速,但是它不能保证得到全局最优解。

2. 动态规划算法:动态规划算法是一种更为复杂但准确的最优化方法。

它通过将原问题分解为若干子问题,并保存子问题的解,最终得到全局最优解。

在背包问题中,动态规划算法可以通过构建一个二维表格来保存子问题的解,然后逐步计算出最终解。

动态规划算法的优点是能够得到全局最优解,但是它的时间和空间复杂度较高。

三、实验设计与结果分析:为了验证贪心算法和动态规划算法在背包问题中的效果,我们设计了一个实验。

我们随机生成了一组物品,每个物品的重量和价值都在一定范围内。

然后,我们分别使用贪心算法和动态规划算法求解背包问题,并比较它们的结果。

实验结果显示,贪心算法在求解背包问题时速度较快,但是得到的解并不一定是最优解。

而动态规划算法虽然耗时较长,但是能够得到全局最优解。

这说明在背包问题中,贪心算法是一种可行但不保证最优的方法,而动态规划算法是一种准确但复杂的方法。

最优化实验报告

最优化实验报告

最优化方法课程设计报告班级:________________姓名: ______学号: __________成绩:2017年 5月 21 日目录一、摘要 (1)二、单纯形算法 (2)1.1 单纯形算法的基本思路 (2)1.2 算法流程图 (3)1.3 用matlab编写源程序 (4)二、黄金分割法 (7)2.1 黄金分割法的基本思路 (7)2.2 算法流程图 (8)2.3 用matlab编写源程序 (9)2.4 黄金分割法应用举例 (11)三、最速下降法 (11)3.1 最速下降法的基本思路 (11)3.2 算法流程图 (13)3.3 用matlab编写源程序 (13)3.4 最速下降法应用举例 (13)四、惩罚函数法 (17)4.1 惩罚函数法的基本思路 (17)4.2 算法流程图 (18)4.3 用matlab编写源程序 (18)4.4 惩罚函数法应用举例 (19)五、自我总结 (20)六、参考文献 (20)一、摘要运筹学是一门以人机系统的组织、管理为对象,应用数学和计算机等工具来研究各类有限资源的合理规划使用并提供优化决策方案的科学。

通过对数据的调查、收集和统计分析,以及具体模型的建立。

收集和统计上述拟定之模型所需要的各种基础数据,并最终将数据整理形成分析和解决问题的具体模型。

最优化理论和方法日益受到重视,已经渗透到生产、管理、商业、军事、决策等各个领域,而最优化模型与方法广泛应用于工业、农业、交通运输、商业、国防、建筑、通信、政府机关等各个部门及各个领域。

伴随着计算机技术的高速发展,最优化理论与方法的迅速进步为解决实际最优化问题的软件也在飞速发展。

其中,MATLAB软件已经成为最优化领域应用最广的软件之一。

有了MATLAB 这个强大的计算平台,既可以利用MATLAB优化工具箱(OptimizationToolbox)中的函数,又可以通过算法变成实现相应的最优化计算。

关键词:优化、线性规划、黄金分割法、最速下降法、惩罚函数法二、单纯形算法1.1 单纯形算法的基本思路线性规划问题的可行域是n维向量空间Rn中的多面凸集,其最优值如果存在必在该凸集的某顶点处达到。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基于Matlab的共轭梯
度算法
指导老师:
姓名:
学号:
班级:
日期:
基于Matlab的共轭梯度算法
一、实验目的及要求
(1)熟悉使用共轭梯度法求解无约束非线性规划问题的原理;
(2)在掌握原理的基础上熟练运用此方法解决问题
(3)学会利用计算机语言编写程序来辅助解决数学问题;
(4)解决问题的同时分析问题,力求达到理论与实践的统一;
(5)编写规范的实验报告.实验内容
二、实验原理
1.基本思想:
把共轭性与最速下降方法相结合,利用已知点处的梯度构造一组共轭方向,并沿这组方向进行搜索,求出目标函数的极小点。

根据共轭方向的基本性质,这种方法具有二次终止性。

在各种优化算法中,共轭梯度法是非常重要的一种。

其优点是所需存储量小,具有步收敛性,稳定性高,而且不需要任何外来参数。

2.程序流图:
三、实验代码
通过查阅相关资料,编写一个基于Matlab的共轭梯度算法,具体代码如下:function f=grad_2d(x0,t)
%用共轭梯度法求已知函数f(x1,x2)=x1^2+2*x2^2-4*x1-2*x1*x2的极值点
%已知初始点坐标:x0
%已知收敛精度:t
%求得已知函数的极值:f
x=x0;
syms xi yi a; %定义自变量,步长为符号变量
f=xi^2+2*yi^2-4*yi-2*xi*yi; %创建符号表达式f
fx=diff(f,xi); %求表达式f对xi的一阶求导
fy=diff(f,yi); %求表达式f对yi的一阶求导
fx=subs(fx,{xi,yi},x0); %代入初始点坐标计算对xi的一阶求导实值
fy=subs(fy,{xi,yi},x0); %代入初始点坐标计算对yi的一阶求导实值
fi=[fx,fy]; %初始点梯度向量
count=0; %搜索次数初始为0
while double(sqrt(fx^2+fy^2))>t %搜索精度不满足已知条件
s=-fi; %第一次搜索的方向为负梯度方向
if count<=0
s=-fi;
else
s=s1;
end
x=x+a*s; %进行一次搜索后的点坐标
f=subs(f,{xi,yi},x); %构造一元搜索的一元函数φ(a)
f1=diff(f); %对函数φ(a)进行求导
f1=solve(f1); %得到最佳步长a
if f1~=0
ai=double(f1); %强制转换数据类型为双精度数值
else
break %若a=0,则直接跳出循环,此点即为极值点
end
x=subs(x,a,ai); %得到一次搜索后的点坐标值
f=xi^2+2*yi^2-4*xi-2*xi*yi;
fxi=diff(f,xi);
fyi=diff(f,yi);
fxi=subs(fxi,{xi,yi},x);
fyi=subs(fyi,{xi,yi},x);
fii=[fxi,fyi]; %下一点梯度向量
d=(fxi^2+fyi^2)/(fx^2+fy^2);
s1=-fii+d*s; %下一点搜索的方向向量
count=count+1; %搜索次数加1
fx=fxi;
fy=fyi; %搜索后终点坐标变为下一次搜索的始点坐标
end
x,f=subs(f,{xi,yi},x),count %输出极值点,极小值以及搜索次数
end
四、实验结果
在命令窗口输入:
f=grad_2d([1,1],0.0000001)
输出结果如下:
x =4.0000 2.0000
f =-8.0000
count = 75
f =-8.0000
当在命令窗口输入如下命令时:
f=grad_2d([2,1],0.0000001)
x =4.0000 2.0000
f =-8.0000
count =22
f =-8.0000
当在命令窗口输入如下命令时:
f=grad_2d([2,1],0.001)
x = 3.9996 1.9999
f =-8.0000
count =12
f =-8.0000
由以上结果可知:
(1.)初始点不同搜索次数不同
(2.)无论初始点为多少,精度相同时最终结果极值点都是(4.0000,2.0000)(3.)当初始点相同时,若精度不一样搜索次数和最终结果会有差异但大致相同。

五、总结
从共轭梯度法的计算过程可以看出,第一个搜索方向取作负梯度方向,这就是最速下降法。

其余各步的搜索方向是将负梯度偏转一个角度,也就是对负梯度进行修正。

所以共轭梯度法实质上是对最速下降法进行的一种改进,故它又被称作旋转梯度法
在自然科学和工程技术中很多问题的解决常常归结为约束优化或无约束优化的问题。

首先根据实际的机械问题建立相应的数学模型,即应用数学形式描述实际设计问题。

同时需要用专业的知识确定设计的限制条件和所追求的目标,确立各设计变量之间的相互关系等。

一旦建立数学模型,应用数学规划理论的方法,根据数学模型的特点可以选择适当的优化方法,进而可以选择适当的计算机程序,以计算作为工具求得最佳优化设计参数。

通过学习发现,共轭梯度法是介于
最速下降法与牛顿法之间的一个方法,它仅需利用一阶导数信息,但克服了最速下降法收敛慢的缺点,又避免了牛顿法需要存储和计算Hesse矩阵并求逆的缺点,共轭梯度法不仅是解决大型线性方程组最有用的方法之一,也是解大型非线性最优化最有效的算法之一。

其优点是所需存储量小,具有步收敛性,稳定性高,而且不需要任何外来参数。

如何把实际的工程技术问题转化为理论的数学模型,进行分析运算求解,是检验我们是否学好这一课的关键。

这可以让我们在以后的研究生生涯中有更加透彻的理解能力,扎实地撑握机械知识,培养创造性思维,专业技能有新的提高
六、调试截图。

相关文档
最新文档