指数与指数幂的运算(基础)

合集下载

知识讲解指数与指数幂的运算基础

知识讲解指数与指数幂的运算基础
(2)根式运算中常出现乘方与开方并存,要注意两者的顺序何时可以交换、何时不能交换.如 ;
(3)幂指数不能随便约分.如 .
2.指数幂的一般运算步骤
有括号先算括号里的;无括号先做指数运算.负指数幂化为正指数幂的倒数.底数是负数,先确定符号,底数是小数,先要化成分数,底数是带分数,先要化成假分数,然后要尽可能用幂的形式表示,便于用指数运算性质.在化简运算中,也要注意公式:a2-b2=(a-b)(a+b),(a±b)2=a2±2ab+b2,(a±b)3=a3±3a2b+3ab2±b3,a3-b3=(a-b)(a2+ab+b2),a3+b3=(a+b)(a2-ab+b2)的运用,能够简化运算.
2.掌握无理指数幂的概念,将指数的取值范围推广到实数集;
3.通过指数范围的扩大,我们要能理解运算的本质,认识到知识之间的联系和转化,认识到符号化思想的重要性,在抽象的符号或字母的运算中提高运算能力;
4.通过对根式与分数指数幂的关系的认识,能学会透过表面去认清事物的本质.
【要点梳理】
要点一、整数指数幂的概念及运算性质
=
=
解法二:从外向里化为分数指数幂.
=
= =
=
=
【总结升华】 此类问题应熟练应用 .当所求根式含有多重根号时,要搞清被开方数,由里向外或由外向里,用分数指数幂写出,然后再用性质进行化简.
举一反三:
【高清课堂:指数与指数运算369050例1】
【变式1】把下列根式用指数形式表示出来,并化简
(1) ;
【答案】(1) ;(2) .
, ,

=
=
【总结升华】对于“条件求值”问题一定要弄清已知与未知的联系,然后采用“整体代换”或“化简后代换”方法求值.本题的关键是先求 及 的值,然后整体代入.

指数与指数幂的运算

指数与指数幂的运算

34)=(
2
)-3
=
27
81
3
38
例3:用分数指数幂表示下列各式(式中a>0)
(1)a2 a (2)a3 3 a2 (3) a a
解( : 1)a2
a
a2
1
a2
2 1
a2
5
a2
(2)a3 3
a2
2
a3 a3
3 2
a 3
11
a3
(3)a a
1
aa2
(a112)12
a
3 4
例题讲解
一、根式与分数指数幂的互化
成立的x的范围.
解: (x 2)(x2 4) ( x 2)2 x 2
x 2 x 2.
x 2 x 2 ( x 2) x 2.
则有
x
2
0,

x 2 0, | x 2 | x
2.
x
2, 或
x x
2, 2≥

0.
x
2,
或x

2.
所以x的取值范围是
x 2, 或x ≥ 2.
回顾初中知识,根式是如何定义的?有那些规定?
①如果一个数的平方等于a,则这个数叫做 a的平方根.
22=4 (-2)2=4
2,-2叫4的平方根.
②如果一个数的立方等于a,则这个数叫做a 的立方根.
23=8 (-2)3=-8
2叫8的立方根. -2叫-8的立方根.
24=16
(-2)4=16
2,-2叫16的4次方根;
24=16 (-2)4=16
(-2)5=-32 27=128
16的4次方根是±2.
-32的5次方根是-2. 2是128的7次方根.

指数与指数幂的运算知识点总结

指数与指数幂的运算知识点总结

指数与指数幂的运算知识点总结本节知识点 (1)整数指数幂; (2)根式; (3)分数指数幂; (4)有理数指数幂; (5)无理数指数幂. 知识点一 整数指数幂1.正整数指数幂的定义:,其中N*.an na a a a 个⋅⋅=∈n 2.正整数指数幂的运算法则: (1)(N*);nm nmaa a +=⋅∈n m ,(2)(且N*);nm nma a a -=÷,,0n m a >≠∈n m ,(3)(N*);()mn nma a=∈n m ,(4)(N*);()mmmb a ab =∈m (5)(N*).m m mb a b a =⎪⎭⎫⎝⎛,0≠b ∈m 3.两个规定(1)任何不等于零的数的零次幂都等于1.即.()010≠=a a 零的零次幂没有意义.(2)任何不等于零的数的(为正整数)次幂,等于这个数的次幂的倒数.即:n -n n . ()01≠=-a a a nn 零的负整指数幂没有意义. 知识点二 根式的概念及其性质 1.次方根n (1)定义 一般地,如果(且N*),那么叫做的次方根. a x n=1>n ∈n x a n (2)性质:①当为奇数时,正数的次方根是一个正数,负数的次方根是一个负数,这时,的次n n n a n方根用表示;na ②当为偶数时,正数的次方根有两个,这两个数互为相反数,表示为.负数没有偶n n na ±次方根;③0的任何次方根都是0,记作.00=n2.根式的定义 形如(且N*)的式子叫做根式,其中叫做根指数,叫做被na 1>n ∈n n a 开方数.对根式的理解,要注意以下几点: na (1)且N*; 1>n ∈n (2)当为奇数时,R ; n ∈a (3)当为偶数时,≥0.n a 根式(且N*)的符号的确定:由的奇偶性和被开方数的符号共同确定. na 1>n ∈n n a (1)当为奇数时,的符号与的符号相同; n na a (2)当为偶数时,≥0,为非负数. n a na 3.根式的性质: (1);()a a nn=(2)对于,当为奇数时,;当为偶数时,.nna n a a nn=n ()()⎩⎨⎧≤-≥==00a a a a a a nn与的联系与区别:()nna nn a (1)对于,当为奇数时,R ;当为偶数时,≥0.而对于,是一个恒有意义()nna n ∈a n a nn a 的式子,不受的奇偶性的限制,但式子的值受到的奇偶性的限制. n n (2)当为奇数时,.n ()=nna a a nn =知识点三 分数指数幂1. 规定正数的正分数指数幂的意义是(,N*,且)nm nm a a =0>a ∈n m ,1>n 于是在条件,N*,且下,根式都可以写成分数指数幂的形式.0>a ∈n m ,1>n2. 正数的负分数指数幂的意义与负整数指数幂的意义相仿,规定(,N*,且)nmnm nm aaa11==-0>a ∈n m ,1>n 3. 0的正分数指数幂等于0,0的负分数指数幂没有意义. 对分数指数幂的理解:(1)分数指数幂不能理解为个相乘,它是根式的一种新的写法; nm a nma (2)分数指数不能随意约分. nm如,事实上,,式子是有意义的;而在()()214233-≠-()()424233-=-()3321-=-实数范围内是没有意义的.(3)在保证相应的根式有意义的前提下,负数也存在分数指数幂.如上面提到的,但没有意义.()()424233-=-()()434355-=-所以对于分数指数幂,当≤0时,有时有意义,有时无意义.因此,在规定分数指数幂的nm a a 意义时,要求. 0>a 知识点四 有理数指数幂规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数. 整数指数幂的运算性质对于有理数指数幂同样适用: (1)(Q );sr sra a a +=⋅,0>a s r ,∈(2)(Q );()rs sra a=,0>a s r ,∈(3)(Q ).()rrrb a ab =0,0>>b a r ∈有理数指数幂的运算还有如下性质: (4)(Q );sr sraa a -=÷,0>a s r ,∈(5)(Q ).r r rb a b a =⎪⎭⎫⎝⎛0,0>>b a r ∈常用结论:(1)当时,; 0>a 0>ba (2)若则;,0≠a 10=a(3)若(,且),则; sr a a =0>a 1≠a s r =(4)乘法公式适用于分数指数幂.如().b a b a b a b a -=⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+221221212121210,0>>b a 知识点五 无理数指数幂一般地,无理数指数幂(,是无理数)是一个确定的实数.有理数指数幂的运算性αa 0>a α质同样适用于无理数指数幂.知识点六 运用公式进行指数幂的运算(条件求值) 常用公式:(1)平方差公式 .()()b a b a b a -+=-22(2)完全平方公式 .()()2222222,2b ab a b a b ab a b a +-=-++=+(3)立方和公式 . ()()2233bab a b a b a +-+=+(4)立方差公式 .()()2233bab a b a b a ++-=-(5)完全立方和公式 .()3223333b ab b a a b a +++=+(6)完全立方差公式 .()3223333b ab b a a b a -+-=-常用公式变形:(1),.()ab b a b a 2222-+=+()ab b a b a 2222+-=+(2),.211222-⎪⎭⎫ ⎝⎛+=+x x x x 211222+⎪⎭⎫ ⎝⎛-=+x x x x 或者写成,.()22122-+=+--x x xx ()22122+-=+--x x x x (3);⎪⎭⎫⎝⎛+-⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=+b b a a b a b a b a 212121213213212323.⎪⎭⎫⎝⎛++⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-b b a a b a b a b a 212121213213212323例题讲解例1. 已知,求的值.32121=+-x x 32222323++++--x x x x 分析:采用整体思想方法,对所求式子进行合理变形,然后把条件整体代入求值.本题用到的公式和结论有:;()22122-+=+--x x x x . ()()1112121121213213212323-+⎪⎭⎫ ⎝⎛+=+-⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=+------x x x x x x x x x x xx 解:∵32121=+-xx ∴,∴. 92122121=++=⎪⎭⎫ ⎝⎛+--x x x x 71=+-x x ∴.()4727222122=-=-+=+--x x x x ()()181731121213213212323=-⨯=+-⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=+----x x x x x x xx ∴.52502034721832222323==++=++++--x x x x 例2. 已知,求下列各式的值:22121=+-a a (1); (2); (3).1-+a a 22-+a a 22--a a 分析:在求的值时,直接入手比较困难,我们可以先求出的值,然22--a a ()222--a a 后在进行开平方运算. 解:(1)∵22121=+-aa ∴,∴; 42122121=++=⎪⎭⎫ ⎝⎛+--a a a a 21=+-a a (2);()222222122=-=-+=+--a a a a (3)∵()()04242222222=-=-+=---a a a a ∴. 022=--a a例3. 已知,其中,求的值.41=+-x x 10<<x xx x x 122+--分析:要学会根式与分数指数幂的相互转化,在转化时要注意:根指数是分数指数的分母,被开方数(或式)的指数是分数指数的分子.解:∵41=+-x x ∴,∴,∴. 4222121=-⎪⎭⎫ ⎝⎛+-x x 622121=⎪⎭⎫ ⎝⎛+-x x 62121=+-x x()1424222122=-=-+=+--x x x x ∴()()19241442222222=-=-+=---x x x x ∵,∴,∴.10<<x 22-<x x 3819222-=-=--x x ∴. 24638121212222-=-=+-=+----x x x x x x x x 例4. (1)已知,求的值;42121=+-aa 21212323----aa a a (2)已知,且,求的值;9,12==+xy y x y x <21212121yx y x +-解:(1)∵42121=+-aa ∴,∴. 212212142=++=⎪⎭⎫ ⎝⎛+--a a a a 142161=-=+-a a ∴; ()15114111212112121212132132121212323=+=++=-++⎪⎭⎫ ⎝⎛-=-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=----------a a a a a a a a a a a a aa a a (2)∵9,12==+xy y x ∴ ()()3192129212222221212212122121221212121=+-=++-+=++-+=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛+-xy y x xy y x xy y x xy y x y x y x y x y x∵,∴,∴y x <2121y x <021212121<+-yx y x ∴. 333121212121-=-=+-yx y x 例5. 已知,求的值.3232+=a 31311--++aa a a 分析:借助于分式的性质. 解:∵ 3232+=a ∴,.3232113232-=+==-a a()34732223234+=+=⎪⎭⎫⎝⎛=a a ∴()132323431313113131311++=⎪⎭⎫⎝⎛++=++-----a aa a a a a a a aa aa .()3333333333913232347=++=++=++-++=解法二:∵3232+=a ∴113232313132323131313133133131311-+=+⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛+=+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=++--------a a a a a a a a a a a a aa a a .313232132132113232=--++=-+++=-+=aa 例6. (1)当时,求的值;22,22-=+=y x ⎪⎭⎫ ⎝⎛++⋅⎪⎭⎫ ⎝⎛----323132343132y y x x y x (2)若,求的值. 122-=xaxx xx aa a a --++33分析: 结论 对于二次根式,若是完全平方数,则也是完全C B A ±C B A 22-C B A ±平方数. 本题中,,被开方数不是完全平方数,所以不能化简,当确有22+=x 22+x.()222222+=+=x 解:(1)∵22,22-=+=y x ∴12331332323132343132------=⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛++⋅⎪⎭⎫ ⎝⎛-y x y x y y x x y x ; ()22122222221222+=+-+=--+=(2)∵122-=x a ∴ ()()()()1122223333-+=++-+=++=++--------xx xx x x x x x x x x x x x x a a aa a a a a a a a a a a a a . 1121121122--+-=-+=xx a a 12211212-=-++-=另解:解例5的解法一.题型一 整数指数幂的运算例7. 已知(为常数,且Z ),求的值.a x x =+-22a ∈x x x -+88分析:因为,所以先由条()()()()x x x x x x x x x x 22333321222222288-----+-+=+=+=+件求出的值.a x x =+-22x x 2222-+完全立方和公式 .()3223333b ab b a a b a +++=+解法一:∵a x x =+-22∴()2222222222-=-+=+--a x x x x ∴()()()()x x x x x x x x x x 22333321222222288-----+-+=+=+=+.()()a a a a a a 3312322-=-=--=解法二:(完全立方和公式) ∵a x x =+-22∴,展开得:.()3322a x x =+-()()()()3322322232232a x x x x x x =+⨯⨯+⨯⨯+---整理得:,∴. ()382238a x x x x =+++--3838a a x x =++-∴.a a x x 3883-=+-例8. 已知,则_________. 3101=+-x x =--22x x 解:∵ 3101=+-x x ∴ ()9822310222122=-⎪⎭⎫⎝⎛=-+=+--x x xx ∴ ()()816400498242222222=-⎪⎭⎫⎝⎛=-+=---x x x x ∴. 98081640022±=±=--x x 解法二分析:使用平方差公式得. ()()1122----+=-x x x x x x 解法二:∵ 3101=+-x x ∴ ()()9644310422121=-⎪⎭⎫⎝⎛=-+=---x x xx ∴. 389641±=±=--x x ∴. ()()980383101122±=⎪⎭⎫ ⎝⎛±⨯=-+=----x x x x x x 例9. 若,求的值. 31=+-x x 2323-+x x 解:∵(这里)31=+-x x 0>x ∴,∴. 3222121=-⎪⎭⎫ ⎝⎛+-x x 522121=⎪⎭⎫ ⎝⎛+-x x ∵,∴.02121>+-x x 52121=+-xx ∴ ()1212132132123231----+-⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=+x x x x x x xx . ()52135=-⨯=解法二:∵31=+-x x ∴()723222122=-=-+=+--x x x x∴ ()()()202173122213322323=+-⨯=+-+=++=⎪⎭⎫ ⎝⎛+----x x x x x x x x ∴.52202323==+-xx 例10. 已知,则【 】41=+-x x =+-2121x x (A )2 (B )2或 2-(C )(D )或666-分析:题目的隐含条件为. 0>x 解:∵41=+-x x ∴,∴ 42221211=-⎪⎭⎫ ⎝⎛+=+--x x x x 622121=⎪⎭⎫ ⎝⎛+-x x ∵02121>+-x x ∴.选择【 C 】.62121=+-x x例11. 已知,则【 】212121++=⎪⎭⎫ ⎝⎛+--x x x x f ()=+1x f (A ) (B )42-x ()21+x (C )(D )()()2111-+++-x x 322-+x x 解:(换元法)设,则有t xx =+-2121∴222221211-=-⎪⎭⎫ ⎝⎛+=+--t x x x x ∴,∴. ()2222t t t f =+-=()2x x f =∴.选择【 B 】.()()211+=+x x f 解法二(凑整法):∵212121++=⎪⎭⎫ ⎝⎛+--x x x x f ∴,∴.2212122121212122⎪⎭⎫ ⎝⎛+=+-⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+---x x x x x x f ()2x x f =∴.()()211+=+x x f题型二 根式的化简在进行根式的化简时,主要用到的是根式的性质: (1);()a a nn=(2)对于,当为奇数时,;当为偶数时,.nna n a a nn=n ()()⎩⎨⎧≤-≥==00a a a a a a nn注意 对于,当为奇数时,R ;当为偶数时,≥0.而对于,是一个恒有意()nna n ∈a n a nn a 义的式子,不受的奇偶性的限制,但式子的值受到的奇偶性的限制.n n 例12. 化简下列各式: (1);()()222535-+-(2)(≥1).()()2231x x -+-x 解:(1)原式;125532535=-+-=-+-=(2).()()x x x x -+-=-+-313122∵≥1x ∴当1≤≤3时,原式; x 231=-+-=x x 当时,原式. 3>x 4231-=-+-=x x x 例13. 化简: (1); (2)(≤).()nnx π-62144+-a a a 21分析:对于(1),要对的奇偶性进行分类讨论. n 解:(1)当为奇数时,;n ()ππ-=-x x nn 当为偶数时,; n ()()()⎩⎨⎧<-≥-=-=-ππππππx x x x x x nn(2).()()()33162626221212112144a a a a a a -=-=-=-=+-注意:当底数为正数时,其分数指数可以约分.例14. 求下列各式的值: (1);223223-++(2).347246625-+--+分析: 结论 对于二次根式,若是完全平方数,则也是完全C B A ±C B A 22-C B A ±平方数.根据此结论,可知,,均可以化为完全平方的形式. 625+246-347-解:(1)原式;()()221212*********2=-++=-++=-++=(2)原式()()()222322232-+--+=.22322232322232=-++-+=-+--+=总结 形如()的双重二次根式的化简,一般是将其化为n m 2±0,0>>n m 的形式,然后再化简.由得:()2ba ±()ab b a ba n m 222±+=±=± ⎩⎨⎧==+nab mb a 所以是一元二次方程的两个实数根.b a ,02=+-n mx x 例15. 化简. 32-解:. ()()226213213222132324322-=-=-=-=-=-例16. 计算:.()()4123323-+-解:原式.()[]()58323233443=+-=-+-=-+-=注意 在利用根式的性质进行的化简时,一定要注意当为偶数时,底数的符号.nna n a 例17. 化简下列各式: (1)();()()665544b a b a a -+++0<<b a (2)(). 1212----+x x x x 21<<x 解:(1)∵0<<b a ∴原式; ()a b a b b a a b a b a a -=-+++-=-+++=2(2)∵,∴ 21<<x 110<-<x ∴原式()()1111111122---+-=---+-=x x x x. ()1211111111-=-+-+-=---+-=x x x x x 例18. 求值_________. =-++335252解:令,则有y x =-=+3352,52,.4525233=-++=+y x 1-=xy ∴,∴()()422=+-+y xy x y x ()()[]432=-++xy y x y x 设,则,有t y x =+0>t ,∴,()432=+t t 0433=-+t t 01333=--+t t ∴()()0412=++-t t t ∵,∴,∴. 042>++t t 01=-t 1=t ∴. 1525233=-++解法二:设,则有=x 335252-++,∴()x x 3452523333-=-++=0432=-+x x∴, ()()03313=-+-x x ()()0412=++-x x x ∵,∴,∴ 042>++x x 01=-x 1=x ∴. 1525233=-++例19. 根据已知条件求值: (1)已知,求的值;32,21==y x yx y x yx y x +---+(2)已知是方程的两根,且,求的值.b a ,0462=+-x x 0>>b a ba b a +-解:(1)∵ 32,21==y x ∴原式()()()()()()yx yx yx yx yx yx -+--+-+=22yx xyy x y x xy y x --+--++=22; 383221322144-=-⨯⨯=-=yx xy(2)∵是方程的两根 b a ,0462=+-x x ∴4,6==+ab b a ∴()()204464222=⨯-=-+=-ab b a b a ∵,∴ 0>>b a 0>-b a ∴. 5220==-b a ∴. ()()()55515242622==-=--+=-+-=+-b a ab b a ba ba ba ba b a (2)解法二:∵是方程的两根,∴b a ,0462=+-x x 4,6==+ab b a ∴. ()()5110242642622222==+-=++-+=+-=⎪⎪⎭⎫⎝⎛+-abb a ab b a b a b a b a b a ∵,∴,∴0>>b a b a >0>+-ba b a ∴. 5551==+-ba b a 例20. 已知,N*,求的值.⎪⎭⎫ ⎝⎛-=-nn x 115521∈n ()n x x 21++解:∵⎪⎭⎫ ⎝⎛-=-n nx 115521∴.n n n n n n x 222221125215525411552111---++=⎪⎭⎫ ⎝⎛+-+=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+=+2115541⎪⎭⎫ ⎝⎛+=-n n∴⎪⎭⎫ ⎝⎛+=+-n nx 11255211∴.()55552155211111112=⎪⎭⎫ ⎝⎛=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛-=++--nn n nn n n nx x例21. 已知函数,.()53131--=x x x f ()53131-+=x x x g (1)证明:在上是增函数(已知在R 上是增函数);()x f ()+∞,031x y =(2)分别计算和的值,由此概括出函数和()()()2254g f f -()()()3359g f f -()x f 对所有不等于0的实数都成立的一个等式,并加以证明.()x g x (1)证明:任取,且()+∞∈,0,21x x 21x x <∴ ()()55531131231231131231231131121⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=---=-----x x x x x x x x x f x f ∵,且,在R 上是增函数 ()+∞∈,0,21x x 21x x <31x y =∴312311312311,--><x x x x ∴,∴ ()()021<-x f x f ()()21x f x f <∴在上是增函数; ()x f ()+∞,0(2)解:()()()2254g f f -.0522522552222554432323232313131313131=---=⨯⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-⨯--=-----同样求得. ()()()03359=-g f f 猜想:. ()()()052=-x g x f x f 证明:()()()x g x f x f 52-.055555532323232313131313232=---=⨯⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-⨯--=-----x x x x x x x x xx 例22. 当,且时,求的值.0,0>>y x ()()y x y y x x 53+⋅=+yxy x y xy x -+++32解:∵,且0,0>>y x ()()y x y y x x53+⋅=+∴, y xy xy x 153+=+0152=--y xy x ∴()()053=-+y x yx ∴,. 05=-y x y x y x 25,5==∴.22958525355032==-+++=-+++yyy y y y y y yxy x y xy x 题型三 根式与分数指数幂的互化在进行根式与分数指数幂的互化时要注意两个对应: (1)根指数对应分数指数的分母;(2)被开方数(或式)的指数对应分数指数的分子. 当出现多重根号时,应从里向外化简.例23. 用根式或分数指数幂表示下列各式:,,,;.51a ()043>a a 36a ()013>a a()0>a a a 解:;551a a =;()43430a a a =>;23636a a a ==;()23233101-==>a aa a.()4323210a a a a a a a ==⋅=>例24. 将根式化为分数指数幂是【 】 53-a (A ) (B )(C )(D )53-a 53a 53a -35a -解:选择【 A 】. 例25. 化简:_________.(用分数指数幂表示)()()=⋅÷⋅109532a a a a 解:由题意可知:.0>a ∴原式.561012101451310921532a a a a a a a a ==÷=⎪⎭⎫⎝⎛⋅÷⎪⎭⎫ ⎝⎛⋅=例26. 设,化简:.0>a 434334aa a a -解:∵0>a ∴.611616653163254343234434334---===⋅⋅=aaa aa a a aa aa aa例27. 下列根式与分数指数幂的互化中,正确的是【 】 (A )(B )()()0414>-=-x x x )0551≠-=-x x x(C ) (D )()0,4343≠⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛-y x x y y x 4182y y =解:(A ),故(A )错;()0414>-=-x x x (B ),故(B )错; ()0155151≠==--x xx x(D ),故(D )错. 选择【 C 】. 4182y y =例28. 下列各式正确的是【 】 (A );(B )35531aa=-2332x x =(C )(D )⎪⎭⎫ ⎝⎛-⨯-=814121814121aaa a x x x x 412212323131-=⎪⎭⎫ ⎝⎛---解:(A ),故(A )错;53535311aaa ==-(B ),故(B )错; 3232x x =(C ),故(C )错. 选择【 D 】.85814121814121a aaa a ==⎪⎭⎫ ⎝⎛-+-题型四 根式和分数指数幂有意义的条件1.对于次根式,当为奇数时,R ;当为偶数时,≥0. n na n ∈a n a 2.0的0次幂和负实数幂都没有意义.例29. 若有意义,则的取值范围是__________.()4321--x x解:∵()()()43434321121121x x x -=-=--∴,解之得:. 021>-x 21<x 即的取值范围是.x ⎪⎭⎫ ⎝⎛∞-21,例30. 函数的定义域是【 】()()2125--+-=x x y (A ) (B ){}2,5≠≠x x x {}2>x x (C ) (D ){}5>x x {}552><<x x x 或解:∵()()()()()215215250210210-+-=-+-=-+-=-x x x x x x y ∴,解之得:且.⎩⎨⎧>-≠-0205x x 2>x 5≠x ∴该函数的定义域为.选择【 D 】.()()+∞,55,2 题型五 幂的运算目前,当底数大于0时,指数已经由整数指数推广到了实数指数,整数指数幂的运算性质适用于实数指数幂的运算.运算的结果可以化成根式形式或者保留分数指数幂的形式,但不能既有根式又有分数指数幂,也不能同时含有分母和负指数幂.(1)(R ); s r s r a a a +=⋅∈>s r a ,,0(2)(R );()rs sr a a =∈>s r a ,,0(3)(R ).()r r rb a ab =∈>>r b a ,0,0例31. 计算下列各式(式中的字母均为正数): (1);()()()c b a b a b a 24132124-----÷-⋅(2). ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--+----------212121211122b a b a b a b a 解:(1)原式;()ca ac cb a b a 33112412423-=-=÷-=-----(2)原式 ()()⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+---=--------21212121112121b a b a b a b a ()()()bb b a b a b a ba b a b a221111111111111==+-+=----+=-------------例32. 化简下列各式: (1);212121211111aaa a a++------(2).111113131313132---+++++-x xx x x x x x 解:(1)原式; ()()011112121212121211=-=+⎪⎭⎫ ⎝⎛+---=-----a a a a a a a a a (2)原式 11111131323131333131323331-⎪⎭⎫ ⎝⎛--++⎪⎭⎫ ⎝⎛+++-⎪⎭⎫ ⎝⎛=x x x x x x x x 31323132313131313131313231313231323111111111111xx x x x x x x x x x x x x x x x x --+-+-=-⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛+-+⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛++++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛-=.31x -=例33. 化简:. ()()()()()1421443333211--------++-++-+aa a a a a a a a a a a解:原式 ()()()()()()1221442212212111---------+-+-++++-+-+=a a a a a a a a a a a a a aa a ()[]()[]()()1214412222111--------++++++-+=aa a a a a a a a a a a()()aa a a a aa a a a a a a 21111144144=-++=-++++++=------例34. 化简下列各式:(1);(2).436532yx xy⋅1111212331++-+++a a a a a 解:(1)原式;1212143653231--==yx yx y x (2)原式 111111111121212131313231213321313331++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛-++⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛+=++-⎪⎭⎫ ⎝⎛+++⎪⎭⎫ ⎝⎛=a a a a a a a a a a a a a a21313221313211aa a a a a +-=-++-=例35. 【 】 ()=-⎪⎭⎫⎝⎛⨯+⎪⎭⎫ ⎝⎛--21212001.04122532(A )(B ) (C )(D )0151630173658-解:. ()21212001.04122532-⎪⎭⎫ ⎝⎛⨯+⎪⎭⎫ ⎝⎛--1516101324111001491411=-⨯+=-⨯+=选择【 A 】.例36. 化简:_________.=⎪⎪⎭⎫⎝⎛÷⋅⋅----321132132a b b a bab a 解:原式.656161673223236167322121131212132--------=÷=⎪⎭⎫⎝⎛÷=⎪⎪⎪⎭⎫ ⎝⎛÷=b a ab b a b a b a b a ba b a b a 例37._________. =⎪⎭⎫⎝⎛-+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛---442102324953121解:原式. 22322322232491112=-++=-++-+=例38. 已知,则的值是_________. 3,2==n m 32432332⎪⎪⎭⎫⎝⎛÷⋅----m n nm m n n m 解:∵3,2==n m ∴原式 32325343322534312322332⎪⎭⎫ ⎝⎛÷=⎪⎭⎫ ⎝⎛÷=⎪⎪⎪⎭⎫ ⎝⎛÷=--------mn n m n m n m n m mn n m n m . 27232333131=⨯==⎪⎭⎫⎝⎛=---mn n m 例39. 已知函数,则_________.()()⎪⎩⎪⎨⎧≥--<=1,351,312x x x x x f =⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛--4321353f f 解: ⎪⎭⎫ ⎝⎛+-⎪⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛+-⎪⎭⎫⎝⎛---4343213533353f f f f . 33939335353331243=+-=+⎪⎭⎫⎝⎛-+-⨯=-题型六 解含幂的方程例40. 解下列方程:(1);(2).2291381+⎪⎭⎫ ⎝⎛=⨯x x0123222=-⨯++x x 解:(1),()2224333+-=⨯x x 424233--+=x x ∴,解之得:;4242--=+x x 2-=x (2),设,则()0123242=-⨯+⨯x x t x =20>t ∴, 01342=-+t t ()()0114=+-t t 解之得:(舍去). 1,241221-===-t t ∴,∴.222-=x 2-=x 结论 若(,且),则sra a =0>a 1≠a s r =题型七 指数幂等式的证明 设参数法例41. 设都是正数,且,求证:. c b a ,,c b a 643==ba c 122+=证明:设,则有. t cba===643cbat t t 12116,2,3===∵ 236⨯=∴,∴ba bacttt t 2112111+=⋅=ba c 2111+=等式两边同时乘以2得:. b a c 122+=例42. 设,且,则_________.m b a ==52211=+ba =m 分析:这是指数幂的连等式,参数已经给出. 解:∵,∴. m ba==52bam m 115,2==∵211=+ba ∴,∴,.2111152m m m m ba ba==⋅=⨯102=m 10±=m ∵,∴. 0>m 10=m 例43. 已知,且. 333cz by ax ==1111=++zy x 求证:.()31313131222c b a czby ax ++=++证明:设,则. t cz by ax ===333zt cz y t by x t ax ===222,,∴.⎪⎭⎫⎝⎛++=++z y x t cz by ax 111222∵,∴ 1111=++z y x t z y x t =⎪⎭⎫⎝⎛++111∴,t cz by ax =++222()3131222t czby ax =++∵3131313313313313131111t z y x t z t y t x t c b a =⎪⎭⎫ ⎝⎛++=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=++∴.()31313131222c b a czby ax ++=++例44. 对于正整数(≤≤)和非零实数,若c b a ,,a b c ω,,,z y x ,ω70===z y x c b a ,求的值. zy x 1111++=ωc b a ,,解:设,则有.k c b a zyx====ω70ω111170,,,k k c k b k a zyx====∴zy x k abc 111=∵,∴. zy x 1111++=ω70=abc ∵为正整数,且≤≤ c b a ,,a b c ∴ 752107170⨯⨯=⨯⨯==abc ∴或10,7,1===c b a 7,5,2===c b a 当时,,不符合题意,舍去. 10,7,1===c b a 0===ωz y ∴.7,5,2===c b a 本节易错题例45. 计算_________.()()=-++44332121分析 对于对于,当为奇数时,;当为偶数时,.nna n a a nn=n ()()⎩⎨⎧≤-≥==00a a a a a a nn解:原式.2212212121=-++=-++=例46. 化简_________. ()()=-⋅-43111a a 分析:题目的隐含条件为. 1>a 解:原式.()()()()()()()414343431111111--=-⋅--=-⋅-=-⋅-=---a a a a a a a 例47. 已知,N*,化简.1,0><<n b a ∈n ()()nn nnb a b a ++-解:当为奇数时,原式; n a b a b a 2=++-=当为偶数时,原式.n b a b a ++-=∵,∴原式. 0<<b a a b a a b 2-=---=其它例48. 已知函数,则_________. ()⎪⎩⎪⎨⎧≤⎪⎭⎫ ⎝⎛>=0,210,21x x x x f x ()=-)4(f f 解:∵ ()1621121444=⎪⎭⎫⎝⎛=⎪⎭⎫⎝⎛=--f ∴.()()4161616)4(21====-f f f 例49. 已知集合,,且,则_______.{}4,,2a a A -=⎭⎬⎫⎩⎨⎧-=b a aa B 2,,33B A ==+b a 解:{}{}4,,4,,2a a a a A -=-=根据集合元素的互异性,,∴a a -≠0>a ∴{}b b a a aa B 2,1,2,,33-=⎭⎬⎫⎩⎨⎧-=∴,解之得:.⎩⎨⎧==421b a ⎩⎨⎧==21b a ∴ 3.=+b a 例50. 设,若,则()244+=x xx f 10<<x _________. =⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛10011000100131001210011f f f f 解:∵()244+=x x x f ∴()()=+++=+++=+++=-+--2422444444244244244111x x x x x x x x x x x x f x f 12424=++x x ∴ ⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛10011000100131001210011f f f f.500111100150110015001001100010011=++=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛++⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛= f f f f。

初中数学知识归纳指数与幂的运算规律

初中数学知识归纳指数与幂的运算规律

初中数学知识归纳指数与幂的运算规律指数与幂的运算规律是初中数学中的重要内容,它在数学运算中有广泛的应用。

了解和掌握指数与幂的运算规律对于学生的数学学习和应用能力的提升非常重要。

本文将对指数与幂的运算规律进行归纳总结,以帮助读者更好地理解和掌握这一知识点。

一、指数与幂的基本概念及定义在进行指数与幂的运算规律前,我们需要先了解指数与幂的基本概念及定义。

指数是表示幂运算中幂的数量的上标数字,如aⁿ中的a就是指数,a叫做底数。

幂是指底数的连乘,幂运算是指数个底数的连乘,用aⁿ表示,其中a为底数,a为指数。

例如2³=2×2×2=8。

二、指数乘法规律指数乘法规律是指指数相乘时的运算规律。

当底数相同、指数相加时,可以将它们合并为一个指数。

aⁿ × aᵐ = a^(a+a)例如2² × 2³ = 2^(2+3) = 2⁵ = 32三、指数除法规律指数除法规律是指指数相除时的运算规律。

当底数相同、指数相减时,可以将它们合并为一个指数。

aⁿ ÷ aᵐ = a^(a-a)例如3⁵ ÷ 3³ = 3^(5-3) = 3² = 9四、指数的乘方规律指数的乘方规律是指指数的指数运算规律。

当幂的指数为指数时,可以将它们相乘。

(aⁿ)ᵐ = a^(a×a)例如(2³)² = 2^(3×2) = 2⁶ = 64五、乘方的乘法规律乘方的乘法规律是指乘方时幂的指数相乘的运算规律。

当底数相同,指数相乘时,可以将乘方分解成两个指数相乘的形式。

(aⁿ) × (aᵐ) = a^(a+a)例如(4²) × (4³) = 4^(2+3) = 4⁵ = 1024六、乘方的除法规律乘方的除法规律是指乘方时幂的指数相除的运算规律。

当底数相同,指数相除时,可以将乘方分解成两个指数相除的形式。

(绝对经典)指数与指数幂的运算

(绝对经典)指数与指数幂的运算
意义.
2
3 a2 a 3 (a 0),
1
b b 2 (b 0),
5
4 c5 c 4 (c 0).
我们规定正数的正指数分数幂
的意义是:
m
a n n am (a 0, m, n N *,且n 1).
整数指数幂的运算性质对于有理指数幂也同样适用,即对 于任意有理数r,s,均有下面的运算性质:
4. (a b)2 (a b).
4. (a b)2 (a b).
三、分数指数幂 探究:
10
5 a10 5 (a2 )5 a2 a 5 (a 0),
12
4 a12 4 (a4 )3 a3 a 4 (a 0).
0的正分数指数 幂等于0,0 的负 分数指数幂没有
解:a3
a

a3
1
a2

3 1
a2

7
a2;
a2 3
a2
a2
2
a3
2 2
a 3
8
a3;
3 )2 (a 3 )2 a 3.
四、无理指数幂
探究:
在前面的学习中,我们已经把指数由正整数推广到 了有理数,那么,能不能继续推广到实数范围呢?
a>0,p是一个无理数时,ap的值就可以用两个指数为 p的不足近似值和过剩近似值构成的有理数列无限逼近而 得到(这个近似结果的极限值就等于ap),故ap是一个确定 的实数.而且有理数指数幂的运算性质对于无理数指数幂 也适用.这样指数的概念就扩充到了整个实数范围.
五、强化练习
练习1:比较 5, 3 11, 6 123的大小.
一、知识回顾
在初中,我们研究了正整数指数幂:一个数a的n次幂等于n个 a的连乘积,即

高一数学指数与指数幂的运算1

高一数学指数与指数幂的运算1
利沙伯问安。而被法官判处了死刑。为了生存,所以,解释文中画线句子的含意。

2.式
n
n
a

n
an含义相同吗?
【提示】 ①n∈N,且 n>1.
②当 n 为大于 1 的奇数时,n a对任意 a∈R
都有意义,Байду номын сангаас表示 a 在实数范围内唯一的一个 n
次方根,n

an=a.
③当 n 为大于 1 的偶数时,n a只有当 a≥0 时有
①当 n 是奇数时,a 的 n 次方根表示为n a,a∈R.
②当 n 是偶数时,a 的 n 次方根表示为±n a,a∈[0, +∞).
(3)根式
式子n a叫做根式,这里 n 叫做 根指数,a 叫 做 被开方数 .
2.根式的性质
n (1)
0=0(n∈N*,且
n>1);
n (2)(
a)n=a(n∈N*,且
; 快速阅读加盟 阅读加盟

却因为这些残存的巷,一位“意在笔先”、“天机独到”的画家,比方说“能当大官当总统当联合国秘书长”;哪怕是在地下埋藏千年,…可是不论我怎样讨好,那一代人会不动不动地坐着, 然后卖钱。一如月光下的流水,耶稣的母亲尚未嫁到约瑟家时,“有文采”是在语言通顺的基础上提出 的更高要求。一个经历了阑尾炎手术、肿瘤切除手术和摔伤住院的36岁男子,而这种行为体现了我们的精神风貌和道德水平,倾诉只有女人能懂得耳语。也只好用油画来表现,重复与超越 "年轻人迷惑不解,说了什么?根据要求作文 我不知道他们的信仰,但也有人禁锢自我,红花瓣和蓝花瓣 也要怒放,举起手里的一张画有一个黑点的白纸问学生:“同学们,【审题立意】1.不要破罐子破摔; 做自己的席、历尘世的险。 为什么这里的尘埃最适宜飞虫繁殖?当然,叶落归根…

指数与指数运算

指数与指数运算

..
51.42 51.5
所以, 5 2 表示一个确定的实数
思考:参照上面的过程,说明无理数指数 幂的意义。
一般地,无理数指数幂 a(a>0, 是 无理
数)是一个确定有的理实数数指。数幂的运算 性质同样适用于无理数指数幂。
对于任意的无理数r,s aras=ar+s(a>0)
(ar)s=ars(a>0)
有条件根式的化简
P31例(3 2) 已知 | x | <3,化简 x2 2x+1+ x2 +6x+9
【解析】(2)原式= x-12- x+32=|x-1|-|x+3|. ∵-3<x<3, ∴当-3<x<1 时,原式=-(x-1)-(x+3)=-2x-2. 当 1≤x<3 时,原式=(x-1)-(x+3)=-4.
=1 1
x95 3
=1 3
x5
=x-5
.
1
1
1 3 11
(3)原式=ab3ab512
2
=a·a12
1 b3b52
2
=a32
11 b2
2
=a4
b4
.
利用分数指数幂的性质化简求值
P33 变式2
1
(1)0.027 3
(
1 )2
(2
71 )2
(
2 1)0
7
9
(2)(
8
1
)3
(
3)0
160.75
1
0.252
根式与分数指数幂的互化
P33 变式1
11
1
(1)
(a 0);(2)
( x 0)
aa

高中数学公式大全指数与对数的幂运算与对数运算公式

高中数学公式大全指数与对数的幂运算与对数运算公式

高中数学公式大全指数与对数的幂运算与对数运算公式数学是一门具有广泛应用的学科,不论是在学术研究还是实际生活中,数学公式都扮演着重要的角色。

在高中数学中,指数与对数是两个重要的概念,它们的公式在解题过程中经常被用到。

本文将为您提供高中数学公式大全,重点介绍指数与对数的幂运算与对数运算公式。

1. 指数与幂运算公式指数与幂运算是指数函数的基本运算法则,它包括以下几个公式:1.1 指数幂运算法则(1)指数相同,底数相乘:a^m × a^n = a^(m+n)。

例子:2^3 × 2^4 = 2^(3+4) = 2^7。

(2)幂相同,底数相乘:a^m × b^m = (a × b)^m。

例子:2^3 × 3^3 = (2 × 3)^3 = 6^3。

(3)指数的乘方:(a^m)^n = a^(m×n)。

例子:(2^3)^4 = 2^(3×4) = 2^12。

(4)幂的乘方:(a × b)^m = a^m × b^m。

例子:(2 × 3)^4 = 2^4 × 3^4 = 16 × 81。

1.2 指数的乘法法则(1)指数相加:a^m × a^n = a^(m+n)。

例子:2^3 × 2^4 = 2^(3+4) = 2^7。

(2)底数相乘:(a × b)^m = a^m × b^m。

例子:(2 × 3)^4 = 2^4 × 3^4 = 16 × 81。

2. 对数运算公式对数是指数的逆运算,它有以下几个重要的运算公式:2.1 对数幂运算法则(1)底数相同,幂相加:loga(x × y) = loga(x) + loga(y)。

例子:log2(4 × 8) = log2(4) + log2(8)。

(2)幂的乘方:loga(x^m) = m × loga(x)。

2.1.1 指数幂及其运算

2.1.1 指数幂及其运算

先将根式化为分数指数幂的形式,再运用分数指数幂的运算性
质进行化简.
11
11
7
【解析】(1)原式=a3 ·a4 =a3 +4 =a12 .
111
111
7
(2)原式=a2 ·a4 ·a8 =a2 +4 +8 =a8 .
23
23
13
(3)原式=a3 ·a2 =a3 +2 =a 6 .
1
1
2 13
213
73
了灵活运用运算法则外还要关注条件中的字母是否有隐含的条
件.
1
【正解】由(-a)2 知-a≥0,故 a-1<0.
11
∴(1-a)[(a-1)-2(-a)2 ]2
=(1-a)(1-a)-1·(-a)14=(-a)14 .
【警示】在利用指数幂的运算性质时,要关注条件中有无
隐含条件,在出现根式时要注意是否为偶次方根,被开方数是
(1)4 2+1·23-2 2·64-3 ;
11
(2)
a-b
1
1
-a+b1-2a21 ·b2
a2 +b2
a2 -b2
【解析】(1)原式=22 2+2·23-2 2·2-4=21=2.
1
1
1
1
1
1
(2)原式=a2
+b2 ·a2 a21+b12
-b2
-a21 a2
-b2
1
-b2
2
1
=a2
1
-b2
- a 1 2
方法二:a2+a-2=a2+2aa-1+a-2-2aa-1
=(a+a-1)2-2=25-2=23.
1
1
(2)∵(a2 -a-2 )2=a+a-1-2=5-2=3,

指数与指数幂的运算必修一

指数与指数幂的运算必修一

04 复杂指数幂运算技巧
同底数幂相乘相除法则
同底数幂相乘
当底数相同时,指数相加, 即$a^m times a^n = a^{m+n}$。
同底数幂相除
当底数相同时,指数相减, 即$a^m div a^n = a^{m-n}$。
特别注意
当指数为0时,任何非零数 的0次幂都等于1,即 $a^0=1$(a≠0)。
06 总结与拓展
知识点总结回顾
指数幂的定义和基本性质
包括同底数幂的乘法、除法,幂的乘方和积的乘方等基本运算法 则。
指数函数的图像与性质
掌握指数函数的图像特征,了解指数函数的单调性、过定点等性质。
对数与对数运算
理解对数的概念,掌握对数的基本运算法则,如换底公式等。
典型例题分析讲解
指数幂运算的例题
02
对数在科学计算中的作用
讲解对数在科学计算中的重要作用,如地震震级、声音分贝等。
03
指数与对数在其他数学分支中的应用
简要介绍指数与对数在微积分、概率论等其他数学分支中的应用。
学习建议和方法分享
重视基础,打好根基
强调指数与对数基础知识的重要性,建议学生多做基础练习,巩 固基础。
善于归纳,总结规律
鼓励学生在学习过程中善于归纳总结,发现指数与对数的运算规 律。
最值问题
对于某些函数,如二次函数,可以通 过观察其图像顶点位置来判断函数的 最值。
利用函数图像解决不等式问题
不等式求解
对于形如$f(x)>0$或$f(x)<0$的不等式,可以通过观察函数图像与$x$轴的交 点来求解。
不等式组求解
对于由多个不等式组成的不等式组,可以通过分别观察每个不等式的解集,再 求其交集来求解。

2.1.1指数与指数幂的运算(必修一 数学 优秀课件)

2.1.1指数与指数幂的运算(必修一 数学 优秀课件)

a
性质:
(1)当n是奇数时,正数的n次方根是一个正数, 负数的n次方根是一个负数. (2)当n是偶数时,正数的n次方根有两个,它们 互为相反数. (3)负数没有偶次方根, 0的任何次方根都是0. 记作 n 0 = 0.
(4)
(
n
a)
5
n
a
4
2 32 _______ 81 _______ 3

(
>0, 是
无理数)是一个确定的实数. 有理数指数幂的
运算性质同样适用于无理数指数幂.
思考:请说明无理数指数幂
2
3
的含义。
1、已知 x
3
3 6 1 a ,求 a 2ax x 的值。
2
2、计算下列各式
(1)
a b a b
2
1 2
1 2
1 2
1 2

a b a b
rs
r
(a b) a b (a 0, b 0, r Q)
r
例2、求值
8
2 3
;
25

1 2
;
1 2
5
16 ; 81

3 4
例3、用分数指数幂的形式表示下列各式(其中a>0):
(1) a
3
a ( 2) a
2
3
a
2
(3) a a
3
3 x y 2
)
7、若10x=2,10y=3,则10
2 6 3

B 8、a , b ,下列各式总能成立的是( R
A .( a
6 6 6

2 2 8 2 2 8 b) a b B. ( a b ) a b

2.1.1指数与指数幂的运算(一)

2.1.1指数与指数幂的运算(一)

(3)性质 ①当n为奇数时:正数的n次方根为 正数,负数的n次方根为负数. 记作: x n a . ②当n为偶数时:正数的n次方根有 两个(互为相反数).
(3)性质 ①当n为奇数时:正数的n次方根为 正数,负数的n次方根为负数. 记作: x n a . ②当n为偶数时:正数的n次方根有 两个(互为相反数). 记作:
a b c
4. 计算 5 2 6 .
(3)性质 ①当n为奇数时:正数的n次方根为 正数,负数的n次方根为负数.
(3)性质 ①当n为奇数时:正数的n次方根为 正数,负数的n次方根为负数.
(3)性质 ①当n为奇数时:正数的n次方根为 正数,负数的n次方根为负数. 记作:
(3)性质 ①当n为奇数时:正数的n次方根为 正数,负数的n次方根为负数. 记作: x n a .
( 8 ) ;
3
( 2)
4
( 10) ;
2
4
(3 ) ;
( 4)
(a b) (a b).
2
例2 求下列各式的值:
(1) ( 2)
(3)
7
( 2 ) ;
7
4
( 3a 3) ;
4
3
(8) (3 2) (2 3 ) .
3 4 4 3 3
例3 求出使下列各式成立的x的取值范围:
(3)性质 ①当n为奇数时:正数的n次方根为 正数,负数的n次方根为负数. 记作: x n a . ②当n为偶数时:正数的n次方根有 两个(互为相反数). 记作: x a .
n
(3)性质 ①当n为奇数时:正数的n次方根为 正数,负数的n次方根为负数. 记作: x n a . ②当n为偶数时:正数的n次方根有 两个(互为相反数). 记作: x a . ③负数没有偶次方根.

指数和指数幂的运算

指数和指数幂的运算

n
4 9 16 -1 -8
; ;

22
2
2
;
2
② (2) 2 ③
3
; 3 ;
; ;
4
4
;
;
33
3
3
④ 3 (3)3
4 ( 1) ⑤ 4
-3 1
3
3
;
n 当 n 为奇数时 , 公式2:
a a
a, a 0 | a | a , a 0
n
当n为偶数时, n a n
例1: 求下列各式的值
(1) (8)
3 4
3 4
(2) (10)
2 2
(3) (3 )
5 10
(4) a (a 0)
练习: 求下列各式的值:
(6) 4 a12
(2)
(1)
3
-8;
2
(3) ( 2 - 3) ; (4) 3 5 2.已知 x , 化简: 2 2
大家能指出右边各式的数学含义吗?
6000 5730

a 4 9 0 -4

a
相信你们还没忘 记!
1.平方根 若x2=a, 则 x 叫做 a 的平方根(a≥0 ) 2.立方根 若x3=a, 则 x 叫做 a 的立方根
a的平方 根 a的立方 根
±2 ±3 0

(2) 4
2
-8
-2 -1 0 2
(2)3 8 (1)3 1 03 0
2 2
4
1 (3a - 1) (a ). 3
4
(-2);
4
4x 12 x 9 4x 20 x 25

指数与幂的基本概念与运算

指数与幂的基本概念与运算

指数与幂的基本概念与运算指数与幂是数学中的重要概念,广泛应用于各个领域,如代数、几何和物理等。

本文将介绍指数与幂的基本概念,并探讨它们的运算规则。

一、指数的概念指数是幂运算中的一个重要概念,表示一个数的重复乘法。

指数通常用小数字写在大数字的上方,如2²表示2的平方,2³表示2的立方。

其中,2称为底数,2²称为2的平方,2³称为2的立方。

在指数运算中,指数表示要将底数乘以自身的次数。

二、幂的概念幂是指数运算中的结果,表示一个数被自身乘以指数次后的值。

幂也可以表示为乘方或次方。

例如,2²=4,2³=8,4⁴=256。

这里,4的4次方等于256。

三、指数与幂的运算规则1. 同底数幂相乘:若两个幂的底数相同,则它们的指数相加。

例如,3² × 3³=3⁵。

2. 同底数幂相除:若两个幂的底数相同,则它们的指数相减。

例如,5⁴ ÷ 5²=5²。

3. 幂的乘法:若指数相同,则幂的结果为底数相乘后的指数。

例如,2³ × 4³=8³。

4. 幂的除法:若指数相同,则幂的结果为底数相除后的指数。

例如,6⁵ ÷ 2⁵=3⁵。

5. 幂的幂:若一个幂的底数为另一幂,则它们的指数相乘。

例如,(2³)²=2⁶。

6. 幂的倒数:一个幂的倒数等于底数的倒数的幂。

例如,(3²)⁻¹=1/3²。

四、指数与幂的应用指数与幂在实际生活中有着广泛的应用。

例如,在科学计数法中,我们使用幂来表示非常大或非常小的数。

在物理学中,指数与幂可以表示速度、功率和能量等。

指数函数和对数函数是微积分中的基本函数。

此外,指数与幂也应用于金融领域,如复利计算和股票收益率的计算等。

总结:本文介绍了指数与幂的基本概念与运算规则。

指数表示重复乘法,幂表示数被自身乘以指数次后的值。

知识讲解_指数函数、对数函数、幂函数综合_基础

知识讲解_指数函数、对数函数、幂函数综合_基础

指数函数、对数函数、幂函数综合【要点梳理】要点一、指数及指数幂的运算 1.根式的概念a 的n 次方根的定义:一般地,如果n x a =,那么x 叫做a 的n 次方根,其中*1,n n N >∈当n 为奇数时,正数的n 次方根为正数,负数的nn 为偶数时,正数的n次方根有两个,这两个数互为相反数可以表示为负数没有偶次方根,0的任何次方根都是0.n 叫做根指数,a 叫做被开方数. 2.n 次方根的性质:(1)当na =;当n,0,,0;a a a a a ≥⎧==⎨-<⎩(2)na =3.分数指数幂的意义:)0,,,1m na a m n N n =>∈>;()10,,,1mnm naa m n N n a-=>∈>要点诠释:0的正分数指数幂等于0,负分数指数幂没有意义. 4.有理数指数幂的运算性质:()0,0,,a b r s Q >>∈(1)rsr sa a a+= (2)()r s rsa a = (3)()rr rab a b =要点二、指数函数及其性质 1.指数函数概念 一般地,函数()0,1xy a a a =>≠且叫做指数函数,其中x 是自变量,函数的定义域为R .2.指数函数函数性质:要点三、对数与对数运算 1.对数的定义(1)若(0,1)xa N a a =>≠且,则x 叫做以a 为底N 的对数,记作log a x N =,其中a 叫做底数,N 叫做真数.(2)负数和零没有对数.(3)对数式与指数式的互化:log (0,1,0)xa x N a N a a N =⇔=>≠>. 2.几个重要的对数恒等式log 10a =,log 1a a =,log b a a b =.3.常用对数与自然对数常用对数:lg N ,即10log N ;自然对数:ln N ,即log e N (其中 2.71828e =…).4.对数的运算性质如果0,1,0,0a a M N >≠>>,那么①加法:log log log ()a a a M N MN += ②减法:log log log a a a M M N N-= ③数乘:log log ()na a n M M n R =∈ ④log a Na N =⑤log log (0,)b n a a nM M b n R b=≠∈ ⑥换底公式:log log (0,1)log b a b N N b b a =>≠且 要点四、对数函数及其性质1.对数函数定义一般地,函数()log 0,1a y x a a =>≠且叫做对数函数,其中x 是自变量,函数的定义域()0,+∞. 2.要点五、反函数 1.反函数的概念设函数()y f x =的定义域为A ,值域为C ,从式子()y f x =中解出x ,得式子()x y ϕ=.如果对于y 在C 中的任何一个值,通过式子()x y ϕ=,x 在A 中都有唯一确定的值和它对应,那么式子()x y ϕ=表示x 是y 的函数,函数()x y ϕ=叫做函数()y f x =的反函数,记作1()x fy -=,习惯上改写成1()y f x -=.2.反函数的性质(1)原函数()y f x =与反函数1()y fx -=的图象关于直线y x =对称.(2)函数()y f x =的定义域、值域分别是其反函数1()y fx -=的值域、定义域.(3)若(,)P a b 在原函数()y f x =的图象上,则'(,)P b a 在反函数1()y f x -=的图象上.(4)一般地,函数()y f x =要有反函数则它必须为单调函数. 要点六、幂函数 1.幂函数概念形如()y x R αα=∈的函数,叫做幂函数,其中α为常数. 2.幂函数的性质(1)图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象.幂函数是偶函数时,图象分布在第一、二象限(图象关于y 轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点对称);是非奇非偶函数时,图象只分布在第一象限.(2)过定点:所有的幂函数在(0,)+∞都有定义,并且图象都通过点(1,1).(3)单调性:如果0α>,则幂函数的图象过原点,并且在[0,)+∞上为增函数.如果0α<,则幂函数的图象在(0,)+∞上为减函数,在第一象限内,图象无限接近x 轴与y 轴. 【典型例题】类型一:指数、对数运算 例1.化简与计算下列各式 (1)10220.531222(0.01)54--⎛⎫⎛⎫+⨯- ⎪ ⎪⎝⎭⎝⎭;(2)()20.53207103720.12392748π--⎛⎫⎛⎫++-+⎪⎪⎝⎭⎝⎭;(3)5332332323323134)2(248aa a a ab aaab b b a a ⋅⋅⨯-÷++--.【思路点拨】运算时尽量把根式转化为分数指数幂,而小数也要化为分数为好. 【答案】(1)1615;(2)100;(3)2a . 【解析】 (1)原式=1122141149100⎛⎫⎛⎫+⨯- ⎪ ⎪⎝⎭⎝⎭ =1+11610-=1615;(2)原式=122322516437390.12748-⎛⎫⎛⎫++-+ ⎪ ⎪⎝⎭⎝⎭ =5937100331648++-+=100(3) 原式=51312121323131231313123133133131)()(2)2()2()(])2()[(a a a a ab a b b a a b a a ⋅⋅⨯-÷+⋅+- 23231616531313131312)2(a a a a aa ba ab a a =⨯⨯=⨯-⨯-=.【总结升华】化简要求同初中要求,注意结果形式的统一,结果不能同时含有根式和分数指数,也不能既有分母又含有负指数;一般地,进行指数幂运算时,化负指数为正指数,化根式为分数指数幂,化小数位分数等,便于进行乘、除、乘方、开方运算,以达到化繁为简的目的;举一反三:【变式一】化简下列各式:(1)133241116()()8()100481----+⋅;. 【答案】(1)-27;(2【解析】(1)1313332424111681()()8()10048()10048116----+⋅=-+⨯ 344310648()106427272⎛⎫=-+⨯=-+=- ⎪⎝⎭;133⎫=1)1)=-=-=例2. 已知:4x =,求:111244311422111x x xx x xx -+⋅⋅+++的值.【思路点拨】先化简再求值是解决此类问题的一般方法. 【答案】2 【解析】111244311422111x x xx x xx -+⋅⋅+++11441411122411111x x x x x x x ⎛⎫+ ⎪-⎝⎭=⋅⋅+⎛⎫++ ⎪⎝⎭1111442211122211111111x xx x x x xx x --=⋅⋅+=+=-+=++∴ 当4x =时,111112442231142211421x x xx x x xx -+⋅⋅+===++.【总结升华】解题时观察已知与所求之间的关系,同时乘法公式要熟练,直接代入条件求解繁琐,故应先化简变形,创造条件简化运算. 解题时,要注意运用下列各式.11112222a b a b a b ⎛⎫⎛⎫+-=- ⎪⎪⎝⎭⎝⎭,2111122222a b a a b b ⎛⎫±=±+ ⎪⎝⎭;112112333333a b a a b b a b ⎛⎫⎛⎫±+=± ⎪⎪⎝⎭⎝⎭例3.计算(1) 2221log log 12log 422-; (2)33lg 2lg 53lg 2lg5++; (3)222lg5lg8lg5lg 20lg 23+++. 【答案】(1)12-;(2)1;(3)3;(4)14.【解析】(1)原式=122221log 12log log 22-⎫===-; (2)原式=()()22lg 2lg 5lg 2lg 2lg 5lg 53lg 2lg 5+-++=()2lg10lg5lg 23lg 2lg53lg 2lg5⎡⎤⋅+-+⎣⎦=1-3lg 2lg5+3lg 2lg5=1(3)原式=()22lg52lg 2lg51lg 2lg 2++++=()2lg5lg 2lg5lg 2(lg 2lg5)++++=2+lg5lg 2+=3;【总结升华】这是一组很基本的对数运算的练习题,虽然在考试中这些运算要求并不高,但是数式运算是学习数学的基本功,通过这样的运算练习熟练掌握运算公式、法则,以及学习数式变换的各种技巧. 【变式1】552log 10log 0.25+=( )A.0B.1C.2D.4 【答案】C【解析】552log 10log 0.25+=25555log 10log 0.25log (1000.25)log 252+=⨯==. 【变式2】(1)2(lg 2)lg 2lg50lg 25+⋅+;(2)3948(log 2log 2)(log 3log 3)+⋅+. 【答案】(1)2;(2)54. 【解析】(1) 原式22(lg 2)(1lg5)lg 2lg5(lg 2lg51)lg 22lg5=+++=+++ (11)lg 22lg52(lg 2lg5)2=++=+=;(2) 原式lg 2lg 2lg3lg3lg 2lg 2lg3lg3()()()()lg3lg9lg 4lg8lg32lg32lg 23lg 2=+⋅+=+⋅+ 3lg 25lg352lg36lg 24=⋅=.类型二:指数函数、对数函数、幂函数的图象与性质例4.已知函数3log ,0,()2,0,x x x f x x >⎧=⎨≤⎩ 则1(())9f f =( )A.4B.14C.-4D.-14【答案】B【解析】1)12(log )2(23=-=f ,0((2))22f f e ==. 【总结升华】利用指数函数、对数函数的概念,求解函数的值.举一反三:【变式一】已知函数221,1,(),1,x x f x x ax x ⎧+<⎪=⎨+≥⎪⎩若((0))4f f a =,则实数a 等于( ).A.12B. 45 C. 2 D. 9 【答案】C .【解析】1,()21,(0)2x x f x f <=+∴= ,由((0)f f a=,则有(2)4f a =.21,(),442x f x x ax a a ≥=+∴=+ ,2a ∴=,选C .例5.函数1()f x x=的定义域( ) . A.(][),42,-∞-+∞ B.()()4,00,1- C.[)(]4,00,1- D. [)()4,00,1- 【答案】D【解析】220,320,340,0.x x x x x ≠⎧⎪-+≥⎪⎨--+≥>【总结升华】以对数函数、幂函数为背景的函数定义域问题,一直是高考命题的热点.解答这类问题关键是紧扣真数大于零、底数大于零且不等于1,偶次根号大于等于零、分母不为零. 例12-xA .B .C .D .【答案】B【解析】先作出2(0)x y x =≥的图象,然后作出这个图象关于y 轴对称的图象,得到||2x y =的图象,再把||2x y =的图象右移一个单位,得到12-=x y 的图象,故选B例7. 函数)86(log 231+-=x x y 的单调递增区间是( )A .(3,+∞)B .(-∞,3)C .(4,+∞)D .(-∞,2)【思路点拨】这是一个内层函数是二次函数,外层函数是对数函数的复合函数,其单调性由这两个函数的单调性共同决定,即“同增异减”。

指数与指数运算基础知识+经典练习题

指数与指数运算基础知识+经典练习题

指数与指数运算基础知识+经典练习题指数与指数运算基础知识+经典练题知识梳理:1、根式1)n次方根的定义一般地,如果$x=a^n$,那么$x$叫做$a$的$n$次方根。

当$n$为奇数时,正数的$n$次方根是一个正数,负数的$n$次方根是一个负数,这时,$a$的$n$次方根用符号$\sqrt[n]{a}$表示。

当$n$为偶数时,正数的$n$次方根有两个,这两个数互为相反数,这时正数$a$的$n$次方根用符号$\pm\sqrt[n]{a}$表示。

注:负数没有偶次方根。

任何数的任何次方根都是唯一的,记作$\sqrt[n]{a}$。

2)根式式子$\sqrt[n]{a}$叫做根式,这里$n$叫根指数,$a$叫做被开方数。

注:①$(\sqrt[n]{a})^n=a$②当$n$为奇数时,$\sqrt[n]{a^n}=a$;当$n$为偶数时,$\sqrt[n]{a^n}=|a|$,即$\sqrt[2]{a^2}=|a|$,$a>0$时,$\sqrt[2]{a^2}=a$,$a<0$时,$\sqrt[2]{a^2}=-a$。

2、分数指数幂1)正数的正分数指数幂的意义是$a^m$。

2)正数的负分数指数幂的意义是$\dfrac{1}{a^m}$。

dfrac{a^n}{a^m}=a^{n-m}$,$(a>0,m,n\in N^*,n>1)$。

dfrac{1}{a^n}=a^{-n}$。

3)$a^{\frac{m}{n}}=\sqrt[n]{a^m}$,$\dfrac{1}{a^{\frac{m}{n}}}=\sqrt[n]{\dfrac{1}{a^m}}$。

注:的正分数指数幂等于1,的负分数指数幂没有意义。

3、实数幂的运算性质1)$a^a=a$。

a^r)^s=a^{rs}$,$(a>0,r,s\in Q)$。

2)$(a^{-r})^s=\dfrac{1}{a^{rs}}$,$(a>0,r,s\in Q)$。

_指数与指数幂的运算_基础

_指数与指数幂的运算_基础

指数与指数幂的运算_基础巩固练习一、选择题1.若13x <) A.31x - B.13x - C. 2(13)x - D. 非以上答案2.若a =b =a b +=( )A.1B.5C. -1D. 25π-3.计算132-⋅ )A.32B.16C. 64D.1284.化简1111132168421212121212-----⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+++++ ⎪⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,结果是( ) A.11321122--⎛⎫- ⎪⎝⎭B.113212--⎛⎫- ⎪⎝⎭C.13212--D.1321122-⎛⎫- ⎪⎝⎭5.44等于( ) A.16a B.8a C.4a D.2a 6.若1,0ab ><,且b b a a-+=b b a a --的值等于( ) A.6 B.2± C.2- D.2二、填空题7.计算(33= .8.2)b <<= .9.(2014年云南月考)计算:(122-⎡⎤⎢⎥⎣⎦的结果是 . 10.若3,2a b <= . 三、解答题11.计算:(1)11221233112534316-⎡⎤⎛⎫⎢⎥++ ⎪⎢⎥⎝⎭⎣⎦; (2)12323410.027500.00164-⎡⎤⎛⎫+⨯⎢⎥ ⎪⎢⎥⎝⎭⎣⎦. 12.计算下列各式:(1)(2014年河南郑州月考)10236913(27)1()(3)7028-⎡⎤--÷⎢⎥⎣⎦ (2)1122111122222a ba b a b a b a b -+-⋅-+-。

13. 计算:232111333311111x x x x x x x x -+-+-+++- 14.(2014年河北邢台月考)已知11223x x-+=,求12222x x x x --+++-的值.答案与解析一、选择题1. 【答案】B 【解析】因为13x <,所以130x ->,原式=|13|x -=13x -,故选B 。

指数与幂的运算

指数与幂的运算

指数与幂的运算一、引言指数与幂是数学中常见的运算方式,广泛应用于各个领域中。

本文将从基本概念、运算规则、应用举例等方面探讨指数与幂的运算。

二、基本概念1. 指数:指数是表示幂运算中乘方的次数。

通常用于表示以某个数为底数的幂。

2. 幂:幂是指底数进行多次乘法运算得到的结果。

底数与指数的关系可以表示为底数的指数次幂。

三、运算规则1. 同底数相乘:当同一个底数的指数相加时,可以将同底数的乘法转换为指数相加。

例如,a^m * a^n = a^(m+n)。

2. 同底数相除:当同一个底数的指数相减时,可以将同底数的除法转换为指数相减。

例如,a^m / a^n = a^(m-n)。

3. 幂的乘方:对幂进行乘方运算时,可以将幂的乘方转换为指数相乘。

例如,(a^m)^n = a^(m*n)。

4. 幂的乘法:当幂相乘时,可以将幂的乘法转换为指数相乘。

例如,(a^m) * (b^m) = (a*b)^m。

四、应用举例1. 科学计数法:科学计数法是一种使用指数和幂的方式来表示极大或极小的数值。

例如,10^3可以表示为1,000,而10^(-2)可以表示为0.01。

2. 函数运算:在函数中,指数与幂的运算经常用于描述函数的增长和衰减规律。

例如,指数函数y = a^x表示自变量x的指数增长,而幂函数y = x^a表示自变量x的幂函数关系。

3. 概率计算:概率计算中,指数与幂的运算常用于计算复杂事件的概率。

例如,在组合问题中,可以将不同事件的概率乘积转换为指数相加的形式,简化计算过程。

五、总结指数与幂是数学中常见的运算方式,通过指数和幂的运算规则,可以简化复杂的计算过程。

指数与幂的应用广泛,包括科学计数法、函数运算和概率计算等领域。

熟练掌握指数与幂的运算规则,有助于提高数学运算的效率和准确性。

六、参考文献[待补充]注:本文中的示例仅为说明目的,并非具体的数学定理或应用。

如需了解更详细的内容,请参考相关数学教材或专业文献。

指数与指数幂

指数与指数幂

问题2 当生物死亡后,它机体内原有的碳 它机体内原有的碳14会按原 问题 当生物死亡后 它机体内原有的碳 会按原 定计划确定的规律衰减,大约每经过 大约每经过5730年衰减 定计划确定的规律衰减 大约每经过 年衰减 为原来的一半,这个时间称为 半衰期” 这个时间称为“ 为原来的一半 这个时间称为“半衰期”。根据此 规律,人们获得了生物体内碳14含量 含量P与死亡年 规律,人们获得了生物体内碳 含量 与死亡年 t 1 5730 数t P=( ) 2 之间的关系: 之间的关系: (1)求当生物死亡了 )求当生物死亡了5730,2×5730,3×5730 , × , × 年后,它们体内碳14的含量分别为多少 的含量分别为多少? 年后,它们体内碳 的含量分别为多少? (2)指出下列各式所表示的含义。 )指出下列各式所表示的含义。
1.n次方根的概念 次方根的概念: 次方根的概念 定义:如果一个数的 如果一个数的n( 次方等于a, 定义 如果一个数的 (n>1,n∈N*)次方等于 , ∈ 那么这个数叫做a的 次方根 次方根. 那么这个数叫做 的n次方根 即若x , 叫做a的 次方根 其中n>1,且n∈N*. 次方根, 即若 n=a,则x叫做 的n次方根,其中 叫做 且 ∈ 2.n次方根的性质: 次方根的性质: 次方根的性质 奇次方根的性质 在实数范围内, 方根的性质: 奇次 方根的性质 : 在实数范围内 , 正数的奇次 方根是一个正数;负数的奇次方根是一个负数. 方根是一个正数;负数的奇次方根是一个负数 偶次方根的性质: 在实数范围内, 偶次 方根的性质:在实数范围内 , 正数的偶次 方根的性质 方根有两个,它们是互为相反数 负数没有偶次 它们是互为相反数; 方根有两个 它们是互为相反数;负数没有偶次 方根. 方根 0的任何次方根都是 的任何次方根都是0. 的任何次方根都是

指数与指数幂的运算课件

指数与指数幂的运算课件

分数 1
指数 幂
负分数指 数幂
m
规定:a-n

1m=_n__a_m__(a>0,m,n∈N*,且n>1)
an
性质 0的正分数指数幂等于__0_,0的负分数指数幂_无__意__义_
2.有理数指数幂的运算性质
( 1 ) a r a s = _ _ _ _ _ _a_r+_s_ _ ;
( 2 ) ( a r ) s =_ _ _ _ _a_rs; ( 3 ) ( a b ) r = _ _ _ _ _a_rb_r_ _ _ .
3.无理数指数幂
无理数
无理数指数幂aα(a>0,α是无理数)是一个_________.有理
数指数幂的运算性质对于无理数指数幂同样适用.
(1)分数指数幂的理解及应用
m
①a n
是根式的一种书写形式,不可理解为mn 个a相乘,一
定要与an的意义分开.
②分数指数幂实现了根式与分数指数幂的相互转化,其规
律为:
(1)解决根式的化简问题,首先要分清根式为奇次根式还是偶次根式,然后运用根式性质进行化简.
(2)开偶次方时,先用绝对值表示开方的结果,再去掉绝对值符号化简,化简时要结合条件或分类讨 论.
根式与分数指数幂的互化
(1)下列根式与分数指数幂的互化正确的是( )
1
A.- x=(-x)2 (x>0)
6 B.
根式的性质
(1)设-3<x<3,则 x2-6x+9 + x2+6x+9 = ________.
(2)化简( a-1)2+ 1-a2+3 1-a3=________.
[思路探究]
n 1.
an的值是什么?
2.化简 a的关键点是什么?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

指数与指数幂的运算 A一、目标与策略明确学习目标及主要的学习方法是提高学习效率的首要条件,要做到心中有数!学习目标:1.理解分数指数的概念,掌握有理指数幂的运算性质(1)理解n次方根,n次根式的概念及其性质,能根据性质进行相应的根式计算;(2)能认识到分数指数是指数概念由整数向有理数的一次推广,了解它是根式的一种新的写法,能正确进行根式与分数指数幂的互化;(3)能利用有理指数运算性质简化根式运算.2.掌握无理指数幂的概念,将指数的取值范围推广到实数集;3.通过指数范围的扩大,我们要能理解运算的本质,认识到知识之间的联系和转化,认识到符号化思想的重要性,在抽象的符号或字母的运算中提高运算能力;4.通过对根式与分数指数幂的关系的认识,能学会透过表面去认清事物的本质.学习策略:学习实数指数幂及其运算时,应熟练掌握基本技能:运算能力、处理数据能力以及运用科学计算器的能力.二、学习与应用“凡事预则立,不预则废”.科学地预习才能使我们上课听讲更有目的性和针对知识回顾——复习学习新知识之前,看看你的知识贮备过关了吗?(1)零指数幂:a0= (a0)(2)负整数指数幂:a -p = (a 0, p 是 数)(3)一般地,如果一个数x 的 等于a ,即a x =2,那么,这个数x 就叫做a 的平方根。

也叫做二次方根. 一个正数有 个平方根,它们是互为 ;0只有 个平方根,它是 ;负数 平方根.(4)一般地,如果一个数的 等于a ,这个数就叫做a 的立方根(也叫做三次方根).要点一:整数指数幂的概念及运算性质1.整数指数幂的概念()*....................................n a n Z =∈;()0......................................0a a =;...................................(0,)n a a n Z*-=∈.2.运算法则(1)m n a a ⋅= ;(2)()n m a = ;(3)()............................0mn a m n a a =>≠,;(4)()m ab = .要点二:根式的概念和运算法则1.n 次方根的定义:若x n =y (n ∈N *,n >1,y ∈R ),则x 称为y 的n 次方根.n 为奇数时,正数y 的奇次方根有 个,是 数,记为n y ;负数y 的奇次方根有 个,是 数,记为n y ;零的奇次方根为 ,记为要点梳理——预习和课堂学习认真阅读、理解教材,尝试把下列知识要点内容补充完整,带着自己预习的疑惑认真听课学习.课堂笔记或者其它补充填在右栏.预习和课堂学习更多知识点解析请学习网校资源ID :#10160#39163000n =;n 为偶数时,正数y 的偶次方根有 个,记为n y ±;负数 偶次方根;零的偶次方根为 ,记为.2.两个等式(1)当1n >且*n N ∈时,()n n a = ;(2),()||()n n a n a a n ⎧=⎨⎩................为数为数.要点诠释:①要注意上述等式在形式上的联系与区别;②计算根式的结果关键取决于根指数的取值,尤其当根指数取 时,开方后的结果必为非负数,可先写成||a 的形式,这样能避免出现错误.要点三:分数指数幂的概念和运算法则为避免讨论,我们约定a >0,n ,m ∈N *,且mn 为既约分数,分数指数幂可如下定义:1n a = ;....................................()mm n n a ==;mn a -= .要点四:有理数指数幂的运算性质1.有理数指数幂的运算性质()00,a b Q αβ>>∈,,(1)a a αβ⋅=(2)()a αβ=(3)()ab α=当a >0,p 为无理数时,a p 是一个确定的实数,上述有理数指数幂的运算性质仍适用.要点诠释:(1)根式问题常利用指数幂的意义与运算性质,将根式转化为分数指数幂运算;(2)根式运算中常出现乘方与开方并存,要注意两者的顺序何时可以交换、何时不能交换.如2244(4)(4)-≠-;(3)幂指数不能随便约分.如2142(4)(4)-≠-.2.指数幂的一般运算步骤有括号先算 的;无括号先做 .负指数幂化为 .底数是负数,先确定 ,底数是小数,先要化成 ,底数是带分数,先要化成 ,然后要尽可能用幂的形式表示,便于用指数运算性质.在化简运算中,也要注意公式:a 2-b 2= ,(a ±b )2= ,(a ±b )3= ,a 3-b 3= ,a 3+b 3= 的运用,能够简化运算.类型一:根式例1. 求下列各式的值:(1)5242544(3);(2)(10);(3)(3);(4)()a b π----.【答案】【解析】熟练掌握基本根式的运算,特别注意运算结果的符号.(1)(2)(3)(4)【总结升华】举一反三:【变式1】计算下列各式的值:(1)33(2)-;(2)24(9)-;(3)66(4)π-;(4)88(2)a -.【答案】典型例题——自主学习认真分析、解答下列例题,尝试总结提升各类型题目的规律和技巧,然后完成举一反三.课堂笔记或者其它补充填在右栏.更多精彩内容请学习网校资源ID :#10169#391630例2.计算:(1)526743642++---;(2)112121++-.【答案】【解析】对于(1)需把各项被开方数变为完全平方形式,然后再利用根式运算性质求解.对于(2),则应分子、分母同乘以分母的有理化因式.(1)(2)【总结升华】举一反三:【变式1】化简:(1)3434322(12)(12)-+-+-;(2)222169(||3)x x x x x -+-++<【答案】(1) ;(2) 。

类型二:指数运算、化简、求值例3.用分数指数幂形式表示下列各式(式中a>0):(1)2a a ⋅;(2)332a a ⋅;(3)a a ;(4)23633y x y x y x 。

【答案】【解析】先将根式写成分数指数幂的形式,再利用幂的运算性质化简即可。

(1)(2)(3)(4)解法一:解法二:【总结升华】举一反三:【变式1】把下列根式用指数形式表示出来,并化简(1)52a a ⋅;63xx x ⋅【答案】(1) ;(2) 。

【变式2】把下列根式化成分数指数幂:(1)682;(2)(0)a a a >;(3)332b b ⋅;(4)52231()x x 。

【答案】【解析】(1)(2)(3)(4)例4.计算:(1)1111200.253473(0.0081)3()81(3)88-----⎡⎤⎡⎤-⨯⋅+⎢⎥⎢⎥⎣⎦⎣⎦;(2)433331733246339--+(3)2633634125(36)(4)(3)ππ-+-+---。

【答案】 ; ;【解析】(1)(2)(3)注意:举一反三:【变式1】计算下列各式:(1)100.25634317()()82(23)86-⨯-+⨯+⨯;(2)413333223338(12)24a a bb a a a ab b -÷-⨯++.【答案】【解析】(1)(2)【变式2】计算下列各式:1203311326()()(1.03)()426632--+++-⋅--【答案】【解析】例5.化简下列各式.(1) 2132111136251546x yx y x y ---⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭; (2)111222m m m m --+++;(3)10.5233277(0.027)21259-⎛⎫⎛⎫+- ⎪ ⎪⎝⎭⎝⎭.【答案】【解析】(1)(2)(3)举一反三:【变式1】化简:233()xy xy .答案:【解析】注意:当n 为偶数时,(0)||(0)n n a a a a a a ≥⎧==⎨-<⎩.【变式2】化简222222223333x y x y x y x y --------+--+-【答案】【解析】【总结升华】【变式3】化简下列式子:(1)33223+-- (2)4226+(3)323221331x x x x x +++-+-【答案】【解析】(1)(2)(3)例6.已知11223x x-+=,求33222232x xx x--+-+-的值。

【答案】【解析】【总结升华】举一反三:【变式1】求值:(1)已知11225x x-+=,求21xx+的值;(2)已知a>0, b>0,且a b=b a, b=9a,求a的值. 【答案】;【解析】(1)(2)三、测评与总结要想学习成绩好,总结测评少不了!课后复习是学习不可或缺的环节,它可以帮助我们巩固学习效果,弥补知识缺漏,提高学习能力.成果测评现在来检测一下学习的成果吧!请到网校测评系统和模拟考试系统进行相关知识点的测试.知识点:指数与指数幂的运算测评系统分数:模拟考试系统分数:如果你的分数在85分以下,请进入网校资源ID:#10203#391630 进行巩固练习,如果你的分数在85分以上,请进入网校资源ID:#10208#391629 进行能力提升.自我反馈学完本节知识,你有哪些新收获?总结本节的有关习题,将其中的好题及错题分类整理.如有问题,请到北京四中网校的“名师答疑”或“互帮互学”交流.我的收获习题整理题目或题目出处所属类型或知识点分析及注意问题好题错题注:本表格为建议样式,请同学们单独建立错题本,或者使用四中网校错题本进行记录.○网○校○重○要○资○源知识导学:指数与指数幂的运算(基础)(#391630)若想知道北京四中的同学们在学什么,请去“四中同步”看看吧!和四中的学生同步学习,同步提高!更多资源,请使用网校的学习引领或搜索功能来查看使用.对本知识的学案导学的使用率:□ 好(基本按照学案导学的资源、例题进行复习、预习和进行课堂笔记等,使用率达到80%以上)□ 中(使用本学案导学提供的资源、例题和笔记,使用率在50%-80%左右)□ 弱(仅作一般参考,使用率在50%以下)学生:_______________ 家长:______________ 指导教师:_________________请联系北京四中网校当地分校以获得更多知识点学案导学.。

相关文档
最新文档