电磁场与微波技术 第二版 黄玉兰 课后答案[1-7章].khda

合集下载

第1章 电磁场矢量分析 答案khdaw

第1章  电磁场矢量分析 答案khdaw
xˆ yˆ zˆ (c) A B 1 9 1
2 43
xˆ( 27 4) yˆ( 2 3) zˆ( 4 18) xˆ31 yˆ5 zˆ14
1.4 / 1.1-4 用两种方法求 1.1-3 题矢量 A 和 B 的夹角 。
1
www.khd课后a答w案.网com
[解 1] A B AB cos
cos A B
www.khd课后a答w案.网com
(清华版)
钟顺时 延晓荣 钮茂德
上海大学通信与信息工程学院 2006.06
www.khd课后a答w案.网com
目录
第 1 章 矢量分析…………………………………………1~13 第 2 章 电磁场基本方程…………………………………14~22 第 3 章 静电场及其边值问题的解法……………………23~53 第 4 章 恒定电场和恒定磁场……………………………54~67 第 5 章 时变电磁场和平面电磁波………………………68~82 第 6 章 平面电磁波的反射与折射………………………83~99 第 7 章 电磁波的辐射与散射……………………………100~107 第 8 章 天线基础…………………………………………108~125
00
00
11 1 2 22
上二积分结果相同,故
A dv A ds
v
s
zˆ dxdy
1.12 / 1.2-5 应用散度定理计算下述积分: I [xˆxz2 yˆ x2 y z3 zˆ(2xy y2z)] ds , s
1
s 是 z=0 和 z (a 2 x 2 y 2 ) 2 所围成的半球区域的外表面,球坐标体积元为
[解] 设 ra xˆra cos yˆra sin rb xˆrb cos yˆrb sin

电磁场与微波技术第一二三章课后习题及部分答案

电磁场与微波技术第一二三章课后习题及部分答案

第 1 章 习 题1、 求函数()D Cz By Ax u +++=1的等值面方程。

解:根据等值面的定义:标量场中场值相同的空间点组成的曲面称为标量场的等值面,其方程为)( ),,(为常数c c z y x u =。

设常数E ,则,()E D Cz By Ax =+++1, 即:()1=+++D Cz By Ax E针对不同的常数E (不为0),对应不同的等值面。

2、 已知标量场xy u =,求场中与直线042=-+y x 相切的等值线方程。

解:根据等值线的定义可知:要求解标量场与直线相切的等值线方程,即是求解两个方程存在单解的条件,由直线方程可得:42+-=y x ,代入标量场C xy =,得到: 0422=+-C y y ,满足唯一解的条件:02416=⨯⨯-=∆C ,得到:2=C ,因此,满足条件的等值线方程为:2=xy3、 求矢量场z zy y y x xxy A ˆˆˆ222++=的矢量线方程。

解:由矢量线的微分方程:zy x A dz A dy A dx ==本题中,2xy A x =,y x A y 2=,2zy A z =, 则矢量线为:222zy dzy x dy xy dx ==,由此得到三个联立方程:x dy y dx =,z dz x dx =,zy dz x dy =2,解之,得到: 22y x =,z c x 1=,222x c y =,整理, y x ±=,z c x 1=,x c y 3±=它们代表一簇经过坐标原点的直线。

4、 求标量场z y z x u 2322+=在点M (2,0,-1)处沿z z y xy xx t ˆ3ˆˆ242+-=方向的方向导数。

解:由标量场方向导数的定义式:直角坐标系下,标量场u 在可微点M 处沿l 方向的方向导数为γβαcos cos cos zu y u x u l u ∂∂+∂∂+∂∂=∂∂α、β、γ分别是l 方向的方向角,即l 方向与z y xˆˆˆ、、的夹角。

《电磁场与电磁波》习题参考答案

《电磁场与电磁波》习题参考答案

《电磁场与电磁波》知识点及参考答案第1章 矢量分析1、如果矢量场F 的散度处处为0,即0F∇⋅≡,则矢量场是无散场,由旋涡源所产生,通过任何闭合曲面S 的通量等于0。

2、如果矢量场F 的旋度处处为0,即0F ∇⨯≡,则矢量场是无旋场,由散度源所产生,沿任何闭合路径C 的环流等于0。

3、矢量分析中的两个重要定理分别是散度定理(高斯定理)和斯托克斯定理, 它们的表达式分别是:散度(高斯)定理:SVFdV F dS ∇⋅=⋅⎰⎰和斯托克斯定理:sCF dS F dl∇⨯⋅=⋅⎰⎰。

4、在有限空间V 中,矢量场的性质由其散度、旋度和V 边界上所满足的条件唯一的确定。

( √ )5、描绘物理状态空间分布的标量函数和矢量函数,在时间为一定值的情况下,它们是唯一的。

( √ )6、标量场的梯度运算和矢量场的旋度运算都是矢量。

( √ )7、梯度的方向是等值面的切线方向。

(× )8、标量场梯度的旋度恒等于0。

( √ ) 9、习题1.12, 1.16。

第2章 电磁场的基本规律(电场部分)1、静止电荷所产生的电场,称之为静电场;电场强度的方向与正电荷在电场中受力的方向相同。

2、在国际单位制中,电场强度的单位是V/m(伏特/米)。

3、静电系统在真空中的基本方程的积分形式是:V V sD d S d V Q ρ⋅==⎰⎰和0lE dl ⋅=⎰。

4、静电系统在真空中的基本方程的微分形式是:V D ρ∇⋅=和0E∇⨯=。

5、电荷之间的相互作用力是通过电场发生的,电流与电流之间的相互作用力是通过磁场发生的。

6、在两种媒质分界面的两侧,电场→E 的切向分量E 1t -E 2t =0;而磁场→B 的法向分量B 1n -B 2n =0。

7、在介电常数为e 的均匀各向同性介质中,电位函数为 2211522x y z ϕ=+-,则电场强度E=5x y zxe ye e --+。

8、静电平衡状态下,导体内部电场强度、磁场强度等于零,导体表面为等位面;在导体表面只有电场的法向分量。

电磁场电磁波第2版答案

电磁场电磁波第2版答案

电磁场电磁波第2版答案【篇一:电磁场与电磁波答案(第四版)谢处方】给定三个矢量a、b和c如下: a?ex?ey2?ez3b??ey4?ezc?ex5?ez2求:(1)aa;(2)a?b;(3)a?b;(4)?ab;(5)a在b上的分量;(6)a?c;(7)a?(8)(a?b)?c和a?(b?c)。

(b?c)和(a?b)?c;解(1)aa?e?e2?e3a??ex?ey?eza(2)a?b?(ex?ey2?ez3)?(?ey4?ez)?ex?ey6?ez4?(3)a?b?(ex?ey2?ez3)?(?ey4?ez)?-11a?b??1 5,得 ??cos??()?135.abab8a?b (5)a在b上的分量 ab?aco? ?sab?bexeyez(4)由 co?sab?(6)a?c?12?3??ex4?ey13?ez10 0?2ex5exeyez1?ex8?ey5?ez20 ez5(7)由于b?c?0?40?2eya?b?12?3??ex10?ey1?ez40?41所以 a?(b?c)?(ex?ey2?ez3)?(ex8?ey5?ez20)??42(a?b)?c?(?ex10?ey1?ez4)?(ex5?ez2)??42ex5exa?(b?c)?1eyez(8)(a?b)?c??10?1?4?ex2?ey40?ez50?2ey5ez202?3?ex55?ey44?ez1181.2三角形的三个顶点为p(0,1,?2)、p(4,1,?3)和p(6,2,5)。

123(1)判断?ppp是否为一直角三角形;123(2)求三角形的面积。

解(1)三个顶点p(0,1,?2)、p(4,1,?3)和p(6,2,5)的位置矢量分别为123r1?ey?ez2,r2?ex4?ey?ez3,r3?ex6?ey2?ez5 则r12?r2?r1?ex4?ez, r23?r3, ?r?2ex2?ey?ez8r31?r1?r3??ex6?ey?ez7由此可见r12?r23?(ex4?ez)?(ex2?ey?ez8)?0故?pp为一直角三角形。

电磁场与电磁波基础教程(第2版)习题解答

电磁场与电磁波基础教程(第2版)习题解答

《电磁场与电磁波基础教程》(第2版)习题解答第1章1.1 解:(1)==A B=C(2))))23452A x y zB y zC x z ==+-=+=-,,;A a a a a a -a a a a a A(3)()()+2431223x y z x y z =+-+-+=--=+;A B a a a a a a A B (4)()()23411x y z y z ⋅=+-⋅-+=-;A B a a a a a (5)()()234104x y z y z x y z ⨯=+-⋅-+=---;A B a a a a a a a a (6)()()()1045242x y z x z ⨯⋅=-++⋅-=-;A B C a a a a a(7)()()()x 2104522405x y z x z y ⨯⨯=-++⨯-=-+A B C a a a a a a a a 。

1.2解:cos 68.56θθ⋅===︒;A B A BA 在B 上的投影cos 1.37B A θ===A ;B 在A 上的投影cos 3.21A B θ===B 。

1.3 解:()()()()()()()4264280⋅=-++-=正交A B 。

1.4 解:1110x x y y z z x y y z z y ⋅=⋅=⋅=⋅=⋅=⋅=,,;;a a a a a a a a a a a a 0x x y y z z ⨯=⨯=⨯=;a a a a a a x y z y z x z x y ⨯=⨯=⨯=;,a a a a a a a a a 。

1.5 解:(1)111000z z z z ρρϕϕρϕϕρ⋅=⋅=⋅=⋅=⋅=⋅=,,;,,a a a a a a a a a a a a ;000z z z z z ρρϕϕρϕϕρρϕ⨯=⨯=⨯=⨯=⨯=⨯=,,;,,a a a a a a a a a a a a a a a 。

电磁场与电磁波第二版课后答案

电磁场与电磁波第二版课后答案

电磁场与电磁波第二版课后答案本文档为《电磁场与电磁波》第二版的课后答案,包含了所有章节的练习题的答案和解析。

《电磁场与电磁波》是电磁学领域的经典教材,它讲述了电磁场和电磁波的基本原理和应用。

通过学习本书,读者可以深入了解电磁学的基本概念和原理,并且能够解决一些相关问题。

第一章绪论练习题答案1.电磁场是由电荷和电流产生的一种物质性质,具有电场和磁场两种形式。

电磁波是电磁场的振动。

电磁辐射是指电磁波传播的过程。

2.对于一点电荷,其电场是以该点为中心的球对称分布,其强度与距离成反比。

对于无限长直导线产生的电场,其强度与距离呈线性关系,方向垂直于导线轴线。

3.电磁场的本质是相互作用力。

电场力是由于电荷之间的作用产生的,磁场力是由于电流之间的作用产生的。

解析1.电磁场是由电荷和电流产生的物质性质。

当电荷存在时,它会产生一个电场,该电荷周围的空间中存在电场强度。

同时,当电流存在时,它会产生一个磁场,该电流所在的区域存在磁场。

电磁波是电磁场的振动传播。

电磁波是由电磁场的变化引起的,相邻电磁场的振动会相互影响,从而形成了电磁波的传播。

电磁辐射是指电磁波在空间中的传播过程。

当电磁波从一个介质传播到另一个介质时,会发生折射和反射现象。

2.在一点电荷产生的电场中,电场强度与该点到电荷的距离成反比,即\(E = \frac{{k \cdot q}}{{r^2}}\),其中\(E\)为电场强度,\(k\)为电场常数,\(q\)为电荷量,\(r\)为距离。

对于无限长直导线产生的电场,其电场强度与离导线的距离呈线性关系。

当离无限长直导线的距离为\(r\)时,其电场强度可表示为\(E = \frac{{\mu_0 \cdot I}}{{2 \pi \cdot r}}\),其中\(E\)为电场强度,\(\mu_0\)为真空中的磁导率,\(I\)为电流强度。

3.电磁场的本质是相互作用力。

当两个电荷之间有作用力时,这个作用力是由于它们之间的电场力产生的。

电磁学第二版习题答案第七章

电磁学第二版习题答案第七章

R1 < r < R2 : H ⋅ 2π r = I H = B = μ 2 H = 2

L
H ⋅ dl = ∑ I i
过所求点以 r 为半径作同心圆为闭合电路 L r < R1 : H ⋅ 2π r =
I Ir μ Ir ⋅ π r 2 , H = , B = μ1 H = 1 2 2 2 π R1 2π R1 2π R1
B = μ0 μ r1 H =
μ0 μr ( R32 − r 2 ) I 2 2π r ( R32 − R2 )
1
r > R3 : H ⋅ 2π r = I − I H = 0 B = 0 7.1.6 解:磁介质由于磁化在界面上出现面磁化电流,它们相当于两个无限大的均匀截流面由。 对称性分析可知:在平板内存在一个平行于导体板侧面且 B = 0 的平面在该平面的两侧 B 方向相 反。
第七章 习题
7.1.1 半径为 R 的均匀磁化介质球的磁化强度 M 与 z 轴平行,用球坐标写出球面上磁化电流面密度的 表达式,并求出其总磁矩 解:
α′ = M × n
即 α ′ = Mk × r = M sin θ eϕ 又∵ M = 7.1.2
2 1 1 2 1 2
H 2 = γ E (b −
B2 = μ0γ E
7.1.6
μr b μr b )=γE μr + μr μr + μr
2 1 1 2 1 2 1 2
μr μr b μr + μr
1 2
解: (1)

L
H ⋅dl = ∑ I i Ir μ Ir I B = μ1 H = 1 2 ⋅π r 2 H = 2 2 2π R1 2π R1 π R1

电磁场与电磁波第二版 (周克定 翻译) 答案

电磁场与电磁波第二版 (周克定 翻译) 答案

1
0 (Eaρ
)
•( ρ dφ dzaρ
)
=
ρl
/
ε0
E = ρl 2πε 0 ρ
m ∴
E
=
ρl 2πε 0 ρ

w.co 选取点 A 作为电位参考点 (点 A 和点 P 的φ hda 和 z 坐标相同 ) ,点 A 的 ρ = a 。
www.k 自由空间中任意点 P 的电位为
PA
∫ ∫ 答案网 VP =

⎧0 答
r<a
E(r) = 课⎪⎨ a后rk(r2 − a2 ) /(2ε0r2 ) a ≤ r ≤ b
⎩⎪ark(b2 − a2 ) /(2ε0r2 求穿过 r = b 的球面的电通量
∫ Ψ的Qf=总是量半s,径D即为空•bd间的s中球=总面Q的所f 自(=包案由单2围π电位网的k荷是自(b。w库由2w仑−电w.)a荷k2h)
答 后 课
b a
17
exercise 3.11 Solution:
假设无限长均匀带电导线位于坐标系的 z 轴,
mP co 导线上电荷的线密度为 ρl 。 daw. 空间中的电场强度可表示为 E = E(ρ )aρ www.kh 在以 z 轴为中轴、半径为 ρ 、高度为 1 的圆柱面上可利用高斯定律的
应用(Gauss) Divergence Theorem:
∫ ∫ (
∇ • Fdv = F • ds
v
s
∴ ∫ r • ds = ∫v ∇ • rdv
v 是以坐标原点为球心、半径为
b

b
y
球的体积 )

r
=
xax
+
yay

电磁场习题答案

电磁场习题答案

1-8 参照例图 1.1,设有标量 f ( R) ,求证:以 p ′( x ′, y ′, z ′) 为动点时的梯度 ∇ ′f ( R) 间与
以 p ( x, y, z ) 为 动 点 的 梯 度 ∇f ( R ) 间 满 足 关 系 : ∇ ′f ( R ) = −∇f ( R ) 。 其 中
R = r − r′ 。
∇• (AR) 。
答案: ∇ ? R = ; ∇ × R = 0; ∇ × ( R R ) = 0; ∇ ? AR ) = 3 A 。
( )
1-12 证明: ∇ • ( A × B) = B • (∇ × A) − A • (∇ × B) 。 1-13 证明旋度定理(1.47) 。
2 2 1-14 在圆球坐标系中, 已知 A = (sin θ R )a R + R sin θa θ + R sin θ cos ϕa ϕ , 求∇ • A 。
2
坐标原点一侧空间中的电场强度。 答案: E = 8.34( ax − 3a y + 6az ) 2—5
V m。
一点电荷 Q = 50 nC ,位于直角坐标系的原点,求点 (2,, 4 − 5) 处的电通量密度。
答案: D = 2—6
5 (2ax + 4a y − 5az ) 。 54π
两种理想电介质的相对介电常数分别为 ε r1 = 2.5和ε r 2 = 5 ,其分界面为 z = 0 的平 面。若已知介质 1 中的电场强度 E = 3a x + 4 a y + 6 a z ,求:① 介质 2 一侧的电场强 度 E2 和电位移矢量 D2 ;② E2 和 D2 是介质 2 中任意点处的场量表达式吗?为什 么? 答案:① E2 = 3ax + 4a y + 3az ; D2 = ε 0 (15ax + 20a y + 15az ) 。

微波技术答案(一二章)精品文档8页

微波技术答案(一二章)精品文档8页

题 解第 一 章1-1 微波是频率很高,波长很短的一种无线电波。

微波波段的频率范围为8103⨯Hz~12103⨯Hz ,对应的波长范围为1m~0.1mm 。

关于波段的划分可分为粗分和细分两种。

粗分为米波波段、分米波波段、厘米波波段、毫米波波段、亚毫米波段等。

细分为Ka K Ku X C S L UHF 、、、、、、、…等波段,详见表1-1-2。

1-2 简单地说,微波具有下列特点。

(1) 频率极高,振荡周期极短,必须考虑系统中的电子惯性、高频趋肤效应、辐射效应及延时效应;(2) 波长极短,“反射”是微波领域中最重要的物理现象之一,因此,匹配问题是微波系统中的一个突出问题。

同时,微波波长与实验设备的尺寸可以比拟,因而必须考虑传输系统的分布参数效应;(3) 微波可穿透电离层,成为“宇宙窗口”;(4) 量子特性显现出来,可用来研究物质的精细结构。

1-3 在国防工业方面:雷达、电子对抗、导航、通信、导弹控制、热核反应控制等都直接需要应用微波技术。

在工农业方面,广泛应用微波技术进行加热和测量。

在科学研究方面,微波技术的应用也很广泛。

例如,利用微波直线加速器对原子结构的研究,利用微波质谱仪对分子精细结构进行研究,机载微波折射仪和微波辐射计对大气参数进行测量等等。

第 二 章2-1 解 ∵01011Z Z Z Z +-=Γ 2-2 解 图(a )的输入阻抗021Z Z ab =; 图(b )的输入阻抗0Z Z ab =;图(c )的输入阻抗0Z Z ab =;图(d )的输入阻抗052Z Z ab =; 其等效电路自绘。

2-3 解 ∵01011Z Z Z Z +-=Γ 2-4 解 (1) ∵e j Z Z Z Z 40101122π=+-=Γ (2) ∵π2 =l β2-5 解 ∵ljZ Z l jZ Z Z Z tg βtg β10010++= 2-6 证明而I Z E I Z E U g 0-=-= 故2EU =+2-7 证明而 ρ11min =Z ,对应线长为1min l 故 1min 11min 1tg β1tg βρ1l Z j l j Z ++= 整理得 1min 1min 1tg βρρtgβ1l j l j Z --=2-8 解而给定的1Z 是感性复阻抗,故第一个出现的是电压腹点,即λ/4线应接在此处。

《电磁场微波技术与天线》习题参考答案

《电磁场微波技术与天线》习题参考答案

《电磁场微波技术与天线》习题及参考答案一、填空题:1、静止电荷所产生的电场,称之为_静电场_;电场强度的方向与正电荷在电场中受力的方向__相同_。

2、电荷之间的相互作用力是通过电场发生的,电流与电流之间的相互作用力是通过磁场发生的。

3、矢量场基本方程的微分形式是:A V和AJ;说明矢量场的散度和旋度可以描述矢量场在空间中的分布和变化规律。

4、矢量场基本方程的积分形式是:SAdSV V dV和l AdlsJdS;说明矢量场的环量和通量可以描述矢量场在空间中的分布和变化规律。

5、矢量分析中的两个重要定理分别是高斯定理和斯托克斯定理,它们的表达式分别是:v和lAdl s rotAdS。

AdV S AdS6、静电系统在真空中的基本方程的积分形式是:∮Ds·d S=q和E·d=0。

7、静电系统在真空中的基本方程的微分形式是:D V和E0。

8、镜象法的理论依据是静电场的唯一性定理。

基本方法是在所求场域的外部放置镜像电荷以等效的取代边界表面的感应电荷或极化电荷。

9、在两种媒质分界面的两侧,电场E的切向分量E1t-E2t=_0__;而磁场B的法向分量B1n-B2n=__0__。

10、法拉弟电磁感应定律的方程式为En=- ddt,当dφ/dt>0时,其感应电流产生的磁场将阻止原磁场增加。

11、在空间通信中,为了克服信号通过电离层后产生的法拉第旋转效应,其发射和接收天线都采用圆极化天线。

12、长度为2h=λ/2的半波振子发射天线,其电流分布为:I (z)=Im sink(h-|z|)。

13、在介电常数为e的均匀各向同性介质中,电位函数为1122xy5z,则电场强22度E=xeye5e。

xyz14、要提高天线效率,应尽可能提高其辐射电阻,降低损耗电阻。

15、GPS接收机采用圆极化天线,以保证接收效果。

二、选择题:1、电荷只能在分子或原子范围内作微小位移的物质称为(D)。

A.导体B.固体C.液体D.2、相同的场源条件下,真空中的电场强度是电介质中的(D)倍。

电磁场-(第二版)习题答案-高等教育

电磁场-(第二版)习题答案-高等教育

3.15 An arc (弧)radius 0.2m lies in the 0z =plane and extends from 02φπ≤≤. It has a charge distribution of 600sin 2nC m φ. Determine the E field at (a) a point ()0,0,1P , and (b) the origin.3.15一个半径为0.2m 的圆弧,位于0z =的平面上,张角为02φπ≤≤,电荷分布为600sin 2nC m φ,求点()0,0,1P 和原点处的E 。

解:(a)微线元0.2dl d d ρφφ==,线元矢径'0.2r ρ=,场点矢量r z =3010.240.2l z dE dl z ρρπερ-=-()()()2302300222323332000.21600sin 20.240.20.2cos 0.2sin 120sin 240.2sin 20.4cossin 0.4sin cos 301.0430cos 2cos sin 0.40.41.04233z E d z z x y d z z x y d z x y πππρφφπερφφφφπερφφφφφφπεφφφπε-=⨯---=---=⎡⎤-=+-⎢⎥⎣⎦⎰⎰⎰2320123300.40.41.0433221.01710V/m15221.01710V/m 15z x y z n z ππερρ⎛⎫=-- ⎪⎝⎭⎛⎫=⨯- ⎪ ⎪⎝⎭⎛⎫=⨯- ⎪ ⎪⎝⎭(b)3010.240.2l dE dl ρρπερ-=-()()()230230222233001340.21600sin 20.240.20.2120sin 240.22cos sin sin cos 300.041500cos sin 335.08710V/m 5.08710V /mE d d x y d x y n ππππρφφπερρφφπερφφφφφπεφφπερρ-=⨯--=--+=⎡⎤=--+⎢⎥⎣⎦=-⨯=-⨯⎰⎰⎰3.16 A finite line extends from 10z m =-to 10z m =and carries a charge distribution of 100znC m . Determine the E field at a point 2 meters away from the line in the 0z =plane.3.16一条从10z m =-向10z m =延伸的直线上,电荷分布为100znC m ,求0z =平面内离直线两米远的点上的E 。

《电磁场微波技术与天线》习题参考答案

《电磁场微波技术与天线》习题参考答案

《电磁场微波技术与天线》习题及参考答案一、填空题:1、静止电荷所产生的电场,称之为_静电场_;电场强度的方向与正电荷在电场中受力的方向__相同_。

2、电荷之间的相互作用力是通过电场发生的,电流与电流之间的相互作用力是通过磁场发生的。

3、矢量场基本方程的微分形式是:A V和AJ;说明矢量场的散度和旋度可以描述矢量场在空间中的分布和变化规律。

4、矢量场基本方程的积分形式是:SAdSV V dV和l AdlsJdS;说明矢量场的环量和通量可以描述矢量场在空间中的分布和变化规律。

5、矢量分析中的两个重要定理分别是高斯定理和斯托克斯定理,它们的表达式分别是:v和lAdl s rotAdS。

AdV S AdS6、静电系统在真空中的基本方程的积分形式是:∮Ds·d S=q和E·d=0。

7、静电系统在真空中的基本方程的微分形式是:D V和E0。

8、镜象法的理论依据是静电场的唯一性定理。

基本方法是在所求场域的外部放置镜像电荷以等效的取代边界表面的感应电荷或极化电荷。

9、在两种媒质分界面的两侧,电场E的切向分量E1t-E2t=_0__;而磁场B的法向分量B1n-B2n=__0__。

10、法拉弟电磁感应定律的方程式为En=- ddt,当dφ/dt>0时,其感应电流产生的磁场将阻止原磁场增加。

11、在空间通信中,为了克服信号通过电离层后产生的法拉第旋转效应,其发射和接收天线都采用圆极化天线。

12、长度为2h=λ/2的半波振子发射天线,其电流分布为:I (z)=Im sink(h-|z|)。

13、在介电常数为e的均匀各向同性介质中,电位函数为1122xy5z,则电场强22度E=xeye5e。

xyz14、要提高天线效率,应尽可能提高其辐射电阻,降低损耗电阻。

15、GPS接收机采用圆极化天线,以保证接收效果。

二、选择题:1、电荷只能在分子或原子范围内作微小位移的物质称为(D)。

A.导体B.固体C.液体D.2、相同的场源条件下,真空中的电场强度是电介质中的(D)倍。

电磁场与微波技术第一二三章课后习题及部分答案

电磁场与微波技术第一二三章课后习题及部分答案

电磁场与微波技术第一二三章课后习题及部分答案第 1 章习题1、求函数()D Cz By Ax u +++=1的等值面方程。

解:根据等值面的定义:标量场中场值相同的空间点组成的曲面称为标量场的等值面,其方程为)( ),,(为常数c c z y x u =。

设常数E ,则,()E D Cz By Ax =+++1,即:()1=+++D Cz By Ax E针对不同的常数E (不为0),对应不同的等值面。

2、已知标量场xy u =,求场中与直线042=-+y x 相切的等值线方程。

解:根据等值线的定义可知:要求解标量场与直线相切的等值线方程,即是求解两个方程存在单解的条件,由直线方程可得:42+-=y x ,代入标量场C xy =,得到: 0422=+-C y y ,满足唯一解的条件:02416=??-=?C ,得到:2=C ,因此,满足条件的等值线方程为:2=xy3、求矢量场z zy y y x xxy A 222++=的矢量线方程。

解:由矢量线的微分方程:zy x A dz A dy A dx ==本题中,2xy A x =,y x A y 2=,2zy A z =,则矢量线为:222zy dzy x dy xy dx ==,由此得到三个联立方程:x dy y dx =,z dz xdx =,zy dzx dy =2,解之,得到: 22y x =,z c x 1=,222x c y =,整理,y x ±=,z c x 1=,x c y 3±=它们代表一簇经过坐标原点的直线。

4、求标量场z y z x u 2322+=在点M (2,0,-1)处沿z z y xy x x t ?3??242+-=方向的方向导数。

解:由标量场方向导数的定义式:直角坐标系下,标量场u 在可微点M 处沿l 方向的方向导数为γβαcos cos cos zuy u x u l u ??+??+??=??α、β、γ分别是l 方向的方向角,即l 方向与z y x、、的夹角。

电磁场与微波 毕刚课后习题答案

电磁场与微波 毕刚课后习题答案
⃗ = 2(x − 3y)z,∇ ∙ A = 2ρsinφ,∇ ∙ B = 0。
解:∇ × A
⃗ 可以由一个标量的梯度表示;
(1)A
⃗ 可以由一个矢量的旋度表示;
(2)B
⃗ 有散场无旋场,B
⃗ 无散场由旋场。
(3)A
第二章
2-1 半径为a的无限薄带电圆盘上面电荷密度为ρ = r 2,r为圆盘上任意点到圆心的距离,求
⃗ 对立方体表面的通量,并验证散度定理。
(3)求A
解:(1)∇ ∙ ⃗A = 0;
(2) ∰V ∇ ∙ ⃗A ∙ dV = 0;
(3) ∯S ⃗A ∙ dS⃗ = 0,验证 因为∰V ∇ ∙ ⃗A ∙ dV = ∯S ⃗A ∙ dS⃗,所以高斯散度定理成立。
1-21 求下列函数的∇²u:
(1)直角坐标系 u(x,y, z) = x²y²z;
pcosφ
4πε0r 2
⃗ = −∇ϕ。
,p和ε0 为常数,求矢量场E
⃗ = −∇ϕ = 2pcosφ3 r + psinφ
解:E
⃗⃗ 。5
φ
4πε r
4πε r 3sinθ
0
0
⃗ (r) =
1-17 在圆柱坐标系中,矢量场E
k
r2
⃗ (r)对任意闭合曲线 l
r ,其中 k 为常数,证明矢量E
⃗ ∙ dl = 0。
x⃗
14
+
2√ 14

y
14
4
+
3√ 14
z ,eB⃗⃗
14
=
3√ 14
2√ 14
x⃗ − 14 y
⃗ −
14
2
= arccos − 7 ;(4)⃗⃗⃗⃗⃗
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档