14-非线性鲁棒控制设计实例及课程总结(2009-1227)_486402310
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
' T H i Td 0i Qei x di * * * 0 V fi (Vti ) P31 dt P P Pei i 32 i 33 0 0 Pei Vti Hi ' ' Qei x di Td 0i Qei x di PeiVti d (Vti ) (Vti ) ( ) ' Vti Pei Vti dt Vti2 Qei x di
Assume that the relative degree from u to y is n, then from
(C)
z T ( x ) K( x )
v ( x) ( x)u
(D)
We can get
Az B2v z y z Cz
(E)
Step 2
(r0 , r0 )
导弹 ( r , r ) 相平面图
(4)不考虑渐近稳定性
15
Review
16
1.General optimal problem
min
u
J ( x, u ) L( x, u )dt
0
T
s.t f ( x, u ) x
Solution:
H ( x, u, ) L( x, u ) T f ( x, u ) H x H 0 u x f ( x, u)
u*
17
2 Linear optimal control
1 min J ( x, u ) ( x T Qx u T Ru)dt u 20 s.t Ax Bu x
Solution:
Riccati equation:
u * R 1 B T P * x AT P PA P T BR 1 B T P Q 0
20
4 Nonlinear Robust Control
inf sup ( z 2 w )dt
2 2 u w 0 T
s.t
f ( x) g1 ( x) w g 2 ( x)u x z h( x) K ( x)u
21
Hamilton Function
H ( x, p, w, u ) p T ( f ( x) g1 ( x) w g 2 ( x)u ) z
inf sup ( z w )dt
2 2 2 u w 0
s.t Ax B1w B2u x z hx Ku
Tzw
2
Characteristics: decentralized control, disturbance attenuation, inner stability. Note:the control expression has the same form as the one derived from the differential geometry. And they are only different * * * on the parameters P31 , P32 and P33
(A)
T
0
( y u )dt
2
2
2
T
0
w dt
2
T 0
f ( x) g 2 ( x)u* ( x) (2) If w 0 ,the closed-loop system x is asymptotically stable.
1
• Comparison with the standard nonlinear H problem
We have
Az Bv z y Cz
19
Step 2
LQR
min ( xT C T Cx vT Rv)dt
v 0
s.t Az Bv z
v* R 1BT P* z
Step 3
The nonlinear optimal control law
v * a ( x ) a( x) R 1BT P*T ( x) u* b( x) b( x)
T * v* B2 Pz
(G)
Step 4
T * u* 1 ( x)[ ( x) B2 P T ( x)]
(H)
• Discussion of the robustness
u *is the solution of the H problem of the below system
v 0 0 r 0 0 1 0 v2 g ( x ) g1 ( x) 1 0 f ( z) 2 r v v 0 1 0 1 r r wr w :目标加速度,可看作外界干扰(无法估测) w
11
非线性H∞导引律目标: 设计状态反馈 u u(r , vr , v ) ,使得:
T 0 z 很小,可以实现拦截任务,这是因为: (1)无论目标如何飞, r 很小;
0
T
z zdt
T
2
T
0
wT wdt
(2) 很小,目标无法横向逃脱。
H∞导引律易于工程实现
12
3. 现有导引律设计之不足
8
4. 非线性H∞导引律设计
建立模型
e
导弹
目标
er
r
视线 参考线
r :导弹与目标距离
:视线与参考线夹角
aT wr er w e :目标加速度 am ur er u e :导弹加速度
vr r
6
巡航导弹非线性H∞导引律
1. 导弹设计回路及任务
导引回路(外回路)→Where to go? 导航回路(中回路)→Where you are? 控制回路(内回路)→How to go?
7
2. 导引回路设计:
指引导弹何去何从; 设计跟踪策略拦截飞机或导弹; 时间短,消耗能量少。 近似线性化,只适用微小运动区域; 假设目标轨迹已知(直线飞行,或几类 固定的飞行轨迹)。
i
0
Hi
( Pmi Pei PDi Pdisi )
(J )
1 ' Eqi ( Eqi V fi Vdisi ) Td 0i
Pdisi :disturbance of the power of the ith machine Vdisi :electromagnetic disturbance in the excitation circuit
T
0
z dt
2
T
T
Biblioteka Baidu
0
w dt
2
f ( x) g 2 ( x)u* ( x) (2) If w 0 ,the closed-loop system x is asymptotically stable.
Note:
T
0
z dt ( h( x) u )dt ( y u )dt
2 2 2 2 2 0 0
T
Conclusion: The problem focused in the paper, is equal to a special case of standard H problem.
2
反馈线性化 线性H∞控制
x f ( x) g2 ( x)w g2 ( x)u
vr r
v r wr ur v r vr v v w u r
2
10
进一步有:
x f ( x) g1 ( x) w g 2 ( x)u h(r , v ) z u
ur u :所要设计的导引律 u 2 v h(r, v ) r 2 r
算 法
z K1( x)
张弛系数矩阵
a( x) b( x)u v
z Az B1v B2 w
线性H∞ v*
u* a( X ) b( X )v*
3
• H control through feedback linearization Step 1 f ( x) g 2 ( x)u x y h( x )
f ( x) g1 ( x) w g 2 ( x)u x h( x ) 0 0 I u z
The nonlinear
(B)
H problem of system (B):
2
Seek for u u* ( x) ,which fulfills (1)
18
3 Nonlinear Control (Differential Geometry Approach)
f ( x) g ( x)u x y h( x)
Step1
Design the coordinates transformation and feedback
z T ( x) v a( x) b( x)u
According to (D), the system(A) can be transformed to
Az B1w B2v z y z Cz
(F)
4
Step 3
From(F), we can solve the Riccati equation:
1 T AT P PA 2 PB1 B1T P PB2 B2 P CT C 0 and obtain
非线性H∞导引律设计
step 1. 求解HJI不等式
1 1 1 T T T Vx f Vx ( 2 g1 g1 g 2 g 2 )Vx hT h 0 2 2
Nvr v2 V ( x) 0 r N 为待定常数
N 0
step 2. 最优控制策略
ur u u (r , vr , v ) (Vx g 2 )T u 2 Nv ur Nr 2 r Nvr v u 2 2 Nr r
13
效果测试 w , (1)给定 值,测试不同类型的干扰 wr , 以考验H∞导引律的鲁棒性 (2)测试例一: 目标采用直线飞行逃逸策略,即 wr w 0
只要
vr 0 N 1 ,则可实现 r 0 v 0 2N 1
拦截区域
14
(3)
拦截区域
r
rmin
1 2
r
(r0 , r0 )
IV.6 Examples of nonlinear H control design
• Introduction of the problem
f ( x) g1 ( x) w g 2 ( x)u x y h( x )
Construct u u* ( x) ,which makes (1)
f ( x) g1 ( x) w g 2 ( x)u x CT ( x) ( x) ( x)u y
(I )
5
• Design of the H controller for the excitation system i i 0
er :沿视线单位向量
:沿视线之相对速度
e :垂直于视线之单位向量
:垂直于视线之相对速度 v r
9
相对运动方程 2 w u r r r r 2r w u r
状态空间模型 设 x (r, vr , v ) ,则由相对运动方程得:
2
2 w
2
The necessary condition:
H 0 u H 0 w u * , w*
The sufficient condition: Hamilton-Jacobi-Issacs Inequality
22
5 Linear Robust Control
Assume that the relative degree from u to y is n, then from
(C)
z T ( x ) K( x )
v ( x) ( x)u
(D)
We can get
Az B2v z y z Cz
(E)
Step 2
(r0 , r0 )
导弹 ( r , r ) 相平面图
(4)不考虑渐近稳定性
15
Review
16
1.General optimal problem
min
u
J ( x, u ) L( x, u )dt
0
T
s.t f ( x, u ) x
Solution:
H ( x, u, ) L( x, u ) T f ( x, u ) H x H 0 u x f ( x, u)
u*
17
2 Linear optimal control
1 min J ( x, u ) ( x T Qx u T Ru)dt u 20 s.t Ax Bu x
Solution:
Riccati equation:
u * R 1 B T P * x AT P PA P T BR 1 B T P Q 0
20
4 Nonlinear Robust Control
inf sup ( z 2 w )dt
2 2 u w 0 T
s.t
f ( x) g1 ( x) w g 2 ( x)u x z h( x) K ( x)u
21
Hamilton Function
H ( x, p, w, u ) p T ( f ( x) g1 ( x) w g 2 ( x)u ) z
inf sup ( z w )dt
2 2 2 u w 0
s.t Ax B1w B2u x z hx Ku
Tzw
2
Characteristics: decentralized control, disturbance attenuation, inner stability. Note:the control expression has the same form as the one derived from the differential geometry. And they are only different * * * on the parameters P31 , P32 and P33
(A)
T
0
( y u )dt
2
2
2
T
0
w dt
2
T 0
f ( x) g 2 ( x)u* ( x) (2) If w 0 ,the closed-loop system x is asymptotically stable.
1
• Comparison with the standard nonlinear H problem
We have
Az Bv z y Cz
19
Step 2
LQR
min ( xT C T Cx vT Rv)dt
v 0
s.t Az Bv z
v* R 1BT P* z
Step 3
The nonlinear optimal control law
v * a ( x ) a( x) R 1BT P*T ( x) u* b( x) b( x)
T * v* B2 Pz
(G)
Step 4
T * u* 1 ( x)[ ( x) B2 P T ( x)]
(H)
• Discussion of the robustness
u *is the solution of the H problem of the below system
v 0 0 r 0 0 1 0 v2 g ( x ) g1 ( x) 1 0 f ( z) 2 r v v 0 1 0 1 r r wr w :目标加速度,可看作外界干扰(无法估测) w
11
非线性H∞导引律目标: 设计状态反馈 u u(r , vr , v ) ,使得:
T 0 z 很小,可以实现拦截任务,这是因为: (1)无论目标如何飞, r 很小;
0
T
z zdt
T
2
T
0
wT wdt
(2) 很小,目标无法横向逃脱。
H∞导引律易于工程实现
12
3. 现有导引律设计之不足
8
4. 非线性H∞导引律设计
建立模型
e
导弹
目标
er
r
视线 参考线
r :导弹与目标距离
:视线与参考线夹角
aT wr er w e :目标加速度 am ur er u e :导弹加速度
vr r
6
巡航导弹非线性H∞导引律
1. 导弹设计回路及任务
导引回路(外回路)→Where to go? 导航回路(中回路)→Where you are? 控制回路(内回路)→How to go?
7
2. 导引回路设计:
指引导弹何去何从; 设计跟踪策略拦截飞机或导弹; 时间短,消耗能量少。 近似线性化,只适用微小运动区域; 假设目标轨迹已知(直线飞行,或几类 固定的飞行轨迹)。
i
0
Hi
( Pmi Pei PDi Pdisi )
(J )
1 ' Eqi ( Eqi V fi Vdisi ) Td 0i
Pdisi :disturbance of the power of the ith machine Vdisi :electromagnetic disturbance in the excitation circuit
T
0
z dt
2
T
T
Biblioteka Baidu
0
w dt
2
f ( x) g 2 ( x)u* ( x) (2) If w 0 ,the closed-loop system x is asymptotically stable.
Note:
T
0
z dt ( h( x) u )dt ( y u )dt
2 2 2 2 2 0 0
T
Conclusion: The problem focused in the paper, is equal to a special case of standard H problem.
2
反馈线性化 线性H∞控制
x f ( x) g2 ( x)w g2 ( x)u
vr r
v r wr ur v r vr v v w u r
2
10
进一步有:
x f ( x) g1 ( x) w g 2 ( x)u h(r , v ) z u
ur u :所要设计的导引律 u 2 v h(r, v ) r 2 r
算 法
z K1( x)
张弛系数矩阵
a( x) b( x)u v
z Az B1v B2 w
线性H∞ v*
u* a( X ) b( X )v*
3
• H control through feedback linearization Step 1 f ( x) g 2 ( x)u x y h( x )
f ( x) g1 ( x) w g 2 ( x)u x h( x ) 0 0 I u z
The nonlinear
(B)
H problem of system (B):
2
Seek for u u* ( x) ,which fulfills (1)
18
3 Nonlinear Control (Differential Geometry Approach)
f ( x) g ( x)u x y h( x)
Step1
Design the coordinates transformation and feedback
z T ( x) v a( x) b( x)u
According to (D), the system(A) can be transformed to
Az B1w B2v z y z Cz
(F)
4
Step 3
From(F), we can solve the Riccati equation:
1 T AT P PA 2 PB1 B1T P PB2 B2 P CT C 0 and obtain
非线性H∞导引律设计
step 1. 求解HJI不等式
1 1 1 T T T Vx f Vx ( 2 g1 g1 g 2 g 2 )Vx hT h 0 2 2
Nvr v2 V ( x) 0 r N 为待定常数
N 0
step 2. 最优控制策略
ur u u (r , vr , v ) (Vx g 2 )T u 2 Nv ur Nr 2 r Nvr v u 2 2 Nr r
13
效果测试 w , (1)给定 值,测试不同类型的干扰 wr , 以考验H∞导引律的鲁棒性 (2)测试例一: 目标采用直线飞行逃逸策略,即 wr w 0
只要
vr 0 N 1 ,则可实现 r 0 v 0 2N 1
拦截区域
14
(3)
拦截区域
r
rmin
1 2
r
(r0 , r0 )
IV.6 Examples of nonlinear H control design
• Introduction of the problem
f ( x) g1 ( x) w g 2 ( x)u x y h( x )
Construct u u* ( x) ,which makes (1)
f ( x) g1 ( x) w g 2 ( x)u x CT ( x) ( x) ( x)u y
(I )
5
• Design of the H controller for the excitation system i i 0
er :沿视线单位向量
:沿视线之相对速度
e :垂直于视线之单位向量
:垂直于视线之相对速度 v r
9
相对运动方程 2 w u r r r r 2r w u r
状态空间模型 设 x (r, vr , v ) ,则由相对运动方程得:
2
2 w
2
The necessary condition:
H 0 u H 0 w u * , w*
The sufficient condition: Hamilton-Jacobi-Issacs Inequality
22
5 Linear Robust Control