轴对称、等腰三角形、等边三角形
三年级下册数学期末复习专题讲义(知识点归纳典例讲解同步测试)-2.图形的运动(1)
北师大版三年级下册数学期末复习专题讲义-2.图形的运动【知识点归纳】1.轴对称图形:对折后两边能完全重合的图形是轴对称图形。
2.对称轴:对折后能使两边重合的线叫做对称轴。
3.轴对称图形特点:对称轴是一条直线,对称轴两侧的对应点到对称轴两侧的距离相等,沿对称轴将它对折,左右两边完全重合。
4.轴对称图形有:角、五角星、等腰三角形、等边三角形、等腰梯形、正方形、长方形、圆和正多边形等都是轴对称图形。
轴对称图形至少有一条对称轴。
圆有无数条对称轴,每条圆的直径所在的直线都是圆的对称轴。
正方形有4条对称轴,长方形有2条对称轴。
5.平移:物体或图形,沿着直线运动的现象,叫做平移。
平移不改变图形的形状和大小。
图形经过平移,对应线段相等,对应角相等,对应点所连的线段相等。
6.平移特征:图形平移前后的形状和大小无变化,只是位置发生变化。
7.旋转:物体或图形,绕一个点或一个轴转动一个角度的现象叫做旋转。
8.旋转的特征:围绕中心转动。
9.平移和旋转:①相同点:平移和旋转都是物体或图形的位置发生变化,而形状、大小不变。
②不同点:平移是物体沿着直线运动,本身的方向不变;旋转是物体绕着一个点或一个轴转动,本身的方向发生改变。
10.汽车行驶,车身在平移,车轮、方向盘在旋转。
【典例讲解】例1.把一张长方形纸对折一次后剪成,展开后的图形不可能是()A.B.C.D.【分析】由于只对折一次,所以对折的折痕就是图形的对称轴,根据轴对称图形的特征选择即可.【解答】解:一张长方形纸对折后剪成,把它展开后可能得到,不可能是,因为没有体现右上角的一道剪口.故选:D.【点评】解答此题的关键是轴对称图形的意义及特征.如果一个图形沿着一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,折痕所在的直线叫做对称轴.例2.把一张纸对折再剪一剪,展开后的图形可能是②.【分析】被剪下的部分上面是三角形的一半,下面是长方形的一半,所以打开后上面是三角形,下面是长方形.它的展开图可能是②.【解答】解:把一张纸对折再剪一剪,展开后的图形可能是②.故答案为:②.【点评】此题考查了轴对称的性质.即对应点所连的线段被对称轴垂直平分,对应线段相等,对应角相等.例3.线段不是轴对称图形.×(判断对错)【分析】依据轴对称图形的意义,即在平面内,如果一个图形沿一条直线对折,对折后的两部分都能完全重合,这条直线叫做对称轴,这样的图形叫做轴对称图形,据此即可进行解答.【解答】解:线段是轴对称图形,经过它的中点的垂线就是它的对称轴;所以原题说法错误.故答案为:×.【点评】此题主要考查轴对称图形意义的灵活运用.例4.我会做.拿一张长纸条,将它一反一正折叠起来,并画出字母E.用小刀把画出的字母E挖去,拉开就可以得到一条以字母E为图案的花边,如图.(1)在得到的花边中,相邻的两个图案是什么关系?相间的两个图案可以通过什么得到?(2)观察整条花边,左起和右起的三个图案各为一组,这两组图案有什么关系?【分析】(1)因为是在折叠好的纸上画出字母E,所以相邻两个图案成轴对称,相间的两个图案全等且是可以通过平移得到的;(2)根据轴对称的定义可知三个图案为一组也成轴对称关系.【解答】解:(1)相邻两个图案成轴对称,相间的两个图案全等且是可以通过平移得到的;(2)三个图案为一组也成轴对称关系.【点评】主要考查了轴对称的性质.轴对称的性质:(1)对应点所连的线段被对称轴垂直平分;(2)对应线段相等,对应角相等.例5.小红将几张正方形纸对折两次后(如图),在不同的位置剪出一个圆孔,每种剪法各对应哪幅图?连一连.【分析】第一种剪法在右上角打孔,左右展开第一道是,再上下展开第二道就是;第二种剪法在右下角打孔,左右展开第一道是再上下展开第二道就是;第三种剪法在左上角打孔,左右展开第一道是,再上下展开第二道就是;第四种剪法在中间打孔,左右展开第一道是,再上下展开第二道就是,据此连线即可.【解答】解:【点评】解答此题的关键是想象出各种剪法的展开图,时间充裕时也可以剪小纸片来观察.【同步测试】一.选择题(共6小题)1.在下面图形中,()不是轴对称图形.A.B.C.2.下列图形中,对称轴条数最少的是()A.圆B.半圆C.等边三角形D.长方形3.如图有()条对称轴.A.1B.2C.3D.44.下列图形对称轴最多的是()A.等边三角形B.半圆C.等腰梯形D.长方形5.下列图形中,一定是轴对称图形的是()A.三角形B.平行四边形C.梯形D.正方形6.一张长方形纸对折后剪成,把它展开后不可能得到的是()A.B.C.二.填空题(共6小题)7.如图共有条对称轴.8.在这些图形中,是轴对称图形的有个,分别是(填序号).9.☆有条对称轴.10.将图形沿着一条直线对折,如果直线两侧的部分能够完全重合,这样的图形叫做,折痕所在的直线叫做它的.11.明明和亮亮合作画一张轴对称图形,明明画出了轴对称图形的左半边(如图),亮亮要沿着虚线画出轴对称图形的右半边,应是数字.12.在A、W、N、S、X、M、Z这些字母中,可以看作轴对称图形.三.判断题(共5小题)13.用两个大小不同的〇组成的图形,一定是轴对称图形.(判断对错)14.这幅照片上的图案是对称的.(判断对错)15.田、子、中这三个汉字都是对称的.(判断对错)16.“H”是轴对称图形.(判断对错)17.该汽车图标是轴对称图形.(判断对错)四.应用题(共4小题)18.下面哪种剪法不会剪出半个人形图案?请在()里画“〇”.再剪一剪,验证一下你的想法是否正确.19.将一张纸对折后剪去两个圆,展开后是哪一个?画“√”.20.拿一张长纸条,将它一反一正折叠起来,并画出字母E.用小刀把画出的字母E挖去,拉开就可以得到一条以字母E为图案的花边,如图.观察整条花边,左起和右起的三个图案各为一组,这两组图案有什么关系?21.下图中的三角形是从哪张对折后的纸上剪下来的?在()里填上序号.五.操作题(共4小题)22.连一连,下面的图案分别是从哪张对折后的纸上剪下来的?23.画出如图的所有对称轴.(有几条就画几条)24.下面图形中,是轴对称图形的画“√”.25.要求:添加一个正方形,形成一个轴对称图形,并给出3种方案,画出对称轴.六.解答题(共3小题)26.认真想一想,在轴对称图形右边的里画“√”.27.请你用三种不同的方法分别图中添画一个小正方形,使它成为一个轴对称图形.28.下面的图形各有几条对称轴?画一画、数一数、填一填.参考答案与试题解析一.选择题(共6小题)1.【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【解答】解:在下面图形中,不是轴对称图形;故选:C.【点评】掌握轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.【分析】一个图形沿一条直线对折,直线两旁的部分能够完全重合,那么这个图形就是轴对称图形,这条直线就是这个图形的一条对称轴,由此即可确定这个图形的对称轴的条数及位置.【解答】解:圆有无数条对称轴,半圆有1条对称轴,等边三角形有3条对称轴,长方形有2条对称轴,所以半圆的对称轴的条数最少;故选:B.【点评】此题考查了利用轴对称图形的定义判断轴对称图形的对称轴条数及位置的灵活应用.3.【分析】依据轴对称图形的意义,即在同一个平面内,一个图形沿某条直线对折,对折后的两部分都能完全重合,则这个图形就是轴对称图形,这条直线就是其对称轴,从而找出它们的对称轴.【解答】解:有2条对称轴.故选:B.【点评】此题主要考查如何确定轴对称图形的对称轴条数及位置.4.【分析】根据轴对称图形的定义:一个图形沿某条直线对折,直线两旁的部分能够完全重合,则这个图形就是轴对称图形,这条直线就是它的一条对称轴,据此分别确定出选项中各个图形中对称轴的条数,然后选择即可.【解答】解:等边三角形有3条对称轴,半圆有1条对称轴,等腰梯形有1条对称轴,长方形有2条对称轴;故选:A.【点评】本题主要考查了图形的对称性,对于常见图形的对称性的理解是解决本题的关键.5.【分析】根据轴对称图形的意义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;依次进行判断即可.【解答】解:根据轴对称图形的意义可知:三角形,平行四边形、梯形不一定是轴对称图形,只有正方形一定是轴对称图形;故选:D.【点评】此题考查了轴对称图形的意义,判断轴对称图形的关键是寻找对称轴,看图形对折后两部分是否完全重合.6.【分析】由于只对折一次,所以对折的折痕就是图形的对称轴,根据轴对称图形的特征,可知以不同的对称轴对称出来的图形也不同,但不可能没有右上角的一道剪口所形成的图形,据此选择即可.【解答】解:一张长方形纸对折后剪成,把它展开后可能得到:、、不可能是:.故选:B.【点评】解答此题的关键是轴对称图形的意义及特征.如果一个图形沿着一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,折痕所在的直线叫做对称轴.二.填空题(共6小题)7.【分析】根据轴对称图形的定义:一个图形沿一条直线对折,直线两旁的部分能够完全重合,则这个图形就是轴对称图形,这条直线就是这个图形的一条对称轴,据此即可解答.【解答】解:如图共有4条对称轴.故答案为:4.【点评】此题主要考查如何确定轴对称图形的对称轴条数及位置.8.【分析】根据轴对称图形的意义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【解答】解:在这些图形中,是轴对称图形的有4个,分别是①③④⑤;故答案为:4,①③④⑤.【点评】此题考查了轴对称图形的意义,判断轴对称图形的关键是寻找对称轴,看图形对折后两部分是否完全重合.9.【分析】把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线(成轴)对称,这条直线就是它的对称轴,据此解答即可.【解答】解:☆有5条对称轴;故答案为:5.【点评】此题考查了轴对称图形的定义,要求学生能够正确找出轴对称图形的对称轴.10.【分析】依据轴对称图形的定义即可作答.【解答】解:将图形沿着一条直线对折,如果直线两侧的部分能够完全重合,这样的图形叫做轴对称图形,折痕所在的直线叫做它的对称轴.故答案为:轴对称图形、对称轴.【点评】此题主要考查轴对称图形的定义.11.【分析】把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,称这两个图形为轴对称,这条直线叫做对称轴,两个图形中的对应点叫做对称点,依次即可求解.【解答】解:亮亮要沿着虚线画出轴对称图形的右半边,应是数字2019.故答案为:2019.【点评】考查了轴对称,性质:(1)成轴对称的两个图形全等;(2)如果两个图形成轴对称,那么对称轴是对称点连线的垂直平分线.12.【分析】依据轴对称图形的意义,即在平面内,如果一个图形沿一条直线对折,对折后的两部分都能完全重合,这样的图形叫做轴对称图形,据此即可进行解答.【解答】解:在A、W、N、S、X、M、Z这些字母中,A、X、W、M可以看作轴对称图形;故答案为:A、X、W、M.【点评】此题主要考查轴对称图形的意义.三.判断题(共5小题)13.【分析】依据轴对称图形的意义,即在平面内,如果一个图形沿一条直线对折,对折后的两部分都能完全重合,这条直线叫做对称轴,这样的图形叫做轴对称图形,据此即可进行解答.【解答】解:用两个大小不同的〇组成的图形,一定是轴对称图形,因为经过它们的圆心的直线就是它们的对称轴;所以原题说法正确.故答案为:√.【点评】此题主要考查轴对称图形意义的灵活运用.14.【分析】依据轴对称图形的意义,即在平面内,如果一个图形沿一条直线对折,对折后的两部分都能完全重合,这条直线叫做对称轴,这样的图形叫做轴对称图形,据此即可进行解答.【解答】解:这幅照片上的图案不是对称的,因为对折后两部分不能完全重合,所以原题说法错误.故答案为:×.【点评】此题主要考查轴对称图形意义的灵活运用.15.【分析】根据轴对称图形的意义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;据此判断即可.【解答】解:“田、中”,都是对称的,“子”不是对称的,所以本题说法错误;故答案为:×.【点评】掌握轴对称图形的意义,判断是不是轴对称图形的关键是找出对称轴,看图形沿对称轴对折后两部分能否完全重合.16.【分析】轴对称图形的概念:如果一个图形沿着一条直线对折,直线两边的图形能够完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【解答】解:“H”沿着对称轴对折两边的图形能够完全重合,所以“H”是轴对称图形,所以原题说法正确;故答案为:√.【点评】此题主要考查轴对称图形的定义.17.【分析】依据轴对称图形的概念,即在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形,这条直线就是其对称轴,据此即可解答.【解答】解:该汽车图标是轴对称图形,有3条对称轴,故原题说法正确;故答案为:√.【点评】本题主要考查了轴对称图形的对称轴条数,比较简单.四.应用题(共4小题)18.【分析】根据轴对称图形的定义可知,折痕就是展开后相邻的两个图形的对称轴,据此判断即可.【解答】解:折痕就是展开后相邻的两个图形的对称轴,第一种剪法会剪出整个人形图案,第二种剪法会剪出半个人形图案.故答案为:【点评】本题主要考查学生的动手能力及空间想象能力,正确理解对称轴的定义是解题的关键.19.【分析】由于该图是把一张纸对折后剪出的,剪出的图形是轴对称图形,折痕就是剪成的图形的对称轴,据此解答.【解答】解:将一张纸对折后剪去两个圆(如图),展开后是,【点评】本题考查了轴对称图形,对称轴左边的图形要与该图的左边部分相吻合.20.【分析】根据轴对称图形的定义可知,左起和右起的三个图案各为一组,这两组图案成轴对称.【解答】解:左起和右起的三个图案各为一组,这两组图案成轴对称关系.【点评】主要考查了轴对称的性质.轴对称的性质:(1)对应点所连的线段被对称轴垂直平分;(2)对应线段相等,对应角相等.21.【分析】根据轴对称图形的意义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形.因为①的对称轴在折痕,所以如果按①剪下来,得到的是等腰三角形,符合要求.【解答】解:根据轴对称图形可知,图中的三角形是①对折后的纸上剪下来的.故答案为:①.【点评】本题考查了轴对称图形的意义.解题的关键是掌握轴对称图形的意义,判断轴对称图形的关键是寻找对称轴,看图形对折后两部分是否完全重合.五.操作题(共4小题)22.【分析】依据轴对称图形的意义,即在平面内,如果一个图形沿一条直线对折,对折后的两部分都能完全重合,这条直线叫做对称轴,这样的图形叫做轴对称图形,据此即可进行解答.【解答】解:根据分析可得,【点评】此题主要考查轴对称图形意义的灵活运用.23.【分析】一个图形沿一条直线对折,直线两旁的部分能够完全重合,那么这个图形就是轴对称图形,这条直线就是这个图形的对称轴.根据轴对称图形的定义,找出并画出轴对称图形的对称轴即可.【解答】解:如图所示,即为所要画的对称轴;【点评】此题考查了根据轴对称图形定义画出轴对称图形的对称轴的方法.24.【分析】根据轴对称图形的意义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;依次进行判断即可.【解答】解:根据轴对称图形的意义可知:【点评】此题考查了轴对称图形的意义,判断轴对称图形的关键是寻找对称轴,看图形对折后两部分是否完全重合.25.【分析】依据轴对称图形的概念,即在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形,这条直线就是其对称轴,从而可以画出轴对称图形.【解答】解:根据分析可得,【点评】解答此题的主要依据是:轴对称图形的概念及特征.六.解答题(共3小题)26.【分析】根据轴对称图形的意义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;据此判断即可.【解答】解:【点评】掌握轴对称图形的意义,判断是不是轴对称图形的关键是找出对称轴,看图形沿对称轴对折后两部分能否完全重合.27.【分析】依据轴对称图形的含义,即在平面内,如果一个图形沿一条直线对折,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形,据此即可完成作图.【解答】解:如图所示,即为所要求的画图:【点评】解答此题的主要依据是:轴对称图形的意义及特征.28.【分析】依据轴对称图形的意义,即在平面内,如果一个图形沿一条直线对折,对折后的两部分都能完全重合,这样的图形叫做轴对称图形,这条直线就是其对称轴,据此即可进行解答.【解答】解:【点评】此题主要考查轴对称图形的意义及其对称轴的条数.。
初中数学:等边三角形练习(含解析)
初中数学:等边三角形练习(含解析)一、选择题1、下面的图形是轴对称图形,而且对称轴最多的是()A.等腰三角形B.等腰直角三角形C.等边三角形D.直角三角形【答案】C【解析】试题分析:根据等腰三角形的性质和等边三角形的性质进行判断.解:等腰三角形有1条对称轴,等腰直角三角形有1条对称轴,等边三角形有3条对称轴,一般的直角三角形不是轴对称图形,所以对称轴最多的是等边三角形.故应选C.考点:等边三角形2、如图所示,在等边△ABC中,点D、E分别在边BC、AB上,且BD=AE,AD 与CE交于点F,则∠DFC的度数为()A. 60°B. 45°C. 40°D. 30°【答案】A【解析】试题分析:根据等边三角形的性质可得:AC=AB,∠CAE=∠B,根据SAS可证△AEC≌△BDA,根据全等三角形的性质可证∠BAD=∠ACE,所以∠DAC+∠ACE=60°,所以∠DFC=60°.解:∵△ABC是等边三角形,∴∠CAE=∠B=60°,在△AEC和△BDA中,AE BD EAC DBA AC AB =⎧⎪∠=∠⎨⎪=⎩,∴△AEC ≌△BDA ,∴∠BAD=∠ACE ,∵∠DAC+∠BAD=60°,∴∠DAC+∠ACE=60°,∴∠DFC=∠DAC+∠ACE=60°.故应选A.考点:1.等边三角形的性质;2.全等三角形的判定与性质3、下面给出的几种三角形:①三个内角都相等;②有两个外角为120°;③一边上的高也是这边所对的角的角平分线;④三条边上的高相等的三角形.其中是等边三角形的有( )A .4个B .3个C .2个D .1个【答案】B【解析】试题分析:根据等边三角形的定义和判定定理进行判断.解:①三角形个内角都相等的三角形是等边三角形;②有两个外角是120°的三角形的两个内角一定是60°,根据三角形内角和定理可得:第三个内角也是60°,所以这个三角形是等边三角形;③一边上的高也是这边所对的角的角平分线一定是等腰三角形,不一定是等边三角形;④根据三角形的面积公式可得:当三角形三条边上的高相等时,三角形的三条边也相等,所以这个三角形是等边三角形.所以正确的有3个.故应选B.考点:等边三角形的判定二、填空题4、在△ABC 中,如果AB=AC=BC ,则∠A =_________,∠B =___________,∠C =_________。
八年级数学等腰三角形和等边三角形的轴对称性
初二数学等腰三角形和等边三角形的轴对称性江苏科技版【本讲教育信息】教学内容:等腰三角形和等边三角形的轴对称性[目标]探索等腰三角形及其特殊形式一一等边三角形的轴对称性及其相关性质。
•重、难点:1. 等腰三角形及其性质和一个三角形是等腰三角形的条件;2. 等边三角形的概念及其性质。
三.知识要点:1. 等腰三角形(1)等腰三角形是轴对称图形。
顶角平分线所在直线是它的对称轴。
(2)等腰三角形的性质(等腰三角形的判别法)①等腰三角形的顶角平分线、底边上的中线、高重合,它们都是等腰三角形的对称轴。
(简称“三线合一”)②等腰三角形的两底角相等。
(简称“等边对等角”)③如果一个三角形有两个角相等,那么这两个角所对的边也相等。
(简称“等角对等边”) ☆ ( 3)直角三角形斜边上的中线等于斜边的一半。
2. 等边三角形(a)三边相等的三角形叫做等边三角形或正三角形。
等边三角形是一种特殊的等腰三角形。
(b)等边三角形特殊的性质:①等边三角形是轴对称图形,并且有3条对称轴。
②等边三角形各角相等,并且每一个角都等于60 o(有一个角是60的等腰三角形是等边三角形)【典型例题】例1.已知等腰三角形的周长为10cm,那么当三边为正整数时,它的边长为( )(A)2, 2, 6 ( B) 3, 3, 4(C) 4, 4, 2 ( D) 3, 3, 4 或4, 4, 2分析:可采用排除法。
三角形两边之和大于第三边,两边之差小于第三边。
2, 2, 6不满足;而3,3,4或4, 4, 2都满足题意。
答:选D。
例2. O为锐角△ ABC的/ C平分线上一点,0关于AC、BC的对称点分别为P、Q,则△ POQ - -定是( )(A)等边三角形(B)等腰三角形(C)直角三角形(D)等腰直角三角形分析:设OP、0Q分别交AC、BC于E、F,由线段的对称轴是它的垂直平分线知:1 1OE_AC,且0E = 0P;同理OF_BC,且OF = 0Q;2 2由角平分线的性质知:0E = OF,贝U 0P= 0Q。
轴对称图形有哪些
轴对称图形有哪些
轴对称图形有:正方形、长方形、等腰三角形、等边三角形、等腰梯形.
1、正方形:是特殊的平行四边形,两组对边分别平行且相等;四条边都相等;对角线互相垂直平分;具有不稳定性(易变形);
2、长方形:有一个角是直角的平行四边形叫做长方形;两条对角线相等;对边平行且相等;具有稳定性;
3、等腰三角形:有两条边相等的三角形叫做等腰三角形;顶角是直角;底边上的高等于腰上的高;等腰三角形的性质:两条边相等的三角形是等边三角形;等腰三角形的判定:在同一个三角形中,如果有两个角相等,那么这两个角所对的边也相等;
4、等边三角形:三条边都相等的三角形叫做等边三角形;
5、等腰梯形:有一个角是直角的梯形叫做等腰梯形;等腰梯形的判定:在同一个梯形中,如果有两个角相等,那么这两个角所对的边也相等;
6、菱形:具有一个角为直角的平行四边形叫做菱形;
7、圆:圆是一种特殊的平行四边形,它的定义域是所有的实数;
8、扇形:由圆心角的角度和弧度决定的图形叫做扇形;
9、圆锥:由圆锥面、底面圆和母线组成的几何体叫做圆锥;10、球:在地球表面,由坚硬的岩石组成的天然形体叫做球;11、椭圆:定义:过焦点的圆叫做椭圆;12、双曲线:定义:过焦点的双曲线;13、抛物线:定义:与x 轴有两个交点的曲线叫做抛物线;14、直线:无限长的,平行于x 轴y 轴的线段叫做。
等腰三角形知识点总结等腰三角形知识点归纳重点
等腰三角形知识点总结等腰三角形知识点归纳重点等腰三角形是初中数学中的一种基本几何图形,具有很多特殊的性质和定理。
本文将对等腰三角形的相关知识点进行总结和归纳,帮助读者更好地理解和掌握等腰三角形的特点和应用。
以下是等腰三角形知识点总结汇总,希望对大家的学习有所帮助。
1、等腰三角形知识总结,定义(1)等腰三角形:有两条边相等的三角形叫等腰三角形,相等的两条边叫腰,另一条边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角。
(2)等边三角形:特殊的等腰三角形,三条边都相等的三角形叫做等边三角形。
2、等腰三角形知识总结,等腰三角形的相关概念(1)等腰三角形是轴对称图形,底边上的中线(顶角平分线、底边上的高)所在的直线就是它的对称轴。
(2)等腰三角形的外心、内心、重心和垂心都在顶角平分线上,即四心共线。
(3)等边三角形的外心、内心、重心和垂心四心合一,成为等边三角形的中心。
3、等腰三角形知识总结,等腰三角形的性质定理(1)推理格式:在△ABC中,因为AB=AC,所以∠B=∠C。
(2)定理的作用:证明同—个三角形中的两个角相等。
4、等腰三角形知识总结,等腰三角形性质定理的推论(1)等腰三角形的顶角平分线平分底边并且垂直于底边。
(2)等边三角形的三个内角都相等,并且每个角都等于60°。
5、等腰三角形知识总结,等腰三角形的判定定理(1)该定理是证明两条线段相等的重要定理,是将三角形中的角的相等关系转化为边的相等关系的重要依据。
(2)注意:该定理不能叙述为“如果一个三角形中有两个底角相等,那么它的两腰也相等”。
因为在没有判定出它是等腰三角形之前,不能用“底角”、“腰”这些名词,只有等腰三角形才有“底角”、“腰”。
相等的两条边叫腰;两腰的夹角叫顶角;顶角所对的边叫底;腰与底的夹角叫底角。
(2)等边对等角;(3)底边上的高、底边上的中线、顶角平分线互相重合;(4)是轴对称图形,对称轴是顶角平分线;(5)底边小于腰长的两倍并且大于零,腰长大于底边的一半;(6)顶角等于180°减去底角的两倍;(7)顶角可以是锐角、直角、钝角,而底角只能是锐角.等边三角形性质:①具备等腰三角形的一切性质。
简单的轴对称图形——等腰(等边)三角形(7类热点题型讲练)(原卷版)--初中数学北师大版7年级下册
第02讲简单的轴对称图形—等腰(等边)三角形(7类热点题型讲练)1.理解并掌握等腰三角形的性质;(重点)2.经历等腰三角形的探究过程,能初步运用等腰三角形的性质解决有关问题.(难点)知识点01等腰三角形的性质(1)等腰三角形性质1:等腰三角形的轴对称图形,等腰三角形的两个底角相等(简称:等边对等角)(2)等腰三角形性质2:等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合(简称:等腰三角的三线合一)图形:如下所示;符号:在ABC ∆中,AB =AC ,1212,,;,,;,12.BD CD AD BC AD B BD CD AD BC C BD CD ∠=∠⎧⎪=⊥∠=∠⊥∠=∠⎨⎪⊥⎩==若则若则若,则知识点02等边三角形的性质(1)等边三角形性质1:等边三角形的三条边都相等;(2)等边三角形性质2:等边三角形的每个内角等于60︒;(3)等边三角形性质3:等边三角形是轴对称图形,有三条对称轴.题型01等腰三角形两腰相等求解【例题】(23-24八年级上·浙江宁波·期中)若a ,b 为等腰ABC 的两边,且满足()240a -=,则ABC的周长为()A .16B .18C .20D .16或20【变式训练】1.(22-23八年级上·湖南岳阳·期中)等腰三角形的两边长分别是3cm 和7cm ,则该三角形周长为.2.(22-23七年级下·陕西西安·阶段练习)定义;等腰三角形的底边长与其腰长的比值k 称为这个等腰三角形的“优美比”.若等腰三角形的周长为13cm ,5cm AB =,则它的“优美比”k 为()A .54B .35C .54或35D .45或53题型02根据等边对等角求角度【例题】(23-24八年级上·浙江绍兴·期末)如图,在ABC 中,AB AC =,110ACD ∠=︒,则B ∠=.【变式训练】1.(2024·北京·一模)如图,已知等腰三角形ABC ,AB AC =,40A ∠=︒,若以点B 为圆心,BC 长为半径画弧,则ABE ∠=°.2.(23-24八年级下·云南文山·阶段练习)如图,已知AB AC =,CD CE =,EF EG =,60A ∠=︒,求G ∠的度数为°.题型03根据等边对等角证明【例题】(2023·吉林长春·模拟预测)如图,ABC 是等腰三角形,点D ,E 分别在腰AC ,AB 上,且BE CD =,连接BD ,CE .求证:BD CE =.【变式训练】1.(2024·江苏南京·一模)如图,在ADE V 和FDE V 中,ADE AED ∠=∠,DF EF =,AD ,EF 的延长线相交于点B 、AE ,DF 的延长线相交于点C .求证BD CE =.2.(23-24八年级上·江苏南京·阶段练习)如图,在ABC 中,AD 是三角形的中线,点F 在中线AD 上,且BF AC =,连接并延长BF 交AC 于点E ,求证:AFE CAF ∠=∠.题型04根据三线合一求解【例题】(23-24八年级下·贵州毕节·阶段练习)如图,在三角形框架ABC 中,AB AC =,AO 是连接点A 与BC 中点O 的支架.若80BAC ∠=︒,则BAO ∠的度数为.【变式训练】1.(23-24八年级下·全国·课后作业)如图,在ABC 中,AB AC =,AD 平分BAC ∠,点E 在边AB 上,且BD BE =.若100BAC ∠=︒,则ADE ∠的大小为.2.(23-24八年级上·吉林长春·阶段练习)如图,在等腰ABC 中,5AB AC ==,AD 是ABC 的高,6BC =,E F 、分别是AB AD 、上一动点,则BF EF +的最小值为.题型05根据三线合一证明【例题】(23-24八年级下·全国·课后作业)如图,在ABC 中,90BAC ∠=︒,E 为边BC 上的点,且AB AE =,D 为线段BE 的中点,过点E 作EF AE ⊥,过点A 作AF BC ∥,且AF 、EF 相交于F .(1)求证:C BAD ∠=∠;(2)求证:AC EF =.【变式训练】1.(23-24八年级上·云南红河·阶段练习)如图,在ABC 中,AB AC =,AD 是BC 边上的中线,BE AC ⊥于点E .(1)求证:AD BC ⊥;(2)求证:=CBE BAD ∠∠.2.(23-24八年级上·江苏扬州·期末)在ABC 中,90ACB ∠=︒,AC BC =.(1)如图1,BE CE ⊥于点E ,AD CE ⊥于点D ,求证:ACD CBE ≌;(2)如图2,BE CE ⊥于点E ,CE 交AB 于点F ,若AC AF =,2BE =,则CF 的长为_______.题型06根据等边三角形的性质求解【例题】(23-24八年级下·山东枣庄·阶段练习)如图,在等边ABC 中,D 、E 分别为边BC 、AC 上的点,AD 与BE 相交于点P ,若BD CE =,则APE ∠=.【变式训练】1.(23-24八年级下·江西吉安·阶段练习)如图,在ABC 中,90,30,6A B AC ∠=︒∠=︒=厘米,点D 从点A 开始以1厘米/秒的速度向点C 运动,点E 从点C 开始以2厘米秒的速度向点B 运动,两点同时运动,当运动时间为秒时,DEC 是等边三角形.2.(23-24九年级下·河南商丘·阶段练习)在等边三角形ABC 中,8AB =,点P 在BC 边上.若7AP =,则BP 的长为.题型07根据等边三角形的性质证明【例题】(23-24八年级下·广东佛山·阶段练习)如图,ABC 为等边三角形,点E 、F 分别在边AC BC 、上,AE CF =,10BE =,AF 与BE 相交于点D ,3AD =.(1)求证:ABF BCE ≌ .(2)求DF 的长度.【变式训练】1.(2024八年级下·全国·专题练习)如图1,等边三角形BCD 和等边三角形ACE ,连接AD ,BE ,其中AC BC >.(1)求证:AD BE =;(2)如图2,当点A C 、、B 在一条直线上时,AD 交CE 于点F ,BE 交CD 于点G ,求证:BG DF =;(3)利用备用图补全图形,直线AD ,BE 交于点H ,连接CH ,若3DH =,5CH =,直接写出BH 的长.2.(2024八年级下·全国·专题练习)已知ABC 是等边三角形,D 为射线BC 上一动点,连接AD ,以AD 为边在直线AD 右侧作等边三角形ADE .(1)如图1,当点D 在BC 边上时,连接CE ,此时AB ,CD ,CE 之间的数量关系为______,ACE ∠=______;(2)如图2,当点D 在BC 的延长线上时,连接CE ,(1)中AB ,CD ,CE 之间的数量关系是否仍然成立?若成立,请说明理由;若不成立,请写出新的结论及证明过程;(3)如图3,当点D 在射线BC 上运动时,取AC 的中点F ,连接EF ,当EF 的值最小时,请直接写出CFE ∠的度数.一、单选题1.(23-24八年级下·广东佛山·期中)等腰三角形的两边长分别为3和6,则这个三角形的周长是()A .15B .12C .12或15D .92.(2024·甘肃天水·一模)若等腰三角形中有一个角等于50︒,则这个等腰三角形的顶角的度数为()A .50︒B .80︒C .65︒或50︒D .50︒或80︒3.(2024年安徽省名校之约中考第一次联考数学试题)如图,AB CD ∥,点E 为直线AB 上方一点,连接BD ,DE ,BE .若DE CD ⊥,BE DE =,25BDC ∠=︒,则ABE ∠的度数是()A .125︒B .130︒C .135︒D .140︒4.(22-23八年级上·江苏无锡·期中)如图,在ABC 中,6BC =,ABC ∠与ACB ∠的平分线交于点O ,过点O 作BC 的平行线分别交AB 、AC 于点M 、N ,AMN 的周长是13,则ABC 的周长是()A .18B .19C .20D .215.(23-24八年级上·江苏徐州·期中)如图,在Rt ABC △中,90ACB ∠=︒,10cm AB =,6cm AC =,动点P 从点B 出发,沿射线BC 以1cm/s 的速度运动,设运动的时间为t 秒,若ABP 是等腰三角形时,则t 的值为()A .10B .16C .10或16D .10或16或254二、填空题6.(22-23八年级下·河南郑州·期中)已知等腰三角形的两边长为x y ,,且满足()2420x x y -+-=,则三角形的周长为.7.(23-24七年级下·吉林长春·阶段练习)一个等腰三角形的周长是17,已知它的一边长是5,则另外两边的长分别是.8.(23-24九年级下·福建福州·期中)如图,已知直线12l l ∥,点,A D 在直线1l 上,以点A 为圆心,适当长为半径画孤,分别交直线12,l l 于,C B 两点,连接,AB BC .若115BCD ∠=︒,则1∠的度数为.9.(23-24八年级下·江苏泰州·期中)如图,ABC 和ADE V 都是顶角为45︒的等腰三角形,AB AD >,BC 、DB 分别是两个等腰三角形的底边,点B 、D 、E 三点恰好落在一条直线上,若18BAD EBC ∠=︒∠=,度.10.(23-24八年级下·陕西西安·阶段练习)如图,已知60AOB ∠=︒,点P 在边OA 上,5OP =,点M 、N 在边OB 上,PM PN =,若2MN =,则OM =.三、解答题11.(23-24七年级上·山东青岛·期末)(1)如图1,已知CE 与AB 交于点E ,AC BC =,12∠=∠,则AE 与BE 的数量关系是______;(2)如图2,已知CD 的延长线与AB 交于点E ,AD BC =,34∠∠=,探究AE 与BE 的数量关系,并说明理由.12.(23-24八年级上·安徽阜阳·期末)如图,在ABC 中,AB AC =,AD 平分BAC ∠.以点A 圆心,AD 长为半径画弧,与AB ,AC 分别交于点E ,F ,连接DE ,DF .(1)求证:BDE CDF ≌;(2)若80BAC ∠=︒,求BDE ∠的度数.13.(22-23八年级上·湖北武汉·期末)如图,Rt ABC △中,90ACB ∠=︒,AC BC =,点D 在斜边AB 上,且AD AC =,过点B 作BE CD ⊥交直线CD 于点E ,过点A 作AF CD ⊥于点F .(1)求BCD ∠的度数;(2)求证:DF BE =.14.(23-24八年级上·陕西安康·期末)如图,在ABC 中,AC BC =,点D 是AB 上一点,DE BC ⊥于点E ,EF AC ⊥于点F .(1)若点D 是AB 的中点,求证:12BDE C ∠=∠;(2)若160ADE =∠︒,求DEF ∠的度数.15.(23-24八年级上·陕西商洛·期末)如图,ABC ,ADE V 均是等边三角形,点B ,D ,E 三点共线,连接CD ,CE ,CD BE ⊥.(1)求证:BD CE =;(2)若线段3DE =,求线段CE 的长.16.(22-23七年级下·四川成都·期末)已知,在等边ABC 中,点D 为射线BA 上一点(点D 与点B 不重合),连接CD ,以DC 为边在BC 上方作等边DCE △,连接AE .(1)如图1,当点D 是AB 边中点时,求ADE ∠的度数;(2)求证:AE BD =;(3)如图2,当动点D 在BA 的延长线上时,以DC 为边在其下方作等边DCF ,连接BF ,求线段AB ,AE ,BF 之间的等量关系式.。
中考数学第19讲 等腰三角形与等边三角形
由(1)知 BA=BC=BE,
∴∠EAB=∠AEB.
∴∠BAG=∠BEF=∠BCF.
课堂精讲
又∵BA=BC, ∴△GAB≌△FCB(SAS). ∴∠GBA=∠FBC,BG=BF. ∴∠GBF=∠GBA+∠ABF=∠FBC+∠ABF=∠ABC=120°.
GF ∴BF= 3. ∵AE=5,EF=CE=CF=2,∴GF=9. ∴BF= GF3= 93=3 3.
答案图 ∵∠ADB=∠EDC, ∴△ABD∽△ECD.∴BDDC=AEBC. ∵AD 平分∠BAC,∴∠BAD=∠CAD. ∴∠CAD=∠E.∴AC=CE.∴BDDC=AACB.
课堂精讲
例 8 下面是有关三角形内外角平分线的探究,阅读后按要求作答: 探究 1:如图 1,在△ABC 中,点 O 是∠ABC 与∠ACB 的平分线 BO 和 CO 的交点,通过分析发现:∠BOC=90°+12∠A.理由如下: ∵BO 和 CO 分别是∠ABC 和∠ACB 的平分线, ∴∠1=12∠ABC,∠2=12∠ACB. ∴∠1+∠2=12(∠ABC+∠ACB). 又∵∠ABC+∠ACB=180°-∠A, ∴∠1+∠2=12(180°-∠A)=90°-12∠A. ∴∠BOC=180°-(∠1+∠2)=180°-90°-12∠A=90°+12∠A.
课堂精讲
考点一 等腰三角形的性质和判定 例1 (1)(2018·成都)等腰三角形的一个底角为50°, 则它的顶角的度数为________. 【答案】80°
课堂精讲
(2)(2018·湖州)如图,AD,CE 分别是△ABC 的中线和角平分线.若 AB= AC,∠CAD=20°,则∠ACE 的度数是( )
知识回顾
二、线段的垂直平分线 1.线段垂直平分线定义: 垂直于 一条线段且 平分 这 条线段的直线叫作线段的垂直平分线. 2.性质:线段垂直平分线上的点到 线段两端点 的距离相 等. 3.判定:到一条线段两端点距离相等的点在__这__条__线__段__的___
等腰三角形和等边三角形
等腰三角形和等边三角形本周重点:等腰三角形、等边三角形性质、判定、运用本周难点:正确运用等腰三角形、等边三角形的性质和判定进行推理论证学习建议:一、知识分析等腰三角形是一种特殊的三角形,研究完一般三角形的性质及形状大小关系后,再研究等腰三角形,符合从一般到特殊,再从特殊到一般的认知规律,又由于等腰三角形是轴对称图形,所以教科书把这部分内容安排在了“轴对称”这一章,就是要用轴对称研究等腰三角形的有关性质,利于我们从对称的观点来认识等腰三角形。
等腰三角形除了具有一般三角形的所有性质外,还有许多特殊的性质,所以它比一般三角形应用更广泛。
解等腰三角形相关问题时,既要关注全等三角形的运用,又应不拘于全等三角形,要善于运用等腰三角形的性质探求新的解题途径。
等腰三角形及等边三角形的性质和判定是这部分的重点,它们是证明线段和角相等的重要根据,在学习性质和判定时,应加强理解和掌握,做到灵活应用。
二、知识学习目标:了解等腰三角形、等边三角形的有关概念;探索并掌握等腰三角形的性质及判定方法;能灵活利用等腰三角形的性质和判定解决相关问题。
三、典型题例分析1、已知:如图,ABC中,AB=AC,AD=BD=BC,求ABC各内角度数解析:分析图形的结构特征,容易发现图中有三个等腰三角形,可以利用等边对等角,把边的关系转化为角之间的关系。
为了便于计算,可以利用方程的思想加以解决。
解:∵在ABC中,AD=BD=BC,∴∠A=∠ABD,∠C=∠BDC,∵∠BDC=∠A+∠ABD=2∠A∴在ABC中,AB=AC(等边对等角)在ABC中,(三角形内角和为180)答:ABC各内角为36。
2、已知:如图,AB=AC,AD=AE,B、D、E、C四点共线,求证:BD=CE解析:1)可以利用等边对等角,找到角之间的关系,证明ABD与ACE全等或ABE与ACD全等;从而可证BD=CE;2)可以过点A作BC边上的垂线,利用等腰三角形的性质:等腰三角形三线合一加以解决。
等腰三角形,等边三角形复习
课题:轴对称等腰三角形等边三角形班级姓名知识梳理:(一)基本概念1.轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做,这条直线就叫做。
折叠后重合的点是对应点,叫做。
2.轴对称:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线,这条直线叫做,折叠后重合的点是对应点,叫做。
(说明:两个图形关于某条直线对称也叫两个图形成轴对称)。
3.线段的垂直平分线:经过线段点并且这条线段的直线,叫做这条线段的垂直平分线。
4.等腰三角形:有的三角形,叫做等腰三角形。
相等的两条边叫做,另一条边叫做,两腰所夹的角叫做,底边与腰的夹角叫做。
5.等边三角形:三条边都的三角形叫做等边三角形。
(二)主要性质1.如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的。
或者说轴对称图形的对称轴,是任何一对对应点所连线段的。
2.线段垂直平分钱的性质:线段垂直平分线上的点与这条线段两个端点的距离。
3.通过画出坐标系上的两点观察得出:(1)点P(x,y)关于x轴对称的点的坐标为P′(,)。
(2)点P(x,y)关于y轴对称的点的坐标为P″(,)。
4.等腰三角形的性质(1)等腰三角形的两个底角(简称“等边对等角” )。
(2)等腰三角形的顶角、底边上的、底边上的相互重合。
(3)等腰三角形是轴对称图形,底边上的中线(顶角平分线、底边上的高)所在直线就是它的。
(4)等腰三角形两腰上的高、中线分别,两底角的平分线也。
5.等边三角形的性质(1)等边三角形的三个内角都,并且每一个角都等于。
(2)等边三角形是轴对称图形,共有条对称轴。
(3)等边三角形每边上的、和该边所对内角的互相重合。
6.在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的。
(三)有关判定1.与一条线段两个端点距离的点,在这条线段的垂直平分线上。
2.如果一个三角形有两个角,那么这两个角所对的边也(简写成“等角对等边”)。
11、轴对称与等腰三角形
轴对称与等腰三角形知识点1、等腰三角形1、等腰三角形的定义:有两边相等的三角形叫做等腰三角形。
相等的两边叫做等腰三角形的腰,另一边叫做底边;两腰的夹角叫做顶角,腰和底边的夹角叫做底角。
注意:①等腰三角形的顶角不一定是锐角,但是底角一定是锐角;②钝角三角形也可以是等腰三角形2、等腰三角形的性质①等边对等角:等腰三角形的两底角相等;②三线合一:等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合;③等腰三角形两腰上的高、中线分别相等,两底角的平分线相等;④等腰三角形是轴对称图形,对称轴为顶角角平分线(三线合一)所在直线。
注意:①等腰三角形的性质是指在同一个等腰三角形而言的;②三线合一要注意位置,在等腰三角形中所有的中线、角平分线等并不是合一的。
3、等腰三角形的判定①有两个角相等的三角形是等腰三角形。
(等角对等边)②三线合一也能作为判定等腰三角形的依据③推论在直角三角形中,30°所对的直角边是斜边的一半1-9、如图,已知在等腰三角形ABC 中,AC AB =,BC AE //.求证:AE 平分∠DAC .例2、等腰三角形的判定2-1、如图,OC 平分∠AOB ,OB CD //,若cm OD 3=,则CD 等于.2-2、已知:如图,在△ABC 中,∠ACB =90°,CD 是AB 上的高,AE 分别交CB 、CD 于E 、F ,且CF CE =,求证:AE 平分∠BAC .2-3、如图,△ABC 中,∠ACB =90º,CD ⊥BA 于D ,AE 平分∠BAC 交CD 于F ,交BC 于E ,求证△CEF 是等腰三角形。
DC AB 02-5、如图,在△ABC中,AB知识点2、等边三角形1、等边三角形的定义三边相等的三角形叫做等边三角形,也叫正三角形2、等边三角形性质:①每个角都是60°;②轴对称图形;③有3条对称轴。
3、等边三角形的判定定理①三边相等的三角形是等边三角形;②三个角都相等的三角形是等边三角形;③有一个角是60°的等腰三角形是等边三角形。
等边三角形
探索星空: 探索星空:探究性质一
1、等边三角形的内角都相等吗?为什么? 等边三角形的内角都相等吗?为什么? ∵ AB=AC=BC
B A
∴ ∠A=∠B=∠C(在同一个 ∠A=∠B=∠C(在同一个 三角形中等边对等角 三角形中等边对等角) 等边对等角) ∵ ∠A+∠B+∠C=180° ∠A+∠B+∠C=180° ∴ ∠A=∠B=∠C=60° ∠A=∠B=∠C=60°
等腰三角形
2. 三个角都相等的三角 A 形是等边三角形. 形是等边三角形.
等边三角形 B C
有一个角是60 60° 3 . 有一个角是60°的等腰 三角形是等边三角形. 三角形是等边三角形.
∵ ∠B=600 , AB=BC ∴△ABC是等边三角 是等边三角 形
这是两个等边三角形,那么请移动三根火柴 这是两个等边三角形 那么请移动三根火柴 那么请移动 ,将此图变成四个等边三角形 将此图变成四个等边三角形. 将此图变成四个等边三角形
C
等边三角形的三个内角都相等并且每一个内角 。 都等于60 都等于
A
符号语言: 符号语言:
∵ AB=AC=BC
B C
∴ ∠A= ∠ B=∠C= 60
。
探索星空: 探索星空:探究性质二
2、等边三角形有“三线合一”的性质吗?为什 等边三角形有“三线合一”的性质吗? 么? A
B
C
结论:等边三角形每条边上的中线 结论:等边三角形每条边上的中线,高和所对角 每条边上的中线, 的平分线都三线合一。 的平分线都三线合一。 都三线合一
如图;已知 平分 如图;已知CE平分
∠ACB, ∠DAC = ∠B, ∠BAD = 60 求证:△AEF是等边三角形
几种常见的轴对称图形和中心对称图形
几种常见的轴对称图形和中心对称图形:
轴对称图形:线段、角、等腰三角形、等边三角形、菱形、矩形、正方形、等腰梯形、圆
对称轴的条数:角有一条对称轴,即该角的角平分线;等腰三角形有一条对称轴,是底边的垂直平分线;等边三角形有三条对称轴,分别是三边上的垂直平分线;菱形有两条对称轴,分别是两条对角线所在的直线,矩形有两条对称轴分别是两组对边中点的直线;
中心对称图形:线段、平行四边形、菱形、矩形、正方形、圆
对称中心:线段的对称中心是线段的中点;平行四边形、菱形、矩形、正方形的对称中心是对角线的交点,圆的对称中心是圆心。
说明:线段、菱形、矩形、正方形以及圆它们即是轴对称图形又是中心对称图形。
坐标系中的轴对称变换与中心对称变换:
点P(x,y)关于x轴对称的点P1的坐标为(x,-y),关于y轴对称的点P2的坐标为(-x,y)。
关于原点对称的点的坐标P3的坐标是(-x,-y)这个规律也可以记为:关于y轴(x轴)对称的点的纵坐标(横坐标)相同,横坐标(纵坐标)互为相反数。
关于原点成中心对称的点的,横坐标为原横坐标的相反数,纵坐标为原纵坐标的相反数,即横坐标、纵坐标同乘以-1。
16章复习1等腰三角形和等边三角形
A
E
D
C
2、(1)△ABC中,AD 平分∠BAC,若 ∠B=20°,∠C=40°, 且AB=16,AC=10,求 CD的长.
B
A
E
D C
2、(2)△ABC中, AD平分∠BAC, ∠C=2∠B,求证: AB=CD+AC.
A
高线保证等腰三 角形的形成
B C
E
D
角的倍半关系为等腰三 角形的形成创造了条件
A
100° D 60° 60° 40° 20° 100° 80° 40°
20° 20°
B
E
F
C
A
D
4、(1)已知AD//BC,∠ADC、 ∠BCD的平分线交AB边于点E, 试确定AD、BC与CD的关系, 并证明.
4、(2)△ABC中,AD平分 ∠CAB,AD⊥CD . ①若AB=AC+2CD, 求证:∠ACB=3∠B.
三、等腰三角形有关结论: (1)等腰三角形的两底角的平分线相等。 (两条腰上的中线相等,两条腰上的高相等) (2)等腰三角形的底边上的中点到两腰的距 离相等。 (3)等腰三角形底边上任意一点到两腰距离 之和等于一腰上的高(需用等面积法证明) (4)等腰三角形的一腰上的高与底边的夹角 等于顶角的一半。 (5)在直角三角形中,30度锐角所对的直角边 等于斜边的一半。
如图,在△ABC中,∠BAC=90°,AB= AC,∠ABC的平分线交AC于D,过C作BD 垂线交BD的延长线于E,交BA的延长线于F, 求证:BD=2CE.
F A E D B C
如图,在△ABC中,已知AB=AC, ∠BAC=90°,D是BC上一点,EC⊥BC, EC=BD,DF=FE. 求证:(1)△ABD≌△ACE;(2)AF⊥DE.
轴对称知识点总结
轴对称知识点总结一、轴对称1.轴对称图形的定义:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴.这时,我们也说这个图形关于这条直线(成轴)对称.2.判断一个图形是不是轴对称图形,可利用轴对称图形的定义,将图形对折,看是否能够完全重合,若能够完全重合,则这个图形是轴对称图形,否则这个图形不是轴对称图形.注意:(1)对称轴是一条直线,而不是射线或线段.(2)一个轴对称图形的对称轴可以有1条,也可以有多条,还可以有无数条.(3)轴对称图形是对于一个图形而言的,它表示具有一定特性(轴对称性)的某一类图形.3.把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线(成轴)对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.4.轴对称和轴对称图形的区别与联系5.轴对称的性质:(1)两个图形成轴对称的性质:如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.(2)轴对称图形的性质:轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线.(3)轴对称图形(或关于某条直线对称的两个图形)的对应线段(对折后重合的线段)相等,对应角(对折后重合的角)相等.(4)成轴对称的两个图形全等;轴对称图形被对称轴分成的两部分也全等,但全等的两个图形不一定是轴对称图形.二、线段垂直平分线的性质和判定1.线段垂直平分线的定义:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线,也叫线段的中垂线.2.线段垂直平分线的性质:线段垂直平分线上的点与这条线段两个端点的距离相等.如下图所示,点P在线段AB 的垂直平分线上,则P A=PB.3.线段垂直平分线的判定:与线段两个端点距离相等的点在这条线段的垂直平分线上.如上图所示,若P A=PB,则点P在线段AB的垂直平分线上三、尺规作图(线段的垂直平分线)1.作图步骤:(1)以A为圆心,以大于线段AB一半的长度画弧(2)再以B为圆心,以相同长度为半径画弧,交前弧于C、D两点(3)连接CD,直线CD即为线段AB的垂直平分线四、尺规作图(轴对称)1.轴对称图形或成轴对称的两个图形的对称轴的画法,步骤如下:(1)找出轴对称图形或成轴对称的两个图形的任意一对对应点;(2)连接这对对应点;(3)画出对应点所连线段的垂直平分线.这条垂直平分线就是该轴对称图形或成轴对称的两个图形的对称轴.注意:对于轴对称图形或两个图形成轴对称,它们的对应点有一个共同的特征——对应点所连的线段被对称轴垂直平分,这是我们画图形的对称轴的依据.2.在坐标系中画轴对称图形的方法:(1)计算——计算对称点的坐标;(2)描点——根据对称点的坐标描点;(3)连接——依次连接所描各点得到成轴对称的图形五、关于坐标轴对称的点的坐标1.关于坐标轴对称的点的坐标特点:(1)点(x,y)关于x轴对称的点的坐标为(x,-y);(2)点(x,y)关于y轴对称的点的坐标为(-x,y).2.已知两个点的坐标分别为P1(x1,y1),P2(x2,y2),若x1=x2,y1+y2=0,则点P1,P2关于x轴对称;若x1+x2=0,y1=y2,则点P1,P2关于y轴对称.反之也成立。
简单的轴对称图形(二)-
三边都相等的三角形是
等边三角形(也叫正三角形)
等边三角形是轴对称图形,它有三条
对称轴。
等边三角形三个内角都等于60°
1、如图, (1)等腰△ABC中,AB=AC,
顶角∠A=100°,那么底角
∠B= 40°, ∠C= 40°。 A (2)△ABC中,AB=AC,
等腰三角形“三线合一” 等腰三角形的两个底角相等。 2、如果一个三角形有两个角相等, 那么它们所对的边也相等。
某开发区新建了两片住宅区:A区、B区 (如图).现在要从煤气主管道的一个地方建 立一个接口,同时向这两个小区供气.请问,这个 接口应建在哪,才能使得所用管道最短?
B 小区
A小区Βιβλιοθήκη 煤气主管)道)
;led防爆灯的量 防爆手电筒的量 / led防爆灯的量 防爆手电筒的量 ;
把人带回来?不是说好让他们住市区里吗?你把我の话当耳边风啊?”余岚得知妹子带回来の人其中又有两位洋人,不禁大为怒火,隔着电筒语气重了些.余薇听了很生气,“他们想看雪梅,市里哪有雪梅看?你告诉我地址我马上带他们过去.”余岚被噎得一时说不出话来.余薇见她无话可 说,更加得理不饶人:“你不就是怕他们乱搞吗?这怪谁?一个巴掌拍不响,她们不愿意谁能强迫得了?我那些同学在学校大把女孩追,不是她们送上门谁稀罕一身泥腥味の村姑?”说罢,她气呼呼地挂了电筒,走出客栈大堂,顿感寒意袭人.难得元旦有三天假期,为了在家里多呆两天她还特 意多请了两天假,结果一回来就被姐姐骂个狗血淋头,真是扫兴.自从回国之后,她发现和姐姐越来越难以沟通.一个人在乡下呆久了,考虑问题の方式也会变得守旧不懂变通.所以她经常劝姐姐陪姐夫多出来走动走动,偏偏两口子对乡村生活恋恋不舍,真是难以理解.不过话说回来,不仅是姐 姐两口子喜欢农村生
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A.①③④ B.①②⑤ C.③④⑤ D.①③⑤
【课后练习】
一、选择题
1.下列命题中:①两个全等三角形合在一起是一个轴对称图形;②等腰三角形的对称轴是底边上的中线;③等边三角形一边上的高就是这边的垂直平分线;④一条线段可以看着是以它的垂直平分线为对称轴的轴对称图形.正确的说法有( )个
等边对等角。
如图5,在△ABC中
∵AB=AC
∴∠B=∠C。
三线合一。
(3) 判定。
有两条边相等的三角形是等腰三角形。
如图5,在△ABC中,
∵AB=AC
∴△ABC是等腰三角形。
有两个角相等的三角形是等腰三角形。
如图5,在△ABC中
∵∠B=∠C
∴△ABC是等腰三角形。
7、等边三角形:
(1)定义。三条边都相等的三角形,叫做等边三角形。
9、对称轴的画法:
在一个轴对称图形或成轴对称的两个图形中,连结其中一对对应点并作出所得线段的垂直平分线。
注意:有的轴对称图形只有一条对称轴,有的不止一条,要画出所有的对称轴。
成轴对称的两个图形只有一条对称轴。
10、常见的轴对称图形:
(1)英文字母。
A B D E H I K M O T U V W X Y
⑵轴对称:对于____个图形,如果沿着一条直线对折后,它们能完全重合,那么称这两个图形成________,这条直线就是对称轴。两个图形中的对应点叫做__________
【典例】
1.下列几何图形中, 线段 角 直角三角形 半圆,其中一定是轴对称图形的有( )
A.1个B.2个C.3个D.4个
2.图9-19中,轴对称图形的个数是()
(3)连接任意一对对应点的线段被对称轴______________.
[关于坐标轴对称]
点P(x,y)关于x轴对称的点的坐标是(x,-y)
点P(x,y)关于y轴对称的点的坐标是(-x,y)
[关于原点对称]
点P(x,y)关于原点对称的点的坐标是(-x,-y)
[关于坐标轴夹角平分线对称]
点P(x,y)关于第一、三象限坐标轴夹角平分线y=x对称的点的坐标是(y,x)
∠A=60°(∠B=60°,∠C=60°)
∴△ABC是等边三角形。
(4)重要结论。在Rt△中,30°角所对直角边等于斜边的一半。
如图7,
∵在Rt△ABC中,
∠C=90°,∠A=30°
∴BC= AB
或AB=2BC
8、平面直角坐标系中的轴对称:
(1)
(2)
说明:要作出一个图形关于坐标轴(或直线)成轴对称的图形,只需根据作出各顶点的对称点,再顺次连结各对称点。对称点的作法见11(1)。
二.填空题
11.线段轴是对称图形,它有_______条对称轴.
12.等腰△ABC中,若∠A=30°,则∠B=________.
13.在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于D,若CD=4,则点D到AB的距离是__________.
14.等腰△ABC中,AB=AC=10,∠A=30°,则腰AB上的高等于___________.
则∠BAC=____________.
18.△ABC中,AB、AC的垂直平分线分别交BC于点E、F,若∠BAC=115°,则∠EAF=___________.
三.解答题
19.如图:已知∠AOB和C、D两点,求作一点P,使PC=PD,且P到∠AOB两边的距离相等.
20.如图:AD为△ABC的高,∠B=2∠C,用轴对称图形说明:CD=AB+BD.
考点五、等腰三角形的特征和识别
⑴等腰三角形的两个_____________相等(简写成“________________”)
⑵等腰三角形的_________________、_________________、_________________互相重合(简称为“________________”)
特别的:(1)等腰三角形是___________图形.
若AP=PQ,求证∠APQ是多少度
考点四、线段垂直平分线的性质
⑴线段是轴对称图形,它的对称轴是__________________
⑵线段的垂直平分线上的点到______________________相等归类回忆角平分线的性质
⑴角是轴对称图形,其对称轴是_______________
⑵角平分线上的点到______________________________相等
(2)中文。日,目,木,土,十,士,中,一,二,
(3)三,六,米,山,甲,由,田,天,又,只,支,
(4)圭,凹,凸,出,兰,合,全,仝,人,关,甘,等等。
(5)数字。0 3 8
(6)图形。
【有关考点】
考点一、关于“轴对称图形”与“轴对称”的认识
⑴轴对称图形:如果_____个图形沿某条直线折叠后,直线两旁的部分能够________,那么这个图形叫轴对称图形,这条直线叫做____________。
(2)按原图形的连接方式连接所得到的对称点,即得到原图形的轴对称图形
【典例】
1、如图,Rt△ABC,∠C=90°,∠B=30°,BC=8,D为AB中点,
P为BC上一动点,连接AP、DP,则AP+DP的最小值是
2、已知等边ABC,E在BC的延长线上,CF平分∠DCE,P为射线BC上一点,Q为CF上一点,连接AP、PQ.
如图2,
∵CA=CB,
直线m⊥AB于C,
∴直线m是线段AB的垂直平分线。
(2)性质。线段垂直平分线上的点与线段两端点的距离相等。
如图3,
∵CA=CB,
直线m⊥AB于C,
点P是直线m上的点。
∴PA=PB。
(3)判定。
与线段两端点距离相等的点在线段的垂直平分线上。
如图3,∵PA=PB,
直线m是线段AB的垂直平分线,
(2)联系。把轴对称图形中“对称轴两旁的部分看作两个图形”便是轴对称;把轴对称的“两个图形看作一个整体”便是轴对称图形。
1. 轴对称的性质:
(1)成轴对称的两个图形全等。
(2)对称轴与连结“对应点的线段”垂直。
(3)对应点到对称轴的距离相等。
(4)对应点的连线互相平行。
1)线段的垂直平分线:
(1)定义。经过线段的中点且与线段垂直的直线,叫做线段的垂直平分线。
A.4个B.3个C.2个D.1个
3.正n边形有___________条对称轴,圆有_____________条对称轴
考点二、轴对称变换及用坐标表示轴对称
(1)经过轴对称变换得到的图形与原图形的________、________完全一样
(2)经过轴对称变换得到的图形上的每一点都是原图形上的某一点关于_________的对称点.
(3)判定。
三条边都相等的三角形是等边三角形。
如图6,在△ABC中
∵AB=AC=BC
∴△ABC是等边三角形。
三个内角都相等的三角形是等边三角形。
如图6,在△ABC中
∵∠A=∠B=∠C
∴△ABC是等边三角形。
有一个内角是60°的等腰三角形是等边三角形。
如图6,在△ABC中
∵AB=AC(或AB=BC,AC=BC)
(2)等腰三角形两腰上的中线、角平分线、高线对应__________.
⑶如果一个三角形有两个角相等,那么这两个角所对的________也相等(简称为“____________________”)特别的:
(1)有一边上的角平分线、中线、高线互相重合的三角形是等腰三角形.
(2)有C.26厘米D.28厘米
4、如图,∠BAC=30°,P是∠BAC平分线上一点,PM∥AC,PD⊥AC,PD=28 ,则AM=
5、如图,在Rt△ABC中,∠ACB = 90°,∠BAC的平分线交 BC于D.过C点作CG⊥AB于G,交AD于E.过D点作DF⊥AB于F.下列结论:
①∠CED=∠CDE;② ︰ ︰ ;③∠ADF=2∠ECD;
21.有一本书折了其中一页的一角,如图:测得AD=30cm,BE=20cm,∠BEG=60°,求折痕EF的长.
22.如图:△ABC中,AB=AC=5,AB的垂直平分线DE交AB、AC于E、D,
①若△BCD的周长为8,求BC的长;
②若BC=4,求△BCD的周长.
23.等边△ABC中,点P在△ABC内,点Q在△ABC外,且∠ABP=∠ACQ,BP=CQ,问△APQ是什么形状的三角形?试说明你的结论.
(3)有两边上的中线对应相等的三角形是等腰三角形.
(4)有两边上的高线对应相等的三角形是等腰三角形.
【典型例题】
例1、如图:在△ABC中,AB=AC,AD⊥BC, DE⊥AB于点E, DF⊥AC于点F。试说明DE=DF。
说明:等边三角形就是腰和底相等的等腰三角形,因此,等边三角形是特殊的等腰三角形。
(2)性质。
等边三角形是轴对称图形,其对称轴是“三边的垂直平分线”,有三条。
三条边上的中线、高线及三个内角平分线都相交于一点。
等边三角形的三个内角都等于60°。
如图6,在△ABC中
∵AB=AC=BC
∴∠A=∠B=∠C=60°。
∴点P在直线m上。
6、等腰三角形:
(1) 定义。有两条边相等的三角形,叫做等腰三角形。
相等的两条边叫做腰。
第三条边叫做底。
两腰的夹角叫做顶角。
腰与底的夹角叫做底角。
说明:顶角=180°- 2底角
底角=
可见,底角只能是锐角。
(2)性质。
等腰三角形是轴对称图形,其对称轴是“底边的垂直平分线”,只有一条。
15.如图:等腰梯形ABCD中,AD∥BC,AB=6,AD=5,BC=8,且AB∥DE,则△DEC的周长是____________.
16.等腰梯形的腰长为2,上、下底之和为10且有一底角为