七年级数学上册-第二章 整式的加减 小结与复习课件新人教

合集下载

人教版数学七年级上册 第二章 整式的加减复习 课件

人教版数学七年级上册 第二章 整式的加减复习 课件

若5x2 y与 x m yn同的和是单项式, m=( 2 ) n=( 1 )
通常我们把一个多项式的和项按照某个字母的指数人大到小(降 幂)或者从小 到大(升幂)的顺序排列,如 -4x2+5x+5 也可 以写成 5+5x-4x2 。
练 习(三):
1、去括号:(1) +(x-3)= x-3 (2) -(x-3)=-x+3 (3)-(x+5y-2)= - x- 5y+2 (4)+(3x-5y+6z)= 3x-5y+6z
2、计算:(1)x-(-y -z+1)= X+y +z -1 ( 2 ) m+(-n+q)= m-n+q ; ( 3 ) a - ( b+c-3)= a-b-c+3; ( 4 ) x+(5-3y)= x+5-3y 。
3、多项式 x-5xy2 与-3x+xy2 的和是 -2x-4xy2 ,它们的差 是 4x-6xy2 ,多项式 -5a+4ab3 减去一个多项 后是 2a ,则 这个多项式是 -7a+4ab3 。
(2)做大纸盒比做小纸盒多用料
(6ab+8bc+6ca)- (2ab+2bc+2ca)
=6ab+8bc+6ca- 2ab-2bc-2ca =4ab+6bc+4ca(cm2 )
思考:整式的加减运算的一般步骤是什么?
归纳:整式加减运算法则:一般地,几个整式相加减, 如果有括号就先去括号,然后再合并同类项.
= x-1. 当x = -3时,原式 = -3 -1 = -4.
4. 一种商品每件成本为a元,原来按成本增加 22%定出价格,每件售价多少元?现在由于库 存积压减价,按原价的85%出售,现售价多少 元?每件还能盈利多少元?

第2章 整式的加减 整理与复习(复习课件)七年级数学上册(人教版)

第2章 整式的加减 整理与复习(复习课件)七年级数学上册(人教版)

3. 1或-1与字母相乘时,1通常省略不写,例如1×a可以写成a,
-1×a可以写成-a;
4. 带分数与字母相乘时,把带分数化成假分数,例如 1 3 ×y必须
写成 3 y ;
2
2
知识点梳理1
5. 相同字母相乘时应写成幂的形式,例如a×a可以写成a²; 6. 出现多个字母时,字母一般按照26个英文字母顺序排列;
知识点梳理5
整式的加减混合运算步骤(有括号先去括号)
(一)去括号 (按照先小括号,再中括号,最后大括号的顺序)
1. 如果括号外的因数是正数,去括号后原括号内各项的符号与 原来的符号相同. 2. 如果括号外的因数是负数,去括号后原括号内各项的符号与 原来的符号相反.
“去括号,看符号. 是 ‘+’号,不变号,是‘-’号,全变号”.
考点分析
整式的有关概念
例3:在式子3m+n,-2mn,p, x b ,0中,单项式的个数是
√√ 2 √
(A )
A. 3 B. 4
C. 5
D. 6
【解析】 -2mn,p,0是单项式. 故选A.
考点分析
整式的有关概念
例4: (2022•广东)单项式3xy的系数为

【分析】应用单项式的定义进行判定即可得出答案. 【解答】解:单项式3xy的系数为3. 故答案为:3.
针对训练
代数式
x2 y
的系数是
3
,次数是 3
.
3
【易错提示】单项式的次数和系数、多项式的次数和项 是容易混淆的概念,需辨别清楚.
知识点梳理3
定义:几个单__项__式__的__和__.
多项式:
项: 组成多项式中的_每__一__个__单__项__式__. 有几项,就叫做__几__项__式___.

人教版七年级上册第二章整式的加减小结复习课件

人教版七年级上册第二章整式的加减小结复习课件
(二)典型分析,强调方法
,若将这个三位数的百位数字与个位数字交
在正确合并同类项、准确运用去括号时的符号变化
在在正正换确 确合合,并并同同得类类项项到、、准准一确确运运个用用去去新括括号号的时时的的三符符号号位变变化化数,计算所得的新数与原数的差.这个
(1)对整式及其相关概念“是什么”、“之间有哪些联系”、“有什么用”等方面的认识是否有所提高;
是1;
(1)对整式及其相关概念“是什么”、“之间有哪些联系”、“有什么用”等方面的认识是否有所提高;
体会蕴含在具体问题中的数学思想和 规律.
【问题4】运用本章所学习的内容,可解决哪些问题?
(1)单项式的次数是指所有字母的指数和,它仅与式子中的字母有关,只含有一个字母时,指数是1,指数1通常不写,所以x的次数
是1;
用字之间的内在联系,以及可以熟练地进行整式的加减运算.
解:根据题意,
原数写成100a+ 10b+ c ,新数写成100c+ 10b+ a ,
于是, (100c+ 10b+ a) (100a 10b c) (a 100a) (10b+ 10b)+ (100c c) 99a 0+99c 99(a c) . 因为 a c 是整数,有 99(a c) 能被 99 整除.
例5 一个三位数,它的百位数字、十位数字和个位数字 (1)对整式及其相关概念“是什么”、“之间有哪些联系”、“有什么用”等方面的认识是否有所提高;
(三)课堂小结,归纳提升
(1)单项式的次数是指所有字母的指数和,它仅与式子中的字母有关,只含有一个字母时,指数是1,指数1通常不写,所以x的次数
是1;
分别为 a、b、c (二)典型分析,强调方法

人教版七年级数学上册--第二章 整式的加减章节复习(课件)

人教版七年级数学上册--第二章 整式的加减章节复习(课件)
解:因为|x+1|+(y﹣1)2=0,且|x+1|≥0,(y﹣1)2≥0,
所以x+1=0,y﹣1=0,
所以x=﹣1,y=1,
所以3(x2y+xy)﹣2(x2y﹣xy)﹣4x2y﹣3
=3x2y+3xy﹣2x2y+2xy﹣4x2y﹣3
=﹣3x2y+5xy﹣3
=﹣3×(﹣1)2×1+5×(﹣1)×1﹣3
【4-2】先化简,再求值:3(x2y+xy)﹣2(x2y﹣xy)﹣4x2y﹣3,其中x、y
2.多项式的次数:多项式里,次数最高项的次数,叫做这个多项式的次数.
3.整式:单项式与多项式统称整式.
三、多项式及整式相关概念
在确定多项式的项和次数时应注意:
1.多项式的各项应包括它前面的符号;
2.多项式没有系数的概念,但其每一项均有系数,每一项的系数也包括前
面的符号;
3.要确定一个多项式的次数,先要确定此多项式中各项(单项式)的次数,
=-2x-(x -2x +6x)
2
9
2
=-2x-(-x2+6x)
= 3x − ( x + 3 + 2x 2 )
2
9
=-2x+x2-6x
2
= 3x − x − 3 − 2x 2
2
2
9
=x -8x
2
=x − x−3
2
2
2
3
整式的加减运算
例7.已知a,b,c三个数在数轴上对应的点如图所示,
化简: b − a − 2a − b + a − c − c
解:根据数轴可知:c < b < 0 < a,|c|>|a|>|b|,

最新人教版初中七年级上册数学第二章《整式的加减小结》精品课件

最新人教版初中七年级上册数学第二章《整式的加减小结》精品课件
代数式
1
2

的系数是
3


3
,次数是
3
.
深化练习
2
(1) 若5x2y与xmyn是同类项,则m=( 2 ),n=( 1 ).
(2) 若单项式a2b与3am+nbn能合并,则m=( 1 ),n=( 1 ).
深化练习
3
下列各项中,去括号正确的是( C )
A.x2-(2x-y+2)=x2-2x+y+2
二、同类项、合并同类项
1.同类项:所含字母相同,并且相同字母的指数也相同的项叫
做同类项.几个常数项也是同类项.
2.合并同类项:把多项式中的同类项合并成一项,叫做合并同
类项,即把它们的系数相加作为新的系数,而字母部分不变.
(1) 同类项不考虑字母的排列顺序,如-7xy与yx是同类项;
(2) 只有同类项才能合并,如x2+x3不能合并.
11x6,……,按照上述规律,第2019个单项式是( C )
A.2018x2019
B.4035x2018
C.4037x2019
D.4037x2018
解析:观察单项式得第n个单项式为(2n-1)xn,
所以第2019个单项式是(2×2019-1)x2019=4037x2019.
本题源于《教材帮》
深化练习
数或一个字母也是单项式.
2.单项式的系数:单项式中的数字因数叫做这个单项式的系数.
3.单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项
式的次数.
4.多项式:几个单项式的和叫做多项式.
5.多项式的次数:多项式里次数最高项的次数,叫做这个多项式的次数.
6.整式:单项式和多项式统称整式.

人教版七年级数学上册第二章 整式的加减全章总复习课件(共36张PPT)

人教版七年级数学上册第二章 整式的加减全章总复习课件(共36张PPT)

课堂练习
5.求多项式-x3+2x2-3x-1与多项式-2x2+3x-2的差.
分析:先把文字语言转化成数学符号语言,多项式看 成一个整体,要添上括号,再求差. 解:(-x3+2x2-3x-1)-(-2x2+3x-2) =-x3+2x2-3x-1+2x2-3x+2 =-x3+4x2-6x-1
典型例题
课堂练习
1. 先化简,再求值:5x2y-[2x2y-(xy2-2x2y)-4]-2xy2, 其中x=-2,y=1. 解: 5x2y-[2x2y-(xy2-2x2y)-4]-2xy2
= 5x2y-(2x2y-xy2+2x2y-4)-2xy2 = 5x2y-4x2y+xy2+4-2xy2 = x2y-xy2+4 当x=-2,y=-1时,原式= (-2)2╳1-(-2)╳12+4=10
解:(1)第7个等式为 1+2+3+4+5+6+7+6+5+4+3+2+1=82 (2)根据规律,得第n个等式为 1+2+3+ ┅ +n+(n+1)+n+ ┅ +3+2+1=(n+1)2 (n为 正整数)
典型例题 ②.图形的规律. 例7 下图是用棋子摆成的“小屋”,按照这样的方式 摆下去,第6个这样的“小屋”需要 35 枚棋子. 分析:观察图形,发现:摆第1个 “小屋”要5枚棋子,后面的小 屋依次多6枚棋子,可得到第n 个图形中需要的棋子数为6n-1, 所以第6个这样的“小屋”需 要35枚棋子。
知识清单

人教版七年级数学上册第二章整式的加减复习课件

人教版七年级数学上册第二章整式的加减复习课件

章末复习
解 由题意, 得A=9x²-2x+7-2(x²+3x-2)=9x²-2x+7-2x²-6x+4=7x²-8x+11. 所以2A+B=2(7x²-8x+11)+(x²+3x-2)=14x²-16x+22+x²+3x-2=15x²13x+20.
章末复习
相关题5 有一道题目:“当x=100时, 求整式(8-7x-6x²+ x3 )+ (x3 +5x²+4x-1)-(-x²-3x+2x3 -3)的值.” 甲同学 做题时把x=100错
章末复习
例1 随着服装市场竞争日益猛烈, 某品牌服装专卖店一款服 装按原售 价降价a元后, 再次降价20%, 现售价为b元, 则原售 价为( A ).
章末复习
章末复习
相关题1 (1)下列[厦门中考]某商店举行 促销活动, 促销的方 法是 将本来x元的衣服以( - 10)元出售, 则下列说法中 能正 确表述该商店促销方 法的是( B ). A. 原价减去10元后再打 8折 B. 原价打8折后再减去 10元 C. 原价减去10元后再打 2折 D. 原价打2折后再减去 10元
章末复习
专题二 整式的有关概念
【要点指点】本专题主要是对“三式”和“四数”的考查.“三式” 即 单项式、多项式和整式, “四数”是指单项式的系数与次数、多项式 的 项数与次数. 解决这类问题的关键是熟记概念, 利用概念解题.
章末复习
例2 下列各式中, 哪些是单项式?哪些是多项式?并指出单项式 及 多项式的次数.

同类项
去括号 法则
同类项的概念 合并同类项的概念 合并同类项的法则 括号外的因数是正数

人教版数学七年级上册第二章整式的加减全章总复习课件

人教版数学七年级上册第二章整式的加减全章总复习课件
, =
, =
, =

×

×

×

×






=
, =
, 所以第7个数为: =


×

×

×
(2)由(1)可得:第n个数是
(3)根据题意可得:


=





(+)

×


,∴







(4)解:原式 = − + − + − +
=−
解:ab2−3a2b−3(ab2−a2b)
=ab2−3a2b−(3ab2−3a2b)
=ab2−3a2b−3ab2+3a2b
Байду номын сангаас
直接化简求值法
=−2a2b
当a=2,b=−1时,原式=−2╳22 ╳(−1)=4.
典型例题
(2).若多项式x2+2x−8=0,求2x2+4x−17的值.
分析:没有直接求出的x值,如果把x2+2x看成一个整体,

+
=

+
.

是第12个数;











+ − + ⋯+ −

+

典型例题
②.图形的规律.
一张长方形桌子可坐6人,按图3将桌子拼在一起.
(1)2张桌子拼在一起可坐________人,4张桌子拼在一起可坐
________人,n张桌子拼在一起可坐________人;

新人教版七年级数学上册 第二章 整式的加减 全章课件

新人教版七年级数学上册    第二章 整式的加减  全章课件

或者这样

先 第1个第2个
第1x00个

3根 3根
3根
1
根 1 31x00
做一做

根据你的计算方法,搭200个这样的正方形需要 __6_0_1__根火柴棒; 搭2017个这样的正方形需要 __6_0_5_2__根火柴棒.
能否利用前面 得到的结论?
1.用式子表示下列数量 m
(1)5箱苹果重m kg,每箱重 5 kg ;
4根 3根
3根
4 3 (100 1)
有没有其他 计算方法?
还可以这样

先第1个 第2个
第100个

3根 3根
3根
1
根 1 3100
(4) 如果用 x 表示所搭正方形的个数, 那么搭 x 个 这样的正方形需要多少根火柴?

第1个 第2个
x 第100个
4根 3根
ห้องสมุดไป่ตู้
3根
4 3 (1x00 1)
判断下列式子书写是否规范,不规范的请改正.
x y 2 5 ab 1n x3 m 3 6
xy 17 ab n 3x m
6
3
用含字母的式子表示数量关系 例2(1)一条河的水流速度是2.5 km/h,船在静水中 的速度是 v km/h,用式子表示船在这条河中顺水行 驶和逆水行驶时的速度;
顺水
②理清语句层次明确运算顺序; ③牢记一些概念和公式.
练一练
(1)某种商品每袋4.8元,在一个月内的销售量是m
袋,用式子表示在这个月内销售这种商品的收入.
4.8m元
(2)圆柱体的底面半径、高分别是 r,h,用式子表
示圆柱体的体积.
πr 2h

人教版七年级上册数学《整式的加减》说课教学复习课件(第二课时去括号)

人教版七年级上册数学《整式的加减》说课教学复习课件(第二课时去括号)
2 4 1
, , ,···称为正分数.
3 5 4
那么在以上这些正数的前面添上“-”号后,
-1,-2,-3,···称为负整数;
正数
负数
2
4
1
− ,- ,- ,···称为负分数.
3
5
4
0既不是正数,也不是负数!
0
1.整数:正整数、0、负整数统称为整数,如-3, -2,
0 , 1 , 2 , 3等.
1
2.分数:正分数、负分数统称为分数,如2
A. 正有理数和负有理数统称为有理数
B. 3. 14是小数,所以不是有理数
C. 正整数和负整数统称为整数
D. 整数和分数统称为有理数
2.在下列各数中:
−3, −2.5, +2.25, 0, +0.1,
1
+3 , π,
2
整数的个数是 2 .
非负整数包括0和正整数.
1
−4 ,
3
10,非负
3.填一填:
Concise And Concise Do Not Need Too Much Text
课件
前言
学习目标
1、能运用运算律探究去括号法则。
2、利用去括号法则会进行整式的化简。
重点难点
重点:去括号法则及其应用。
难点:括号前是“-”号,去括号时应该如何处理。
思考
在格尔木到拉萨路段,如果列车通过冻土地段要u小时,那么它通过非冻土地段的时间为
负分数
(1) 既是分数又是负数的数是________;
正数
0
(2) 非负数包括________和_______;
负数
(3) 非正数包括________和_______;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【问题1】本章学习了哪些知识?它们之间的 联系是什么?
【问题2】在本章中,与整式相关的概念有哪些?
例1 下列整式中哪些是单项式?哪些是多项式? 是单项式的指出系数和次数,是多项式的指出 项和次数:
-1a2b,
m4n2 ,
x2 y2 1,
x,
32t3,
2
7
π ,
3x2-y+3xy3 x4 1,
答案:(1) 2x2 y ;(2) 4m2 5 ;(3)18 3a a3 .
【问题4】运用本章所学习的内容,可解决哪 些问题?
例 3 求多项式 3x2 5 y2 8 x2 1 y2 1 x2 xy 2323
的值,其中, x 1 , y 2 . 2
答案:原多项式合并同类项后,可得 2 y2 xy ,代入
———— 华罗庚
(2)多项式是几个单项式的“和”,多项式的 项是指“和”中的每一个单项式,多项式的项数就 是指“和”中单项式的个数,包括其中的常数项;
(3)多项式的次数,是多项式里次数最高的项 的次数.
【问题3】你还记得怎样进行整式的加减运算吗?
例 2 计算: (1) x2 y 3x2 y ;
(2) (6m2 4m 3) 2(m2 2m 1) ; (3)15 3(1 a) (1 a a2 ) (1 a a2 a3) .
2x-y.
3
单项式 - 1 a 2 b m 4 n 2 x
32t3
π
2
7
3
系数
-1
ቤተ መጻሕፍቲ ባይዱ
1
1 32
2
7
次数
3
6
13
0
多项式 x2+y2-1 3x2- y+ 3xy3+ x4 - 1 2 x+ y
项 x2,y2,-1 3x2,y,3xy3,x4-1 2 x , y
次数
2
4
1
(1)单项式的次数是指所有字母的指数和,它 仅与式子中的字母有关,只含有一个字母时,指数 是1,指数1通常不写,所以x的次数是1;
x 1 , y 2 ,得原式 2 (2)2 1 (2) 9 .
2
2
(1)对整式及其相关概念“是什么”、“之间有哪 些联系”、“有什么用”等方面的认识是否有所提高;
(2)是否更加清晰地认识到进行整式的加减实际上 就是将整式化简,而化简的主要方法是合并多项式中的 同类项和去括号.
结束语
学习和研究好比爬梯子,要一步一步地 往上爬,企图一脚跨上四五步,平地登天, 那就必须会摔跤了。
相关文档
最新文档