高中数学必修1 补集集合的基本运算(一) 并集、交集
第三节 集合的基本运算(必修1第一章)
第三节集合的基本运算知识清单1.并集一般地,由所有属于集合A 或属于集合B 的元素组成的集合,称为集合A 与B 的并集.记作:B A ,读作:“A 并B ”,即}{B x A x x B A ∈∈=,或 .2.交集一般地,由所有属于集合A 且属于集合B 的元素组成的集合,称为集合A 与B 的交集.记作:B A ,读作:“A 交B ”,即}{B x A x x B A ∈∈=,且 .3.补集一般的,如果一个集合含有我们所研究问题中涉及到的所有元素,那么就称这个集合为全集,通常记作U .对于一个集合A ,由全集U 中所有不属于A 的元素组成的集合称为集合A 相对于全集U 的补集,简称为集合A 的补集,记作A C U ,即}{A x U x x A C U ∉∈=,且.4.图示表达交集并集补集AC U }{B x A x x B A ∈∈=,且 }{B x A x x B A ∈∈=,或 }{A x U x x A C U ∉∈=,且5.一些常见结论(1)A B A = 或B B A = B A ⊆⇒(2)B B A = 或A B A = A B ⊆⇒(3)BA B A =BA =⇒(4)BC A C B A C U U U =)(BC A C B A C U U U =)(题型训练题型一集合的并集、交集运算1.已知集合}0)2({}11{≤-=<<-=x x x B x x A ,,则B A 等于()A .}21{≤<-x x B .}10{<≤x x C .}10{<<x x D .}20{≤≤x x 2.已知集合}311{,,-=A ,}23{N x x x B ∈≤<-=,,则集合B A 中元素的个数为()A .3B .4C .5D .63.已知集合}2){(=+=y x y x M ,,}2){(=-=y x y x N ,,则集合=N M ()A .}02{,B .)02(,C .)}02{(,D .}02{==y x ,4.已知集合}32012{,,,,--=A ,}1{2A x x y y B ∈-==,,则B A 中元素的个数是()A .2B .3C .4D .55.已知}054{}42{}621{2≤--===x x x C B A ,,,,,,则=C B A )(6.已知集合}1{-==x y x A ,}1{-==x y y B ,则=B A 题型二集合的补集、综合运算7.已知全集}32{<-∈=x z x U ,}32{2<-∈=*x x N x A ,则=A C U ()A .}21{,B .}43{,C .}210{,,D .}430{,,8.已知全集}10{R x x x U ∈≤=,,}33{≤≤-=a a M ,}5{-≤=b b N ,则=)(N M C U ()A .}10335{<<-<<-x x x 或B .}335{>-<<-x x x 或C .}10335{≤<-<<-x x x 或D .}10335{<<-≤≤-x x x 或9.已知全集}43210{,,,,=U ,集合}3210{,,,=A ,}432{,,=B ,则=B C A C U U 10.已知全集R U =,集合}04{2≤-=x x M ,则=M C U 11.设全集}42{}54321{,,,,,,===N C M N M U U ,则=N 12.已知全集R U =,集合}032{}43{2>--=≤≤-=x x x B x x A ,.(1)求B A ,B A ;(2)求B A C U )(,)(B A C U .题型三Venn 图的运用13.设全集I 是实数集R .}22{-<>=x x x M 或与}31{<<=x x N 都是I 的子集(如图所示),则阴影部分所表示的集合为()A .}2{<x xB .}12{<≤-x xC .}21{≤<x xD .}22{≤≤-x x 14.如图,U 是全集,S P M 、、是U 的3个子集,则阴影部分所表示的集合是()A .S P M )(B .SP M )(C .S C P M U )(D .SC P M U )(15.如图,I 为全集,S P M 、、是I 的三个子集,则阴影部分所表示的集合是()A .SP M )(B .S C P M I )(C .S C P M I )(D .SC P M I )(16.设P M ,是两个非空集合,定义M 与P 的差集为}{P x M x x P M ∉∈=-,且,则)(P M M --等于()A .PB .PM C .PM D .M17.经调查,我班70名学生中,有37名喜欢语文,49名喜欢数学,两门都喜欢的有20名,则两门都不喜欢的学生有名.18.某班50人在一次考试中对C B A ,,三道题的作答情况如下:答错A 者17人,答错B 者15人,答错C 者11人,答错B A ,者5人,答错C A ,者3人,答错C B ,者4人,C B A ,,都答错的有1人,则C B A ,,都答对的有人.题型四由集合运算求参数19.已知集合}1{}20{2a B a A ,,,,==,若}164210{,,,,=B A ,则=a 20.已知集合}91{}412{2,,,,,+=+=x x B x x A ,若}9{=B A ,则=B A 21.已知集合}42{≤≤-=x x A ,}{a x x B ≤=,若A B A = ,则a 的取值范围是,若A B A ≠ ,则a 的取值范围是22.已知集合}11{+<<-=a x a x A ,}045{2≥+-=x x x B ,若∅=B A ,则a 的取值范围是,若∅≠B A ,则a 的取值范围是23.已知集合}02{}31{2=+-==b ax x x B A ,,,若∅)(B A 且A B A = ,求b a ,.24.已知集合}019|{22=-+-=a ax x x A ,}065|{2=+-=x x x B ,}082|{2=-+=x x x C ,若∅≠B A 且∅=C A ,求a 的值.25.已知集合}05)1(2{}023{222=-+++==+-=a x a x x B x x x A ,.(1)若}2{=B A ,求a 的值;(2)若A B A = ,求a 的取值范围.26.已知集合}121{},43{+≤≤-=≤≤-=m x m x B x x A .(1)若B B A = ,求m 的取值范围;(2)若∅=B A ,求m 的取值范围.综合训练1.已知全集Z U =,集合}102{Z x x x A ∈≤≤-=,,}82{N x x x B ∈≤≤-=,,则集合B C A U 中的元素个数为()A .7B .6C .5D .42.已知全集}4321{,,,=U ,集合}034|{2=+-=x x x M ,集合}065|{2=+-=x x x N ,则集合=)(N M C U ()A .}4{B .}21{,C .}421{,,D .}431{,,3.定义差集}{B x A x x B A ∉∈=-,且,现有三个集合C B A 、、分别用圆表示,则集合)(B A C --可表示下列图中阴影部分的为()A .B .C .D .4.设集合}20{}31{}24{≥≤=<≤-=<≤-=x x C x B x x A 或,,,则=B C A )(5.定义}2{B y A x y x z z B A ∈∈+==*,,,若}21{}321{,,,,==B A ,则=*B A 6.已知}15{的正奇数不大于=U ,集合}155{,=N M ,J 集合}133{)()(,=N C M C U U ,集合}71{)(,=N C M U ,则集合=M ,=N 7.设B A ,是非空集合,定义)}()({B A x B A x x B A ∉∈=⊗且.已知集合}20{<<=x x A ,}0{≥=y y B ,则=⊗B A 8.设集合}87654{}654321{,,,,,,,,,,==B A ,集合S 满足A S ⊆且∅≠B S ,则这样的集合S 的个数是9.已知集合}61{≤≤-=x x A ,集合}121{+≤≤-=m x m x B .(1)当2=m 时,求)(B C A B A R ,;(2)若A B A = ,求实数m 的取值范围,10.已知集合}52)({2++==x x y y x M ,,}1)({+==ax y y x N ,.(1)若N M 中有两个元素,求实数a 的取值范围;(2)若N M 中仅有一个元素,求实数a 的取值范围.11.已知集合}034|{2=+-=x x x A ,}01|{2=-+-=m mx x x B ,}0122|{2=+-=ax x x C ,且A C A B B A == ,,求实数m 的值及实数a 的取值范围.12.对于正整数集合)3(}{21≥∈⋅⋅⋅=n N n a a a A n ,,,,,如果去掉其中任意一个元素i a (=i 1,2,…,n )之后,剩余的所有元素组成的集合都能分为两个交集为空集的集合,且这两个集合的所有元素之和相等,就称集合A 为“和谐集”.(1)判断集合}54321{,,,,是否是“和谐集”(不必写过程);(2)请写出一个只含有7个元素的“和谐集”,并证明此集合为“和谐集”;(3)当n =5时,集合}{54321a a a a a A ,,,,=,求证:集合A 不是“和谐集”.第三节集合的基本运算参考答案题型一集合的并集、交集运算1-4B ,C ,C ,B5.}421{,,6.}0{≥x x 题型二集合的补集、综合运算7-8D ,A9.}410{,,10.}22{><x x x ,或11.}531{,,12.(1)}4313{≤<-<≤-=x x x B A ,或 ,RB A = (2)}43{)(>-<=x x x B AC U ,或 ,}4313{)(>≤≤--<=x x x x B A C U ,或,或 题型三Venn 图的运用13-18C ,C ,C ,B17.418.18题型四由集合运算求参数19.4=a 20.}94235{,,,,---21.44<≥a a 、22.3232><≤≤a a a 或、23.11==b a ,或93==b a ,或32==b a ,24.2-=a 25.(1)31-=-=a a 或(2)3-≤a 26.(1)23≤m (2)52>-<m m 或综合训练1-3D ,C ,A4.}34{<≤-x x 5.}76543{,,,,6.}151195{}15751{,,,、,,,==N M 7.}20{≥=x x x 或8.569.(1)}51{≤≤=x x B A ,}6511{)(≤<<≤-=x x x B C A R ,或 (2)2502≤≤-<m m 或10.(1)62>-<a a 或(2)26-==a a 或11.42==m m 或,22<<-a 12.(1)不是(2)}131197531{,,,,,,(3)证明略。
高中数学(新人教A版)必修第一册:集合的基本运算【精品课件】
的交集仍存在,此时A∩B=∅.
(三)交集
【做一做】
【探究2】
已知集合A={0,2},B={-2,-1,0,1,2},
则A∩B=(
)
A.{0,2}
C.{0}
B.{1,2}
D.{-2,-1,0,1,2}
交集的性质:
[答案]
A
①A∩B=B∩A;②A∩A=A;
③A∩∅=∅; ④若A⊆B,则A∩B=A;
(四)集合的交并运算
【巩固练习1】
(1) 已知集合A={x|(x-1)(x+2)=0},B={x|(x+2)(x-3)=0},则集合A∪B是(
A.{-1,2,3}
B.{-1,-2,3}
C.{1,-2,3}
D.{1,-2,-3}
(2) 若集合A={x|-2≤x<3},B={x|0≤x<4},则A∪B=________.
⑤(A∩B)⊆A;(A∩B)⊆B.
(四)集合的交并运算
1.集合的并集运算
例1.
(1)设集合M={x| 2 +2x=0,x∈R},N={x| 2 -2x=0,x∈R},则M∪N=(
A.{0}
B.{0,2} C.{-2,0} D.{-2,0,2}
(2)已知A={x|x≤-2,或x>5},B={x|1<x≤7},求A∪B。
(2)在解决问题时,用到了哪些数学思想?
第一章 集合与常用逻辑用语
1.3 集合的基本运算(第2课时)
教材分析
本小节内容选自:
《普通高中数学必修第一册》
人教A版(2019)
第一课时
课时内容
集合的并集、交集运算
集合的补集、综合运算
所在位置
教材第10页
数学:1.1.3《集合的基本运算(全集与补集)》课件(新人教A版必修1)
第三页,编辑于星期日:十一点 三十九分。
观察集合A,B,C与D的关系:
A={菱形} B={矩形}
C={平行四边形} D={四边形}
第四页,编辑于星期日:十一点 三十九分。
定义
在研究集合与集合的关系时, 如果一些集合是某个给定集合
的子集,则称这个集合为全集.
全集常用U表示.
第五页,编辑于星期日:十一点 三十九分。
A={菱形} B={矩形}
C={平行四边形}
D={四边形}
第六页,编辑于星期日:十一点 三十九分。
定义
设U是全集,A是U的一个子集, 则由U中所有不属于A的元素组 成的集合叫作U中子集A的补集
或(余集). 记作 u A 即 u A {x x U ,且x A}.
2. 设全集为U= {2, 4, a2 a 1}, A {a 1, 2}, U A {7}, 求实数a的值.
第十三页,编辑于星期日:十一点 三十九分。
作业练习
教材P12练习T1~4
第十四页,编辑于星期日:十一点 三十九分。
ቤተ መጻሕፍቲ ባይዱ
第十五页,编辑于星期日:十一点 三十九分。
第七页,编辑于星期日:十一点 三十九分。
U
A
uA
第八页,编辑于星期日:十一点 三十九分。
性质
(1) A ( u A) U (2) A ( u A) Φ
第九页,编辑于星期日:十一点 三十九分。
例题讲解
1. 设全集为R, A {x x 5},
B {x x 3}. 求 ⑴ A B; ⑵ A B;
新课标人教版课件系列
《高中数学》
必修1
课件集合的基本运算_人教版高中数学必修一PPT课件_优秀版
(3)(∁SA)∪(∁SB);
6
解析:
• 【解析】(1)由并集的概念可知A∪B={1,2,3,4,5,6};
•
(2)借助数轴(如图)
•
•
∴M∪N={x|x<-5或x>-3}.
• 【答案】(1){1,2,3,4,5,6} (2)A
7
方法归纳:
• 并集的运算技巧: • (1)若集合中元素个数有限,则直接根据并集的定义求解,但要注意集合中元素的
互异性. • (2)若集合中元素个数无限,可借助数轴,利用数轴分析法求解,但是要注意含“=”
用实心点表示,不含“=”用空心点表示.
8
探究一 并集的运算
9
解析:
10
探究二 交集的运算
• 【例】(1)已知集合A={x|(x-1)(x+2)=0},B={x|(x+2)(x-3)=0},则A∩B=________.
•
(2)已知集合A={x|x≥5},集合B={x|x≤m},且A∩B={x|5≤x≤6},则实数m=
________.
•
11
解析:
• 【解析】(1)A={x|x=1或x=-2},B={x|x=-2或x=3},
•
∴A∩B={-2}.
•
(2)结合数轴:
•
•
由图可知m=6.
• 【答案】(1){-2} (2)6
是否存在?若存在,求出x;
∴(∁RA)∩B={x|2<x<3或7≤x<10}.
由此可得:(1)(∁SA)∩(∁SB)={x|1<x<2}∪{7}.(2)∁S(A∪B)={x|1<x<2}∪{7};
(3)(∁SA)∪(∁SB)={x|1<x<3}∪{x|5≤x≤7}={x|1<x<3,或5≤x≤7};
集合的基本运算 并集与交集 课件——高一上学期数学人教A版必修第一册
阅读课本,回答下列问题
1.两个集合的并集与交集的含义是什么? 2.如何用 Venn 图表示集合的并集和交集? 3.并集和交集有哪些性质?
知识点一、并集
文字 一般地,由所有属于集合A 属于集合B 的元素组成的集合,称 语言 为集合A与B 的并集,记作___A_∪_(B读作“___ _A_”并) B
解析:因为 A={1,2},B={1,2,3},所以 A∩B={1,2}.又 C={2,3,4}, 所以(A ∩B )∪C={1,2}∪{2,3,4}={1,2,3,4}.
2.已知集合A={x|2<x<4},B={x|a<x<3a(a>0)}.
(1)若A∪B=B,求a的取值范围;
(2)若A∩B=∅,求a的取值范围; (3)若A∩B={x|3<x<4},求a的值.
2.对交集概念的理解 (1)运算结果:A∩B 是一个集合,由 A 与 B 的所有公共元 素组成,而非部分元素组成. (2)关键词“所有”:概念中的“所有”两字的含义是,不 仅“A∩B 中的任意元素都是 A 与 B 的公共元素”,同时“A 与 B 的公共元素都属于 A∩B”. (3)∅ 情形:当集合 A 与 B 没有公共元素时,不能说 A 与 B
没有交集,而是 A∩B=∅ .
题型一 并集的运算
[例1] (1)设集合M={x|x2+2x=0,x∈R},N={x|x2-2x=0, x∈R},则M∪N= ( )
A.{0} B.{0,2} C.{-2,0} D.{-2,0,2}
(2)已知集合M={x|-3<x≤5},N={x|x<-5或x>5},则M∪N=( ) A.{x|x<-5或x>-3} B.{x|-5<x<5} C.{x|-3<x<5} D.{x|x<-3或x>5}
第1课时并集与交集-【新教材】人教A版(2019)高中数学必修第一册课件(共39张PPT)
第1课时 并集与交集
必备知识·探新知 关键能力·攻重难 课堂检测·固双基 素养作业·提技能
必备知识·探新知
•知识点1 并集
基础知识
自然语言
所有属于集合A或属于集合B A∪B 一般地,由____________________________的元素组成的集合,称为集合A与B的并集(union
set),记作________(读作“A并B”).
• [解析] M∩N={x|-5<x<3}∩{x|-4<x<5}={x|-4<x<3},故选A.
• 4.(2019·江苏,1)已知集合A={-1,0,1,6},B={x|x>0,x∈R},则A∩B =____________.
• [解析] A∩{B1,=6}{-1,0,1,6}∩{x|x>0,x∈R}={1,6}.
• 5.已知集合A={1,2,3},B={2,m,4},A∩B={2,3},则m=_____.
• [解析] 因为A∩B={2,3},所以3∈B.所以m=3.
3
关键能力·攻重难
题型探究
题型一 并集运算
•
例 1 (1)设集合A={1,2,3},B={2,3,4,5},求A∪B;
• (2)设集合A={x|-3<x≤5},B={x|2<x≤6},求A∪B.
set),记作________(读作“A交B”)
A∩B
符号语言
A∩__B__=___{__x_|_x_∈___A__,___且____x_∈___B_ }
(1)A 与 B 相交(有公共元素,相互不包含)
(2)A 与 B 相离(没有公共元素,A∩B=∅) 图形语言
(3)A B,则 A∩B=A
集合间的基本运算(交集,并集,补集)非常全面的题型分类
集合间的基本运算一、并集(1)文字语言:由所有属于集合A或属于集合B的元素组成的集合,称为集合A 与B的并集.(2)符号语言:A∪B={x|x∈A,或x∈B}.(3)图形语言;如图所示.二、交集交集的三种语言表示:(1)文字语言:由属于集合A且属于集合B的所有元素组成的集合,称为A与B 的交集.(2)符号语言:A∩B={x|x∈A,且x∈B}.(3)图形语言:如图所示.三、并集与交集的运算性质题型一 并集及其运算例1 (1)设集合M ={4,5,6,8},集合N ={3,5,7,8},那么M ∪N 等于( ) A.{3,4,5,6,7,8} B.{5,8} C.{3,5,7,8} D.{4,5,6,8}(2)已知集合P ={x |x <3},Q ={x |-1≤x ≤4},那么P ∪Q 等于( ) A.{x |-1≤x <3} B.{x |-1≤x ≤4} C.{x |x ≤4}D.{x |x ≥-1} (3).已知集合=A {}31<≤-x x ,=B {}52≤<x x ,则B A ⋃=( )A .{}32<<x xB .{}51≤≤-x xC .{}51<<-x xD .{}51≤<-x x变式练习1 已知集合A ={x |(x -1)(x +2)=0};B ={x |(x +2)(x -3)=0},则集合A ∪B 是( ) A.{-1,2,3}B.{-1,-2,3}C.{1,-2,3}D.{1,-2,-3}2.若集合=A {}x ,3,1,=B {}2,1x ,B A ⋃={}x ,3,1,则满足条件的实数x 有( )A .1个B .2个C .3个D .4个题型二 交集及其运算例2 (1)设集合M ={m ∈Z |-3<m <2},N ={n ∈Z |-1≤n ≤3},则M ∩N 等于( ) A.{0,1} B.{-1,0,1} C.{0,1,2}D.{-1,0,1,2}(2)若集合A ={x |1≤x ≤3},B ={x |x >2},则A ∩B 等于( ) A.{x |2<x ≤3} B.{x |x ≥1} C.{x |2≤x <3} D.{x |x >2}变式练习2(1)设集合A ={x |x ∈N ,x ≤4},B ={x |x ∈N ,x >1},则A ∩B =________. (2)集合A ={x |x ≥2或-2<x ≤0},B ={x |0<x ≤2或x ≥5},则A ∩B =________.(3).设集合=M {}23<<-∈m Z m ,{}31≤≤-∈=n Z n N ,则N M ⋂=( ) A .{}1,0 B .{}1,0,1- C .{}2,1,0 D .{}2,1,0,1-(4).集合=A {}121+<<-a x a x ,=B {}10<<x x ,若=⋂B A ∅,求实数a 的取值范围.题型三已知集合的交集、并集求参数例3已知集合A={x|2a≤x≤a+3},B={x|x<-1,或x>5},若A∩B=∅,求实数a的取值范围变式练习3设集合M={x|-3≤x<7},N={x|2x+k≤0},若M∩N≠∅,则实数k的取值范围为________.例4设集合A={x|x2-x-2=0},B={x|x2+x+a=0},若A∪B=A,求实数a 的取值范围.变式练习4设集合A={x|x2-3x+2=0},集合B={x|2x2-ax+2=0},若A∪B =A,求实数a的取值范围.例5 (1)设集合A={(x,y)|x-2y=1},集合B={(x,y)|x+y=2},则A∩B 等于( )A.∅B.{53,13}C.{(53,13)} D.{x=53,y=13}(2)已知集合A={y|y=x2-2x-3,x∈R},B={y|y=-x2+2x+13,x∈R},求A∩B.变式练习5(1)设集合A={y|y=x2-2x+3,x∈R},B={y|y=-x2+2x+10,x∈R},求A∪B;(2)设集合A ={(x ,y )|y =x +1,x ∈R },集合B ={(x ,y )|y =-x 2+2x +34,x ∈R },求A ∩B .6.设集合A ={x |x 2=4x },B ={x |x 2+2(a -1)x +a 2-1=0}. (1)若A ∩B =B ,求a 的取值范围; (2)若A ∪B =B ,求a 的值.课后练习 一、选择题1.设集合A ={-1,0,-2},B ={x |x 2-x -6=0},则A ∪B 等于( ) A.{-2} B.{-2,3} C.{-1,0,-2}D.{-1,0,-2,3}2.已知集合M ={x |-1≤x ≤1,x ∈Z },N ={x |x 2=x },则M ∩N 等于( ) A.{1} B.{-1,1} C.{0,1}D.{-1,0,1}3.已知集合M ={0,1,2,3,4},N ={1,3,5},P =M ∩N ,则P 的子集共有( )A.2个B.4个C.6个D.8个4.已知集合M={x|-3<x≤5},N={x|x<-5或x>5},则M∪N等于( )A.{x|x<-5或x>-3}B.{x|-5<x<5}C.{x|-3<x<5}D.{x|x<-3或x>5}三、解答题5.已知集合A={x|-2≤x≤5},B={x|2a≤x≤a+3},若A∪B=A,求实数a的取值范围.6.已知集合A={x|x2-px+15=0}和B={x|x2-ax-b=0},若A∪B={2,3,5},A∩B={3},分别求实数p,a,b的值.7.(1)已知集合A={-4,2a-1,a2},B={a-5,1-a,9},若A∩B={9},求a的值;(2)若P={1,2,3,m},Q={m2,3},且满足P∩Q=Q,求m的值.四、全集(1)定义:如果一个集合含有我们所研究问题中涉及的所有元素,那么就称这个集合为全集.(2)记法:全集通常记作U.五、补集对于一个集合A,由全集U中不属于集合A的所有元素组成的集合称为集合A相对于全集U的补集,记作∁U A符号语言为∁U A={x|x∈U,且x∉A}图形语言为六、补集的性质①A∪(∁U A)=U;②A∩(∁U A)=∅;③∁U U=∅,∁U∅=U,∁U(∁U A)=A;④(∁U A)∩(∁U B)=∁U(A∪B);⑤(∁U A )∪(∁U B )=∁U (A ∩B ).题型一 补集运算例1 (1)设全集U ={1,2,3,4,5},集合A ={1,2},则∁U A 等于( ) A.{1,2} B.{3,4,5} C.{1,2,3,4,5}D.∅(2)若全集U =R ,集合A ={x |x ≥1},则∁U A =________.变式练习 1 已知全集U ={x |x ≥-3},集合A ={x |-3<x ≤4},则A C U =________.2.已知全集U ={x |1≤x ≤5},A ={x |1≤x <a },若∁U A ={x |2≤x ≤5},则a =________.题型二 补集的应用例2 设全集U ={2,3,a 2+2a -3},A ={|2a -1|,2},∁U A ={5},求实数a 的值.变式练习2若全集U={2,4,a2-a+1},A={a+4,4},∁U A={7},则实数a=________.题型三并集、交集、补集的综合运算例3 已知全集U={x|-5≤x≤3},A={x|-5≤x<-1},B={x|-1≤x<1},求∁U A,∁U B,(∁U A)∩(∁U B).变式练习3设全集为R,A={x|3≤x<7},B={x|2<x<10},求∁R(A∪B)及(∁R A)∩B.题型四利用Venn图解题例4 设全集U={不大于20的质数},A∩∁U B={3,5},(∁U A)∩B={7,11},(∁U A)∩(∁UB)={2,17},求集合A,B.变式练习4全集U={x|x<10,x∈N*},A⊆U,B⊆U,(∁U B)∩A={1,9},A∩B={3},(∁U A)∩(∁U B)={4,6,7},求集合A,B.变式练习5已知集合A={x|x2-4ax+2a+6=0},B={x|x<0},若A∩B≠∅,求a的取值范围.课后作业一、选择题1.已知全集U={1,2,3,4},集合A={1,2},B={2,3},则∁U(A∪B)等于( )A.{1,3,4}B.{3,4}C.{3}D.{4}2.已知全集U={1,2,3,4,5,6,7},A={3,4,5},B={1,3,6},则A∩(∁U B)等于( )A.{4,5}B.{2,4,5,7}C.{1,6}D.{3}3.设全集U={a,b,c,d,e},集合M={a,c,d},N={b,d,e},那么(∁U M)∩(∁N)等于( )UA.∅B.{d }C.{a ,c }D.{b ,e }4.已知集合A ={x |x <a },B ={x |1<x <2},且A ∪(∁R B )=R ,则实数a 的取值范围是( )A.{a |a ≤1}B.{a |a <1}C.{a |a ≥2}D.{a |a >2}5.设全集是实数集R ,M ={x |-2≤x ≤2},N ={x |x <1},则(∁R M )∩N 等于( )A.{x |x <-2}B.{x |-2<x <1}C.{x |x <1}D.{x |-2≤x <1}6.已知集合A ={x |-4≤x ≤-2},集合B ={x |x -a ≥0},若全集U =R ,且A ⊆∁U B ,则a 的取值范围为________.7.设U ={1,2,3,4,5,6,7,8,9},(∁U A )∩B ={3,7},(∁U B )∩A ={2,8},(∁U A )∩(∁U B )={1,5,6},则集合A =________,B =________.8.已知全集U =R ,A ={x ||3x -1|≤3},B ={x |⎩⎨⎧ 3x +2>0,x -2<0},求∁U (A ∩B ).9.已知集合A ={x |3≤x <6},B ={x |2<x <9}.(1)分别求∁R (A ∩B ),(∁R B )∪A ;(2)已知C ={x |a <x <a +1},若C ⊆B ,求实数a 的取值范围.10.已知A ={x |-1<x ≤3},B ={x |m ≤x <1+3m }.(1)当m =1时,求A ∪B ;(2)若B ⊆∁R A ,求实数m 的取值范围.11.已知集合{}31<≤-=x x A ;{}242-≥-=x x x B .(1)求B A ⋂;(2)若集合{}02>+=a x x C ,满足C C B =⋃,求实数a 的取值范围.12.设集合A ={x |x 2=4x },B ={x |x 2+2(a -1)x +a 2-1=0}.(1)若A ∩B =B ,求a 的取值范围;(2)若A ∪B =B ,求a 的值.。
高一交集并集补集知识点
高一交集并集补集知识点高中数学是学生在学习数学的过程中,重要的一环。
其中,集合论是高中数学中必不可少的一部分。
在集合论的学习过程中,交集、并集以及补集是我们需要特别关注的核心知识点。
本文将会详细讨论交集、并集和补集的定义、性质以及应用。
一、交集的概念和性质既然要讨论交集,我们首先需要明确交集的概念。
在集合论中,交集指的是两个或多个集合中共同存在的元素组成的集合。
简单来说,就是将多个集合中相同的元素提取出来,形成一个新的集合。
交集的符号通常用符号“∩”表示。
例如,若A={1, 2, 3},B={2, 3, 4},则A∩B={2, 3}。
交集的性质有以下几点:1. 交换律:即A∩B=B∩A。
也就是说,交集操作满足元素的顺序无关紧要。
2. 结合律:即(A∩B)∩C=A∩(B∩C)。
交集操作满足结合律,可以任意改变括号的位置。
3. 分配律:即A∩(B∪C)=(A∩B)∪(A∩C)。
交集和并集之间满足分配律,可以用来简化运算。
二、并集的概念和性质除了交集,我们还需要了解并集的概念和性质。
在集合论中,如果将多个集合的所有元素合并在一起,就形成了并集。
并集的符号通常用符号“∪”表示。
例如,若A={1, 2, 3},B={2, 3, 4},则A∪B={1, 2, 3, 4}。
并集的性质如下:1. 交换律:即A∪B=B∪A。
并集操作满足元素的顺序无关紧要。
2. 结合律:即(A∪B)∪C=A∪(B∪C)。
并集操作满足结合律,可以任意改变括号的位置。
3. 分配律:即A∪(B∩C)=(A∪B)∩(A∪C)。
并集和交集之间也满足分配律,可以用来简化运算。
三、补集的概念和性质除了交集和并集,我们还需要了解补集的概念和性质。
在集合论中,补集是相对于某个全集而言,指的是一个集合中不属于另一个集合的元素所组成的集合。
补集的符号通常用符号“c”或“-”表示。
例如,若全集为U={1, 2, 3, 4, 5},A={2, 3},则A的补集为c A={1, 4, 5}或-U={1, 4, 5}。
高中数学 集合的基本运算-全集与补集课件 新人教A版必修1
U
定义------补集 对于一个集合A,由全集U中 不属于集合A的所有元素组成的 集合称为集合A相对于全集U的补 集,简称为集合A的补集, 记作 CU A
CU A { x | x U , 且x A}
定义------补集
CU A { x | x U , 且x A}
U CUA A
例4 设全集为U= {2, 4, a a 1},
2
A {a 1,2}, CU A {7}
求实数a的值.
尝试高考
1 集合U={1,2,3,4,5},A={2,4},B={3,4,5},
2,5 C={3,4},则( A B) (CU C ) ________
则 A CU B
A CU A _______ U A CU A ______
例1 设全集U={x|x是小于9的正整数},
A={1,2,3},B={3,4,5,6},求CUA,CUB, CU(CUA), B∩(CUA), A∩(CUB),
(CUA)∩(CUB), CU(A∪B),
解:根据题意可知, U={1,2,3,4,5,6,7,8}, 所以 CUA={4,5,6,7,8} CUB={1,2,7,8}
练习1 全集U={x|x是不大于9的正整数},
且(CUA)∩B={1,3},(CUB)∩A={2,4,8} ,
(CUA)∩(CUB)={6,9},求集合A、B
练习2 全集U=A∪B={1,2,3,4,5},
(CUA)∩B={1,3},求集合A
例2 设全集U=R,A={x|2x-3≤1}, B={x|0<x<4},求 (1)CUA, (2)CUB,
例3 设A={x|-1<x<2},B={x|1<x<3}, 求A∩B, A∪B.
高中数学必修一:集合间的基本运算(交集与并集、补集)
6 6 14
A
B
画出Venn图右图 , 可知没有参加过比赛的同学有
45 12 20 6 19. 答 这个班共有 19名同学没有参加过比赛 .
例3.(1)已知集合A={1,2,3,4},B={x|x=n2, n∈A},则A∩B=( ) A.{1,4} B.{2,3} C.{9,16} D.{1,2} (2)设集合M={x|x2+2x=0,x∈R},N={x|x2- 2x=0,x∈R},则M∪N=( ) A.{0} B.{0,2} C.{-2,0} D.{-2,0,2}
4.已知集合A={(x,y)|y=x+3},B={(x,y)|y =3x-1},则A∩B=________.
y=x+3 解析:由 y=3x-1 x=2 得 y= 5
,
y=x+3 ∴A∩B=x,y| y=3x-1 x=2 ={(2,5)}. =x,y| y=5
解析: M∪N={-1,0,1,2}.
2.设A={4,5,6,8}, B={3,5,7,8},求A∪B.
解: A∪B={4,5,6,8} ∪ {3,5,7,8}
={3,4,5,6,7,8}
3.设集合A={x|-1<x<2},集合B={x|1<x<3} 求A∪B.
解: A∪B={x|-1<x<2} ∪ {x|1<x<3}
Venn图表示:
A
A∪B
B
A
A∪B
B
性质:
A B B A, A A B, B A B .
思考: A∪B=B可能成立吗?
A
A∪B
B
若A
B,则
A∪B=B
集合的基本运算(精讲)(原卷版)--2023届初升高数学衔接专题讲义
2023年初高中衔接素养提升专题讲义第八讲集合的基本运算(精讲)(原卷版)【知识点透析】一、交集1、文字语言:对于两个给定的集合A ,B ,由属于A 又属于B 的所有元素构成的集合,叫做A ,B 的交集,记作A ∩B ,读作“A 交B ”2、符号语言:A ∩B ={x |x ∈A 且x ∈B }3、图形语言:阴影部分为A ∩B4、性质:A ∩B =B ∩A ,A ∩A =A ,A ∩∅=∅∩A =∅,如果A ⊆B ,则A ∩B =A5、解题思路:单个数字交集找相同,不等式的交集画数轴,不同集合高度画不同。
二、并集1、文字语言:对于两个给定的集合A ,B ,由两个集合的所有的元素组成的集合,叫做A 与B 的并集,记作A ∪B ,读作“A 并B ”2、符号语言:A ∪B ={x |x ∈A 或x ∈B }3、符号语言:阴影部分为A ∪B4、性质:A ∪B =B ∪A ,A ∪A =A ,A ∪∅=∅∪A =A ,如果A ⊆B ,则A ∪B =B .5、解题思路:两个集合所有元素集中在一起,但是重复元素只写一次,要满足集合中的互异性三、补集1、全集:在研究集合与集合之间的关系时,如果所要研究的集合都是某一给定集合的子集,那么称这个给定的集合为全集.记法:全集通常记作U .2、补集(1)文字语言:如果给定集合A 是全集U 的一个子集,由U 中不属于A 的所有元素构成的集合,叫做A 在U 中的补集,记作A C U .(2)符号语言:}|{A x U x x A C U ∉∈=且(3)符号语言:(4)性质:A ∪∁U A =U ;A ∩∁U A =∅;∁U (∁U A )=A .【注意】并不是所有的全集都是用字母U 表示,也不是都是R,要看题目的。
四、利用交并补求参数范围的解题思路1、根据并集求参数范围:=⇒⊆ A B B A B ,若A 有参数,则需要讨论A 是否为空集;若B 有参数,则≠∅B 2、根据交集求参数范围:=⇒⊆ A B A A B若A 有参数,则需要讨论A 是否为空集;若B 有参数,则≠∅B 【知识点精讲】题型一并集、交集、补集的运算【例题1】(2022·浙江·杭十四中高一期中)设全集{}1,2,3,4,5,6U =,集合{}{}1,3,5,2,3,4,5S T ==,则S T ⋃=()A .{}3,5B .{}2,4C .{}1,2,3,4,5D .{}1,2,3,4,5,6【例题2】(2021春•山西大同期中)设集合{|1}A x x =<,{|22}B x x =-<<,则(A B = )A .{|21}x x -<<B .{|2}x x <C .{|22}x x -<<D .{|1}x x <【例题3】.(2022·江苏·高二期末)已知集合{}1,2A =,{}21,2B a a =-+,若{}1A B ⋂=,则实数a 的值为()A .0B .1C .2D .3【例题4】.(2022·陕西·宝鸡市陈仓高级中学高三开学考试(理))已知集合{}21A x x =-<≤,{}0B x x a =<≤,若{|23}A B x x =-<≤ ,A B = ()A .{|20}x x -<<B .{|01}x x <≤C .{|13}x x <≤D .{|23}x x -<≤【例题5】.(2021·北京昌平区·高二期末)已知全集{0,1,2,3,4,5}U =,集合{0,1,2,3}A =,{3,4}B =,则()U A B = ð___________.【例题6】.(2022·四川南充高一课时检测)已知全集{}16A x x =≤≤,集合{}15B x x =<<,则A B =ð().A .{}5x x ≥B .{1x x ≤或}5x ≥C .{1x x =或}56x <≤D .{1x x =或}56x ≤≤【例题7】.41.(2021·陕西商洛市·镇安中学高一期中)已知集合{}25A x x =-≤≤,{}121B x m x m =+≤≤-.(1)若4m =,求A B ;(2)若A B =∅ ,求实数m 的取值范围.【变式1】.(2022·河北邢台高二期末)若集合{}|24M x x =-<≤,{}|46N x x =≤≤,则A .M N ⊆B .{}4M N =C .M N ⊇D .{}26|M N x x =-<< 【变式2】.(2022·江苏常州高三开学考试)设集合{}11A x x =-<<,{}220B x x x =-≤,则A B ⋃=()A .(]1,2-B .()1,2-C .[)0,1D .(]0,1【变式3】(2022·青海·海东市第一中学模拟预测(文))已知集合{}1,1,2M =-,{}2N x x x =∈=R ,则M N ⋃=()A .{}1B .{}1,0-C .{}1,0,1,2-D .{}1,0,2-【变式4】.(2022·浙江·三模)已知集合{}{}25,36P x x Q x x =≤<=≤<,则P Q = ()A .{}25x x ≤<B .{}26x x ≤<C .{}35x x ≤<D .{}36x x ≤<题型二并集、交集、补集综合运算及性质的应用【例题8】.(2022·河南洛阳高一课时检测)已知全集U ,集合{}1,3,5,7,9A =,{}2,4,6,8U C A =,{}1,4,6,8,9U C B =,则集合B =()A .{}1,5,7B .{}3,5,7,9C .{}2,3,5,7,9D .{}2,3,5,7【例题9】.(2022·重庆·西南大学附中模拟预测)已知集合{}|10A x ax =-=,{}*|14B x x =∈≤<N ,且A B B ⋃=,则实数a 的所有值构成的集合是()A .11,2⎧⎫⎨⎬⎩⎭B .11,23⎧⎫⎨⎬⎩⎭C .111,,23⎧⎫⎬⎭D .110,1,,23⎧⎫⎨⎬⎩⎭【例题10】.(湖北省“宜荆荆恩”2022-2023学年高三上学期起点考试)已知集合(,1][2,)A =-∞⋃+∞,{|11}B x a x a =-<<+,若A B =R ,则实数a 的取值范围为()A .(1,2)B .[1,2)C .(1,2]D .[1,2]【例题11】.(2022·云南昆明一中高一检测)已知A ,B 都是非空集合,(){}&A B x x A B =∈⋃且()x A B ∉ .若{}02A x x =<<,{}0B x x =≥,则&A B =()A .{}0x x ≥B .{}02x x <<C .{0x x =或}2x <-D .{0x x =或}2x ≥【例题12】.(2021·江苏高一专题练习)已知集合{}42A x x =-<<,{}110B x m x m m =--<<->,.(1)若A B B ⋃=,求实数m 的取值范围;(2)若A B ⋂≠∅,求实数m 的取值范围.【变式1】(2022·辽宁沈阳高一课前预习)集合{}2320A x x x =-+=,{}2220B x x ax =-+=,若A B A ⋃=,求实数a 的取值范围.【变式2】.(2023·浙江高二开学考试)已知R a ∈,设集合{}22210A x x ax a =-+-<,{}2B x x =>,(1)当2a =时,求集合A .(2)若R A B ⊆ð,求实数a 的取值范围.【变式3】.(2022·四川乐山市高一单元测试)已知集合{}211A x a x a =-<<+,{}01B x x =≤≤.(1)在①1a =-,②0a =,③1a =这三个条件中任选一个作为已知条件,求A B ;(2)若R A B A ⋂=ð,求实数a 的取值范围.题型三Venn 图的应用【例题13】.(2021·贵州省思南中学高三月考(理))已知全集U =R ,集合{}23,A y y x x R ==+∈,{}24B x x =-<<,则图中阴影部分表示的集合为()A .[]2,3-B .()2,3-C .(]2,3-D .[)2,3-【例题14】.(2021·全国高三其他模拟)已知全集U x y ⎧⎫=∈=⎨⎩Z ,集合{}13M x x =∈-<Z ,{}4,2,0,1,5N =--,则下列Venn 图中阴影部分表示的集合为()A .{}0,1B .{}3,1,4-C .{}1,2,3-D .{}1,0,2,3-【例题15】.(2021·山东济南·高一期中)国庆期间,高一某班35名学生去电影院观看了《长津湖》、《我和我的父辈》这两部电影中的一部或两部.其中有23人观看了《长津湖》,有20人观看了《我和我的父辈》则同时观看了这两部电影的人数为()A .8B .10C .12D .15【变式】.(2021·广东·广州外国语学校高一检测)某公司共有50人,此次组织参加社会公益活动,其中参加A 项公益活动的有28人,参加B 项公益活动的有33人,且A ,B 两项公益活动都不参加的人数比都参加的人数的三分之一多1人,则只参加A 项不参加B 项的有()A .7人B .8人C .9人D .10人。
高中数学人教A版必修第一册集合的基本运算-并集与交集课件
例2 设全集U=R,A={x|2x-3≤1},
B={x|0<x<4},求
(1)CUA,
(2)CUB,
(3)CU(A∩B), (4)(CU A)∪(CUB)
例3 设全集U={x|x是三角形},A={x|x 是锐角三角形},B={x|x是钝角三角形}
求A∩B,CU(A∪B).
解 :根据三角形的分类可知 A B ,
A={3,4,5,6}, B={5,6,7,8}, C={5,6}
定义
一般地,由属于集合A且属于集合B 的所有元素组成的集合叫做A与B的 交集.
记作 A∩B 读作 A交 B
AB
A∩B
即 A∩B={x x∈A,且x∈B}
1、A={x|x是等腰三角形}, B={x|x是直角三角形},
则A ∪ B= {x|x是等腰三角形或直角三角形}
(CUA)∩(CUB), CU(A∪B), 解:根据题意可知,
U={1,2,3,4,5,6,7,8}, 所以 CUA={4,5,6,7,8}
CUB={1,2,7,8}
练习1 全集U={x|x是不大于9的正整数},
且(CUA)∩B={1,3},(CUB)∩A={2,4,8} , (CUA)∩(CUB)={6,9},求集合A、B
----并集与交集
视察集合A,B,C元素间的关系: {3,4,5,6}, B={5,6,7,8}, C={3,4,5,6,7,8}
定义
一般地,由属于集合A或属于集合B 的所有元素组成的集合叫做A与B
的并集,
记作 A∪B A B
读作 A并 B A∪B 即A∪B={x x∈A,或x∈B}
视察集合A,B,C元素间的关系:
A B {x | x是锐角三角形或钝角三角形},
集合的基本运算--并集交集
问题3 集合,集合与集合之间有什么关系?
概念3:
一般地,由所有属于集合且属于集合的
元素组成的集合,称为集合与的交集,
记为⋂(读作“A交B”)
即⋂ = {| ∈ ,且 ∈ }
可用图表示.
概念1:
全集:一般地,如果一个集合含有所研究问题中涉及的所有元素,那么
就称这个集合为全集,通常记作.(通常也把给定的集合作为全集)
集合{, , − }是例题中的全集
补集:对于一个集合,由全集中不属于集合的所有
元素组成的集合称为集合相对于全集的补集,简称
为集合的补集,记作
即 = {| ∈ ,且 ∉ },可用图/数轴表示.
集合,之间的关系吗?
概念1:
一般地,由所有属于集,记为
∪ (读作“并”),即 ∪ = {| ∈ ,
或 ∈ },可用韦恩图表示如有图所示:
在上面的问题(1)(2)中,集合与的并集是,即 ∪ = .
课堂例题
(3)直线1 ,2 重合可表示为1 ∩ 2 = 1 = 2 .
情景四:
下列关系式成立吗?为什么?
(1) ∩ = ;(2) ∩ = .
概念4:
交集的性质:
• ∩ = ; ∩ = .
• ( ∩ ) ⊆ ;( ∩ ) ⊆ ;
• = ∩ ; ∩ = ∩ ;
情景一:
问题1
请同学们动手求方程( − )( − ) = 在实数集中的解集。
问题2
请同学们动手求方程( − )( − ) = 在有理数集中的解集。
问题3
(1){}和{ , − }分别和集合{, , − }是什么关系?
集合间的基本运算—交集、并集的性质【新教材】人教A版高中数学必修第一册课件
集合间的基本运算—交集、并集的性 质【新 教材】 人教A版 高中数 学必修 第一册 课件
集合间的基本运算—交集、并集的性 质【新 教材】 人教A版 高中数 学必修 第一册 课件
课堂探究四:分类讨论
1.设a常数 R, A {x | (x -1)(x - a) 0}, B {x | x a 1} 若A B R, 求实数a的取值范围.
集合间的基本运算—交集、并集的性 质【新 教材】 人教A版 高中数 学必修 第一册 课件
集合间的基本运算—交集、并集的性 质【新 教材】 人教A版 高中数 学必修 第一册 课件
课堂探究三:等价转化 1.已知A {x | 3 x 7}, B {x | 2a 1 x 2a 1} (1)若A B A,求实数a的取值范围; (2)若A B A,求实数a的取值范围.
说明:两个集合求并集,结果还是一个集合,是由集合A与B
的所有元素组成的集合(重复元素只看成一个元素).
Venn图表示:
AB
A∪B
A
B
A∪B
A
B
A∪B
集合间的基本运算—交集、并集的性 质【新 教材】 人教A版 高中数 学必修 第一册 课件
2.交集概念
一般地,由属于集合A且属于集合B的所有元素组 成的集合,称为A与B的交集(intersection set).
注意:集合A可以是空集
集合间的基本运算—交集、并集的性 质【新 教材】 人教A版 高中数 学必修 第一册 课件
集合间的基本运算—交集、并集的性 质【新 教材】 人教A版 高中数 学必修 第一册 课件
2.已知A {x | x2 3x 2 0}, B {x | x2 ax a 1 0} 若A B A, 求实数a的值.
交集、并集第一课时 交集、并集的含义及其运算 课件(23张) 高中数学 必修1 苏教版
- 1∈ A, [解 ] 因为 A∩ B= {- 1},所以 - 1∈ B, 1+a+a-1= 0, a=0, 从而有 解得 1-b+1=0, b=2,
这时 A= {x|x2- 1= 0}= {- 1, 1}, B= {x|x2+ 2x+ 1= 0} = {- 1}, 故 a, b 的值分别为 0,2, A∪ B= {- 1,1}.
第1章
集合
1.3
交集、并集
第一课时 交集、并集的含义及其运算
第1章
集合
学习导航 1.了解交集并集的实际背景. 学习 2.理解交集并集的含义.(重点) 目标 3.掌握求交集、并集的方法.(重点、难点) 通过观察和类比,借助Venn图理解集合的交 学法 集及并集运算,树立数形结合的思想,体会类 指导 比的作用,感受集合作为一种语言在表示数学 内容时的简洁和准确.
[解] 如图所示: ∵A∩B={4,5}, ∴把4、5写在A∩B中; ∵(∁UB)∩A={1,2,3}, ∴把1,2,3写在A中(且不在B中); ∵(∁UA)∩(∁UB)={6,7,8}, ∴把6,7,8写在U中且在A(∁UA)中均无9,10,
∴9、10在B中且一定不在A∩B中. 故A={1,2,3,4,5},B={4,5,9,10}.
由并集的定义有A∪B={1,2,3,4}.
集合的交、并集运算 已知集合A={x|x≤-2或x>4},B={x|1<x≤6},求
A∩B,A∪B.
(链接教材P12例3) [解] A∩B={x|x≤-2或x>4}∩{x|1<x≤6}
={x|4<x≤6}.
A∪B={x|x≤-2或x>4}∪{x|1<x≤6}={x|x≤-2或x>1}. 方法归纳
数学必修一集合的基本运算
¤学习目标:理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集;理解在给定集合中一个子集的补集的含义,会求给定子集的补集;能使用Venn 图表达集合的关系及运算,体会直观图示对理解抽象概念的作用.¤知识要点:集合的基本运算有三种,即交、并、补,学习时先理解概念,并掌握符号等,再结合解题的训练,而达到掌握的层次. 下面以表格的形式归纳三种基本运算如下.并集 交集 补集概念 由所有属于集合A 或属于集合B 的元素所组成的集合,称为集合A 与B 的并集(union set ) 由属于集合A 且属于集合B 的元素所组成的集合,称为集合A 与B 的交集(intersection set ) 对于集合A,由全集U 中不属于集合A 的所有元素组成的集合,称为集合A 相对于全集U 的补集(complementary set ) 记号A B (读作“A 并B ”) A B (读作“A 交B ”) U A ð(读作“A 的补集”) 符号{|,}A B x x A x B =∈∈或 {|,}A B x x A x B =∈∈且 {|,}U A x x U x A =∈∉且ð 图形表示¤例题精讲:【例1】设集合,{|15},{|39},,()U U R A x x B x x A B A B ==-≤≤=<<求ð.解:【例2】设{|||6}A x Z x =∈≤,{}{}1,2,3,3,4,5,6B C ==,求:(1)()A B C ; (2)()A A B C ð.解:【例3】已知集合{|24}A x x =-<<,{|}B x x m =≤,且A B A =,求实数m 的取值范围. 解:【例4】已知全集*{|10,}U x x x N =<∈且,{2,4,5,8}A =,{1,3,5,8}B =,求()U C A B ,()U C AB ,()()U UC A C B , ()()U U C A C B ,并比较它们的关系.解:U A※基础达标1.已知全集{}1,2,3,4,5,6,7U =,{}2,4,5A =,则U A =ð( ).A. ∅B. {}2,4,6C. {}1,3,6,7D. {}1,3,5,72.若{|02},{|12}A x x B x x =<<=≤<,则AB =( ). A. {|2}x x < B. {|1}x x ≥ C. {|12}x x ≤< D. {|02}x x << 3.右图中阴影部分表示的集合是( ).A. U A B ðB. U A B ðC. ()U A B ðD. ()U A B ð 4.若{}{}0,1,2,3,|3,A B x x a a A ===∈,则AB =( ). A. {}1,2 B. {}0,1 C. {}0,3 D. {}35.设集合{|12}M x x =-≤<,{|0}N x x k =-≤,若M N φ≠,则k 的取值范围是( ).A .2k ≤B .1k ≥-C .1k ->D .12k -<≤6.设全集*{|8}U x N x =∈<,{1,3,5,7}A =,{2,4,5}B =,则()U C A B = .7.已知集合{(,)|2},{(,)|4}M x y x y N x y x y =+==-=,那么集合M N = . ※能力提高8.设U R =,{|24}A x x =-≤<,{|8237}B x x x =-≥-,求)(B A C u ⋃、)()(A C A C u u ⋂.第4讲 §1.1.3 集合的基本运算(二)¤学习目标:掌握集合、交集、并集、补集的有关性质,运行性质解决一些简单的问题;掌握集合运算中的一些数学思想方法.¤知识要点:1. 含两个集合的Venn 图有四个区域,分别对应着这两个集合运算的结果. 我们需通过Venn 图理解和掌握各区域的集合运算表示,解决一类可用列举法表示的集合运算. 通过图形,我们还可以发现一些集合性质:()()()U U U C A B C A C B =,()()()U U U C A B C A C B =.2. 集合元素个数公式:()()()()n A B n A n B n A B =+-.3. 在研究集合问题时,常常用到分类讨论思想、数形结合思想等. 也常由新的定义考查创新思维.¤例题精讲:【例1】设集合{}{}24,21,,9,5,1A a a B a a =--=--,若{}9A B =,求实数a 的值. 解:【例2】设集合{|(3)()0,}A x x x a a R =--=∈,{|(4)(1)0}B x x x =--=,求AB , A B .解:A【例3】设集合A ={x |240x x +=}, B ={x |222(1)10x a x a +++-=,a R ∈},若A B =B ,求实数a 的值.解:【例4】对集合A 与B ,若定义{|,}A B x x A x B -=∈∉且,当集合*{|8,}A x x x N =≤∈,集合{|(2)(5)(6)0}B x x x x x =---=时,有A B -= . (由教材P 12 补集定义“集合A 相对于全集U 的补集为{|,}U C A x x x A =∈∉且”而拓展)解:第4练 §1.1.3 集合的基本运算(二)※基础达标1.已知集合A = {}1,2,4, B ={}8x x 是的正约数, 则A 与B 的关系是( ).A. A = BB. A ≠⊂BC. A ≠⊃B D. A ∪B =∅ 2. 已知,,a b c 为非零实数, 代数式||||||||a b c abc a b c abc +++的值所组成的集合为M , 则下列判断正确的是( ).A. 0M ∉B. 4M -∉C. 2M ∈D. 4M ∈3.(08年湖南卷.文1)已知{}2,3,4,5,6,7U =,{}3,4,5,7M =,{}2,4,5,6N =,则( ).A .{}4,6M N = B.M N U = C .()u C N M U = D. ()u C M N N =4.定义集合A 、B 的一种运算:1212{,,}A B x x x x x A x B *==+∈∈其中,若{1,2,3}A =,{1,2}B =,则A B *中的所有元素数字之和为( ).A .9 B. 14 C. 18 D. 215.设全集U 是实数集R ,{}2|4M x x =>与{}|31N x x x =≥<或都是U的子集(如右图所示),则阴影部分所表示的集合为( ).A. {}|21x x -≤<B. {}|22x x -≤≤C. {}|12x x <≤D. {}|2x x <6.已知集合{11}A x x =-≤≤,{}B x x a =>,且满足A B φ=,则实数a 的取值范围是 .7.经统计知,某村有电话的家庭有35家,有农用三轮车的家庭有65家,既有电话又有农用三轮车的家庭有20家,则电话和农用三轮车至少有一种的家庭数为 .※能力提高8.已知集合2{|0}A x x px q =++=, 2{|20}B x x px q =--=,且{1}A B =-,求A B .9.已知集合U =2{2,3,23}a a +-,A ={|a +1|,2},U C A ={a +3},求实数a 的值.。
高中数学(人教B版)必修第一册:集合的基本运算【精品课件】
可以表示为:
{(x,y) | y=0}∩{(x,y) | x=0}={(0,0)}.
从定义可以看出,A∩B表示由集合A,B按照指定的法则构造出
一个新集合,因此“交”可以看成集合之间的一种运算,通常称为
交集运算.
交集运算具有以下性质,对于任意两个集合A,B,都有:
sF=M,
sM=F.
例如,如果U={1,2,3,4,5,6},A={1,3,5},则
UA={2,4,6}.
注意,此时UA仍是U的一个子集,因此U(UA)也是有意
义的,此例中的U(UA)={1,3,5}=A.
事实上,给定全集U及其任意一个子集A,补集运算具有如下
性质:
A∪(UA)=U;
英语成绩低于70分的所有同学组成的集合为N,
需要去参加意见征求会的同学组成的集合为P,
可以看出,集合P中的元素,要么属于集合M,要么属于集合
N.
一般地,给定两个集合A,B,由这两个集合的所有元素组成的
集合,称为A与B的并集,记作A∪B,读作“A并B”.
两个集合的并集可用图(1)或(2)所示的阴影部分形象地表
可以看出,集合S 中的元素既属于集合P,又属于集合M.
一般地,给定两个集合A,B,由既属于A又属于B的所有元素
(即A和B的公共元素)组成的集合,称为A与B的交集,记作A∩B,
读作“A交B ”.两个集合的交集可用下图所示的阴影部分形象地表
示.
因此,上述情境与问题中的集合满足P∩M=S.
例如,{1,2,3,4,5}∩{3,4,5,6,8}={3,4,5};
A∪B=A,试求实数m的取值范围.
解析:∵A∪B=A,∴B⊆A.
数学人教A版必修第一册1.3并集与交集课件
∩ =∩
(2) ∩ ⊆ ,
∩ ⊆
(3) ⊑ ⇔ ∩ =
⊑ ⇔∩ =
并集的运算性质
(1) ∪ = , ∪ ∅ = ,
∪ =∪
(2) ⊆ ⋃ ,
⊆ ⋃
(3) ⊑ ⇔ ∪ =
叫做A与B的交集.
记作:A∩B
读作:A交 B
A
B
A∩B={x |x∈A,且x∈B}
A∩B
剖析
A
∈ ,但 ∉
B
∈ ,且 ∈
∉ ,但 ∈
典例3
设 = − < < , = < < ,
求 ∩ .
解: ∩ = − < < ∩ < <
1.并集及运算性质
探究
观察下面的集合,类比实数的加法运算,你能说出集
合C与集合A,B之间的关系吗?
(1) = , , , = , , ,
= , , , , ,
(2) = 是有理数 , = 是无理数 ,
= 是实数
总结
一般地,由所有属于集合A或属于集合B的元素组成的集
中元素的个数为( D )
A.5
B.4
C.3
D.2
探究
交集的运算性质
思考1:下列关系式成立吗?
(1) ∩ =
(2) ∩ ∅ = ∅
(3) ∩ = ∩
思考2:集合A、B与集合 ∩ 之间有什么关系?
∩ ⊆ ∩ ⊆
B
A
A
∩
B
A
B
思考3:若 ⊑ ,则 ∩ 等于什么?反之是否成立?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3. 例题: 例1.设A={x|x>-2},B={x|x<3},求A∩B. 解:A∩B={x|x>-2}∩{x|x<3}={x|-2<x<3}.
例2.设A={x|x是等腰三角形},B={x|x是直角三角形},求A∩B. 解:A∩B={x|x是等腰三角形}∩{x|x是直角三角形} ={x|x是等腰直角三角形}. 例3.A={4,5,6,8},B={3,5,7,8},求A∪B和A∩B. 解:A∪B={3,4,5,6,7,8}; A∩B={5,8} 例4.设A={x|-1<x<2},B={x|1<x<3},求A∪B和A∩B 解:A∪B={x|-1<x<2}∪{x|1<x<3}={x|-1<x<3}. A∩B={x|-1<x<2}∩{x|1<x<3}={x|1<x<2}
四.小结 1.A∩B={x|x∈A,且x∈B}是同时属于A, B的两个集合的所有元素组成的集合. 2.A∪B={x|x∈A或x∈B}是属于A或者属于B 的元素所组成的集合.
五.作业
课本P13 习题1.1: 6,7、8
2.观察下面两个图的阴影部分,它们同集合A、集合B有 什么关系?
如上图,集合A和B的公共部分叫做集合A和集合B的 交(图1的阴影部分),集合A和B合并在一起得到的集合 叫做集合A和集合B的并(图2的阴影部分).
1.交集的定义 一般地,由所有属于A且属于B的元素所组成的集合,叫做A,B 的交集. 记作A∩B(读作"A交B"), 即A∩B={x|x∈A,且x∈B}. 如:{1,2,3,6}∩{1,2,5,10}={1,2}. 又如:A={a,b,c,d,e},B={c,d,e,f}.则A∩B={c,d,e}. 2.并集的定义 一般地,由所有属于集合A或属于集合B的元素所组成的集 合,叫做A,B的并集. 记作:A∪B(读作"A并B"), 即A∪B={x|x∈A,或x∈B}. 如:{1,2,3,6}∪{1,2,5,10}={1,2,3,5,6,10}.
能力训练 设A={2,-1,x2-x+1}, B={2y,-4,x+4}, C={-1,7} 且 A∩B=C 求x,y。
解: 由A∩B=C知 7A ∴必然 x2-x+1=7 得 x1=-2, x2=3 由x=-2 得 x+4=2C ∴x-2 ∴x=3 x+4=7C 此时2y=-1 ∴y=-1/2 ∴x=3 , y=-1/2
例5 见课本P11例6
例6.设L1,L2分别是平面内两条直线l1和 l2上点的集合,试用集合的运算表示这 两条直线的位置关系。
解: 当两条直线l1、l2相交于一点P时,L1∩L2={点P}; 当两条直线l1、l2平行时,L1∩L2=Φ; 当两条直线l1、l2重合时,L1∩L2= L1=L2。
三、基础练习 课本P12 1、2、3
• 二、新课 1.考查下列各个集合,你能说出集合C与集合A、 B之间的关系吗? (1) A={1,3,5},B={2,4,6},C={1,2,3,4,5,6}; (2) A={x|1<x<6},B={ x|4<x<8},C={ x|1<x<8}; (3) A={x|1<x<6},B={ x|4<x<8},C={ x|4<x<6}; (4) A={2,4,6,8,10},B={2,3,5,8,9,12},C={2,8}
集合的基本运算(一) 并集、交集
一、教学目标 1.理解交集和并集的概念. 2.掌握交集和并集的表示法,会求两个集 合的交集和并集.
二、教学重点、难点和疑点
• 1.教学重点:交集和并集的概念 • 2.教学难点:交集和并集的概念、符号之间的区别与 联: 1、集合有几种表示法? 2、子集的概念及有关符号与性质。 3、用列举法表示集合: A={6的正约数},B={10的正约数}, C={6与10的正公约数}, 并用适当的符号表示它们之间的关系。 •解: A=1,2,3,6}, B={1,2,5, 10}, C={1,2} CA,CB