河北省邯郸市致远中学2020-2021学年第一学期期末八年级数学试卷 PDF版

合集下载

河北省邯郸市2020年八年级上学期期末数学试卷(I)卷

河北省邯郸市2020年八年级上学期期末数学试卷(I)卷

河北省邯郸市2020年八年级上学期期末数学试卷(I)卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分) (2017八上·海勃湾期末) 在式子,,,中,分式的个数为()A . 1个B . 2个C . 3个D . 4个2. (2分) (2016七下·明光期中) 下列计算正确的是()A . a2•a3=a6B . (﹣2xy2)3=﹣8x3y5C . 2a﹣3=D . (﹣a)3÷(2a)2=﹣ a3. (2分) (2019八下·新罗期末) 若等腰的周长是,一腰长为xcm,底边长为ycm,则y与x的函数关系式及自变量x的取值范围是A .B .C .D .4. (2分)(2018·建湖模拟) 下列图形中,既是轴对称图形又是中心对称图形的是()A .B .C .D .5. (2分)(2018·龙东模拟) 下列运算正确的是()A . ﹣4x8÷2x4=﹣3x2B . 2x•3x=6xC . ﹣2x+x=﹣3xD . (﹣x3)4=x126. (2分)下列从左到右的变形是因式分解的是()A . 6x2-3xy=3x(2x-y)B . x2-2x+1=x(x-2)+1C . a(x+y)=ax+ayD . x2-9+8x=(x+3)(x-3)+8x7. (2分)如图所示,△ABD≌△CDB,下面四个结论中,不正确的是()A . △ABD和△CDB的面积相等B . △ABD和△CDB的周长相等C . AD∥BC,且AD=BCD . ∠A+∠ABD=∠C+∠CBD8. (2分)下列分解因式正确的是()A . -ma-m=-m(a-1)B . a2-1=(a-1)2C . a2-6a+9=(a-3)2D . a2+3a+9=(a+3)29. (2分)(2019·河北模拟) 如图,五边形ABCDE是正五边形,若l1∥l2 ,则∠1-∠2的值为()。

河北省邯郸市2020年(春秋版)八年级上学期数学期末考试试卷(II)卷

河北省邯郸市2020年(春秋版)八年级上学期数学期末考试试卷(II)卷

河北省邯郸市2020年(春秋版)八年级上学期数学期末考试试卷(II)卷姓名:________ 班级:________ 成绩:________一、单选题 (共13题;共25分)1. (2分)(2017·贺州) 下列式子中是分式的是()A .B .C .D .2. (2分)下列图形中与已知图形全等的是()A .B .C .D .3. (2分)计算+=()A . 1B .C .D .4. (2分) (2019七下·枣庄期中) 如图,已知:∠3=∠4,那么下列结论中,正确的是()A . ∠C=∠AB . AD∥BCC . ∠1=∠2D . AB∥CD5. (2分) (2017八下·林甸期末) 将分式中分子与分母的各项系数都化成整数,正确的是()A .B .C .D .6. (2分)下列说法正确的是()A . x2+3x=0是二项方程B . xy﹣2y=2是二元二次方程C . 是分式方程D . x2-=1是无理方程7. (2分)若分式方程有增根,则增根是()A . x=1B . x=1或x=0C . x=0D . 不确定8. (2分)(2017·重庆) 要使分式有意义,x应满足的条件是()A . x>3B . x=3C . x<3D . x≠39. (2分)化简﹣的结果是()A .B .C .D .10. (2分) a与b的平方的差可表示为()A . (a-b)2B . a-b2C . a2-D . a2-b211. (2分) (2016八上·泰山期中) 化简÷(1+ )的结果是()A .B .C .D .12. (2分)某农场开挖一条长480米的渠道,开工后,每天比原计划多挖20米,结果提前4天完成任务,若设原计划每天挖x米,那么求x时所列方程正确的是()A . -=4B . -=20C . -=4D . -=2013. (1分)若 = = ,则 =________.二、填空题 (共6题;共12分)14. (3分)约分:________叫做约分,约分的结果应为________或者________.15. (1分) (2015八下·镇江期中) 当x________时,分式无意义.16. (1分) (2015八上·青山期中) 已知△ABC≌△DEF,若△ABC的周长为32,AB=9,BC=12,则DF=________.17. (1分)分式,﹣,的最简公分母是________.18. (1分) (2019七上·松江期末) 计算:=________.19. (5分)一辆汽车开往距离出发地180 km的目的地,按原计划的速度匀速行驶60 km后,再以原来速度的1.5倍匀速行驶,结果比原计划提前40 min到达目的地,求原计划的行驶速度.①审:审清题意,找出已知量和未知量.②设:设未知数,设原计划的行驶速度为x km/h,则行驶60 km后的速度为________.③列:根据等量关系,列分式方程为________.④解:解分式方程,得x=________.⑤检:检验所求的解是否为分式方程的解,并检验分式方程的解是否符合问题的实际意义.经检验,________是原方程的解,且符合题意.⑥答:写出答案(不要忘记单位).答:原计划的行驶速度为________.三、解答题 (共7题;共42分)20. (5分) (2020八上·嘉陵期末) 计算:21. (5分)如图,点A,B,C,D在一条直线上,△ABF≌△DCE.你能得出哪些结论?(请写出三个以上的结论)22. (5分)若a>0,M=, N=,当a=3时,计算M与N的值;23. (5分)已知a=2,b=5,求的值.24. (5分) (2019七上·包河期中) 若整式与的差为1,求x的值。

河北省邯郸市2021版八年级上学期数学期末考试试卷A卷

河北省邯郸市2021版八年级上学期数学期末考试试卷A卷

河北省邯郸市2021版八年级上学期数学期末考试试卷A卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分) (2017七下·朝阳期中) 下列说法中,正确的个数是().( 1 )的立方根是;()的算术平方根是;()的立方根为;()是的平方根.A .B .C .D .2. (2分) (2020七上·莘县期末) 下列说法中,正确的是()A . 若a≠b,则a2≠b2B . 若a>|b|,则a>bC . 若|a|=|b|,则a=bD . 若|a|>|b|,则a>b3. (2分) (2019六下·黑龙江月考) 如果一个数的平方与这个数的差等于0,那么这个数是()A . 0B . -1C . 1或0D . -1或14. (2分)等式(﹣x2﹣y2)()=y4﹣x4成立,括号内应填入下式中的()A . x2﹣y2B . y2﹣x2C . ﹣x2﹣y2D . x2+y25. (2分)如果2a-2是多项式4a2+ma+9的一个因式,则m的值是()A . 0B . 6C . 12D . -126. (2分)要调查城区九年级8000名学生了解禁毒知识的情况,下列调查方式最合适的是().A . 在某校九年级选取50名女生B . 在某校九年级选取50名男生C . 在某校九年级选取50名学生D . 在城区8000名九年级学生中随机选取50名学生7. (2分) (2020九上·长兴开学考) 平行四边形、矩形、菱形、正方形共有的性质是()A . 对角线互相平分B . 对角线相等C . 对角线互相垂直D . 对角线互相垂直平分8. (2分)如图,在□ABCD中,EF//AB,DE:EA = 2:3,EF = 4,则CD的长为()A .B . 8C . 10D . 169. (2分) (2019八上·东源期中) 一个直角三角形有两边长为3cm,4cm,则这个三角形的另一边为()A . 5cmB . cmC . 7cmD . 5cm或 cm10. (2分) (2017八上·揭阳月考) 一个直角三角形的两直角边长分别为3和4,那么它斜边上的高线长为()A . 5B . 2.5C . 2.4D . 211. (2分)如图,将半径为2cm的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长为()A . 2cmB . cmC . cmD . cm12. (2分)点P在∠AOB的平分线上,点P到OA边的距离等于3,点Q是OB边上任意一点,下列关于线段PQ长度的描述正确的是()A . PQ>3B . PQ≥3C . PQ<3D . PQ≤3二、填空题 (共6题;共6分)13. (1分)若规定用符号不超过实数m的最大整数,例如: =0,.则按此规定________.14. (1分) (2017七上·黑龙江期中) xa-1y与-3x2yb+3是同类项,则a+3b=________.15. (1分)(2017·安陆模拟) 如图,P是等边三角形ABC内一点,将线段AP绕点A顺时针旋转60°得到线段AQ,连接BQ.若PA=6,PB=8,PC=10,则四边形APBQ的面积为________.16. (1分) (2016九上·莒县期中) 某施工工地安放了一个圆柱形饮水桶的木制支架(如图1),若不计木条的厚度,其俯视图如图2所示,已知AD垂直平分BC,AD=BC=48cm,则圆柱形饮水桶的底面半径的最大值是________ cm.17. (1分)(2013·扬州) 为了估计鱼塘中鱼的条数,养鱼者首先从鱼塘中打捞30条鱼做上标记,然后放归鱼塘,经过一段时间,等有标记的鱼完全混合于鱼群中,再打捞200条鱼,发现其中带标记的鱼有5条,则鱼塘中估计有________条鱼.18. (1分)(2019·河池模拟) 如图,□ABCD的对角线AC、BD交于点O,点E是AD的中点,△BCD的周长为18,则△DEO的周长是________.三、解答题 (共8题;共87分)19. (10分)(2020·衢州模拟) 计算:|-1|-(3-π)0+ +()-1+2cos60°20. (15分)(2016·永州) 二孩政策的落实引起了全社会的关注,某校学生数学兴趣小组为了了解本校同学对父母生育二孩的态度,在学校抽取了部分同学对父母生育二孩所持的态度进行了问卷调查,调查分别为非常赞同、赞同、无所谓、不赞同等四种态度,现将调查统计结果制成了如图两幅统计图,请结合两幅统计图,回答下列问题:(1)在这次问卷调查中一共抽取了________名学生,a=________%;(2)请补全条形统计图;(3)持“不赞同”态度的学生人数的百分比所占扇形的圆心角为________度;(4)若该校有3000名学生,请你估计该校学生对父母生育二孩持“赞同”和“非常赞同”两种态度的人数之和.21. (10分) (2019八上·永安期中) 已知的立方根是,的算术平方根是,的小数部分为.(1)分别求出,,的值;(2)求的平方根.22. (5分)如图,在△ABC中,AD是BC边上的中线,△ADC的周长比△ABD的周长多5cm,AB与AC的和为13cm,求AC的长.23. (5分) (2020八上·平川期中) 如图,在4×4的正方形网格中,每个小正方形的边长都是1.线段AB,AE分别是图中两个1×3的长方形的对角线,请你说明:AB⊥AE.24. (15分) (2020八上·包河期末) 如图,点C是线段AB上一点,分别以AC和BC为边在线段AB的同侧作等边△ACD和△BCE,连结AE和BD,相交于点F.(1)求证:AE=BD;(2)如图2.固定△BCE不动,将等边△ACD绕点C旋转(△ACD和△BCE不重叠),试问∠AFB的大小是否变化?请说明理由;(3)在△ACD旋转的过程中,以下结论:①CG=CH;② GF=HF;③FC平分分∠GCH;④FC平分∠GFH;一定正确的有________ (填写序号,不要求证明)25. (12分) (2019八上·宽城月考) 嘉嘉同学动手剪了如图①所示的正方形与长方形卡片若干张.(1)他用1张1号、1张2号和2张3号卡片拼出一个新的图形(如图②).根据这个图形的面积关系写出一个你所熟悉的乘法公式,这个乘法公式是________.(2)如果要拼成一个长为(a+2b),宽为(a+b)的大长方形,则需要1号卡片________张,2号卡片________张,3号卡片________张.26. (15分) (2019九下·秀洲月考) 如图①,已知点G在正方形ABCD的对角线AC上,GE⊥BC,垂足为E,GF⊥CD,垂足为F.(1)证明与推断:①求证:四边形CEGF是正方形.________②推断:的值为________。

2020-2021学年河北省邯郸市八年级(上)期末数学测试卷

2020-2021学年河北省邯郸市八年级(上)期末数学测试卷

2020-2021学年河北省邯郸市八年级(上)期末数学测试卷题号一二三总分得分第I卷(选择题)一、选择题(本大题共16小题,共42.0分)1.下列图形是轴对称图形的是()A. B. C. D.2.下列运算正确的是()A. a2+a2=a4B. a5−a3=a2C. a2⋅a2=2a2D. (a5)2=a103.能够将一个三角形的面积平分的线段是()A. 一边上的高线B. 一个内角的角平分线C. 一边上的中线D. 一边上的中垂线4.如图是一副三角尺叠放的示意图,则∠α的度数为()A. 75°B. 45°C. 30°D. 15°5.某种电子元件的面积大约为0.00000016平方毫米,将0.00000016这个数用科学记数法表示为()A. 0.16×10−6B. 1.6×10−6C. 1.6×10−7D. 16×10−86.已知:如图,△ADE≌△CBF,若AD=8cm,CD=5cm,则BD的长为()A. 2cmB. 3cmC. 4cmD. 5cm7.若x2+2(k−3)x+4是完全平方式,则k=()A. 1B. 1或5C. 5D. 2或58.如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,则下列说法中正确的个数是()①AD是∠BAC的平分线;②AD是△ABC一边上的中线;③AD=BD;④CD=BD.A. 1B. 2C. 3D. 49.若一个正多边形的每个内角都为135°,则这个正多边形的边数是()A. 9B. 8C. 7D. 610.如图,已知OA=OB,OC=OD,AC,BD相交于点O,则图中全等三角形有()A. 2对B. 3对C. 4对D. 5对11.若分式b2−1b2−2b−3的值为0,则b的值为()A. 1B. −1C. ±1D. 212.计算x(x+1)2+1(x+1)2的结果是()A. 1x+1B. 1(x+1)2C. 1D. x+113.如图所示,AD//BC,AB⊥BC,CD⊥DE,CD=ED,AD=2,BC=3,则△ADE的面积为().A. 1B. 2C. 5D. 无法确定14.为了帮助遭受自然灾害的地区重建家园,某学校号召同学们自愿捐款.已知第一次捐款总额为4800元,第二次捐款总额为5000元,第二次捐款人数比第一次多20人,而且两次人均捐款额恰好相等,如果设第一次捐款人数是x人,那么x满足的方程是()A. 4800x =5000x−20B. 4800x=5000x+20C. 4800x−20=5000xD. 4800x+20=5000x15.如图,在等腰三角形ABC中,AB=AC=13,BC=10,D是BC边上的中点,AD=12,M,N分别是AD和AB上的动点,则BM+MN的最小值是()A. 10B. 6013C. 12D. 1201316.如图所示,∠ABC=∠DCB,AB=DC,ME平分∠BMC交BC于点E,给出下列说法:①△ABC≌△DCB;②ME垂直平分BC;③△ABM≌△EBM;④△ABM≌△DCM.其中正确的有().A. 1个B. 2个C. 3个D. 4个第II卷(非选择题)二、填空题(本大题共4小题,共12.0分)17.计算π0−√12=______.18.如图,△ABC中,∠C=90°,AD是∠CAB的角平分线,DE⊥AB于点E,且BC=8cm,BD=5cm,则DE=______cm.19.如图,△ABC中,D是BC上一点,AC=AD=BD,若∠DAC=84°,则∠B=______度.20.计算:−5÷15×5=______三、解答题(本大题共6小题,共66.0分)21.分解因式:(1)ax4−9ay2;(2)2x3−12x2+18x.22.先化简,再求值(1)11+x +2x1−x2,其中x=3;(2)(2a+b)2−(a+1−b)(a+1+b)+(a+1)2,其中a=12,b=−2.23.如图所示,CE=CB,CD=CA,∠DCA=∠ECB,求证:DE=AB.24.网购已成为时下最热的购物方式,同时也带动了快递业的发展.某快递公司更新了包裹分拣设备后,平均每人每天比原先要多分拣50件包裹,现在分拣600件包裹所需的时间与原来分拣450件包裹所需时间相同,求现在平均每人每天分拣多少件包裹?25.如图,在△ABC中,AB=AC,点D,E,F分别在AB,BC,AC边上,且BE=CF,BD=CE.(1)求证:△DEF是等腰三角形;(2)当∠A=50°时,求∠DEF的度数;(3)若∠DEF=∠A,FD=4,求△DEF的周长.26.如图1,△ABC是等边三角形,BD是中线,延长BC至E,使CE=CD.=______;(1)直接写出BCCE(2)将图1中的△BDE绕点B逆时针旋转到如图2所示位置,连接AE,P为AE的中点,连接PD,PC,探究线段PD与PC之间的关系;(3)将图1中的△BDE绕点B顺时针旋转,使点D落在线段BC上,连接AE,P为AE中点,连接PD.如图3,若AB=2√3,请直接写出PD的长为______.答案和解析1.【答案】D【解析】【分析】本题考查了轴对称图形的知识,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,根据轴对称图形的概念求解即可.【解答】解:根据轴对称图形的概念可知,D选项图形为轴对称图形.故选D.2.【答案】D【解析】解:A、a2+a2=2a2,故此选项错误;B、a5−a3,无法计算,故此选项错误;C、a2⋅a2=a4,故此选项错误;D、(a5)2=a10,正确.故选:D.分别利用合并同类项法则以及同底数幂的乘法运算法则和幂的乘方运算法则分别化简判断即可.此题主要考查了合并同类项以及同底数幂的乘法运算和幂的乘方运算,正确掌握相关运算法则是解题关键.3.【答案】C【解析】【分析】×底×本题考查了三角形的面积:三角形的面积等于底边长与高线乘积的一半,即S=12高.利用三角形面积公式可判断三角形的中线将三角形分成面积相等的两部分,从而可对各选项进行判断.【解答】解:能够将一个三角形的面积平分的线段为三角形的中线.故选C.4.【答案】A【解析】解:∵∠ACB=90°,∠1=45°,∴∠2=90°−45°=45°,∴∠α=45°+30°=75°,故选A.首先根据三角板度数可得:∠ACB=90°,∠1=45°,再根据角的和差关系可得∠2的度数,然后再根据三角形内角与外角的关系可得答案.此题主要考查了三角形外角的性质,关键是掌握三角形的一个外角等于和它不相邻的两个内角的和.5.【答案】C【解析】【分析】本题考查用科学记数法表示较小的数,一般形式为a×10−n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00000016=1.6×10−7.故选:C.6.【答案】B【解析】【分析】本题考查了全等三角形的性质,熟记性质是解题的关键.根据全等三角形的性质得出AD=BC=8cm,进而即可求得BD=BC−CD=3cm.【解答】解:∵△ADE≌△CBF,∴AD=BC=8cm,∵BD=BC−CD,CD=5cm,∴BD=8−5=3cm.故选:B.7.【答案】B【解析】【试题解析】【分析】此题主要考查了完全平方式的应用.两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.这里首末两项是x和2这两个数的平方,那么中间一项为加上或减去x和2积的2倍.【解答】解:∵x2+2(k−3)x+4=x2+2(k−3)x+22 ,∴2(k−3)x=±2x·2∴2(k−3)=±4解得k=5或1.故选B.8.【答案】C【解析】【分析】本题考查了角平分线的性质、线段垂直平分线的性质以及作图−基本作图.解题时,需要熟悉等腰三角形的判定与性质.【解答】解:如图,①根据作图的过程可知,AD是∠BAC的平分线.故①正确;②∵AC≠AB,∴AD不是△ABC一边上的中线.故②错误;③如图,∵在△ABC中,∠C=90°,∠B=30°,∴∠CAB=60°.又∵AD是∠BAC的平分线,∴∠1=∠2=12∠CAB=30°,∴∠1=∠B=30°,∴AD=BD.故③正确;④∵如图,在直角△ACD中,∠2=30°,∴CD=12AD,又AD=BD.∴CD=12 BD故④正确.综上所述,正确的结论是:①③④,共有3个.故选C.9.【答案】B【解析】【分析】此题主要考查了多边形的内角与外角,关键是掌握正多边的内角与它相邻的外角和为180°.首先根据三角形的内角算出一个外角度数,再根据正多边形的外角和为360°,算出边数即可.【解答】解:∵一个正多边形的每个内角都为135°,∴此多边形的每一个外角是:180°−135°=45°,∴这个正多边形的边数是:360°÷45°=8,故选B.10.【答案】C【解析】【分析】本题考查了全等三角形的判定;注意:三角形全等判定方法的应用,先根据已知条件或求证的结论来确定三角形,再求证三角形全等,寻找时要由易到难,不重不漏.根据已知及全等三角形的判定方法进行分析,从而得到答案.做题时要从已知条件开始结合图形利用全等的判定方法由易到难逐个寻找.【解答】解:∵OA=OB,OC=OD,∠AOD=∠BOC,∴△AOD≌△BOC,∴∠A=∠B,∵OA=OB,OC=OD,∴AC=BD,∵∠AEC=∠BED,∴△ACE≌△BDE,∴AE=BE,CE=DE,∵OA=OB,OE=OE,OC=OD,∴△AOE≌△BOE,△COE≌△DOE,∴共有四对全等三角形.故选C.11.【答案】A的值为0,得【解析】解:分式b2−1b2−2b−3{b2−1=0,b2−2b−3≠0解得b=1,故选:A.根据分式的分子为零分母不为零,可得答案.本题考查了分式值为零的条件,分式的分子为零分母不为零是解题关键.12.【答案】A【解析】解:原式=x+1(x+1)2=1x+1.故选:A .直接利用分式的加减运算法则计算得出答案.此题主要考查了分式的加减法,正确化简分式是解题关键. 13.【答案】A【解析】【分析】本题考查了直角三角形全等的判定方法;题目需要作辅助线构造直角三角形,利用全等三角形和面积公式来解答.对同学们的创造性思维能力要求较高,是一道好题.因为知道AD 的长,所以只要求出AD 边上的高,就可以求出△ADE 的面积.过D 作BC 的垂线交BC 于G ,过E 作AD 的垂线交AD 的延长线于F ,构造出Rt △EDF≌Rt △CDG ,求出GC 的长,即为EF 的长,然后利用三角形的面积公式解答即可.【解答】解:过D 作BC 的垂线交BC 于G ,过E 作AD 的垂线交AD 的延长线于F ,∵∠EDF +∠FDC =90°,∠GDC +∠FDC =90°,∴∠EDF =∠GDC ,于是在Rt △EDF 和Rt △CDG 中,{∠F =∠DGC ∠EDF =∠GDC DE =DC, ∴△DEF≌△DCG ,∴EF =CG =BC −BG =BC −AD =3−2=1,所以S △ADE =(AD ×EF)÷2=(2×1)÷2=1.故选A .14.【答案】B【解析】解:设第一次有x人捐款,那么第二次有(x+20)人捐款,由题意,有4800 x =5000x+20,故选:B.如果设第一次有x人捐款,那么第二次有(x+20)人捐款,根据两次人均捐款额相等,可得等量关系为:第一次人均捐款额=第二次人均捐款额,据此列出方程即可.本题考查由实际问题抽象出分式方程,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.15.【答案】D【解析】【分析】本题考查的是轴对称−最短路线问题,解答此类问题时要从已知条件结合图形认真思考,通过三线合一的性质,垂线段最短,确定线段和的最小值.作BH⊥AC,垂足为H,交AD于M′点,过M′点作M′N′⊥AB,垂足为N′,则BM′+M′N′= BH为所求的最小值,根据面积不变求出BH即可.【解答】解:如图,作BH⊥AC,垂足为H,交AD于M′点,过M′点作M′N′⊥AB,垂足为N′.∵AB=AC,D是BC边上的中点,∴AD是∠BAC的平分线,∵M′N′⊥AB,BH⊥AC,∴M′H=M′N′,则BM′+M′N′=BH为所求的最小值∵AB=AC=13,BC=10,D是BC边上的中点,∴AD⊥BC,∵AD=12,∵S△ABC=12AC×BH=12BC×AD,∴13×BH=10×12,解得:BH=12013,故选D.16.【答案】C【解析】【分析】该题主要考查了全等三角形的判定与性质,线段垂直平分线,等腰三角形的判定与性质;解题的关键是牢固掌握全等三角形的判定定理的内容,这是灵活解题的基础和关键.利用SAS可证明△ABC与△DCB,得到∠MBC=∠MCB,进而得到MB=MC;根据等腰三角形的三线合一得到ME⊥BC,BE=CE;利用ASA可证明△ABM≌△DCM,即可解决问题.【解答】解:在△ABC与△DCB中,{AB=DC∠ABC=∠DCB BC=CB,∴△ABC≌△DCB(SAS),故①正确;∴∠MBC=∠MCB,∴MB=MC,∵ME平分∠BMC,∴ME⊥BC,BE=CE,∴ME垂直平分BC;故②正确;在△ABM与△EBM中,只BM=BM,不能判定两三角形全等,故③错误;∵∠ABC=∠DCB,∠MBC=∠MCB,∴∠ABM=∠DCM,在△ABM与△DCM中,{∠ABM=∠DCM BM=CM∠AMB=∠DMC,∴△ABM≌△DCM(ASA),故④正确;故选:C.17.【答案】1−2√3【解析】解:原式=1−2√3,故答案为:1−2√3原式利用零指数幂法则,以及二次根式性质计算即可求出值.此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.【答案】3【解析】【分析】根据角平分线的性质可得,DE=DC,根据BD=5,BC=8,求得CD即可求解.此题主要考查角平分线的性质:角的平分线上的点到角的两边的距离相等.【解答】解:∵∠C=90°,AD是△ABC中∠CAB的角平分线,DE⊥AB于E,∴DE=DC,∴BD=5,BC=8,∴DC=BC−CD=8−5=3,∴DE=3.故答案为:3.19.【答案】24【解析】【分析】本题考查了等腰三角形的性质:①等腰三角形的两腰相等;②等腰三角形的两个底角相等,熟练掌握等腰三角形的性质是解题的关键.根据等腰三角形的性质得到∠ADC=48°,再根据三角形外角的性质和等腰三角形的性质可求∠B的度数.【解答】解:∵AC=AD,∠DAC=84°,∴∠ADC=∠C=48°,∵AD=DB,∴∠B=∠BAD,∴∠B=12∠ADC=24°.故答案为:24.20.【答案】−125【解析】【分析】本题主要考查的是有理数的混合运算,首先把除法化为乘法,然后根据有理数的乘法法则计算即可.【解答】解:原式=−5×5×5=−25×5=−125.故答案为−125.21.【答案】解:(1)原式=a(x4−9y2)=a(x2−3y)(x2+3y);(2)原式=2x(x2−6x+9)=2x(x−3)2.【解析】此题主要考查了提公因式法和公式法分解因式,关键是掌握因式分解的步骤:一个多项式有公因式首先提取公因式,然后再用公式法进行因式分解,同时因式分解要彻底,直到不能分解为止.(1)首先提取公因式a,再利用平方差公式进行分解即可;(2)首先提取公因式2x,再利用完全平方公式进行分解即可.22.【答案】解:(1)11+x +2x1−x2=1−x(1+x)(1−x)+2x(1+x)(1−x) =1+x(1+x)(1−x)=11−x,当x=3时,11−x =11−3=−12;(2)(2a+b)2−(a+1−b)(a+1+b)+(a+1)2,=4a2+4ab+b2−[(a+1)−b][(a+1)+b]+a2+2a+1,=4a2+4ab+b2−(a+1)2+b2+a2+2a+1,=4a 2+4ab +b 2−a 2−2a −1+b 2+a 2+2a +1,=4a 2+4ab +2b 2,当a =12,b =−2时,4a 2+4ab +2b 2=4×(12)2+4×12×(−2)+2×(−2)2=1−4+8=5.【解析】此题考查了分式的化简求值,整式的混合运算−化简求值,熟练掌握运算法则是解本题的关键.(1)原式先通分,化简,再将x 的值代入计算即可求出值;(2)原式利用平方差公式及完全平方公式展开,去括号合并得到最简结果,把a 与b 的值代入计算即可求出值.23.【答案】证明:∵∠DCA =∠ECB ,∴∠DCA +∠ACE =∠BCE +∠ACE ,∴∠DCE =∠ACB .∵在△DCE 和△ACB 中,{DC =AC ∠DCE =∠ACB CE =CB,∴△DCE≌△ACB(SAS),∴DE =AB .【解析】先求出∠DCE =∠ACB ,再利用“边角边”证明△DCE 和△ACB 全等,然后根据全等三角形对应边相等证明即可.本题考查了全等三角形的判定与性质,熟练掌握三角形全等的判定方法是解题的关键,本题难点在于求出∠DCE =∠ACB .24.【答案】解:设现在平均每人每天分拣包裹x 件,由题意得:600x =450x−50,解得x =200,经检验:x =200是原分式方程的解,且符合题意.答:现在平均每人每天分拣包裹200件.【解析】本题考查了分式方程的应用,属于基础题.先设现在平均每人每天分拣包裹x 件,根据题意可得,更新了包裹分拣设备后,现在分拣600件包裹所需的时间与原来分拣450件包裹所需时间相同,据此列方程求解.25.【答案】(1)证明:∵AB=AC,∴∠B=∠C,在△BDE和△CEF中,∵{BD=CE∠B=∠CBE=CF,∴△BDE≌△CEF(SAS),∴DE=EF,∴△DEF为等腰三角形;(2)解:由(1)知△BDE≌△CEF,∴∠BED=∠CFE,∠BDE=∠CEF,又∵∠A=50°,AB=AC,∴∠B=∠C=65°,∴∠BED+∠BDE=115°,即∠BED+∠CEF=115°,∵∠BED+∠CEF+∠DEF=180°,∴∠DEF=180°−∠BED−∠CEF=180°−115°=65°.(3)解:由(1)知△BDE≌△CEF,∴∠BED=∠CFE,∠BDE=∠CEF,∵∠BED+∠BDE+∠B=180°,∠BED+∠CEF+∠DEF=180°,∴∠B=∠DEF,∵∠A=∠DEF,AB=AC,∴∠A=∠B=∠C,∴△ABC为等边三角形,∴∠A=∠DEF=60°,又∵DE=EF,∴△DEF为等边三角形,∵FD=4,∴△DEF的周长C△DEF=3×4=12.【解析】本题考查全等三角形的判定与性质,等腰三角形的判定与性质,等边三角形的判定与性质,解题关键是熟记其判定和性质,并灵活运用.(1)根据等腰三角形性质等边对等角得∠B=∠C,由全等三角形判定SAS得△BDE≌△CEF,由全等三角形性质得DE=EF,根据等腰三角形的判定即可得证.(2)由(1)知△BDE≌△CEF,根据全等三角形的性质可得∠BED=∠CFE,∠BDE=∠CEF,由等腰三角形的性质以及三角形内角和定理得∠BED+∠CEF=115°,再由平角的定义即可求得答案.(3)由(1)知△BDE≌△CEF,根据全等三角形的性质可得∠BED=∠CFE,∠BDE=∠CEF,由三角形内角和定理可得∠B=∠DEF,根据等边三角形的判定得△ABC为等边三角形,△DEF为等边三角形,从而求得答案.26.【答案】2 √3−32【解析】(1)证明:如图1中,∵△ABC是等边三角形,BD是中线,∴BD⊥AC,∠ABD=∠DBC=30°,∠ACB=60°,∴BC=2CD,∵CD=CE,∴BC=2EC,=2.∴BCEC故答案为2.(2)解:结论PC=√3PD,PD⊥PC.理由:如图2中,延长DP到M使得PM=PD,连接AM,CD,CM.∵EP=PA,∠EPD=∠APM,PD=PM,∴△EPD≌△APM(SAS),∴DE=AM,∠DEP=∠PAM,∵∠DBC+∠ACB+∠CAE+∠AED+∠EDB=540°,∴∠DBC+∠CAE+∠AED=540°−120°−60°=360°,∵∠CAM+∠CAE+∠MAP=360°,∴∠CBD=∠CAM,∵DE=DB=AM,CB=CA,∴△DBC≌△MAC(SAS),∴CD=CM,∠DCB=∠MAC,∴∠MCD=∠ACB=60°,∴△DCM是等边三角形,∵DP=PM,∴PC=√3PD,PC⊥PD.(3)解:①如图3中,连接PC.由题意AB=BC=AC=2√3,BD=3∴CD=BC−BD=2√3−3,由(2)可知∠CPD=90°,∠PCD=30°,∴PD=12CD=√3−32.故答案为√3−32.(1)证明∠DBC=30°,推出BC=2CD即可解决问题.(2)结论PC=√3PD,PD⊥PC.如图2中,延长DP到M使得PM=PD,连接AM,CD,CM.证明△DBC≌△MAC(SAS),推出△DCM是等边三角形,即可解决问题.(3)如图3中,连接PC,求出CD,利用(2)中结论解决问题即可.本题考查几何变换综合题,考查了等边三角形的判定和性质,解决直角三角形,旋转变换等知识,解题的关键是学会添加常用辅助线构造全等三角形解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.第21页,共21页。

河北省邯郸市2020版八年级上学期数学期末考试试卷(I)卷

河北省邯郸市2020版八年级上学期数学期末考试试卷(I)卷

河北省邯郸市2020版八年级上学期数学期末考试试卷(I)卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分)(2017·重庆) 下列图形中是轴对称图形的是()A .B .C .D .2. (2分)(2019·美兰模拟) 已知坐标平面内点M(a,b)在第三象限,那么点N(b,-a)在()A . 第一象限B . 第二象限C . 第三象限D . 第四象限3. (2分) (2017八上·高州月考) 下列实数中,无理数是()A .B .C .D .4. (2分)下列各组数据中,是勾股数的是()A . 0.3,0.4,0.5B . ,,C . 5,12,13D . 8,12,155. (2分) (2017八下·普陀期中) 一次函数y=2x﹣1的图象经过()A . 第一、二、三象限B . 第一、三、四象限C . 第一、二、四象限;D . 第二、三、四象限6. (2分)如图,已知AD是△ABC的边BC上的高,下列能使△ABD≌△ACD的条件是()A . ∠B=45°B . ∠BAC=90°C . BD=ACD . AB=AC7. (2分)下列说法错误的是()A . 一个三角形中至少有一个角不少于60°B . 三角形的中线不可能在三角形的外部C . 三角形的中线把三角形的面积平均分成相等的两部分D . 直角三角形只有一条高8. (2分)以线段a=16,b=13为梯形的两底,c=10,d=6为腰画梯形,这样的梯形()A . 只能画出一个B . 能画出2个C . 能画出无数个D . 不能画出二、填空题 (共10题;共11分)9. (1分)(2019·润州模拟) 要使有意义,则x的取值范围是________.10. (2分) (2016八上·余姚期中) 如图,△ABC中,AB=AC,AB的垂直平分线交边AB于D点,交边AC于E 点,若△ABC与△EBC的周长分别是40cm,24cm,则AB=________cm.11. (1分) (2019九上·崇阳期末) 若P(﹣3,2)与P′(3,n+1)关于原点对称,则n=________.12. (1分)函数y=的自变量x的取值范围是________13. (1分) (2019七上·滨江期末) 将849000用科学计数法表示为________.14. (1分)如图①,已知△ABC的六个元素,则图②中甲、乙、丙三个三角形中与图①中△ABC全等的图形是________.15. (1分)(2011·无锡) 如图,在△ABC中,AB=5cm,AC=3cm,BC的垂直平分线分别交AB、BC于D、E,则△ACD的周长为________ cm.16. (1分) (2019八下·长春月考) 如图,已知函数y=x-2和y=-2x+1的图象交于点P,根据图象可得方程组的解________.17. (1分)函数y=kx+b(k≠0)的图象如图所示,则不等式kx+b<0的解集为________.18. (1分)如图,从内到外,边长依次为2,4,6,8,…的所有正六边形的中心均在坐标原点,且一组对边与x轴平行,它们的顶点依次用A1、A2、A3、A4、A5、A6、A7、A8、A9、A10、A11、A12…表示,那么顶点A62的坐标是________三、解答题 (共9题;共79分)19. (10分) (2020八上·苏州期末) 求下面各式中的x:(1) x2=4;(2)(x﹣1)3=8.20. (10分)(2016·深圳) 计算:|﹣2|﹣2cos60°+()﹣1﹣(π﹣)0 .21. (5分) (2019八上·萧山期中) 如图所示,点E,F在AC上,AB∥CD,AB=CD,AE=CF,求证△ABF≌△CDE.22. (1分) (2019八上·盘龙镇月考) 按要求作答(1)不用画图,请直接写出三角形ABC关于x轴对称的图形三角形A1B1C1的三个顶点的坐标A1________ B1________C1 ________(2)请画出三角形ABC关于y轴对称的三角形A’B’C’(其中A’、B’、C’别是A、 B 、C 的对应点,不写作法)(3)求三角形ABC的面积23. (6分)(2019·黄埔模拟) 如图,已知在⊙O中,AB是⊙O的直径,AC=8,BC=6.(1)求⊙O的面积;(2)若D为⊙O上一点,且△ABD为等腰三角形,求CD的长.24. (10分) (2016八上·滨湖期末) 如图在平面直角坐标系xOy中,反比例函数y1=(x>0)的图象与一次函数y2=kx-k的图象的交点为A(m,2).(1)求一次函数的解析式;(2)观察图像,直接写出使y1≥y2的x的取值范围.(3)设一次函数y=kx-k的图象与y轴交于点B,若点P是x轴上一点,且满足△PAB的面积是4,请写出点P的坐标.25. (11分)(2017·潍坊) 某蔬菜加工公司先后两批次收购蒜薹(tái)共100吨.第一批蒜薹价格为4000元/吨;因蒜薹大量上市,第二批价格跌至1000元/吨.这两批蒜苔共用去16万元.(1)求两批次购进蒜薹各多少吨?(2)公司收购后对蒜薹进行加工,分为粗加工和精加工两种:粗加工每吨利润400元,精加工每吨利润1000元.要求精加工数量不多于粗加工数量的三倍.为获得最大利润,精加工数量应为多少吨?最大利润是多少?26. (6分)如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A作AF//BC交CE的延长线于点F,且AF=BD,连接BF.(1)线段BD与CD有何数量关系?为什么?(2)当△ABC满足什么条件时,四边形A FBD是矩形?请说明理由.27. (20分) (2019七下·西宁期中) 在平面直角坐标系中,△ABC的顶点坐标分别为A(2,0),B(0,4),C(﹣3,2).(1)如图,求△ABC的面积.(2)若点P的坐标为(m,0),①请直接写出线段AP的长为__▲__(用含m的式子表示);②当S△PAB=2S△ABC时,求m的值.参考答案一、单选题 (共8题;共16分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、填空题 (共10题;共11分)9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共9题;共79分)19-1、19-2、20-1、21-1、22-1、22-2、22-3、23-1、23-2、24-1、24-2、24-3、25-1、25-2、26-1、26-2、27-1、27-2、。

河北省-学年八年级上学期期末考试数学试卷(PDF版 含答案)

河北省-学年八年级上学期期末考试数学试卷(PDF版 含答案)

八年级第一学期期末考试数学试卷(人教版)参考答案评分说明:1.本答案仅供参考,若考生答案与本答案不一致,只要正确,同样得分.2.若答案不正确,但解题过程正确,可酌情给分.一、(每小题3分,共计36分)题号 1 2 3 4 5 6 7 8 9 10 11 12答案 A D D B D C A D C B C C 二、(每小题3分,共计15分)13.4a2+2ab 14.1215.916.135°17.4三、18.解:(1)原式=(2a+5b)(2a-5b);(4分)(2)原式=a+2,当a=-3时,原式=-1.(4分)19.解:(1)如图;点A′的坐标为(-3,2);(6分)(2)如图,点P即为所求.(3分)20.解:(1)在△ABC中,∵∠ABC=40°,∠BAC=50°,∴∠C=180°-(∠ABC+∠BAC)=90°. ∵∠ADB=108°,∴∠CAD=∠ADB-∠C=18°,∴∠BAD=∠BAC-∠CAD=32°.∵AM平分∠BAD,∴∠MAD=12∠BAD=16°,∴∠MAC=∠MAD+∠CAD=34°.综上可知,∠CAD的度数为18°,∠MAC的度数为34°;(6分)(2)∵五边形ADEFG是正五边形,∴正五边形ADEFG的内角和为(5-2)×180°=540°,∴∠DAG=15×540°=108°,∴∠BAG=∠DAG-∠BAD=76°,即∠BAG的度数为76°.(3分)21.解:(1)该分式方程的解为x=4,经检验,当x=4时,x-3≠0,,∴x=4是原分式方程的解;(5分)(2)设原分式方程中“?”代表的数为m,方程两边同时乘(x-3)得x=2(x-3)-m,由于x=3是原分式方程的增根,把x=3代入上面的等式解得m=-3,∴原分式方程中“?”代表的数是-3.(5分)22.解:(1)①③④⑤;(4分)(2)∵(a-b)2+mab=a2+(m-2)ab+b2是完全平方式,且m≠0,∴m=4.∵(x+1)(x-3)=x2-2x-3=x2+nx-3,∴n=-2,∴(m+n)-2=2-2=14.(6分)23.解:(1)在Rt△ABC和Rt△DCB中,⎧⎨⎩AB=DC,BC=CB,∴Rt△ABC≌Rt△DCB,∴AC=BD;(3分)(2)由(1)得Rt△ABC≌Rt△DCB,∴∠ACB=∠DBC,∴BE=CE,∴△BEC是等腰三角形. 又∵EF⊥BC,∴EF是△BEC的中线,∴BF=CF,∴EF垂直平分BC;(4分)(3)∵EF=DE,EF⊥BC,∠D=90°,∴CE平分∠DCB,∴∠ACB=∠DCE.由(2)得∠ACB=∠DBC,∠DCB+∠DBC=180°-∠D=90°,∴∠ACB=∠DBC=∠DCE=30°,∴∠ABE=180°-∠A-∠ACB-∠DBC=30°,即∠ABE的度数为30°.(4分)24.解:(1)∵点M,N同时移动且移动的速度相同,∴BM=CN. ∵AB=AC,∴∠B=∠ACB.又∵ME∥AC,∴∠N=∠DME,∠ACB=∠MEB,∴∠MEB=∠B,∴BM=ME,∴ME=CN.∵MN与BC相交于点D,∴∠MDE=∠NDC. 在△DME和△DNC中,⎧⎪⎨⎪⎩∠MDE=∠NDC,∠DME=∠N,ME=NC,∴△DME≌△DNC;(4分)(2)过点M作ME∥AC,交BC于点E. ∵∠A=60°,AB=AC,∴△ABC是等边三角形,∴∠B=∠ACB=60°.∵ME∥AC,∴∠BEM=∠ACB=60°,∴△BEM是等边三角形,∴BE=BM.∵M是AB的中点,∴BE=BM=12AB=12BC,∴BE=CE=4. 由(1)易得△DME≌△DNC,∴DE=CD,∴CD=12CE=2,∴CD的长度为2;(4分)(3)保持不变;过点M作ME∥AC,交BC于点E. 由(1)易得△DME≌△DNC,BM=ME,∴DE=CD,△MBE是等腰三角形.∵MF⊥BC,∴MF是△MBE的中线,∴BF=EF,∴BF+CD=EF+DE=12BC=4,∴BF+CD的长度和保持不变. (4分)。

河北省邯郸市2021版八年级上学期数学期末考试试卷(I)卷

河北省邯郸市2021版八年级上学期数学期末考试试卷(I)卷

河北省邯郸市2021版八年级上学期数学期末考试试卷(I)卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2017七下·射阳期末) 下列各式计算正确的是()A .B .C .D .2. (2分) (2019七下·长兴期中) 据测定,某种杨絮纤维的直径约为0.0000105m,该数值用科学记数法表示为()A . 1.05×105B . 1.05×10-5C . 1.05×10-4D . 105×10-73. (2分)下列四个图形中,既是轴对称图形,又是中心对称图形是()A . ⑴、⑵B . ⑴、⑶C . ⑴、⑷D . ⑵、⑶4. (2分) (2019八下·路北期中) 己知直角三角形一个锐角60°,斜边长为2,那么此直角三角形的周长是()A .B . 3C . +2D . +35. (2分)(2017·徐州模拟) 如果三角形的两边长分别为3和6,第三边长是奇数,则第三边长可以是()A . 3B . 4C . 5D . 96. (2分)(2018·德阳) 下列计算或运算中,正确的是()A .B .C .D .7. (2分) (2020七上·南召期末) 如图,直线a∥b,直线AB⊥AC,若∠1=50°,则∠2的度数为()A . 50°B . 45°C . 30°D . 40°8. (2分)三角形按角分类可以分为()A . 锐角三角形.直角三角形.钝角三角形B . 等腰三角形.等边三角形.不等边三角形C . 直角三角形.等边直角三角形D . 以上答案都不正确9. (2分) (2017八上·崆峒期末) 下列各式正确的是()A . =B . =C . = (a≠0)D . =10. (2分) (2019八上·获嘉月考) 一位同学用三根木棒两两相交拼成如下图形,则其中符合三角形概念的是()A .B .C .D .二、填空题 (共6题;共6分)11. (1分)计算:82011×(﹣0.125)2011=________;已知am=2,an=3,则a2n﹣m=________.12. (1分) (2017八上·沂水期末) 当m=﹣5时,分式(m+2﹣)• 的值是________.13. (1分) (2015七下·绍兴期中) 如图,已知AB∥DE,∠ABC=75°,∠CDE=150°,则∠BCD的度数为________.14. (1分) (2016七上·湖州期中) 如果a、b互为相反数,c、d互为倒数,m的绝对值为2,那么a+b﹣m2+cd 的值为________.15. (1分) (2017八下·禅城期末) 一个多边形的内角和为540°,则这个多边形的边数是________.16. (1分)某企业今年5月份产值为a(1﹣10%)(1+15%)万元,比4月份增加了15%,4月份比3月份减少了10%,则3月份的产值是________ 万元.三、解答题 (共9题;共66分)17. (10分)已知:a+b=4,ab=1.求:(1)(a﹣b)2的值;(2)a5b﹣2a4b4+ab5的值.18. (5分)计算:(x+3y﹣4)(2x﹣y)19. (5分) (2017八上·伊宁期中) 已知:如图,点B,E,C,F在同一直线上,AB∥DE,且AB=DE,BE=CF.求证:△CAB≌△DEF.20. (10分) (2020八下·贵阳开学考) 如图,三个顶点的坐标分别为(1)在图中画出关于轴的对称图形,并写出点的坐标;(2)求的面积;(3)在轴上找出使的值最小的点,并写出点的坐标.21. (5分)(1)5x-(3x-2y)-3(x+y),其中x=-2,y=1.(2)先化简,再求值:a(a-1)-(a2-b)= -5 求:代数式-ab的值.22. (5分) (2020八上·中山期末) 某商家用1000元购进一批多肉盆栽,很快售完,接着又用了1600元购进第二批多肉盆栽,且数量是第一批的1.2倍,已知第一批盆栽的单价比第二批的单价少3元,问这两批多肉盆栽的单价各是多少元?23. (5分)如图,在△ABC中,∠ACB=90°,∠A=30°,AB的垂直平分线分别交AB和AC于点D、E.(1)求证:AE=2CE;(2)连结CD,请判断△BCD的形状,并说明理由.24. (11分) (2019七上·普兰店期末) 对于三位正整数:121、253、374、495、583、671、880、…,它们都能11整除。

河北省-学年八年级上学期期末考试数学试卷(PDF版 含答案)

河北省-学年八年级上学期期末考试数学试卷(PDF版 含答案)

1图2卷Ⅰ(选择题,共36分)一、细心选一选,一锤定音.(本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)得分评卷人1.下列轴对称图形中,·只·有一条对称轴的是…………………………………………()A.顶角不等于60°的等腰三角形B.正方形C.长方形D.圆2.下列计算结果为x 6的是……………………………………………………………()A.x 2·x 3B.(-x 2)3·x C.(x 3)4÷x 2D.(-x 3y 2)2÷y 43.将四根长度均为8cm 的细木条首尾相接,用钉子钉成四边形ABCD 木架,要使该木架不变形,需在AC 上再钉一根木条,如图1所示,则该木条的长度·不·可·能是…………………………………………()A.8cmB.10cmC.11cmD.17cm4.将一副三角板按如图2所示的位置放置,使得两条直角边在一条直线上,则∠1的度数是…………………………………………()A.90°B.75°C.60°D.45°5.下列计算结果·不·正·确的是………………………………………………………()A.2xy 24x 2y =y 2x B.2-a a 2-4a+4=12-a C.2x x+2+4x+2=2D.2y x-2y +x 2y-x=16.图3中王涵的得分是…()A.40分B.60分C.80分D.100分姓名:王涵分数:判断题.(每题20分,共100分)1.3-a 4π是分式.(√)2.3-1÷32的结果为127.(√)3.将0.000617用科学记数法可表示为6.17×10-4.(√)4.8x 2y 2是分式12xy 2和14x 2y的最简公分母.(×)5.当x=-3时,分式x+3x 2-9的值为0.(×)图3数学试卷(人教版)本试卷分卷Ⅰ和卷Ⅱ两部分.卷Ⅰ为选择题,卷Ⅱ为非选择题.本试卷共6页.总分120分,考试时间120分钟.……………………………………………密……………………………………………封…………………………………………线………………………………………………班级姓名考场考号座位号学校市、区、乡总分核分人八年级第一学期期末考试ADC B图1八年级期末数学试卷(人教版)第1页(共6页)AEDC B图9AOF E CB图6AFE DCB图5图7AE DCB图8CA′BAB′AO EDCB图47.若一个六边形的五个内角都是115°,则第六个内角的度数为………………………………()A.145°B.135°C.125°D.115°8.把多项式3x 3-12x 2+12x 分解因式,下列结果正确的是……………………………………()A.x (3x+4)(x-3)B.3x (x 2-4x+4)C.x (3x 2-12x+12)D.3x (x-2)29.如图4,已知CE 和BD 分别是△ABC 的角平分线和高线,且AE=CE ,若∠ABC=75°,则∠BOE 的度数为……………………………………()A.75°B.60°C.55°D.45°10.师徒两人做工艺品,已知徒弟每天比师傅少做6个,徒弟做48个所用的时间与师傅做72个所用的时间相同,则师傅每天做………………………………………………………………()A.12个B.18个C.20个D.24个11.如图5,在△ABC 中,AD 是高线,过点D 作DE ⊥AB 于点E ,DF ⊥AC 于点F ,且DE=DF ,则下列判断中·不·正·确的是…………………………()A.AD 是∠BAC 的平分线B.AB=ACC.AE=DED.图中有3对全等三角形12.如图6,在△ABC 中,∠ABC=∠ACB ,∠ABC 与∠ACB 的平分线交于点O ,过点O 作平行于BC 的直线,交AB 于点E ,交AC 于点F ,则图中的等腰三角形有…………………………………………………………()A.2个B.3个C.5个D.6个卷Ⅱ(非选择题,共84分)二、细心填一填,相信你填得又快又准.(本大题共5个小题,每小题3分,共15分.把答案写在题中横线上)得分评卷人13.计算:(2a+b )(2a-b )+b (2a+b )=.14.如果a-5b=12,那么a 2-10ab+25b 2a ÷a-5b a 的结果为.15.如图7,已知△ABC 的周长为13,根据图中尺规作图的痕迹,若AE=2,则△ABD 的周长为.16.如图8,已知△ABC ≌△A′B′C ,点B′在边AB 上,若∠ABC=60°,∠ACB=75°,则∠A′CB 的度数为.17.如图9,△ABC 和△CDE 都是等边三角形,且点E 在边AD 上,若∠CBE=30°,CD=2,则BE 的长度为.八年级期末数学试卷(人教版)第2页(共6页)三、开动脑筋,你一定能做对.(本大题共7个小题,共69分.解答应写出文字说明、证明过程或演算步骤)得分评卷人18.(每小题4分,共计8分)按要求完成下列各小题.(1)因式分解:4a 2-25b 2;(2)先化简,再求值:(1-1a-2)÷a-3a 2-4,其中a=-3.得分评卷人19.(本小题满分9分)如图10,△ABC 在平面直角坐标系中,点B 的坐标为(3,-5).(1)在图中画出与△ABC 关于x 轴对称的△A′B′C′,并写出点A′的坐标;(2)请在图中的y 轴上画出一点P ,使得△B′PC′的周长最短.图10ABCxOy111212345678910题号答案八年级期末数学试卷(人教版)第3页(共6页)如图11,在△ABC 中,∠ABC=40°,∠BAC=50°,点D 在边BC 上,且∠ADB=108°,AM 平分∠BAD.(1)求∠CAD 和∠MAC 的度数;(2)以AD 为边,在AD 的左侧作正五边形ADEFG ,求∠BAG 的度数.得分评卷人21.(本小题满分10分)王涵想复习分式方程,由于印刷问题,有一个数“?”看不清楚:x x-3=2-?x-3.(1)她把这个数“?”猜成-2,请你帮王涵解这个分式方程;(2)王涵的妈妈说:“我看到标准答案是:x=3是方程的增根,原分式方程无解”,请你求出原分式方程中“?”代表的数是多少?AM GDCB图11八年级期末数学试卷(人教版)第4页(共6页)图12AEDCBF所谓完全平方式,就是对于一个整式A ,如果存在另一个整式B ,使A=B 2,则称A 是完全平方式.例如:a 4=(a 2)2,a 2+2a+1=(a+1)2,则a 4和a 2+2a+1都是完全平方式.(1)下列各式中属于完全平方式的序号为;①a 8;②a 2+ab+b 2;③4b 2-4b+1;④y 2+y+14;⑤(a+b )2-14(a+b )+49;(2)若(a-b )2+mab (m ≠0)是完全平方式,(x+1)(x-3)=x 2+nx-3,求(m+n )-2的值.得分评卷人23.(本小题满分11分)如图12,已知在△ABC 和△DCB 中,∠A=∠D=90°,AB=CD ,AC 与BD 交于点E ,过点E 作EF ⊥BC 于点F.(1)求证:AC=BD ;(2)求证:EF 垂直平分BC ;(3)若EF=DE ,求∠ABE 的度数.八年级期末数学试卷(人教版)第5页(共6页)………………………………………………密……………………………………………封…………………………………………线………………………………………………得分评卷人24.(本小题满分12分)在△ABC 中,AB=AC ,BC=8,点M 从点B 出发沿射线BA 移动,同时点N 从点C 出发沿线段AC 的延长线移动,点M ,N 移动的速度相同,MN 与BC 相交于点D.(1)如图13-1,过点M 作ME ∥AC ,交BC 于点E ,求证:△DME ≌△DNC ;(2)如图13-2,∠A=60°,当点M 移动到AB 的中点时,求CD 的长度;(3)如图13-3,过点M 作MF ⊥BC 于点F.在点M 从点B 向点A (点M 不与点A ,B 重合)移动的过程中,线段BF+CD 的长度和是否保持不变?若保持不变,请求出BF+CD 的长度和;若改变,请说明理由.N F A B CMD图13-3A M E D CB N图13-1A B C MN D 图13-2八年级期末数学试卷(人教版)第6页(共6页)。

2020-2021学年度第一学期期末八年级数学试题含答案共二套

2020-2021学年度第一学期期末八年级数学试题含答案共二套

2020-2021学年第一学期期末八年级数学试题一、选择题(本题共10小题,每小题3分,共计30分)1. 下列各式运算正确的是( )A .235a a a +=B .235a a a ⋅=C .()326ab ab =D .1025a a a ÷=2. 在平面直角坐标系中,有点 1(2)A -,,点A 关于y 轴的对称点是( )A.()21-,-B.(21)-,C.()2, 1D. (1)2-,3.下列说法正确的是( )A.任何一个图形都有对称轴B.两个全等三角形一定关于某直线对称C.若ABC ∆与DEF ∆成轴对称,则ABC DEF ∆≌D.点A ,点B 在直线L 两旁,且AB 与直线L 交于点O ,若AO BO =,则点A 与点B 关于直线L 对称4. 下列分解因式正确的是( )A .()321x x x x -=- B .()()2339a a a +-=- C.()()2933a a a -=+- D .()()22x y x y x y +=+- 5.()22 ( ) x a x ax a -++的计算结果是( )A .3232x ax a +-B .33x a -C.3232x a x a +- D .222322x ax a a ++-6. 若6, 3a b ab +==, 则2233a b ab +的值是( ) A .9 B .27 C.19 D .547. 如图,阴影部分的面积是( )A .72xyB .92xy C.4xy D .2xy8. 等腰三角形一腰上的高与另一腰的夹角为60︒,则这个等腰三角形的顶角为( )A .30B .150 C.30或 150 D .129. 已知点()1,P a 与(),2Q b 关于x 轴成轴对称,又有点(),2Q b 与点(),M m n 关于y 轴成轴对称,则m n -的值为( )A .3B .3- C. 1 D .1-10. 已知30AOB ∠=︒,点P 在AOB ∠的内部,点1P 和点P 关于OA 对称,点2P 和点P 关于OB 对称,则12P O P 、、三点构成的三角形是( )A.直角三角形B.钝角三角形C.等腰直角三角形D.等边三角形二、填空题(本题共8小题,每小题3分,共计24分)11.等边三角形是轴对称图形,它有______ 条对称轴.12.()3511m a a a ⋅=,则m 的值为 . 13.计算()22133x y xy ⎛⎫-⋅= ⎪⎝⎭. 14. 等腰ABC 中,10 30AB AC A ==∠=︒,, 则腰AB 上的高等于 .15. 如图是小明制作的风筝,为了平衡制成了轴对称图形,已知OC 是对称轴,35,30A BCO ∠=︒∠=︒,那么AOB ∠=_ .16. 若22210a b b -+-+=,则a = ,b = .17. 已知如图,3 BC ABC =∠,和ACB ∠的平分线相交于点//, //O OE AB OF AC ,, 则三角形OEF 的周长为 .18.利用利用一个a a ⨯的正方形,1个b b ⨯的正方形和2个a b ⨯的长方形可拼成一个正方形(如图),从而可得到因式分解的公式 .三、解答题 (本题共7小题,共46分)19. 计算:(1)()()23342a bab ÷ (2)()32222322x y x y xy xy --+÷20. 因式分解:(1)22327a b - (2)()282x x --21. 已知:如图,已知ABC ,(1)分别画出与ABC 关于x 轴、对称的图形111A B C ;(2)写出111A B C 各顶点坐标:(3)求ABC 的面积.22. 如图, ABD AEC ∆、都是等边三角形,求证:BE DC =.23. 先化简,再求值:()()()2[2]x y x y x y x -++-÷,其中3, 1x y ==24. 已知:如图ABC 中, 30, , 4AB AC C AB AD AD cm =∠=︒⊥=,, 求BC 的长.25.下面是某同学对多项式()()2242464x x x x -+-++进行因式分解的过程,解:设24x x y -= 原式()() 2 6 4y y =+++ (第一步)2 816y y =++ (第二步)()24y =+ (第三步) ()2244x x =-+ (第四步) 回答下列问题:(1)该同学第二步到第三步运用了因式分解的 .A.提取公因式B.平方差公式C.两数和的完全平方公式D.两数差的完全平方公式(2)该同学因式分解的结果是否彻底? (填“彻底”或“不彻底”)若不彻底,请直接写出因式分解的最后结果(3)请你模仿以上方法尝试对多项式()()222221x xx x --++进行因式分解.参考答案一、选择题1-5:BACCB 6-10:DACBD二、填空题11.3 12. 2 13. 33x y - 14. 515. 130 16.21、(对一个空给2分,两个空都对给3分) 17.3 18.()2222a ab b a b ++=+ 三、解答题(19) (每题3分)解:(1)32a b (积的乘方对的给2分) (2) 2312x y xy --+ (20) (每题3分)(1)23223273(9)3(3)(3)a b a b a b a b -=-=+-; (2)2228(2)816(4)x x x x x --=-+=-. (做对第一步的给2分)(21) (8分) (1)作图2分(2)()()()1110,2?4,1 2,4A B C (一空一分) (3分)111341423225222ABC S ∆=⨯-⨯⨯-⨯⨯-⨯⨯= (3分) (22) (6分)证明: ABD AEC ∆、都是等边三角形, ,60AD AB AC AE DAB CAE ∴==∠=∠=︒,(2 分)DAC BAE ∴∠=∠DAC BAE ∴≌(2 分)BE DC ∴=(2分)(23) (6分)x y - (去括号合并对了给2分)2 (前面计算对了,答案错了扣1分)(24) (6分)30AB AC C =∠=︒,30,120B C BAC ∴∠=∠=︒∠=︒(2分),30AB AD DAC ⊥∴∠=︒30,DAC C AD DC ∴∠=∠=︒∴=(2分)8BC BD CD AD DC cm =+=+= (2 分)(25).(8分)(1) C ; (2分)(2)分解不彻底: (1分) ()42x -(2分)(3) 设22x x y -= (1分)原式() 2 1y y =++ 221y y =++()21y =+ ()2221x x =-+ ()41x =-(2分)2020-2021年八年级数学上册期末模拟试卷一、选择题:1.下列运算正确的是( )A.(a3)2=a5B.a2•a3=a5C.a6÷a2=a3D.3a2﹣2a2=12.以下图形中对称轴的数量小于3的是()3.下列式子中,与分式的值相等的是( )A.B.C.D.4.如图,AE=AF,AB=AC,EC与BF交于点O,∠A=60°,∠B=25°,则∠EOB的度数为()A.60°B.70°C.75°D.85°5.计算(﹣a﹣b)2等于()A.a2+b2B.a2﹣b2C.a2+2ab+b2D.a2﹣2ab+b26.将一块直尺与一块三角板如图2放置,若∠1=45°,则∠2的度数为()A.145°B.135°C.120°D.115°7.如图,A,B,C表示三个居民小区,为丰富居民们的文化生活,现准备建一个文化广场,使它到三个小区的距离相等,则文化广场应建在()A.AC,BC两边高线的交点处B.AC,BC两边中线的交点处C.AC,BC两边垂直平分线的交点处D.∠A,∠B两内角平分线的交点处8.如图,把一副三角尺叠放在一起,若AB∥CD,则∠1的度数是()A.75°B.60°C.45°D.30°9.如图,△ABC中,BD平分∠ABC,BC的中垂线交BC于点E,交BD于点F,连接CF.若∠A=60°,∠ABD=24°,则∠ACF的度数为()A.48°B.36°C.30°D.24°10.如图,过边长为1的等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线上一点,当PA=CQ时,连PQ交AC边于D,则DE的长为()11.某市道路改造中,需要铺设一条长为1200米的管道,为了尽量减少施工对交通造成的影响,实际施工时,工作效率比原计划提高了25%,结果提前了8天完成任务.设原计划每天铺设管道x米,根据题意,则下列方程正确的是()12.已知a是方程x2+x﹣2015=0的一个根,则的值为()A.2014 B.2015 C.D.二、填空题13.点P(﹣1,3)关于y轴的对称点的坐标是.14.如图所示,有一块三角形的镜子,小明不小心弄破裂成1、2两块,现需配成同样大小的一块.为了方便起见,需带上块,其理由是.15.已知等腰三角形的顶角为40°,则它一腰上的高与底边的夹角为.16.若4x2+2(k-3)x+9是完全平方式,则k=______.17.某市为治理污水,需要铺设一段全长为300m的污水排放管道.铺设120m后,为了尽量减少施工对城市交通所造成的影响,后来每天的工效比原计划增加20%,结果共用30天完成这一任务、求原计划每天铺设管道的长度,如果设原计划每天铺设xm管道,那么根据题意,可得方程.18.如图,六边形ABCDEF的六个内角都相等,若AB=1,BC=CD=3,DE=2,则这个六边形的周长等于.三、解答题19.化简:(x+y)2﹣(x+y)(x﹣y) 20. (x2+y2)2﹣4x2y2.21.化简:22.解分式方程:23.如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB于点E.(1)求证:△ACD≌△AED;(2)若∠B=30°,CD=1,求BD的长.24.如图,△ABC中BD、CD平分∠ABC、∠ACB,过D作直线平行于BC,交AB、AC于E、F,求证:EF=BE+CF.25.我市某县为创建省文明卫生城市,计划将城市道路两旁的人行道进行改造,经调查可知,若该工程由甲工程队单独来做恰好在规定时间内完成;若该工程由乙工程队单独完成,则需要的天数是规定时间的2倍,若甲、乙两工程队合作6天后,余下的工程由甲工程队单独来做还需3天完成.(1)问该县要求完成这项工程规定的时间是多少天?(2)已知甲工程队做一天需付给工资5万元,乙工程队做一天需付给工资3万元.现该工程由甲、乙两个工程队合作完成,该县准备了工程工资款65万元.请问该县准备的工程工资款是否够用?26.从边长为a的正方形中剪掉一个边长为b的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)探究:上述操作能验证的等式是;(请选择正确的一个)A.a2-2ab+b2=(a-b)2B.a2-b2=(a+b)(a-b)C.a2+ab=a(a+b)(2)应用:利用你从(1)选出的等式,完成下列各题:①已知9x2-4y2=24,3x+2y=6,求3x-2y的值;②计算:27.如图,已知△ABC是等边三角形,D为AC边上的一点,DG∥AB,延长AB到E,使BE=GD,连接DE交BC于F.(1)求证:GF=BF;(2)若△ABC的边长为a,BE的长为b,且a,b满足(a﹣7)2+b2﹣6b+9=0,求BF的长.参考答案1.B.2.D3.A4.B5.C6.B7.C8.A.9.A10.B11.B.12.D13.答案为:(1,3).14.答案为:第1,利用SAS得出全等三角形,即可配成与原来同样大小的一块.15.答案为:20°.16.答案为:9或﹣3 .17.答案为:或.18.答案为:15.19.原式=x2+2xy+y2﹣x2+y2=2xy+2y2.20.(x2+y2)2﹣4x2y2=(x2+y2﹣2xy)(x2+y2+2xy)=(x﹣y)2(x+y)2.21.原式====.22.去分母得:1+2x﹣6=x﹣4,解得:x=1,经检验x=1是分式方程的解;23.(1)证明:∵AD平分∠CAB,DE⊥AB,∠C=90°,∴CD=ED,∠DEA=∠C=90°,∵在Rt△ACD和Rt△AED中∴Rt△ACD≌Rt△AED(HL);(2)解:∵DC=DE=1,DE⊥AB,∴∠DEB=90°,∵∠B=30°,∴BD=2DE=2.24.解:∵△ABC中BD、CD平分∠ABC、∠ACB,∴∠1=∠2,∠5=∠6,∵EF∥BC,∴∠2=∠3,∠4=∠6,∴∠1=∠3,∠4=∠5,根据在同一三角形中等角对等边的原则可知,BE=ED,DF=FC,故EF=ED+DF=BE+CF.25.26. (1)B;(2)①,4;②;27.⑴证明:△DGF≌△EBF,GF=BF;⑵∵(a-7)2+b2-6b+9=0,∴a=7,b=3, BF=2.。

河北省2020-2021学年八年级上学期期末数学试题

河北省2020-2021学年八年级上学期期末数学试题
10.如图,阴影部分是一个正方形,此正方形的面积是()
A.16B.8C.4D.2
11.若x,y的值均扩大为原来的3倍,则下列分式的值保持不变的是( )
A. B. C. D.
12.如图,数轴上A,B两点对应的实数分别是1和 ,若A点关于B点的对称点为点C,则点C所对应的实数为( )
A.2 -1B.1+ C.2+ D.2 +1
参考答案
的定义进行判断即可得到对称轴.
【详解】
解:观察可知沿l1折叠时,直线两旁的部分不能够完全重合,故l1不是对称轴;
沿l2折叠时,直线两旁的部分不能够完全重合,故l2不是对称轴;
沿l3折叠时,直线两旁的部分能够完全重合,故l3是对称轴,
所以该图形的对称轴是直线l3,
(1)在如图所示的数轴上,画出一个你喜欢的无理数,并用点 表示;
(2)(1)中所取点 表示的数字是______,相反数是_____,绝对值是______,倒数是_____,其到点5的距离是______.
(3)取原点为 ,表示数字1的点为 ,将(1)中点 向左平移2个单位长度,再取其关于点 的对称点 ,求 的长.
A.1组B.2组C.3组D.4组
7.下列各式中属于最简二次根式的是()
A. B. C. D.
8.实数 在数轴上对应点如图所示,则化简 的结果是( )
A. B. C. D.
9.如果一个三角形是轴对称图形,且有一个内角是60°,那么这个三角形是( )
A.等边三角形B.等腰直角三角形
C.等腰三角形D.含30°角的直角三角形
26.在 中, , ,点 是线段 上一动点( 不与 , 重合).
(1)如图1,当点 为 的中点,过点 作 交 的延长线于点 ,求证: ;

2020-2021学年度第一学期期末八年级数学试题含答案共二套

2020-2021学年度第一学期期末八年级数学试题含答案共二套

2020-2021学年第一学期期末八年级数学试题一、选择题(本题共10小题,每小题3分,共计30分)1. 下列各式运算正确的是( )A .235a a a +=B .235a a a ⋅=C .()326ab ab =D .1025a a a ÷=2. 在平面直角坐标系中,有点 1(2)A -,,点A 关于y 轴的对称点是( )A.()21-,-B.(21)-,C.()2, 1D. (1)2-,3.下列说法正确的是( )A.任何一个图形都有对称轴B.两个全等三角形一定关于某直线对称C.若ABC ∆与DEF ∆成轴对称,则ABC DEF ∆≌D.点A ,点B 在直线L 两旁,且AB 与直线L 交于点O ,若AO BO =,则点A 与点B 关于直线L 对称4. 下列分解因式正确的是( )A .()321x x x x -=- B .()()2339a a a +-=- C.()()2933a a a -=+- D .()()22x y x y x y +=+- 5.()22 ( ) x a x ax a -++的计算结果是( )A .3232x ax a +-B .33x a -C.3232x a x a +- D .222322x ax a a ++-6. 若6, 3a b ab +==, 则2233a b ab +的值是( ) A .9 B .27 C.19 D .547. 如图,阴影部分的面积是( )A .72xyB .92xy C.4xy D .2xy8. 等腰三角形一腰上的高与另一腰的夹角为60︒,则这个等腰三角形的顶角为( )A .30B .150 C.30或 150 D .129. 已知点()1,P a 与(),2Q b 关于x 轴成轴对称,又有点(),2Q b 与点(),M m n 关于y 轴成轴对称,则m n -的值为( )A .3B .3- C. 1 D .1-10. 已知30AOB ∠=︒,点P 在AOB ∠的内部,点1P 和点P 关于OA 对称,点2P 和点P 关于OB 对称,则12P O P 、、三点构成的三角形是( )A.直角三角形B.钝角三角形C.等腰直角三角形D.等边三角形二、填空题(本题共8小题,每小题3分,共计24分)11.等边三角形是轴对称图形,它有______ 条对称轴.12.()3511m a a a ⋅=,则m 的值为 . 13.计算()22133x y xy ⎛⎫-⋅= ⎪⎝⎭. 14. 等腰ABC 中,10 30AB AC A ==∠=︒,, 则腰AB 上的高等于 .15. 如图是小明制作的风筝,为了平衡制成了轴对称图形,已知OC 是对称轴,35,30A BCO ∠=︒∠=︒,那么AOB ∠=_ .16. 若22210a b b -+-+=,则a = ,b = .17. 已知如图,3 BC ABC =∠,和ACB ∠的平分线相交于点//, //O OE AB OF AC ,, 则三角形OEF 的周长为 .18.利用利用一个a a ⨯的正方形,1个b b ⨯的正方形和2个a b ⨯的长方形可拼成一个正方形(如图),从而可得到因式分解的公式 .三、解答题 (本题共7小题,共46分)19. 计算:(1)()()23342a bab ÷ (2)()32222322x y x y xy xy --+÷20. 因式分解:(1)22327a b - (2)()282x x --21. 已知:如图,已知ABC ,(1)分别画出与ABC 关于x 轴、对称的图形111A B C ;(2)写出111A B C 各顶点坐标:(3)求ABC 的面积.22. 如图, ABD AEC ∆、都是等边三角形,求证:BE DC =.23. 先化简,再求值:()()()2[2]x y x y x y x -++-÷,其中3, 1x y ==24. 已知:如图ABC 中, 30, , 4AB AC C AB AD AD cm =∠=︒⊥=,, 求BC 的长.25.下面是某同学对多项式()()2242464x x x x -+-++进行因式分解的过程,解:设24x x y -= 原式()() 2 6 4y y =+++ (第一步)2 816y y =++ (第二步)()24y =+ (第三步) ()2244x x =-+ (第四步) 回答下列问题:(1)该同学第二步到第三步运用了因式分解的 .A.提取公因式B.平方差公式C.两数和的完全平方公式D.两数差的完全平方公式(2)该同学因式分解的结果是否彻底? (填“彻底”或“不彻底”)若不彻底,请直接写出因式分解的最后结果(3)请你模仿以上方法尝试对多项式()()222221x xx x --++进行因式分解.参考答案一、选择题1-5:BACCB 6-10:DACBD二、填空题11.3 12. 2 13. 33x y - 14. 515. 130 16.21、(对一个空给2分,两个空都对给3分) 17.3 18.()2222a ab b a b ++=+ 三、解答题(19) (每题3分)解:(1)32a b (积的乘方对的给2分) (2) 2312x y xy --+ (20) (每题3分)(1)23223273(9)3(3)(3)a b a b a b a b -=-=+-; (2)2228(2)816(4)x x x x x --=-+=-. (做对第一步的给2分)(21) (8分) (1)作图2分(2)()()()1110,2?4,1 2,4A B C (一空一分) (3分)111341423225222ABC S ∆=⨯-⨯⨯-⨯⨯-⨯⨯= (3分) (22) (6分)证明: ABD AEC ∆、都是等边三角形, ,60AD AB AC AE DAB CAE ∴==∠=∠=︒,(2 分)DAC BAE ∴∠=∠DAC BAE ∴≌(2 分)BE DC ∴=(2分)(23) (6分)x y - (去括号合并对了给2分)2 (前面计算对了,答案错了扣1分)(24) (6分)30AB AC C =∠=︒,30,120B C BAC ∴∠=∠=︒∠=︒(2分),30AB AD DAC ⊥∴∠=︒30,DAC C AD DC ∴∠=∠=︒∴=(2分)8BC BD CD AD DC cm =+=+= (2 分)(25).(8分)(1) C ; (2分)(2)分解不彻底: (1分) ()42x -(2分)(3) 设22x x y -= (1分)原式() 2 1y y =++ 221y y =++()21y =+ ()2221x x =-+ ()41x =-(2分)2020-2021年八年级数学上册期末模拟试卷一、选择题:1.下列运算正确的是( )A.(a3)2=a5B.a2•a3=a5C.a6÷a2=a3D.3a2﹣2a2=12.以下图形中对称轴的数量小于3的是()3.下列式子中,与分式的值相等的是( )A.B.C.D.4.如图,AE=AF,AB=AC,EC与BF交于点O,∠A=60°,∠B=25°,则∠EOB的度数为()A.60°B.70°C.75°D.85°5.计算(﹣a﹣b)2等于()A.a2+b2B.a2﹣b2C.a2+2ab+b2D.a2﹣2ab+b26.将一块直尺与一块三角板如图2放置,若∠1=45°,则∠2的度数为()A.145°B.135°C.120°D.115°7.如图,A,B,C表示三个居民小区,为丰富居民们的文化生活,现准备建一个文化广场,使它到三个小区的距离相等,则文化广场应建在()A.AC,BC两边高线的交点处B.AC,BC两边中线的交点处C.AC,BC两边垂直平分线的交点处D.∠A,∠B两内角平分线的交点处8.如图,把一副三角尺叠放在一起,若AB∥CD,则∠1的度数是()A.75°B.60°C.45°D.30°9.如图,△ABC中,BD平分∠ABC,BC的中垂线交BC于点E,交BD于点F,连接CF.若∠A=60°,∠ABD=24°,则∠ACF的度数为()A.48°B.36°C.30°D.24°10.如图,过边长为1的等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线上一点,当PA=CQ时,连PQ交AC边于D,则DE的长为()11.某市道路改造中,需要铺设一条长为1200米的管道,为了尽量减少施工对交通造成的影响,实际施工时,工作效率比原计划提高了25%,结果提前了8天完成任务.设原计划每天铺设管道x米,根据题意,则下列方程正确的是()12.已知a是方程x2+x﹣2015=0的一个根,则的值为()A.2014 B.2015 C.D.二、填空题13.点P(﹣1,3)关于y轴的对称点的坐标是.14.如图所示,有一块三角形的镜子,小明不小心弄破裂成1、2两块,现需配成同样大小的一块.为了方便起见,需带上块,其理由是.15.已知等腰三角形的顶角为40°,则它一腰上的高与底边的夹角为.16.若4x2+2(k-3)x+9是完全平方式,则k=______.17.某市为治理污水,需要铺设一段全长为300m的污水排放管道.铺设120m后,为了尽量减少施工对城市交通所造成的影响,后来每天的工效比原计划增加20%,结果共用30天完成这一任务、求原计划每天铺设管道的长度,如果设原计划每天铺设xm管道,那么根据题意,可得方程.18.如图,六边形ABCDEF的六个内角都相等,若AB=1,BC=CD=3,DE=2,则这个六边形的周长等于.三、解答题19.化简:(x+y)2﹣(x+y)(x﹣y) 20. (x2+y2)2﹣4x2y2.21.化简:22.解分式方程:23.如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB于点E.(1)求证:△ACD≌△AED;(2)若∠B=30°,CD=1,求BD的长.24.如图,△ABC中BD、CD平分∠ABC、∠ACB,过D作直线平行于BC,交AB、AC于E、F,求证:EF=BE+CF.25.我市某县为创建省文明卫生城市,计划将城市道路两旁的人行道进行改造,经调查可知,若该工程由甲工程队单独来做恰好在规定时间内完成;若该工程由乙工程队单独完成,则需要的天数是规定时间的2倍,若甲、乙两工程队合作6天后,余下的工程由甲工程队单独来做还需3天完成.(1)问该县要求完成这项工程规定的时间是多少天?(2)已知甲工程队做一天需付给工资5万元,乙工程队做一天需付给工资3万元.现该工程由甲、乙两个工程队合作完成,该县准备了工程工资款65万元.请问该县准备的工程工资款是否够用?26.从边长为a的正方形中剪掉一个边长为b的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)探究:上述操作能验证的等式是;(请选择正确的一个)A.a2-2ab+b2=(a-b)2B.a2-b2=(a+b)(a-b)C.a2+ab=a(a+b)(2)应用:利用你从(1)选出的等式,完成下列各题:①已知9x2-4y2=24,3x+2y=6,求3x-2y的值;②计算:27.如图,已知△ABC是等边三角形,D为AC边上的一点,DG∥AB,延长AB到E,使BE=GD,连接DE交BC于F.(1)求证:GF=BF;(2)若△ABC的边长为a,BE的长为b,且a,b满足(a﹣7)2+b2﹣6b+9=0,求BF的长.参考答案1.B.2.D3.A4.B5.C6.B7.C8.A.9.A10.B11.B.12.D13.答案为:(1,3).14.答案为:第1,利用SAS得出全等三角形,即可配成与原来同样大小的一块.15.答案为:20°.16.答案为:9或﹣3 .17.答案为:或.18.答案为:15.19.原式=x2+2xy+y2﹣x2+y2=2xy+2y2.20.(x2+y2)2﹣4x2y2=(x2+y2﹣2xy)(x2+y2+2xy)=(x﹣y)2(x+y)2.21.原式====.22.去分母得:1+2x﹣6=x﹣4,解得:x=1,经检验x=1是分式方程的解;23.(1)证明:∵AD平分∠CAB,DE⊥AB,∠C=90°,∴CD=ED,∠DEA=∠C=90°,∵在Rt△ACD和Rt△AED中∴Rt△ACD≌Rt△AED(HL);(2)解:∵DC=DE=1,DE⊥AB,∴∠DEB=90°,∵∠B=30°,∴BD=2DE=2.24.解:∵△ABC中BD、CD平分∠ABC、∠ACB,∴∠1=∠2,∠5=∠6,∵EF∥BC,∴∠2=∠3,∠4=∠6,∴∠1=∠3,∠4=∠5,根据在同一三角形中等角对等边的原则可知,BE=ED,DF=FC,故EF=ED+DF=BE+CF.25.26. (1)B;(2)①,4;②;27.⑴证明:△DGF≌△EBF,GF=BF;⑵∵(a-7)2+b2-6b+9=0,∴a=7,b=3, BF=2.。

2020-2021学年河北省八年级(上)期末数学试卷(附解析)

2020-2021学年河北省八年级(上)期末数学试卷(附解析)

2020-2021学年河北省八年级(上)期末数学试卷1.下列图形具有稳定性的是()A. B. C. D.2.若□×xy=3x2y+2xy,则□内应填的式子是()A. 3x+2B. x+2C. 3xy+2D. xy+23.如图,从标有数字1,2,3,4的四个小正方形中拿走一个,成为一个轴对称图形,则应该拿走的小正方形的标号是()A. 1B. 2C. 3D. 44.如图,△ABC的BC边上的高是()A. BEB. AFC. CDD. CF5.对于分式x−2来说,当x=−1时,无意义,则a的值是()x−aA. 1B. 2C. −1D. −26.计算:(a⋅a3)2=a2⋅(a3)2=a2⋅a6=a8,其中,第一步运算的依据是()A. 积的乘方法则B. 幂的乘方法则C. 乘法分配律D. 同底数幂的乘法法则7.如图,△ABC与△DCE都是等边三角形,B,C,E三点在同一条直线上,若AB=3,∠BAD=150°,则DE的长为()A. 3B. 4C. 5D. 68.根据下列条件不能唯一画出△ABC的是()A. AB=5,BC=6,AC=7B. AB=5,BC=6,∠B=45°C. AB=5,AC=4,∠C=90°D. AB=5,AC=4,∠C=45°9.如图是A,B,C三岛的平面图,C岛在A岛的北偏东35°方向,B岛在A岛的北偏东80°方向,C岛在B岛的北偏西55°方向,则A,B,C三岛组成一个()A. 等腰直角三角形B. 等腰三角形C. 直角三角形D. 等边三角形10.如图,已知点D、E分别在∠CAB的边AB、AC上,若PD=6,由作图痕迹可得,PE的最小值是()A. 2B. 3C. 6D. 1211.若化简mm−2−2m−2⋅□的最终结果是整式,则□的式子可以是()A. m−1B. m+1C. mD. 212.A和B两地在一条河的两岸,现要在河上造一座桥MN,使从A到B的路径AMNB最短的是(假定河的两岸是平行线,桥与河岸垂直)()A. (BM垂直于a)B. (AM不平行BN)C. (AN垂直于b)D. (AM平行BN)13.如图,点C在∠AOB的OB边上,用尺规作出了∠BCD=∠AOB.以下是排乱的作图过程:则正确的作图顺序是()⏜,交OB于点M.①以C为圆心,OE长为半径画MN②作射线CD,则∠BCD=∠AOB.⏜于点D.③以M为圆心,EF长为半径画弧,交MN④以O为圆心,任意长为半径画EF⏜,分别交OA,OB于点E,F.A. ①−②−③−④B. ③−②−④−①C. ④−①−③−②D. ④−③−①−②14.当n为自然数时,(n+1)2−(n−3)2一定能()A. 被5整除B. 被6整除C. 被7整除D. 被8整除15.如图,将一根笔直的竹竿斜放在竖直墙角AOB中,初始位置为CD,当一端C下滑至C′时,另一端D向右滑到D′,则下列说法正确的是()A. 下滑过程中,始终有CC′=DD′B. 下滑过程中,始终有CC′≠DD′C. 若OC<OD,则下滑过程中,一定存在某个位置使得CC′=DD′D. 若OC>OD,则下滑过程中,一定存在某个位置使得CC′=DD′16.如图,两个正方形边长分别为a,b,如果a+b=10,ab=18,则阴影部分的面积为()A. 21B. 22C. 23D. 2417.−b⋅b3=______.18.用科学记数法表示(2.5)8(0.4)10=______ .19.如图所示,在△ABC中,DE、MN是边AB、AC的垂直平分线,其垂足分别为D、M,分别交BC于E、N,且DE和MN交于点F.(1)若∠B=20°,则∠BAE=______ ;(2)若∠EAN=40°,则∠F=______ ;(3)若AB=8,AC=9,设△AEN周长为m,则m的取值范围为______ .20.如图,在直角坐标系中,△ABC的三个顶点坐标分别为A(1,4),B(4,2),C(3,5),请回答下列问题:(1)作出△ABC关于x轴的对称图形△A1B1C1,并直接写出△A1B1C1的顶点坐标.(2)求△A1B1C1的面积.21.小明采用如图所示的方法作∠AOB的平分线OC:将带刻度的直角尺DEMN按如图所示摆放,使EM边与OB边重合,顶点D落在OA边上并标记出点D的位置,量出OD的长,再重新如图放置直角尺,在DN边上截取DP=OD,过点P画射线OC,则OC平分∠AOB.请判断小明的做法是否可行?并说明理由.22.在化简(x+1)●(x−1)+(●x2−1)题目中,●表示+,−,×,÷四个运算符号中的某一个,●表示二次项的系数.(1)若●表示“×”;①把●猜成1时,请化简(x+1)(x−1)+(x2−1);②若结果是一个常数,请说明●表示的数是几?(2)若●表示数−2,当x=1时,(x+1)●(x−1)+(−2x2−1)的值为−1,请推算●所表示的符号.23.在一个各内角都相等的多边形中,每一个内角都比相邻外角的3倍还大20°,(1)求这个多边形的边数;(2)若将这个多边形剪去一个角,剩下多边形的内角和是多少?24.发现:两个差为2的正整数的积与1的和总是一个正整数的平方.验证:(1)9×7+1是几的平方?(2)设较小的一个正整数为n,写出这两个正整数积与1的和,并说明它是一个正整数的平方.延伸:两个差为4的正偶数,它们的积与常数a的和是一个正整数的平方,求a.25.两个小组攀登一座450m高的山,第二组的攀登速度是第一组的a倍.(1)若两个小组同时开始攀登,当a=1.2时,第二组比第一组早15min到达顶峰,求两个小组的攀登速度;(2)元旦假期这两个小组去攀登另一座hm高的山,第二组比第一组晚出发30min,结果两组同时到达顶峰,问第二组的平均攀登速度比第一组快多少?(用含a,h的代数式表示)26.如图1,△ABC和△ABD中,∠BAC=∠ABD=90°,点C和点D在AB的异侧,点E为AD边上的一点,且AC=AE,连接CE交直线AB于点G,过点A作AF⊥AD交直线CE于点F.(Ⅰ)求证:△AGE≌△AFC;(Ⅱ)若AB=AC,求证:AD=AF+BD;(Ⅲ)如图2,若AB=AC,点C和点D在AB的同侧,题目其他条件不变,直接写出线段AD,AF,BD的数量关系______ .答案和解析1.【答案】A【解析】解:三角形、四边形、五边形及六边形中只有三角形具有稳定性.故选:A.根据三角形具有稳定性解答.本题考查了三角形具有稳定性,是基础题,需熟记.2.【答案】A【解析】解:(3x2y+2xy)÷xy,=3x+2,故选:A.利用乘除法的关系可得□内应填的式子是:(3x2y+2xy)与xy的商,计算即可.此题主要考查了多项式除以单项式,关键是掌握乘除法之间的关系.3.【答案】B【解析】解:从标有数字1,2,3,4的四个小正方形中拿走2,就可以成为一个轴对称图形.故选:B.直接利用轴对称的性质得出符合题意答案.此题主要考查了轴对称图形,正确掌握轴对称图形的性质是解题关键.4.【答案】B【解析】解:△ABC的BC边上的高是AF,故选:B.根据三角形的高解答即可.此题考查三角形的角平分线、高和中线,关键是根据三角形的高的概念判断.5.【答案】C无意义,【解析】解:当x−a=0,即x=a时,分式x−2x−a∵当x=−1时,分式无意义,∴a=−1,故选:C.根据分式无意义分条件计算即可.本题考查的是分式有意义的条件,掌握分式的分母不为0是解题的关键.6.【答案】A【解析】解:(a⋅a3)2=a2⋅(a3)2的依据是积的乘方法则.故选:A.积的乘方法则:积的乘方,把每一个因式分别乘方,再把所得的幂相乘,据此判断即可.本题主要考查了同底数幂的乘法以及幂的乘方与积的乘方,熟记幂的运算法则是解答本题的关键.7.【答案】D【解析】解:∵△ABC与△DCE都是等边三角形,AB=3,∠BAD=150°,∴AB=AC=3,DE=DC,∠BAC=∠DCE=∠ACB=60°,∴∠ACD=60°,∠CAD=150°−60°=90°,∴∠ADC=30°,∴DC=2AC=6,∴DE=DC=6,故选:D.根据等边三角形的性质得出AB=AC=3,DE=DC,∠BAC=∠DCE=∠ACB=60°,求出∠ACD=60°,∠CAD=90°,求出∠ADC=30°,根据很30度角的直角三角形性质得出DC=2AC,求出即可.本题考查了等边三角形的性质和含30度角的直角三角形性质,三角形内角和定理的应用,解此题的关键是得出DC=2AC.8.【答案】D【解析】解:A、∵AC与BC两边之和大于第三边,∴能作出三角形,且三边知道能唯一画出△ABC;B、∠B是AB,BC的夹角,故能唯一画出△ABC;C、AB=5,AC=4,∠C=90°,得出BC=3,可唯一画出△ABC;D、AB=5,AC=4,∠C=45°,不能画出一个三角形.故选:D.判断其是否为三角形,即两边之和大于第三边,两边之差小于第三边,两边夹一角,或两角夹一边可确定三角形的形状,否则三角形并不是唯一存在,可能有多种情况存在.本题考查了全等三角形的判定定理,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.9.【答案】C【解析】解:如图,过点C作CD//AE交AB于点D,∴∠DCA=∠EAC=35°,∵AE//BF,∴CD//BF,∴∠BCD=∠CBF=55°,∴∠ACB=∠ACD+∠BCD=35°+55°=90°,∴△ABC是直角三角形.故选:C.如图,过点C作CD//AE交AB于点D,可得∠DCA=∠EAC=35°,根据AE//BF,可得CD//BF,可得∠BCD=∠CBF=55°,进而得△ABC是直角三角形.本题考查了直角三角形、方向角,解决本题的关键是掌握方向角定义.10.【答案】C【解析】解:根据作图痕迹可知:AP是∠BAC的平分线,∵PD⊥AB,且PD=6,当PE⊥AC时,PE=PD=6,∴PE的最小值是6.故选:C.根据作图痕迹可得,AP是∠BAC的平分线,根据角平分线上的点到角的两边距离相等即可得PE的最小值.本题考查了作图−基本作图,解决本题的关键是掌握角平分线的性质.11.【答案】A【解析】解:A.mm−2−2m−2⋅(m−1)=m−2(m−1)m−2=−(m−2)m−2=−1,故本选项符合题意;B.mm−2−2m−2⋅(m+1)=−m+2m−2,故本选项不合题意;C.mm−2−2m−n⋅m=−mm−2,故本选项不合题意;D.mm−2−2m−2×2=m−4m−2,故本选项不合题意.故选:A.根据同分母分子的加减法法则判断即可.本题主要考查了分式的加减,熟练掌握运算法则是解答本题的关键.12.【答案】D【解析】解:根据垂线段最短,得出MN是河的宽时,MN最短,即MN⊥直线a(或直线b),只要AM+BN最短即可,即过A作河岸a的垂线AH,垂足为H,在直线AH上取点I,使AI等于河宽.连结IB交河的b边岸于N,作MN垂直于河岸交a边的岸于M点,所得MN即为所求.故选:D.过A作河的垂线AH,要使最短,MN⊥直线a,AI=MN,连接BI即可得出N,作出AM、MN、BN即可.本题考查了最短路线问题,垂线段最短,三角形的三边关系定理的应用,关键是如何找出M、N点的位置.13.【答案】C【解析】解:根据作一个角等于已知角的过程可知:④以O为圆心,任意长为半径画EF⏜,分别交OA,OB于点E,F.①以C为圆心,OE长为半径画MN⏜,交OB于点M.③以M为圆心,EF长为半径画弧,交MN⏜于点D.②作射线CD,则∠BCD=∠AOB.故选:C.根据作一个角等于已知角的作图过程即可判断.本题考查了作图−基本作图,解决本题的关键是掌握作一个角等于已知角的作图过程.14.【答案】D【解析】解:(n+1)2−(n−3)2=n2+2n+1−n2+6n−9=8n−8=8(n−1),∴能被8整除,故选:D.将所求式子用完全平方公式展开可得原式=8(n−1),即可进行求解.本题考查因式分解的应用;理解题意,将已知式子进行合理的变形,再由数的整除性求解是解题的关键.15.【答案】D【解析】解:将一根笔直的竹竿斜放在竖直墙角AOB中,初始位置为CD,当一端C下滑至C′时,另一端D向右滑到D′,可得:CD=C′D′,A、下滑过程中,CC′与DD′不一定相等,说法错误;B、下滑过程中,当△OCD与△OD′C′全等时,CC′=DD′,说法错误;C、若OC<OD,则下滑过程中,不存在某个位置使得CC′=DD′,说法错误;D、若OC>OD,则下滑过程中,当△OCD与△OD′C′全等时,一定存在某个位置使得CC′= DD′,说法正确;故选:D.根据全等三角形的性质解答即可.此题考查全等三角形的应用,关键是根据全等三角形的对应边相等解答.16.【答案】C【解析】解:如图,三角形②的一条直角边为a,另一条直角边为b,因此S△②=12(a−b)b=12ab−12b2,S△①=12a2,∴S阴影部分=S大正方形−S△①−S△②,=12a2−12ab+12b2,=12[(a+b)2−3ab],=12(100−54)=23,故选:C.表示出空白三角形的面积,用总面积减去两个空白三角形的面积即可,再将得到的等式变形后,利用整体代入求值即可.考查完全平方公式的意义,适当的变形是解决问题的关键.17.【答案】−b4【解析】解:−b⋅b3=−b1+3=−b4.故答案为:−b4.同底数幂相乘,底数不变,指数相加,据此计算即可.本题主要考查了同底数幂的乘法,熟记幂的运算法则是解答本题的关键.18.【答案】1.6×10−1【解析】解:(2.5)8(0.4)10=(52)8×(25)10=(52)8×(25)8×(25)2=(52×25)8×(25)2=18×0.16=1.6×10−1.故答案为:1.6×10−1.积的乘方,把每一个因式分别乘方,再把所得的幂相乘,据此化简后用科学记数法表示结果即可.本题主要考查了幂的乘方与积的乘方,还考查了科学记数法,熟记幂的运算法则是解答本题的关键.19.【答案】20°70°1<m<17【解析】解:(1)∵DE是线段AB的垂直平分线,∴EA=EB,∴∠BAE=∠B=20°;(2))∵DE、MN是边AB、AC的垂直平分线,∴AE=BE,AN=CN,∴∠BAE=∠B,∠CAN=∠C,∵∠EAN=40°,∠B+∠BAE+∠EAN+∠CAN+∠C=180°,∴∠BAE+∠CAN=70°,∴∠BAC=∠BAE+∠CAN+∠EAN=110°,∵∠ADF=∠AMF=90°,∴∠F=360°−∠ADF−∠AMF−∠BAC=360°−90°−90°−110°=70°;(3)∵DE、MN是边AB、AC的垂直平分线,∴AE=BE,AN=CN,∴△AEN的周长=AE+EN+AN=BE+EN+CN=BC,在△ABC中,AB=8,AC=9,∴9−8<BC<9+8,∴1<m<17.故答案为:(1)20°;(2)70°;(3)1<m<17.(1)根据线段垂直平分线的性质得到EA=EB,根据等腰三角形的性质解答即可;(2)根据线段垂直平分线的性质得到EA=EB,AN=CN,根据三角形内角和定理计算即可;(3)根据三角形的周长公式得到△AEN的周长=BC,根据三角形的三边关系计算,得到答案.本题考查的是线段垂直平分线的性质、三角形内角和定理,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.20.【答案】解:(1)如图所示,△ABC关于x轴的对称图形△A1B1C1的顶点坐标为:A1(1,−4),B1(4,−2),C1(3,−5).(2)△ABC的面积为:3×3−12×1×2−12×1×3−12×2×3=9−1−1.5−3=3.5.【解析】(1)依据关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数,即可得出△A1B1C1的位置以及顶点坐标.(2)依据割补法进行计算,即可得出△A1B1C1的面积.本题主要考查了利用轴对称变换作图,依据轴对称的性质得出对称点的位置是解决问题的关键.21.【答案】解:小明的做法可行.理由如下:在直角尺DEMN中,DN//EM,∴∠DPO=∠POM,∵DP=OD,∴∠DPO=∠DOP,∴∠POM=∠DOP,∴OC平分∠AOB.【解析】根据平行线的性质得到∠DPO=∠POM,根据等腰三角形的性质得到∠DPO=∠DOP,由等量代换得到∠POM=∠DOP,由此可判断小明的做法可行.本题主要考查了角平分线的定义,平行线的性质,等腰三角形的性质,能灵活应用平行线的性质和等腰三角形的性质是解决问题的关键.22.【答案】解:(1)①(x+1)(x−1)+(x2−1)=x2−1+x2−1=2x2−2;②原式=x2−1+●x2−1=(1+●)x2−2,若结果是一个常数,1+●=0,则●=−1;(2)把x=1代入得,2●0+(−2−1)=−1,整理得:2●0=2,则●为+或−.【解析】(1)①原式利用平方差公式化简,去括号合并即可得到结果;②原式化简后,根据结果为常数,确定出●表示的数即可;(2)把x=1代入原式,使其值为−1,确定出●所表示的符号即可.此题考查了整式的加减,以及有理数的混合运算,熟练掌握运算法则是解本题的关键.23.【答案】解:(1)设多边形的一个外角为α,则与其相邻的内角等于3α+20°,由题意,得(3α+20)+α=180°,解得α=40°.即多边形的每个外角为40°.又∵多边形的外角和为360°,=9.∴多边形的外角个数=36040∴多边形的边数=9,答:这个多边形的边数是9;(2)因为剪掉一个角以后,多边形的边数可能增加了1条,也可能减少了1条,或者不变,当截线为经过对角2个顶点的直线时,多边形的边数减少了1条边,内角和=(9−2−1)×180°=1080°;当截线为经过多边形一组对边的直线时,多边形的边数不变,内角和=(9−2)×180°= 1260°;当截线为只经过正多形一组邻边的一条直线时,多边形的边数增加一条边,内角和= (9−2+1)×180°=1440°.答:将这个多边形剪去一个角,剩下多边形的内角和是1080°或1260°或1440°.【解析】本题考查了多边形的内角和定理,外角和定理,多边形内角与外角的关系,运用方程求解比较简便.第2问在理解剪掉多边形的一个角的含义时,确定其剩余几边形是关键.(1)设多边形的一个外角为α,则与其相邻的内角等于3α+20°,根据内角与其相邻的外角的和是180度列出方程,求出α的值,再由多边形的外角和为360°,求出此多边形的边数为360°÷α;(2)剪掉一个角以后,多边形的边数可能增加了1条,也可能减少了1条,或者不变.根据多边形的内角和定理可以知道,边数增加1,相应内角和就增加180度,由此即可求出答案.24.【答案】解:(1)∵9×7+1=64=82,∴9×7+1是8的平方;(2)和为(n +2)×n +1,∵(n +2)×n +1=n 2+2n +1=(n +1)2,∴原式为正整数(n +1)的平方;延伸:设较小的正偶数为2k ,∴2k(2k +4)+a =4k 2+8k +a =4(k 2+2k +a 4), 由配方法可知a =4,原式=4(k 2+2k +1)=[2(k +1)]2,综上:a =4.【解析】(1)计算9×7+1,即可求解;(2)设较小的一个正整数为n ,那么这两个正整数积与1的和即为(n +2)×n +1,计算即可求解;延伸解:设较小的正偶数为2k ,计算2k(2k +4)+a =4k 2+8k +a =4(k 2+2k +a 4),求出a =4.本题考查了有理数的混合运算,整式的混合运算,完全平方公式,掌握运算法则是解题的关键. 25.【答案】解:(1)设第一组的速度为xm/min ,则第二组的速度为1.2xm/min , 由题意得,450x −4501.2x =15,解得:x =5,经检验:x =5是原分式方程的解,且符合题意,则1.2x =6.答:第一组的攀登速度5m/min ,第二组的攀登速度6m/min ;(2)设第一组的平均速度为ym/min ,则第二组的平均速度为aym/min ,由题意得,ℎy −ℎay =30,解得:y=aℎ−ℎ30a,经检验:y=aℎ−ℎ30a是原分式方程的解,且符合题意,则ay−y=aℎ−ℎ30−aℎ−ℎ30a=a2ℎ−2aℎ+ℎ30a,答:第二组的平均攀登速度比第一组快a2ℎ−2aℎ+ℎ30am/min.【解析】(1)设第一组的速度为xm/min,则第二组的速度为1.2xm/min,根据两个小组同时开始攀登,第二组比第一组早15min,列方程求解.(2)设第一组的速度为ym/min,则第二组的速度为aym/min,根据两个小组去攀登另一座hm高的山,第二组比第一组晚出发30min,结果两组同时到达顶峰,列方程求解.本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列分式方程求解,注意检验.26.【答案】AF=AD+BD【解析】解:(Ⅰ)∵AC=AE,∴∠ACF=∠AEG,∵AF⊥AD,∴∠DAF=90°=∠CAB,∴∠DAF−∠FAG=∠CAB−∠FAG,∴∠CAF=∠EAG,在△AGE和△AFC中,{∠AEG=∠ACF AE=AC∠EAG=∠CAF,∴△AGE≌△AFC(ASA);(Ⅱ)如图1,过点C作CM⊥AC,交AF延长线于点M,∴∠ACM=90°=∠ABD,由(Ⅰ)知,∠CAF=∠EAB,在△ACM和△ABD中,{∠CAF=∠BAEAC=AB∠ACM=∠ABD=90°,∴△ACM≌△ABD(ASA),∴AM=AD,CM=BD,由(Ⅰ)知,△AGE≌△AFC,∴∠AGE=∠AFC,∴180°−∠AGE=180°−∠AFC,∴∠AGC=∠AFG,∵∠CFM=∠AFG,∴∠AGC=∠CFM,∵∠BAC=90°=∠ACM,∴∠BAC+∠ACM=180°,∴CM//AB,∴∠MCF=∠AGC,∴∠CFM=∠MCF,∴MF=CM,∴AM=AF+CM,∴AD=AF+BD;(Ⅲ)AD=AF−BD;过点C作CM⊥AC,交AF于点M,∴∠ACM=90°=∠ABD,由(Ⅰ)知,∠CAF=∠EAB,在△ACM和△ABD中,{∠CAF=∠BAEAC=AB∠ACM=∠ABD=90°,∴△ACM≌△ABD(ASA),∴AM=AD,CM=BD,由(Ⅰ)知,△AGE≌△AFC,∴∠G=∠F,∵∠BAC=90°=∠ACM,∴CM//AB,∴∠MCF=∠G,∴∠F=∠MCF,∴MF=CM,∴AF=AM+CM=AD+BD,故答案为:AF=AD+BD.(Ⅰ)先判断出∠ACF=∠AEG,再用同角的余角相等判断出∠CAF=∠EAG,即可得出结论;(Ⅱ)先用ASA判断出△ACM≌△ABD,得出AM=AD,CM=BD,由(Ⅰ)知,△AGE≌△AFC,得出∠AGE=∠AFC,再判断出CM//AB,得出∠MCF=∠AGC,进而判断出MF= CM,即可得出结论;(Ⅲ)同(Ⅱ)的方法,即可得出结论.此题是三角形综合题,主要考查了全等三角形的判定和性质,同角的余角相等,等边对等角,构造出全等三角形是解本题的关键.第21页,共21页。

邯郸市2020版八年级上学期数学期末考试试卷(II)卷

邯郸市2020版八年级上学期数学期末考试试卷(II)卷

邯郸市2020版八年级上学期数学期末考试试卷(II)卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)(2017·姑苏模拟) 如图,从坡上建筑物AB观测坡底建筑物CD.从A点处测得C点的俯角为45o ,从B点处测得D点的俯角为30o .已知建筑物AB的高度为10m,AB与CD的水平距离是OD=15m,则CD的高度为()A . (5 ﹣5)mB . (10 ﹣10)mC . (10﹣5 )mD . (10﹣5 )m2. (2分) (2016八上·道真期末) 下列各式:① ,② ,③ ,④ ,其中是分式的有()A . ①②③④B . ①④C . ①②④D . ②④3. (2分) (2016八上·道真期末) 若分式有意义,则x的取值范围是()A . x≠0B .C .D .4. (2分) (2016八上·道真期末) 下列长度的三条线段,不能组成三角形的是()A . 9,15,8B . 4,9,6C . 15,20,8D . 3,8,45. (2分) (2016八上·道真期末) 下列运算中正确的是()A . (x3)2=x5B . 2a﹣5•a3=2a8C .D . 6x3÷(﹣3x2)=2x6. (2分) (2017八上·新会期末) 下列运用平方差公式计算,错误的是()A . (a+b)(a﹣b)=a2﹣b2B . (x+1)(x﹣1)=x2﹣1C . (2x+1)(2x﹣1)=2x2﹣1D . (﹣3x+2)(﹣3x﹣2)=9x2﹣47. (2分) (2016八上·道真期末) 等腰三角形的一条边长为6,另一边长为13,则它的周长为()A . 25B . 25或32C . 32D . 198. (2分) (2017八上·盂县期末) 已知x2+16x+k是完全平方式,则常数k等于()A . 64B . 48C . 32D . 169. (2分) (2016八上·道真期末) 若分式的值为负数,则x的取值范围是()A . x<2B . x>2C . x>5D . x<﹣210. (2分) (2017八上·新会期末) 一个长方形的面积为x2﹣2xy+x,长是x,则这个长方形的宽是()A . x﹣2yB . x+2yC . x﹣2y﹣1D . x﹣2y+111. (2分) (2016八上·道真期末) 把一块直尺与一块三角板如图放置,若∠1=40°,则∠2的度数为()A . 125°B . 120°C . 140°D . 130°12. (2分) (2016八上·道真期末) 如图,点A,D,C,E在同一条直线上,AB∥EF,AB=EF,∠B=∠F,AE=10,AC=7,则CD的长为()A . 5.5B . 4C . 4.5D . 3二、填空题 (共6题;共7分)13. (2分)计算:( + )(﹣)=________;(﹣1)÷ 的结果是________.14. (1分)(2017·深圳模拟) 将分解因式得________.15. (1分)(2019·蒙自模拟) 已知△ABC的周长是1,连接△ABC三边的中点构成第二个三角形,再连接第二个三角形三边的中点构成第三个三角形…依此类推,则第2018个三角形的周长为________.16. (1分)(2020·衢州模拟) 如图,小圆O的半径为1,△A1B1C1 ,△A2B2C2 ,△A3B3C3 ,…,△AnBnCn 依次为同心圆O的内接正三角形和外切正三角形,由弦A1C1和弧A1C1围成的弓形面积记为S1 ,由弦A2C2和弧A2C2围成的弓形面积记为S2 ,…,由弦AnCn和弧AnCn围成的弓形面积记为Sn ,其中由弦A2020C2020和弧A2020C2020围成的弓形面积S2020为________。

河北省邯郸市2021版八年级上学期数学期末考试试卷A卷

河北省邯郸市2021版八年级上学期数学期末考试试卷A卷

河北省邯郸市2021版八年级上学期数学期末考试试卷A卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分)(2017·临高模拟) 下列数没有算术平方根是()A . 5B . 6C . 0D . ﹣32. (2分)下列图形中,既是中心对称图形,又是轴对称图形的是()A . 等边三角形B . 平行四边形C . 等腰三角形D . 菱形3. (2分)为了了解某市八年级学生的肺活量,从中抽样调查了500名学生的肺活量,这项调查中的样本是()A . 某市八年级学生的肺活量B . 从中抽去的500名学生的肺活量C . 从中抽取的500名学生D . 5004. (2分)(2017·义乌模拟) 在平面直角坐标系中,已知直线y=﹣ x+3与x轴、y轴分别交于A、B两点,点C是y轴上一点.将坐标平面沿直线AC折叠,使点B刚好落在x负半轴上,则点C的坐标为()A . (0,)B . (0,)C . (0,)D . (0,)5. (2分)下列各选项的两个图形(实线部分),不属于位似图形的是()A .B .C .D .6. (2分)下列说法中,正确的是()A . 同位角相等B . 对角线相等的四边形是平行四边形C . 四条边相等的四边形是菱形D . 矩形的对角线一定互相垂直7. (2分)如图,Rt△ABC中,∠ACB =90°,∠A=50°,将其折叠,使点A落在边CB上A′处,折痕为CD,则∠A′DB的度数为()A . 40°B . 30°C . 20°D . 10°8. (2分)(2017·祁阳模拟) 如图,在边长为6的菱形ABCD中,∠DAB=60°,以点D为圆心,菱形的高DF 为半径画弧,交AD于点E,交CD于点G,则图中阴影部分的面积是()A . 18 ﹣9πB . 18﹣3πC . 9 ﹣D . 18 ﹣3π二、填空题 (共10题;共12分)9. (1分)(2017·成华模拟) 函数中,自变量x的取值范围是________.10. (1分) (2017八下·鹤壁期中) 直线y=2x﹣1向上平移4个单位得到的直线的解析式为________.11. (1分) (2014九上·临沂竞赛) 小明每天骑自行车上学时都要经过一个十字路口,该十字路口有红、黄、绿三色交通信号灯,他在路口遇到红灯的概率为,遇到黄灯的概率为,那么他遇到绿灯的概率为________.12. (1分)如图,在菱形ABCD中,AD=8,∠ABC=120°,E是BC的中点,P为对角线AC上的一个动点,则PE+PB的最小值为________.13. (3分)平方根节是数学爱好者的节目,这一天的月份和日期的数字正好是当年年份最后两位数字的算术平方根,例如2009年的3月3日,2016年的4月4日.请你写出本世纪内你喜欢的一个平方根(题中所举例子除外).________年________月________日.14. (1分),,的最简公分母是________.15. (1分)(2015·衢州) 如图,已知直线y=﹣ x+3分别交x轴、y轴于点A、B,P是抛物线y=﹣ x2+2x+5的一个动点,其横坐标为a,过点P且平行于y轴的直线交直线y=﹣ x+3于点Q,则当PQ=BQ时,a的值是________.16. (1分)如图,在平面直角坐标系中,点A的坐标(﹣2,0),△ABO是直角三角形,∠AOB=60°.现将Rt△ABO绕原点O按顺时针方向旋转到Rt△A′B′O的位置,则此时边OB扫过的面积为________ .17. (1分) (2016八下·罗平期末) 如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,垂足为E,连接DF,则∠CDF等于________.18. (1分)(2017·东平模拟) 如图,在平面直角坐标系中,直线l经过原点,且与y轴正半轴所夹的锐角为60°,过点A(0,1)作y轴的垂线l于点B,过点B1作直线l的垂线交y轴于点A1 ,以A1B、BA为邻边作▱ABA1C1;过点A1作y轴的垂线交直线l于点B1 ,过点B1作直线l的垂线交y轴于点A2 ,以A2B1、B1A1为邻边作▱A1B1A2C2;…;按此作法继续下去,则C2017的坐标是________.三、解答题 (共8题;共92分)19. (5分) (2017七上·和县期末) 解方程:x﹣ = .20. (10分)(2019·仁寿模拟) (本小题满分11分)在平面直角坐标系XOY中,抛物线y= ﹣ x2+bx+c 经过点A(﹣2,0),B(8,0).(1)求抛物线的解析式;(2)点C是抛物线与y轴的交点,连接BC,设点P是抛物线上在第一象限内的点,PD⊥BC,垂足为点D.①是否存在点P,使线段PD的长度最大?若存在,请求出点P的坐标;若不存在,请说明理由;②当△PDC与△COA相似时,直接写出点P的坐标.21. (12分)(2017·松北模拟) 初三年级教师对试卷讲评课中学生参与的深度与广度进行评价调查,其评价项目为主动质疑、独立思考、专注听讲、讲解题目四项.评价组随机抽取了若干名初中学生的参与情况,绘制成如图所示的频数分布直方图和扇形统计图(均不完整),请根据图中所给信息解答下列问题:(1)在这次评价中,一共抽查了________名学生;(2)在扇形统计图中,项目“主动质疑”所在的扇形的圆心角的度数为________度;(3)请将频数分布直方图补充完整;(4)如果全市有6000名初三学生,那么在试卷评讲课中,“独立思考”的初三学生约有多少人?22. (10分)如图,将矩形ABCD沿对角线AC剪开,再把△ACD沿CA方向平移得到△A1C1D1 ,连接AD1、BC1 .(1)求证:△A1AD1≌△CC1B;(2)若∠ACB=30°,BC=2时,试问的当△ACD沿CA方向平移多远距离时(C1在线段AC上),四边形ABC1D1是菱形?(直接写出答案)23. (15分) (2016九上·江岸期中) 某宾馆有50个房间供游客住宿,当每个房间的房价为每天180元时,房间会全部住满.当每个房间每天的房价每增加10元时,就会有一个房间空闲.宾馆需对游客居住的每个房间每天支出20元的各种费用.根据规定,每个房间每天的房价不得高于340元.设每个房间的房价增加x元(x为10的正整数倍).(1)设一天订住的房间数为y,直接写出y与x的函数关系式及自变量x的取值范围;(2)设宾馆一天的利润为w元,求w与x的函数关系式;(3)一天订住多少个房间时,宾馆的利润最大?最大利润是多少元?24. (10分) (2016八上·绵阳期中) 如图,△ABC中,AB=AC,AD⊥BC,CE⊥AB,AE=CE.求证:(1)△AEF≌△CEB;(2) AF=2CD.25. (10分) (2016七下·郾城期中) 如图,已知火车站的坐标为(2,1),文化宫的坐标为(﹣1,2).(1)请你根据题目条件,画出平面直角坐标系;(2)写出体育场、市场、超市、医院的坐标.26. (20分) (2019九上·阜宁月考) 如图,已知抛物线经过点A(﹣1,0),B(4,0),C(0,2)三点,点D与点C关于x轴对称,点P是线段AB上的一个动点,设点P的坐标为(m , 0),过点P作x轴的垂线l交抛物线于点Q ,交直线BD于点M .(1)求该抛物线所表示的二次函数的表达式;(2)求证:∠ACB=90°;(3)在点P运动过程中,是否存在点Q,使得△BQM是直角三角形?若存在,求出点Q的坐标;若不存在,请说明理由;(4)连接AC,将△AOC绕平面内某点H顺时针旋转90°,得到△A1O1C1,点A、O、C的对应点分别是点A1、O1、C1、若△A1O1C1的两个顶点恰好落在抛物线上,那么我们就称这样的点为“和谐点”,请直接写出“和谐点”的个数和点A1的横坐标.参考答案一、单选题 (共8题;共16分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、填空题 (共10题;共12分)9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共8题;共92分) 19-1、20-1、21-1、21-2、21-3、21-4、22-1、22-2、23-1、23-2、23-3、24-1、24-2、25-1、25-2、26-1、26-2、26-3、26-4、。

邯郸市2021版八年级上学期数学期末考试试卷A卷

邯郸市2021版八年级上学期数学期末考试试卷A卷

邯郸市2021版八年级上学期数学期末考试试卷A卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)(2016·台湾) 如图,已知扇形AOB的半径为10公分,圆心角为54°,则此扇形面积为多少平方公分?()A . 100πB . 20πC . 15πD . 5π2. (2分)(2020·德州模拟) 如图,一块边长为8 cm的正三角形木板ABC,在水平桌面上绕点B按顺时针方向旋转至A′BC′的位置时,顶点C从开始到结束所经过的路径长为(点A、B、C′在同一直线上)()cmA . 16πB . πC . πD . π3. (2分)(2017·应城模拟) 如图,在菱形ABCD中,∠BAD=120°,将菱形沿EF折叠,点B正好落在AD 边的点G处,且EG⊥AC,若CD=8,则FG的长为()A . 4B . 4C . 4D . 64. (2分)(2018·河南模拟) 如图,已知,点A(0,0)、B(4 ,0)、C(0,4),在△ABC内依次作等边三角形,使一边在x轴上,另一个顶点在BC边上,作出的等边三角形分别是第1个△AA1B1 ,第2个△B1A2B2 ,第3个△B2A3B3 ,…则第2017个等边三角形的边长等于()A .B .C .D .5. (2分)一个长为2、宽为1的长方形以下面的四种“姿态”从直线l的左侧水平平移至右侧(下图中的虚线都是水平线).其中,所需平移的距离最短的是()A .B .C .D .6. (2分)如图,在正方形中,顶点在坐标轴上,且,以为边构造菱形 .将菱形与正方形组成的图形绕点逆时针旋转,每次旋转,则第2020次旋转结束时,点的坐标为()A .B .C .D .7. (2分)下列叙述中,正确的有()①如果,那么;②满足条件的n不存在;③任意一个三角形的三条高所在的直线相交于一点,且这点一定在三角形的内部;④ΔABC在平移过程中,对应线段一定相等.A . 4个B . 3个C . 2个D . 1个8. (2分) (2019七下·重庆期中) 下列命题:垂直于同一直线的两条直线互相平行; 的平方根是; 若一个角的两边与另一个角的两边互相垂直,且其中一个角是45°,则另一个角为45°或135°;④若是的整数部分,是不等式的最大整数解,则关于,方程的自然数解共有3对;⑤在平面直角坐标系中,点A、B的坐标分别为(2,0),(0,1),将线段AB平移至,的位置,则 .其中真命题的个数是()A . 2B . 3C . 4D . 59. (2分)(2019·滨州) 满足下列条件时,不是直角三角形的为().A .B .C .D .10. (2分)如图,已知直线l:y=x,过点A(0,1)作y轴的垂线交直线l于点B,过点B作直线l的垂线交y轴于点A1;过点A1作y轴的垂线交直线l于点B1 ,过点B1作直线l的垂线交y轴于点A2;…;按此作法继续下去,则点A4的坐标为()A . (0,64)B . (0,128)C . (0,256)D . (0,512)二、填空题 (共8题;共8分)11. (1分) (2019八下·丰润期中) 二次根式中最简二次根式是________.12. (1分)已知直角三角形的两直角边长分别为和,则斜边的长为________.13. (1分)已知直角三角形两条直角边分别为1和2,那么斜边上的高为________.14. (1分) (2020七下·思明月考) 如图,点表示的实数是________.15. (1分) (2018八上·黑龙江期末) 如图,点E是等边△ABC内一点,且EA=EB,△ABC外一点D满足BD =AC,且BE平分∠DBC,则∠D=________.16. (1分) (2016八上·港南期中) 如图,在△ABC中,AB=AC,点E在CA延长线上,EP⊥BC于点P,交AB 于点F,若AF=2,BF=3,则CE的长度为________.17. (1分) (2018八上·黑龙江期末) 已知am=3,an=4,则a3m+2n=________.18. (1分) (2018八上·黑龙江期末) 如图,在Rt△ABC中,∠BAC=90°,AD⊥BC于D,BE平分∠ABC交AC于E,交AD于F,FG∥BC,FH∥AC,下列结论:①AE=AF;②AF=FH;③AG=CE;④AB+FG=BC,其中正确的结论有________.(填序号)三、解答题 (共8题;共55分)19. (5分) (2017七下·大同期末) 若,求的平方根.20. (5分) (2018八上·黑龙江期末) 在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A,C的坐标分别为(﹣4,5),(﹣1,3).①请在如图所示的网格平面内作出平面直角坐标系;②请作出△ABC关于y轴对称的△A′B′C′;③写出点B′的坐标.21. (5分) (2018八上·黑龙江期末) 如图,B处在A处的南偏西42°的方向,C处在A处的南偏东16°的方向,C处在B处的北偏东72°的方向,求从C处观测A、B两处的视角∠ACB的度数.22. (5分) (2018八上·黑龙江期末) 先化简,再求值:-,其中x= .23. (10分) (2018八上·黑龙江期末) 如图,已知,在△ABC中,∠B<∠C,AD平分∠BAC,E是线段AD(除去端点A、D)上一动点,EF⊥BC于点F.(1)若∠B=40°,∠DEF=10°,求∠C的度数.(2)当E在AD上移动时,∠B、∠C、∠DEF之间存在怎样的等量关系?请写出这个等量关系,并说明理由.24. (10分) (2018八上·黑龙江期末) 在等边△ABC中,AO是高,D为AO上一点,以CD为一边,在CD下方作等边△CDE,连接BE.(1)求证:AD=BE;(2)过点C作CH⊥BE,交BE的延长线于H,若BC=8,求CH的长.25. (5分) (2018八上·黑龙江期末) 某市公交快速通道开通后,为响应市政府“绿色出行”的号召,家住新城的小王上班由自驾车改为乘坐公交车.已知小王家距上班地点18千米,他用乘公交车的方式平均每小时行驶的路程比他用自驾车的方式平均每小时行驶的路程的2倍还多9千米,他从家出发到达上班地点,乘公交车方式所用时间是自驾车方式所用时间的.小王用自驾车方式上班平均每小时行驶多少千米?26. (10分) (2018八上·黑龙江期末) 在等边△ABC中;(1)如图1,P,Q是BC边上两点,AP=AQ,∠BAP=20°,求∠AQB的度数;(2)点P,Q是BC边上的两个动点(不与点B,C重合),点P在点Q的左侧,且AP=AQ,点Q关于直线AC 的对称点为M,连接AM,PM.①依题意将图2补全;②小明通过观察、实验,提出猜想:在点P,Q运动的过程中,始终有PA=PM,小明把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的几种想法:想法1:要证PA=PM,只需证△APM是等边三角形.想法2:在BA上取一点N,使得BN=BP,要证PA=PM,只需证△ANP≌△PCM.……请你参考上面的想法,帮助小明证明PA=PM(一种方法即可).参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共8题;共8分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共8题;共55分)19-1、20-1、21-1、22-1、23-1、23-2、24-1、24-2、25-1、26-1、26-2、。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档