利用初中数学知识证明蝴蝶定理

合集下载

解析几何证明蝴蝶定理

解析几何证明蝴蝶定理

解析几何证明蝴蝶定理1. 建立坐标系。

- 设圆的方程为x^2+y^2=r^2,M点坐标为(m,0)(m≠± r)。

- 设直线AB的方程为y = k_1(x - m),直线CD的方程为y=k_2(x - m)。

2. 求交点坐标。

- 将y = k_1(x - m)代入圆的方程x^2+y^2=r^2,得到x^2+k_1^2(x - m)^2=r^2。

- 展开得x^2+k_1^2(x^2-2mx + m^2)=r^2,即(1 + k_1^2)x^2-2mk_1^2x+m^2k_1^2-r^2=0。

- 设A(x_1,y_1),B(x_2,y_2),根据韦达定理x_1+x_2=frac{2mk_1^2}{1 + k_1^2},x_1x_2=frac{m^2k_1^2-r^2}{1 + k_1^2}。

- 同理,将y = k_2(x - m)代入圆的方程x^2+y^2=r^2,对于C(x_3,y_3),D(x_4,y_4),可得(1 + k_2^2)x^2-2mk_2^2x+m^2k_2^2-r^2=0,x_3+x_4=frac{2mk_2^2}{1 + k_2^2},x_3x_4=frac{m^2k_2^2-r^2}{1 + k_2^2}。

3. 计算交点与M点所构成线段的比例关系。

- 由A、B、M共线,根据定比分点公式frac{y_1}{x_1-m}=frac{y_2}{x_2-m}=k_1。

- 设P为AD与BC的交点,P点坐标为(x_0,y_0)。

- 对于直线AD:y - y_1=frac{y_4-y_1}{x_4-x_1}(x - x_1);对于直线BC:y - y_2=frac{y_3-y_2}{x_3-x_2}(x - x_2)。

- 联立求解得x_0=frac{(x_1y_3-x_3y_1)(x_2-x_4)+(x_2y_4-x_4y_2)(x_1-x_3)}{(y_3-y_1)(x_2-x_4)+(y_4-y_2)(x_1-x_3)}。

椭圆中的蝴蝶定理是什么?

椭圆中的蝴蝶定理是什么?

椭圆中的蝴蝶定理是什么?
蝴蝶定理起源于圆,并可推广至圆锥曲线(椭圆、双曲线和抛物线),椭圆中的蝴蝶定理是高考中最常见的情况,对综合分析能力要求甚高。

一·何谓蝴蝶定理:
1815年,英国伦敦出版社,著名的数学科普刊物《男士日记》上刊登了如下的命题:
以上问题的图形,像一只翩翩起舞的蝴蝶,这正是该命题被称之为“蝴蝶定理”的原因。

由于蝴蝶定理意境优美,结论简洁,内涵丰富,两百多年来引无数数学家为之流连忘返,浮想联翩。

时至今日,人们不仅发现了蝴蝶定理的六十多种证明方法,而且还给出了定理的各种变形与推广。

二·蝴蝶定理的证明:
蝴蝶定理的证明方法非常之多,但利用曲线系方程来证明蝴蝶定理干净简洁,内涵丰富。

另外,如果将圆的方程换成圆锥曲线(椭圆、双曲线或抛物线)的方程,则得到对应这些曲线中的蝴蝶定理。

三·蝴蝶定理的推广:
对蝴蝶定理的探索与研究至今仍然没有结束,由人称它为欧氏平面几何里的一颗璀璨明珠。

四·典型高考题示例:
蝴蝶定理在高考数学中曾多次出现,下面仅举一例进行说明:
蝴蝶定理,butterfly thearem,古典欧氏几何最精彩的结果之一。

1815年首次被一个自学成才的中学教师W·霍纳以初等方式证明。

足可见,高等的东西用初等方法解决未必完全不可能。

以上,祝你好运。

第23集蝴蝶定理

第23集蝴蝶定理

第23集蝴蝶定理
一·蝴蝶定理
1815年英国伦敦出版社的著名数学科普刊物《男士日记》上刊登了如下问题:
以上问题的图形,像一只翩翩起舞的蝴蝶,这正是该命题被冠以“蝴蝶定理”美名的原因。

由于蝴蝶定理意境优美,结论简洁,蕴理深刻,200多年来引无数数学家为止驻足,为之浮想联翩。

时至今日,人们不仅发现了蝴蝶定理的60多种证明方法,而且还给出了定理的各种变形与推广。

【证明】
利用曲线系方程来证明蝴蝶定理干净利索,内涵丰富。

若将圆的方程换成椭圆、双曲线或抛物线,则得到对应于这些曲线中的蝴蝶定理。

二·蝴蝶定理的推广
对蝴蝶定理的研究至今仍然没有结束,有人称之为欧氏平面内一颗璀璨的明珠。

蝴蝶定理曾经在北京高考和山东高考数学中出现过,可见其魅力不衰。

三·典例精析
【解析】
蝴蝶定理,butterfly theorem,古典欧式几何最精彩的结果之一。

1815年首次被一个自学成才的中学数学教师W·霍纳以初等方式证明。

足可见,任何高等数学,都离不开初等数学的基础。

任何学霸之路,都离不开定理公式的熟练叠加。

蝴蝶定理的证明

蝴蝶定理的证明

蝴蝶定理的证明介绍蝴蝶定理是混沌理论的重要概念之一,它指出在一个动态系统中,微小的初始条件的变化可能会产生巨大的后果。

本文将对蝴蝶定理的证明进行全面、详细、完整且深入地探讨。

动态系统的定义动态系统是指随时间推移而变化的系统。

它可以通过一组方程来描述,其中包含状态变量和它们随时间的变化规律。

动态系统可以是离散的,也可以是连续的。

混沌理论的基本概念混沌理论是研究动态系统中非线性行为的一门学科。

它的基本概念包括吸引子、边界、初始条件敏感性等。

蝴蝶定理就是混沌理论中的一个关键概念。

蝴蝶定理的表述蝴蝶定理最初由美国气象学家洛伦兹提出,他在研究天气模型时发现了这个惊人的现象。

蝴蝶定理的表述是:“在一个动态系统中,微小的初始条件的变化会以指数级的方式扩大,导致系统的后续行为发生巨大的变化。

”蝴蝶定理的证明蝴蝶定理的证明非常复杂,需要借助数学和物理的知识。

下面将简要介绍一种常见的证明方法。

步骤一:建立模型首先,我们需要建立一个动态系统的数学模型。

这个模型通常是一个由一组非线性方程组成的系统。

步骤二:选择初始条件在模型建立好之后,我们需要选择一个初始条件作为起点。

这个初始条件可以是系统的状态变量的初始取值。

步骤三:计算系统的演化通过求解模型的方程,我们可以得到系统随时间的演化。

在这个过程中,我们可以观察系统的行为并记录下相关的数据。

步骤四:改变初始条件为了证明蝴蝶定理,我们需要改变初始条件,即微小地修改系统的初始状态。

步骤五:比较系统的演化将改变后的初始条件代入模型,重复步骤三和步骤四,得到系统演化的数据。

然后,我们可以比较两组数据之间的差异。

步骤六:观察差异的扩大通过观察比较结果,我们可以发现微小的初始条件变化会导致系统行为的巨大变化。

差异会随着时间的推移而扩大,符合蝴蝶定理的基本表述。

步骤七:重复实验和观察为了验证蝴蝶定理的普适性,我们可以多次进行以上实验并观察结果。

通过统计分析,我们可以得出一般性的结论。

结论蝴蝶定理的证明表明在动态系统中,微小的初始条件的变化可能会导致系统行为的巨大变化。

蝴蝶定理

蝴蝶定理

蝴蝶定理蝴蝶定理最先是作为一个征求证明的问题,刊载于1815年的一份通俗杂志《男士日记》上。

由于其几何图形形象奇特、貌似蝴蝶,便以此命名,定理内容:圆O中的弦PQ的中点M,任作两弦AB,CD,弦AD与BC分别交PQ于X,Y,则M为XY之中点。

出现过许多优美奇特的解法,其中最早的,应首推霍纳在职815年所给出的证法。

至于初等数学的证法,在国外资料中,一般都认为是由一位中学教师斯特温首先提出的,它给予出的是面积证法,其中应用了面积公式:S=1/2 BCSINA。

1985年,在河南省《数学教师》创刊号上,杜锡录同志以《平面几何中的名题及其妙解》为题,载文向国内介绍蝴蝶定理,从此蝴蝶定理在神州大地到处传开。

这里介绍一种较为简便的初等数学证法。

证明:过圆心O作AD与BC垂线,垂足为S、T,连接OX,OY,OM。

SM。

MT。

∵△AMD∽△CMB,且SD=1/2AD, BT=1/2BC,∴DS/BT=DM/BM又∵∠D=∠B∴△MSD∽△MTB,∠MSD=∠MTB∴∠MSX=∠MTY;又∵O,S,X,M与O,T。

Y。

M均是四点共圆,∴∠XOM=∠YOM∵OM⊥PQ∴XM=YM二,如图1,椭圆的长轴A1A2与x轴平行,短轴B1B2在y轴上,中心为M(o,r)(b >r>0)。

(Ⅰ)写出椭圆的方程,求椭圆的焦点坐标及离心率;x交椭圆于两点C(x1,y1),D(x2,y2)(y2>0);直线y=k2x交椭圆于两点G(x3,y3),H(x4,y4)(y4>0)。

(Ⅱ)直线y=k求证:k1x1x2/(x1+x2)=k2x3x4/(x3+x4)(Ⅲ)对于(Ⅱ)中的C,D,G,H,设CH交X轴于点P,GD交X轴于点Q。

求证:| OP | = | OQ |。

(证明过程不考虑CH或GD垂直于X轴的情形)2.解答:北京教育考试院招生考试办公室专家在公布的《2003年全国普通高等学校招生统一考试试题答案汇编》中给出的参考解答如下:(18)本小题主要考查直线与椭圆的基本知识,考查分析问题和解决问题的能力。

几何中的蝴蝶定理

几何中的蝴蝶定理

几何中的蝴蝶定理1. 哎呀,今天咱们来聊一个特别有意思的几何定理,叫蝴蝶定理!说实话,光听这名字就觉得美滋滋的,像是在数学花园里看见了一只翩翩起舞的蝴蝶。

2. 这个定理说的是啥呢?想象一下,在一个圆里面,画了两条相交的弦,就像蝴蝶的两个翅膀一样交叉在一起。

这时候就神奇了!3. 这两条弦交叉的那个点,把每条弦都分成了两段。

要是把这四段线段相乘,你猜怎么着?两组乘积居然完全相等!这就跟变魔术一样神奇。

4. 打个比方啊,假如咱们画了两条弦,一条被分成3厘米和5厘米两段,另一条被分成4厘米和3.75厘米两段。

你用计算器算算:3×5=15,4×3.75=15,这不就神了吗?5. 有的同学可能要问了:这定理咋这么像蝴蝶呢?你仔细看啊,两条相交的弦就像蝴蝶的翅膀,交点就像蝴蝶的身体,这不是活脱脱一只几何蝴蝶嘛!6. 这个定理还有个特别实用的地方。

要是你在做几何题时遇到圆里面有两条相交的弦,立马就能用上这个定理,分分钟解出来!7. 说到证明过程,其实也不难。

就像是把蝴蝶的翅膀折来折去,用相似三角形就能证明。

不过今天咱们主要是理解这个定理的妙处,就不钻牛角尖啦!8. 这个定理还告诉我们一个道理:看似不相关的东西,其实暗藏玄机。

就像蝴蝶翅膀上看似随意的花纹,背后却藏着严谨的数学规律。

9. 在实际应用中,蝴蝶定理经常和其他定理一起使用。

比如说和圆幂定理搭配,简直就是几何题的双保险!解题的时候,就像蝴蝶飞舞一样轻松自如。

10. 有意思的是,这个定理还能推广到更复杂的情况。

要是在圆里面画更多的弦,它们相交的点也会形成一些有趣的规律,就像一群蝴蝶在跳舞。

11. 学习数学最重要的就是找到乐趣。

蝴蝶定理就是个很好的例子,它把枯燥的几何变成了生动的图画,让人感受到数学之美。

12. 所以啊,下次你看到蝴蝶,别光顾着欣赏它的美丽,也想想它身上藏着的数学奥秘。

这不就是数学最迷人的地方吗?它把大自然的美和严谨的逻辑完美地结合在了一起!。

利用初中数学知识证明蝴蝶定理

利用初中数学知识证明蝴蝶定理

利用初中数学知识证明蝴蝶定理
蝴蝶定理最先是作为一个征求证明的问题,刊载于1815年的一份通俗杂志《男士日记》上。

由于其几何图形形象奇特、貌似蝴蝶,便以此命名,定理内容:圆O中的弦PQ的中点M,过点M任作两弦AB,CD,弦AD与BC分别交PQ于X,Y,则M为XY之中点。

蝴蝶定理(Butterfly theorem)出现过许多优美奇特的解法,其中最早的,应首推霍纳在职1815年所给出的证法。

至于初等数学的证法,在国外资料中,一般都认为是由一位中学教师斯特温首先提出的,它给予出的是面积证法,其中应用了面积公式:S=1/2BC·sinA。

1985年,在河南省《数学教师》创刊号上,杜锡录同志以《平面几何中的名题及其妙解》为题,载文向国内介绍蝴蝶定理,从此蝴蝶定理在神州大地到处传开。

这里介绍一种利用初中数学知识证明蝴蝶定理的方法。

过O作OE,OF垂直AD,BC于点E,F,连接ME,MF,OX,OY,OM。

∵∠OEX=∠OMX=90°
∴O,E,X,M四点共圆
∴∠XOM=∠XEM
同理可证∠YOM=∠YFM
∵∠A=∠C,∠D=∠B
∴△ADM∽△CBM
∵ME,MF是对应边上的中线
∴△MED∽△MFB
∴∠XEM=∠YMF
∴∠XOM=∠YOM
又∵∠OMX=∠OMY=90°,OM是公共边∴△OMX≌△OMY
∴M为XY之中点。

交比蝴蝶定理

交比蝴蝶定理

交比蝴蝶定理1. 什么是交比蝴蝶定理?交比蝴蝶定理是解析几何中的一个重要定理,它以一种简洁而优雅的方式描述了平面上四个点所构成的特殊几何关系。

该定理被广泛应用于数学和物理学领域,并在计算机图形学和计算机视觉等应用中发挥着重要作用。

2. 定理表述设平面上有四个点A、B、C、D,且它们不共线。

连接AD与BC,连接AC与BD,分别交于点E和F。

则有以下关系成立:(AE/EB) × (BF/FC) × (CD/DA) × (AF/FE) = 1其中,AE表示线段AE的长度,EB表示线段EB的长度。

3. 定理证明为了证明交比蝴蝶定理,我们使用向量法进行推导。

首先,假设A、B、C、D是平面上四个不共线的点。

设向量AB为a,向量BC为b,则向量CA为-b(由于C在AB的反方向上)。

同样地,设向量AD为c,向量DC为d,则向量CD为-c(同样由于D在CA的反方向上)。

根据向量加法原理可得:a =b - (-b)c =d - (-c)将上述两个等式相除,得到以下关系式:a/c = (b - (-b)) / (d - (-c))进一步化简,得到:a/c = (2b) / (2d)由于向量的数量乘法满足结合律和交换律,我们可以将上述等式中的分子和分母进行重新排列,得到:(a/c) × (d/b) = 1根据向量的定义,我们知道向量与线段的长度之间存在着一一对应的关系。

因此,上述等式可以转化为线段长度的形式,即:(AE/EB) × (CD/DA) = 1接下来,我们来证明另外一个关系:(BF/FC) × (AF/FE) = 1由于E是线段AD与BC的交点,根据梅涅劳斯定理可知:(AE/EB) × (BF/FC) × (CD/DA) × (AF/FE) = 1因此,交比蝴蝶定理得证。

4. 定理应用交比蝴蝶定理在数学和物理学中有广泛应用。

任意四边形蝴蝶定理公式

任意四边形蝴蝶定理公式

任意四边形蝴蝶定理公式
任意四边形是指一个没有特定性质的四边形,因此蝴蝶定理并
不适用于任意四边形。

蝴蝶定理是一个几何学中的定理,它描述了
一个特定情况下平行四边形的性质。

蝴蝶定理指出,如果一个四边
形的对角线互相平分,并且相交于一个点,那么这个四边形是一个
平行四边形。

蝴蝶定理的公式可以用来表达这个定理的条件和结论。

设四边
形ABCD的对角线AC和BD相交于点O,且满足AO=OC和BO=OD,那
么根据蝴蝶定理,四边形ABCD是一个平行四边形。

这个定理可以用
符号表示为:
如果 AO=OC 且 BO=OD, 那么AB ∥ CD 且AD ∥ BC。

这个公式清楚地表达了蝴蝶定理的条件和结论。

在实际问题中,蝴蝶定理可以帮助我们判断四边形的性质,从而简化几何证明的过程。

当我们遇到对角线互相平分并相交于一个点的四边形时,可以
利用蝴蝶定理来判断它是否是平行四边形。

总之,蝴蝶定理是一个有用的几何定理,它的公式清晰地描述了定理的条件和结论,帮助我们理解和应用几何学中的相关概念。

初中数学蝴蝶定理

初中数学蝴蝶定理

初中数学蝴蝶定理蝴蝶定理是初中数学中的一个重要定理,用来解决一些关于平行四边形和三角形的问题。

在初中数学学习过程中,蝴蝶定理是一个比较难理解但又非常有用的定理,下面我们就来详细介绍一下蝴蝶定理的相关内容。

蝴蝶定理的概念最初源自中国古代的一篇数学文章,这篇文章中提出了一个有趣的数学问题:如果一只蝴蝶从一条河的一边飞到另一边,它在中间会经过几只蝴蝶?通过这个问题,人们开始思考蝴蝶定理的核心概念:平行四边形的性质。

在数学中,平行四边形的性质是蝴蝶定理的重要基础。

平行四边形有一个非常有趣的性质,即对角线互相平分的性质。

这个性质不仅在几何学中有着重要的应用,而且在其他学科中也经常被用到。

通过对平行四边形的性质进行深入的研究,我们可以更好地理解蝴蝶定理的实质。

蝴蝶定理的核心思想是:如果平行四边形的两个对角线相交于一点,那么这两对角线的中点连线恰好平分这个交点。

这个性质看似简单,但是它却包含了许多重要的几何关系,能够帮助我们解决很多与平行四边形和三角形相关的问题。

通过蝴蝶定理,我们可以推导出许多有趣且实用的几何结论。

其中最典型的应用就是在证明三角形相似的过程中。

利用蝴蝶定理,我们可以更轻松地证明两个三角形的对应边成比例,从而得出它们相似的结论。

这种方法不仅简单易懂,而且能够为我们后续学习提供良好的基础。

总的来说,初中数学中的蝴蝶定理是一个非常重要的定理,它不仅能够帮助我们更好地理解平行四边形的性质,还能够在实际问题中发挥重要的作用。

通过深入学习和理解蝴蝶定理,我们可以提高自己的数学思维能力,为未来的学习和工作打下坚实的基础。

希望同学们能够认真对待蝴蝶定理这一知识点,努力掌握其中的原理和方法,做到理论联系实际,灵活运用知识,不断提升自己的数学水平。

蝴蝶定理

蝴蝶定理

蝴蝶定理:这个命题最早出现在1815年,而“蝴蝶定理”这个名称最早出现在《美国数学刊》1944年2月号,由于其几何图形形象奇特,貌似蝴蝶,便以此命名。

蝴蝶定理Butterfly Theorem 蝴蝶原理XM=MY W.G.霍纳1815年定义蝴蝶定理(Butterfly Theorem):设M为圆内弦PQ的中点,过M作弦AB和CD。

设AD和BC各相交PQ于点X和Y,则M是XY的中点。

去掉中点的条件,结论变为一个一般关于有向线段的比例式,称为“坎迪定理”,不为中点时满足:1/MY-1/MX=1/MQ-1/MP ,这对2,3均成立。

[1-2]蝴蝶定理的证明验证编辑方法一证:过O作OL⊥ED,OT⊥CF,垂足为L、T,连接ON,OM,OS,SL,ST,容易证明△ESD∽△CSF,蝴蝶定理的证明图∴ES/CS=ED/FC,根据垂径定理得:LD=ED/2,FT=FC/2,∴ES/CS=EL/CT,又∵∠E=∠C,∴△ESL∽△CST,∴∠SLN=∠STM,∵S是AB的中点所以OS⊥AB,∴∠OSN=∠OLN=90°,取OM中点X,在Rt△MTO和△OSM中,TX=OX=MX=SX,∴O,S,N,L四点共圆,(一中同长)。

同理,O,T,M,S四点共圆,∴∠STM=∠SOM,∠SLN=∠SON,∴∠SON=∠SOM,∵OS⊥AB,∴MS=NS。

证毕。

方法二从X向AM和DM作垂线,设垂足分别为X'和X''。

类似地,从Y向BM和CM作垂线,设垂足分别为Y'和Y''。

蝴蝶定理的证明(证明过程见图片)证明方法二3推广编辑该定理实际上是射影几何中一个定理的特殊情况,有多种推广:M,作为圆内弦是不必要的,可以移到圆外。

1.在椭圆中椭圆中的蝴蝶定理如图一,椭圆的长轴A1、A2与x轴平行,短轴B1B2在y轴上,中心为M(o,r)(b>r>0)。

(I)写出椭圆的方程,求椭圆的焦点坐标及离心率(II)直线y=k1x交椭圆于两点C(x1,y1),D(x2,y2)(y2>0);直线y=k2x交椭圆于两点G(x3,y3),H(x4,y4)(y4>0)。

蝴蝶定理资料

蝴蝶定理资料

Q
P
C,F,D,E 的二次曲线系为
A
M
Bx
b2x2+a2(y+h)2 – a2b2+λ(y – k1x )( y – k2x )=0,
F
令 y=0,得(b2–λk1k2)x2+a2h2–b2a2=0.由韦达定理 xp+xq=0,即 E MP= MQ.命题得证.
类似地可以证明把圆改为抛物线、双曲线结论也成立.

因为点 M(0,m)为线段 PN 的中点,所以 xN xP =0, 0 yP =m,
A1
M
P
O
求证:
=

C B1
(Ⅲ)对于(Ⅱ)中的 C,D,G,H,设 CH 交 x 轴于点 P,GD 交 x 轴于点 Q.
Q G
D A2
x
求证:| OP |=| OQ |. (证明过程不考虑 CH 或 GD 垂直于 x 轴的情形)
答案 (I)e= a2 b2 ;(II)见解析 (Ⅲ)见解析.
M
x
Q
F
设 A(0,t),B(0,–t),知 t,–t 是 Cy2+Ey+F=0 的两个根,所以 E=0. 若 CD,EF 有一条斜率不存在,则 P,Q 与 A,B 重合,结论成立.
DB
图1
若 CD,EF 斜率都存在,设 C(x1,k1x1),D(x2,k1x2),E(x3,k2x3),F(x4,k2x4),P(0,p),
=
(点 M 也可以是 AB 延长线上的点).
定理 1:在圆锥曲线中,过弦 AB 中点 M 任作两条弦 CD 和 EF,
y
C
直线 CE 与 DF 交直线 AB 于 P,Q,则有|MP|=|MQ|.

几何里的蝴蝶定理

几何里的蝴蝶定理

几何里的蝴蝶定理一、蝴蝶定理的内容1. 定理表述- 设M为圆内弦PQ的中点,过M作弦AB和CD。

设AD和BC各相交PQ 于点X和Y,则M是XY的中点。

2. 图形示例- 画出一个圆,圆内有弦PQ,M为PQ中点。

然后画出弦AB和CD,连接AD与PQ交于X点,连接BC与PQ交于Y点。

从图上直观地看,似乎XM = MY。

二、蝴蝶定理的证明方法(以初中几何知识为例)1. 利用相似三角形证明(一种常见方法)- 连接AC、BD。

- 因为∠AXM = ∠DYM(对顶角相等),∠AMX=∠DMY(对顶角相等),且由圆内接四边形的性质可知∠CAB = ∠CDB(同弧所对的圆周角相等),∠ACD = ∠ABD(同弧所对的圆周角相等)。

- 所以△AXM∽△DYM,△AMC∽△DMB。

- 根据相似三角形的性质,在△AXM和△DYM中,有(XM)/(YM)=(AM)/(DM);在△AMC和△DMB中,有(AM)/(DM)=(CM)/(BM)。

- 又因为在圆中,由相交弦定理可得AM× BM = CM× DM,即(AM)/(DM)=(CM)/(BM)。

- 所以(XM)/(YM) = 1,即XM = YM,从而证明了蝴蝶定理。

2. 面积法证明(另一种思路)- 设∠ AXM=α,∠ DYM = β。

- 根据三角形面积公式S=(1)/(2)absin C。

- 对于 AXM和 DYM,frac{S_{ AXM}}{S_{ DYM}}=(frac{1)/(2)AX· XM·sin α}{(1)/(2)DY· YM·sinβ}。

- 因为α=β(对顶角相等),所以frac{S_{ AXM}}{S_{ DYM}}=(AX· XM)/(DY· YM)。

- 同理,通过连接其他线段,利用圆内的角关系和面积关系,经过一系列的等量代换,可以得出XM = YM的结论。

三、蝴蝶定理的拓展与应用1. 在椭圆中的推广- 在椭圆中也有类似蝴蝶定理的结论。

相交弦蝴蝶定理-概述说明以及解释

相交弦蝴蝶定理-概述说明以及解释

相交弦蝴蝶定理-概述说明以及解释1.引言1.1 概述:相交弦蝴蝶定理是几何学中一个重要的定理,它研究了当两条弦相交于一个点时,所形成的蝴蝶形状的特点以及相交弦的性质。

这个定理承载了许多有趣的几何性质和推论,对于我们理解和应用几何学知识具有重要的意义。

在几何学中,弦是由圆上的两个点所确定的线段,而蝴蝶是一种特殊的图形形状,其具有翅膀状的两个对称部分和中间的交叉点。

相交弦蝴蝶定理主要研究了当两条弦相交于圆的内部或外部时,所形成的蝴蝶形状的特点。

这个定理的研究不仅仅是为了解决几何学中的问题,更是为了培养我们的逻辑思维能力和推理能力。

通过研究相交弦蝴蝶定理,我们可以锻炼我们的几何推理能力,培养我们的观察力和分析能力。

同时,相交弦蝴蝶定理也为我们开拓了几何学的新领域,丰富了几何学的研究内容。

在本文中,我们将首先介绍弦的定义和性质,进一步探讨蝴蝶形状的特点,然后详细介绍相交弦蝴蝶定理及其推论。

最后,我们将得出一些结论,总结相交弦蝴蝶定理的重要性和应用价值。

通过阅读本文,我们可以更加深入地了解相交弦蝴蝶定理在几何学中的重要性,并能够应用这个定理解决一些有趣的几何问题。

同时,相信通过学习相交弦蝴蝶定理,我们能够培养我们的几何思维能力,提高我们的问题分析和解决能力。

让我们一起深入探索相交弦蝴蝶定理的奥秘吧!1.2文章结构文章结构部分的内容可以是关于整篇文章的组织形式和章节划分的介绍。

在写作过程中,作者需要明确文章的主题和目的,并根据主题的复杂程度和内容的逻辑关系来划分各个章节。

文章结构部分的内容可以如下所示:2. 正文2.1 弦的定义和性质2.2 蝴蝶形状的特点2.3 相交弦蝴蝶定理的介绍在这个部分,我们将对文章的正文部分进行简要介绍。

正文主要分为三个小节:弦的定义和性质、蝴蝶形状的特点以及相交弦蝴蝶定理的介绍。

这些小节将按照逻辑次序进行展开,以帮助读者更好地理解相交弦蝴蝶定理的原理和应用。

第一节将介绍弦的定义和性质,包括什么是弦以及它们具有的一些基本性质。

几何中的蝴蝶定理

几何中的蝴蝶定理
几何之蝴蝶定理
一、基本知识点
模型一:同一三角形中,相应面积与底的正比关系:
即:两个三角形高相等,面积之比等于对应底边之比。
S1︰S2=a︰b ;
模型一的拓展: 等分点结论(“鸟头定理”)
如图,三角形AED占三角形ABC面积的 × =
模型二:任意四边形中的比例关系(我们把它称作蝴蝶定理)
①S1︰S2=S4︰S3或者S1×S3=S2×S4
例8、如图:在梯形ABCD中,三角形AOD的面积为9平方厘米,三角形BOC的面积为25平方厘米,求梯形ABCD的面积。
例9、(2003北京市第十九届小学生“迎春杯”数学竞赛)
四边形 的对角线 与 交于点 (如图)所示。
如果三角形 的面积等于三角形 的面积的 ,且
, ,那么 的长度是 的长度的_________倍。
例10、左下图所示的 ABCD的边BC长10cm,直角三角形BCE的直角边EC长8cm,已知两块阴影部分的面积和比△EFG的面积大10cm2,求CE、F、G分别为边AB、BC、CD的中点,H为AD边上的任一点。求图中阴影部分的面积是多少?
例12、如图,甲、乙两图形都是正方形,它们的边长分别是10厘米和12厘米,求阴影部分的面积。
例13、如图,大正方形ABCD的边长为6,依以下条件求三角形BDF的面积。
例14、(右图是一块长方形耕地,它由四个小长方形拼合而成,其中三个小长方形的面积分别为15、18、30公顷,问图中阴影部分的面积是多少?
例15、如下图,已知D是BC的中点,E是CD的中点,F是AC的中点,且 的面积比 的面积大6平方厘米。
3、如右图BE= BC,CD= AC,那么三角形AED的面积是三角形ABC面积的______.
5、如图所示,已知ABCD是长方形,AE:ED=CF:FD=1:2,三角形DEF的面积是16平方厘米,求三角形ABE的面积是多少平方厘米?

蝴蝶定理

蝴蝶定理

第33讲 蝴蝶定理精讲摘要风华绝代之蝴蝶定理1815年英国伦敦出版的著名数学科普刊物《男士日记》刊登了如下的问题:蝴蝶定理:设M 是⨀O 中弦AB 的中点,过M 点的两条弦CD ,EF ,连结DE ,CF 交AB 于P 、Q 两点,则M 是线段PQ 的中点. 这个问题的图形,像一只在圆中翩翩起舞的蝴蝶,这正是该问题被冠以“蝴蝶定理”的美名的缘由.此定理的纯几何证明很多,为便于推广,现改用解析法证明如下: 证明:如图,以M 点为坐标原点.AB 所在的直线为x 轴,建立平面直角坐标系,设OM =b .则⨀O 的方程可写成: x 2+y 2–2by +f =0. ①设直线CD ,EF 的方程分别为y =k 1x ,y =k 2x , 合并为:(y –k 1x )(y –k 2x )=0 ②于是过①②的交点C ,F .D ,E 的二次曲线系为:x 2+ y 2–2by +f +λ(y –k 1x )(y –k 2x )=0 ③ 曲线③与AB 的交点P ,Q 的横坐标满足(令y =0)(1+λk 1k 2)x 2+f =0.由韦达定理x p +x q =0, 即MP +(–MQ )=0,∴ MP =MQ .若在蝴蝶定理的图形中,把圆改成椭圆、双曲线、抛物线,结论是否成立呢?回答是肯定的.现以椭圆为例给出证明.如图,以M 点为坐标原点.AB 所在的直线为x 轴,建立平面直角坐标系,设椭圆方程为: b 2x 2+a 2(y +h )2 – a 2b 2=0.直线CD 的方程为y =k 1x ,直线EF 的方程为y =k 2x ,则过点C ,F ,D ,E 的二次曲线系为b 2x 2+a 2(y +h )2 – a 2b 2+λ(y – k 1x )( y – k 2x )=0,令y =0,得(b 2–λk 1k 2)x 2+a 2h 2–b 2a 2=0.由韦达定理x p +x q =0,即MP = MQ .命题得证.类似地可以证明把圆改为抛物线、双曲线结论也成立.若在蝴蝶定理的条件中把中点M 改为AB 上任一点,结论是:=④ (证明略)这是蝴蝶定理的更一般性结论,显然当MA =MB 时.MP =MQ .ABF D QMP CEA BFDQM PEOCx yAB FD Q MPEOCxyA BDFP M Q CExy④式成立的条件是AB 是⨀O 的弦,M 是AB 上任一点,若把圆改为圆锥曲线,结论仍然成立.=.蝴蝶定理对于圆或圆锥曲线,④式仍然成立,一般地,结论可用矢量法表示:=(点M 也可以是AB 延长线上的点).A PMQ BDExy 图1FC定理1:在圆锥曲线中,过弦AB 中点M 任作两条弦CD 和EF ,直线CE 与DF 交直线AB 于P ,Q ,则有|MP |=|MQ |.另一种证明:如图1,以M 为原点,AB 所在的直线为y 轴,建立直角坐标系.设圆锥曲线的方程为Ax 2+Bxy +Cy 2+Dx +Ey +F =0 (*),设A (0,t ),B (0,–t ),知t ,–t 是Cy 2+Ey +F =0的两个根,所以E =0. 若CD ,EF 有一条斜率不存在,则P ,Q 与A ,B 重合,结论成立.若CD ,EF 斜率都存在,设C (x 1,k 1x 1),D (x 2,k 1x 2),E (x 3,k 2x 3),F (x 4,k 2x 4),P (0,p ),Q (0,q ),CE :y =(x –x 1)+ k 1x 1,p =(0–x 1)+ k 1x 1=,同理q =,所以p +q =将y =k 1x 代入(*)得(A +Bk 1+Ck )x 2+(D +Ek 1)x +F =0,又E =0. 得x 1+x 2=, x 1x 2=,同理 x 3+x 4=, x 3x 4=,所以p +q =0,即|MP |=|MQ |.定理2:在圆锥曲线中,过弦AB 端点的切线交于点M ,过M 的直线l ∥AB ,过M 任作两条弦CD 和EF ,直线CE 与DF 交直线l 于P ,Q ,则有| MP |=| MQ |.证明:如图2,以M 为原点,AB 所在的直线为y 轴,建立直角坐标系.设圆锥曲线的方程为Ax 2+Bxy +Cy 2+Dx +Ey +F =0 (*), 设A (x 1,y 1),B (x 2,y 2),则切线MA 的方程是x 1+y 1+F =0,切线MB 的方程是x 1+y 2+F =0,得E (y 1–y 2)=0,所以E =0.(下面与定理1的证明相同,略)特别的,当弦AB 垂直圆锥曲线的对称轴时,点M 在圆锥曲线的该对称轴上.ACPM Q BD Elxy 图5F 调研精讲答案 (I )e =22a b a-;(II )见解析 (Ⅲ)见解析.解析 (I )椭圆方程为22x a +22()y r b -=1焦点坐标为F 1(22a b --,r ),F 2(22a b -,r ), 离心率e =22a b a-.(Ⅱ)证明:将直线CD 的方程y =k 1x 代入椭圆方程, 得b 2x 2+a 2(k 1x – r )2 =a 2b 2,整理得:(b 2+a 2k 21)x 2– 2k 1a 2rx (a 2r 2– a 2b 2)=0.根据韦达定理,得:x 1+x 2=2122212k a rb a k +,x 1∙x 2=22222221a r a b b a k -+,所以1212x x x x +=2212r b k r- ①将直线GH 的方程y =k 2x 代入椭圆方程,同理可得3434x x x x +=2222r b k r- ② (韦达定理真的“很伟大”)由①,②得:11212k x x x x +=222r b r -=23434k x x x x +,所以结论成立.(Ⅲ)证明:设点P (p ,0),点Q (q ,0),由C 、P 、H 共线,得:12x p x p --=1122k x k x , 解得p =12121122()k k x x k x k x --.由D 、Q 、G 共线,同理可得:q =12231223()k k x x k x k x --.由11212k x x x x +=23434k x x x x +,变形得231223x x k x k x --=141124x x k x k x - 【 调研1】如图,椭圆的长轴A 1A 2(=2a )与x 轴平行,短轴B 1B 2(=2b )在y 轴上,中心为M (0,r )(b >r >0)(Ⅰ)写出椭圆的方程,求椭圆的焦点坐标及离心率; (Ⅱ)直线y =k 1x 交椭圆于两点C (x 1,y 1),D (x 2,y 2)(y 2>0); 直线y =k 2x 交椭圆于两点G (x 3,y 3),H (x 4,y 4)(y 4>0). 求证:=;(Ⅲ)对于(Ⅱ)中的C ,D ,G ,H ,设CH 交x 轴于点P ,GD 交x 轴于点Q . 求证:| OP |=| OQ |. (证明过程不考虑CH 或GD 垂直于x 轴的情形)A 1B 1HGQMP D O Cxy A 2B 2即12231223()k k x x k x k x ---=12141124()k k x x k x k x --,所以| p |=| q |,即| OP |=| OQ |.答案 (1)24x +y 2=1;(2,1);(2)见解析.解析 (1)由已知,a =2b .又椭圆22x a +22y b =1(a >b >0)过点13,2P ⎛⎫ ⎪⎝⎭, 故234b+214b =1,解得b 2=1. 所以椭圆E 的方程24x +y 2=1. (2)设直线l 的方程为y =12x +m (m ≠0), 设A (x 1,y 1),B (x 2,y 2),由方程组221412x y y x m ⎧+=⎪⎪⎨⎪=+⎪⎩,得x 2+2mx +2m 2 – 2=0 ① 方程①的判别式为∆=4(2 – m 2), 由∆>0,即2 – m 2>0,解得m 由①得x 1+x 2= –2m ,x 1x 2=2m 2 – 2.所以M 点坐标为,2m m ⎛⎫- ⎪⎝⎭,直线OM 方程为y =12-x ,由方程组221412x y y x ⎧+=⎪⎪⎨⎪=-⎪⎩,得C ⎛ ⎝⎭,D ⎭. 所以|MC |∙|MD |=25)(2)4m m m -=-. |MA |∙|MB | =14|AB |2=14221212()()x x y y ⎡⎤-+-⎣⎦=212125()416x x x x ⎡⎤+-⎣⎦ 【调研2】已知椭圆E : +=1(a >b >0)的一个焦点与短轴的两个端点是正三角形的三个顶点,点在椭圆E 上.(1)求椭圆E 的方程;(2)设不过原点O 且斜率为的直线l 与椭圆E 交于不同的两点A ,B ,线段AB 的中点为M ,直线OM 与椭圆E 交于C ,D ,证明:|MA |∙|MB | = |MC |∙|MD |.=22544(22)16m m ⎡⎤--⎣⎦=25(2)4m -. 所以|MA |∙|MB | = |MC |∙|MD |.答案 (I )26x +23y =1;(2,1);(II )λ=45. 解析 (Ⅰ)设短轴一端点为C (0,b ),左右焦点分别为F 1(–c ,0),F 2(c ,0),其中c >0, 则c 2+b 2=a 2;由题意,△F 1F 2C 为直角三角形, ∴ |F 1F 2|2=|F 1C |2+|F 2C |2,解得b =c =2a ,∴椭圆E 的方程为222xb +22y b =1;代入直线l :y = – x +3,可得3x 2–12x +18–2b 2=0,又直线l 与椭圆E 只有一个交点,则△=122 – 4×3(18 – 2b 2)=0,解得b 2=3,∴椭圆E 的方程为26x +23y =1;由b 2=3,解得x =2,则y = – x +3=1,所以点T 的坐标为(2,1); (Ⅱ)设P (x 0,3 – x 0)在直线l 上,由k OT =12,直线l ′平行OT , 得直线l ′的参数方程为0023x x ty x t =+⎧⎨=-+⎩,代入椭圆E 中,得:(x 0+2t )2+2(3 – x 0+t )2=6,整理得2t 2+4t +x 20– 4x 0+4=0;设两根为t A ,t B ,由韦达定理,则有t A ∙t B =20(2)2x -;而|PT |22=2(x 0–2)2, |P A A |, |PB B |, 且|PT |2=λ|P A |∙|PB |,【 调研3】已知椭圆E :+=1(a >b >0)的两个焦点与短轴的一个端点是直角三角形的3个顶点,直线l :y = – x +3与椭圆E 有且只有一个公共点T . (Ⅰ)求椭圆E 的方程及点T 的坐标;(Ⅱ)设O 是坐标原点,直线l ′平行于OT ,与椭圆E 交于不同的两点A 、B ,且与直线l 交于点P .证明:存在常数λ,使得|PT |2=λ|P A |∙|PB |,并求λ的值.∴λ=2||||||PT PA PB ⋅=20202(1)5(1)2x x --=45,即存在满足题意的λ值.答案 (1)24x +22y =1;(2)(ii )62.解析 (1)由题意得22224222a c a b c =⎧⎪=⎨⎪=+⎩,解得222a b c =⎧⎪=⎨⎪=⎩,所以椭圆的方程为24x +22y =1.(2)(i )设N (x N ,0),P (x P ,y P ),直线P A :y =kx +m , 因为点N 为直线P A 与x 轴的交点,所以x N =m k-, 因为点M (0,m )为线段PN 的中点,所以2N P x x +=0,02Py +=m , 得x P =mk,y P =2m , 所以点Q ,2m m k⎛⎫- ⎪⎝⎭,所以k '=()20m m m k---= –3k ,故'k k = –3为定值. (ii )直线P A :y =kx +m ,与椭圆方程联立22142y kx m x y =+⎧⎪⎨+=⎪⎩,得:(2k 2+1)x 2+4kmx +2m 2– 4=0,所以∆=16k 2m 2– 4(2k 2+1)(2m 2– 4)=32k 2 – 8m 2+16>0 ① x 1+x 2=2421kmx k -+,y 1+y 2=2221mk +, 所以A 222264(21)21k m m k m k k k ⎛⎫+--⎪++⎝⎭,, 直线QM : y = –3kx +m 与椭圆方程联立223142y kx mx y =-+⎧⎪⎨+=⎪⎩,【调研4】已知椭圆C :+=1(a >b >0)的长轴长为4,焦距为.(1)求椭圆C 的方程;(2)过动点M (0,m )(m >0)的直线交x 轴于点N ,交C 于点A ,P (P 在第一象限),且M 是线段PN 的中点,过点P 作x 轴的垂线 交C 于另一点Q ,延长Q 交C 于点B .(i )设直线PM ,QM 的斜率分别为k ,k ',证明为定值;(ii )求直线AB 的斜率的最小值.AQMPONxy B得(18k 2+1) x 2– 12kmx +2m 2– 4=0,所以x 1+x 2=212181km k +,y 1+y 2=22181mk +, 所以B ()()22224916,181181m k k m m k k k ⎛⎫++ ⎪- ⎪++⎝⎭,k AB =B A B A y y x x --=2614k k +=32k +14k , 因为点P 在椭圆上,所以224m k +242m =1,得m 2=22481k k + ②将②代入①得(4k 2+1)2>0恒成立, 所以k 2≥0,所以k ≥0,所以k AB =32k +14k≥(当且仅当k时取“=”),所以当k时,k AB. 分析:该题中的椭圆C 的方程易知为24x +22y =1;第(Ⅱ)小题中由已知|AP | ∙ |QB | =|AQ | ∙ |PB |,即||||AP PB =||||AQ QB ,说明Q 点在极点P 关于椭圆C 对应的极线上,其方程为44x +2y =1,即x +2y =1.答案 (1)24x +22y =1;(2)见解析; 解析 (1)由题意:2222222211⎧=⎪⎪+=⎨⎪⎪=-⎩c ab c a b,解得a 2=4,b 2=2,所求椭圆方程为24x +22y =1.(2)方法一:设点Q (x ,y ),A (x 1,y 1),B (x 2,y 2),由题设知|PA |,|PB |,|AQ |,|QB |均不为零,记λ=||||AP PB =||||AQ QB ,则λ>0且λ≠1. 又A ,P ,B ,Q 四点共线,从而AP = – λPB ,AQ =λQB , 于是 4=121λλ--x x ,1=121λλ--y y ,x =121λλ++x x ,y =121λλ++y y . 从而 2221221λλ--x x =4x ① 2221221λλ--y y =y ②【 调研5】设椭圆C :+=1(a >b >0)过点M (,1),且左焦点为F 1(,0),(Ⅰ)求椭圆C 的方程;(Ⅱ)当过点P (4,1)的动直线l 与椭圆C 相交与两不同点A ,B 时,在线段AB 上取点Q ,满足|| ∙ || =|| ∙ ||,证明:点Q 总在某定直线上.又点A 、B 在椭圆C 上,即 x 21+2y 21=4 ③x 22+2y 22=4 ④①+②×2并结合③,④得4s +2y =4 即点Q (x ,y )总在定直线2x +y –2=0上 方法二:设点Q (x ,y ),A (x 1,y 1),B (x 2,y 2),由题设知|PA |,|PB |,|AQ |,|QB |均不为零,且||||PA AQ =||||PB QB . 又P ,A ,Q ,B 四点共线,可设PA =λAQ ,PB =λBQ (λ≠0,±1),于是x 1=41λλ--x ,y 1=11λλ--y① x 2=41λλ++x ,y 2=11λλ++y② 由于A (x 1,y 1),B (x 2,y 2)在椭圆C 上,将①,②分别代入C 的方程x 2+2y 2=4,整理得(x 2+2y 2– 4)λ2 – 4(2x +y –2)λ+14=0 ③ (x 2+2y 2– 4)λ2 + 4(2x +y –2)λ+14=0 ④④–③得 8(2x +y –2)λ=0∵ λ≠0,∴2x +y –2=0 即点Q (x ,y )总在定直线2x +y –2=0上. A NMTOF xyB蝴蝶定理的推广 1.椭圆+=1(a >b >0)的左右顶点为A ,B ,T 为定直线x =t (t ≠0)上的任一点,直线TA ,TB 与椭圆分别交于点M ,N ,则直线MN 恒过定点C (,0).2.如图,过有心圆锥曲线mx 2+ny 2=1的中心O 和形内定点(x 0,y 0)的直线交曲线于A ,B ,T 为定直线l :mx 0x +ny 0y =1上的任一点,直线TA ,TB 与椭圆分别交于点M ,N ,则直线MN 恒过定点(x 0,y 0).证明:连结MN 交AB 于点C ,过点C 作l 的平行线交圆锥曲线于点P ,Q ,又设直线AB 交l 于点D .先证点C 为PQ 的中点.设C (x C ,y C ),因C 在过点(x 0,y 0)的直线上,所以可设x C =tx 0,y C =ty 0,由于直线PQ 与直线l :mx 0x +ny 0y =1平行,且过点C (tx 0,ty 0),故直线PQ 方ANM T OF xyBDl PQ CE 快速提高高考成绩,轻松考取理想名校,提分奇书,巧学妙解王,火爆淘宝,订购店铺 或淘宝直接搜索书名:巧学妙解王 或拼多多搜索书名:巧学妙解王今天你真的提分了吗?还不赶快使用巧学妙解王! 高考数学满分突破50讲——《妙妙题》即将上架!官网在线阅读: 凡是有高中的地方,必有巧学妙解王!程为mx 0x +ny 0y =t (mx +ny ),联立mx 2+ny 2=1得m (mx +ny )x 2– 2mx 0t (mx +ny )x +t 2(mx +ny )2–ny =0,由根与系数关系得x P + x Q =2tx 0=2x C ,据此知C 即PQ 的中点. 由圆锥曲线的蝴蝶定理知| CE | = | CF |,因此===,即=,注意到x A = –x B 化简得x C =.另一方面,将直线AB 方程x 0y –y 0x =0联立mx 2+ny 2=1得(mx +ny )x 2– x =0∴x A x B =,即x =;将直线AB 方程x 0y –y 0x =0联立mx 0x +ny 0y =1得x D =,因此可得x C ==x 0,又C (x C ,y C )在直线x 0y –y 0x =0上,∴ y C =y 0,故直线MN 恒过定点(x 0,y 0). 值得说明的是,对于抛物线也有类似的结论,证明方法类似,读者不妨自行研究. 蝴蝶定理推论性质1: 过点M (m ,0)做椭圆、双曲线±=1的弦CD ,EF 是其焦点轴,则直线CE 、DF 的连线交点G 在直线l :x =上.特别的,当M 为焦点时,l 就是准线.当M 为准线与焦点轴所在直线的交点时,l 就是过焦点的直线.证明:如图3,过M 做直线AB 垂直焦点轴所在的直线,直线CE 与FD 交直线AB 于P ,Q ,则|MP |=|MQ |.过G 做GH 垂直焦点轴所在直线于H ,得===,设M (m ,0),H (n ,0),焦点轴长为2a ,则有=,得mn =a 2.A C OP MQ BD E lHxy 图3G F 蝴蝶定理推论性质2:若圆锥曲线为抛物线,把无穷远点作为其虚拟顶点,把图3中的DF 看作与焦点轴平行的直线,于是得到性质2.性质2:过点M (m ,0)做抛物线y 2=2px 的弦CD ,E 是抛物线的顶点,直线DF 与抛物线的对称轴平行,则直线CE 、DF 的连线交点在直线l :x = –m 上.特别的,当M 为焦点时,l 就是准线.当M 为准线与焦点轴的交点时,l 就是过焦点的直线.蝴蝶定理推论性质3:直线l :x =,过点M (m ,0)作椭圆、双曲线±=1的弦CD ,直线l 与CD 交于点I ,则=.证明:如图,由定理1,定理2及性质1得:.A C OP M Q BD E l IxyG F 蝴蝶定理推论性质4: 过点M (m ,0)做椭圆、双曲线±=1的弦CD 、EF ,则直线CE 、DF 的连线交点G 在直线l :x =上.证明:如图5,过G 做GH 垂直焦点轴所在的直线,由定理1,定理2得:===,由性质3得,点I 在直线l :x =上,所以点G 在直线l :x =上.A C OP M Q BDE lH x y图5G F蝴蝶定理推论性质5:直线l :x = –m ,过点M (m ,0)做抛物线y 2=2px 的弦CD ,直线l 与CD 交于点I ,则=. 蝴蝶定理推论性质6:过点M (m ,0)做抛物线y 2=2px 的弦CD 、EF ,则直线CE 、DF 的连线交点G 在直线l :x = –m 上.OFGMDExy图6lC 蝴蝶定理推论性质7: 过点M (m ,0)做椭圆、双曲线±=1的弦CD ,则以C ,D 为切点的圆锥曲线的切线的交点G 在直线l :x =上.证明:如图6,设切线CG 交直线l 于G 1,连接G 1D ,若G 1D 与圆锥曲线有除D 点外的公共点F ,做直线FM交圆锥曲线于E ,由性质4知CE 与DF 的交点在直线l 上,所以C 、E 、G 1三点共线,与CG 1是圆锥曲线的切线矛盾,所以G 1D 与圆锥曲线只有一个公共点D ,G 1D 是圆锥曲线的切线,G 1与G 重合, G 在直线l 上.蝴蝶定理推论性质8:过点M (m ,0)做抛物线y 2=2px 的弦CD ,则以C ,D 为切点的圆锥曲线的切线的交点G 在直线l : x = – m 上. OPG M DExyl CQ蝴蝶定理推论性质9:直线l :x =,过点M (m ,0)做椭圆、双曲线±=1的弦CD ,C 、D 在l 上的射影为E 、G ,在焦点轴所在直线上的射影为Q 、P ,则=.蝴蝶定理推论性质10:直线l :x = –m ,过点M (m ,0)做抛物线y 2=2px 的弦CD ,C 、D 在l 上的射影为C 1、D 1,在对称轴上的射影为C 2、D 2,则=.蝴蝶定理推论性质12:在圆锥曲线中,过弦AB 端点的切线交于点M ,过M 任作两条弦CD 和EF ,直线CE 与DF 交于点G ,过G 做GI ∥AB ,直线GI 交FE 于I ,则=.【 调研6】在平面直角坐标系xOy 中,如图,已知椭圆+=1的左、右顶点为A 、B ,右焦点为F .设过点T (t ,m )的直线TA 、TB 与椭圆分别交于点M (x 1,y 1)、N (x 2,y 2),其中m >0,y 1>0,y 2<0.(1)设动点P 满足PF 2–PB 2=4,求点P 的轨迹;(2)设x 1=2,x 2=,求点T 的坐标;(3)设t =9,求证:直线MN 必过x 轴上的一定点(其坐标与m 无关).ANMTOF xyB蝴蝶定理推论性质11:在圆锥曲线中,过弦AB 中点M 任作两条弦CD 和EF ,直线CE 与DF 交于点G ,过G 做GI ∥AB ,直线GI 交FE 于I ,则=.证明:如图8,直线CE 与DF 交直线AB 于P ,Q ,由定理1得:|MP |=|MQ |, 所以===.A PM Q BDE图8FCGI答案 (1)x =92;(2)T (7,103) (3) 见解析. 解析 (1)设点P (x ,y ),则F (2,0)、B (3,0)、A (–3,0). 由PF 2–PB 2=4,得(x –2)2+y 2–[(x –3)2+y 2]=4,化简得x =92. 故所求点P 的轨迹为直线x =92.(2)将x 1=2,x 2=13分别代入椭圆方程,以及y 1>0,y 2<0,得M (2,53)、N (13,209-) 直线MTA 方程为:0503--y =323++x ,即y =13x +1, 直线NTB 方程为:2009---y =3133--x ,即y =56x –52. 联立方程组,解得:7103=⎧⎪⎨=⎪⎩x y ,所以点T 的坐标为(7,103). (3)设点T 的坐标为(9,m ) 直线MTA 方程为:00--y m =393++x ,即y =12m(x +3), 直线NTB 方程为:00--y m =393--x ,即y =6m(x –3). 分别与椭圆29x +25y =1联立方程组,同时考虑到x 1≠ –3,x 2≠3,解得:M 2223(80)40(,)8080-++m m m m 、N 2223(20)20(,)2020--++m mm m . (方法一)当x 1≠x 2时,直线MN 方程为:222202040208020+++++m y m m m m m =2222223(20)203(80)3(20)8020--+---++m x m m m m m . 令y =0,解得:x =1.此时必过点D (1,0);当x 1=x 2时,直线MN 方程为:x =1,与x 轴交点为D (1,0). 所以直线MN 必过x 轴上的一定点D (1,0). (方法二)若x 1=x 2,则由22240380-+m m =2236020-+m m 及m >0,得m此时直线MN 的方程为x =1,过点D (1,0).若x 1≠x 2,则m ≠,直线MD 的斜率k MD =22240802403180+--+mm m m =21040-mm ,直线ND 的斜率k ND =2222020360120-+--+mm m m =21040-m m ,得k MD =k ND ,所以直线MN 过D 点. 因此,直线MN 必过x 轴上的点(1,0).【点评】本小题主要考查求简单曲线的方程,考查方直线与椭圆的方程等基础知识.考查运算求解能力和探究问题的能力1.设过抛物线y 2=2px (p >0)上任意一点P (异于原点O )的直线与抛物线y 2=8px (p >0)交于A ,B 两点,直线OP 与抛物线y 2=8px (p >0)的另一个交点为Q ,则ABQ ABOS S ∆∆=________.解析:设直线OP 的方程为y =kx (k ≠0),联立得22y kx y px=⎧⎪⎨=⎪⎩,解得P 222,p p kk ⎛⎫⎪⎝⎭, 联立得28y kx y px=⎧⎪⎨=⎪⎩,解得Q 288,p p k k ⎛⎫⎪⎝⎭, ∴|OP |=,|PQ , ∴ABQ ABOS S ∆∆=||||PQ OP =3.2.已知椭圆2x m +2y n =1 (m >n >0)的离心率e 的值为12,右准线方程为x =4.如图所示,椭圆C 左右顶点分别为A ,B ,过右焦点F 的直线交椭圆C 于M ,N ,直线AM ,MB 交于点P .精讲巩固ANM POFx B(1)求椭圆的标准方程;(2)若点P (4,,直线AN ,BM 的斜率分别为k 1,k 2,求12k k . (3)求证点P 在一条定直线上.解析:(1) 椭圆2x m +2y n =1 (m >n >0)的离心率e 的值为12,即c a =12,右准线方程为x =4,即2a c =4.解得:a =2,c =1,∵a 2= b 2+c 2,∴b 故椭圆的标准方程为:24x +23y =1.(2)点P (4,),A (–2,0),故得直线AP 方程为y (x +2),与椭圆方程24x +23y =1联立,求解点M 的坐标为(0.那么可得MN 直线程为y =l – 3x ,与椭圆方程24x +23y =1联立,求解点N 的坐标为(85,.那么AN 的斜率为k 1=BM 斜率为k 2=,则12kk =13. (3) 设斜率存在的MN 的直线方程为y =k (x – l), 利用设而不求的思想,设M (x 1,y 1),N (x 2,y 2),与椭圆方程24x +23y =1联立,可得:(4k 2+3) x 2 – 8k 2x +4k 2 – 12=0,那么:x 1+x 2=22843k k + ①, x 1x 2=2241243k k -+ ② 由A ,M 的坐标可得直线AM 的方程为y =112y y +(x +2) 由B ,N 的坐标可得直线BN 的方程为y =222y y +(x –2) 直线AM 与直线BN 联立,可得:x =21212122334x x x x x x -++-∴ x =21212212223()442x x x x x x x x -+++-+ ③将①②代入③解得:x =4. 故点P 存在直线x =4上.当k 不存在时,经验证,点P 在直线x =4上满足题意.3.已知菱形ABCD 的顶点A ,C 在椭圆x 2+3y 2=4上,对角线BD 所在直线的斜率为1. (1)当直线BD 过点(0,1)时,求直线AC 的方程; (2)当∠ABC =60°时,求菱形ABCD 面积的最大值.解析:(1)由题意,得直线BD 的方程为y =x +1,因为四边形ABCD 为菱形,所以AC ⊥BD .于是可设直线AC 的方程为y =–x +n . 由2234x y y x n⎧+=⎪⎨=-+⎪⎩,得4x 2– 6nx +3n 2– 4=0.因为A ,C 在椭圆上,所以∆= –12n 2+64>0,解得<n. 设A ,C 两点坐标分别为(x 1,y 1),(x 2,y 2),则x 1+x 2=32n,x 1x 2=2344n -,y 1= –x 1+n ,y 2= –x 2+n .所以y 1+y 2=2n .所以AC 的中点坐标为(34n ,4n ). 由四边形ABCD 为菱形可知,点(34n ,4n)在直线y =x +1上, 所以4n=34n+1,解得n = – 2. 所以直线AC 的方程为y = – x – 2,即x +y +2=0. (2)因为四边形ABCD 为菱形,且∠ABC =60°, 所以|AB |=|BC |=|CA |.所以菱形ABCD 的面积S|AC |2. 由(1)可得|AC |2=(x 1 – x 2)2+(y 1 – y 2)2=23162n -+,所以S–3n 2+16) (<n).所以当n =0时,菱形ABCD的面积取得最大值4.已知椭圆C :22x a +22y b =1 (a >b >0)的离心率为12,以原点为圆心,以椭圆的短半轴为半径的圆与直线x – y相切. (1)求椭圆C 的方程;(2)过椭圆的右焦点F 的直线l 1与椭圆交于A 、B ,过F 与直线l 1垂直的直线l 2与椭圆交于C 、D .与直线l 3:x =4交于P ;①求证:直线P A 、PF 、PB 的斜率k P A ,k PF ,k PB 成等差数列;②是否存在常数λ使得|AB |+|CD | =λ|AB |∙|CD |成立,若存在,求出λ的值,若不存在,请说明理由.解析:∵椭圆C :22x a +22y b =1 (a >b >0)的离心率为12,∴e =c a =12, AFCPO xyBDF∵ 椭圆C 的短半轴为半径的圆与直线x – y相切,b,则a 2= b 2+c 2=4. 故椭圆C 的方程为:24x +23y =1.(2)①证明:∵椭圆24x +23y =1的左焦点F (1,0),当直线AB 的斜率不存在时,直线AB 的方程为x =l ,联立直线方程和椭圆方程可得:A (1,32),B (1,32-),此时k P A 与k PB 互为相反数,则k P A ,k PF ,k PB 成等差数列;当直线AB 的斜率存在时,设过其右焦点F 的直线AB 的方程为:y =k (x –1),k ≠0, CD 的直线程为:y =1k-(x –1),由方程组22(1)143y k x x y =-⎧⎪⎨+=⎪⎩,得(3+4k 2)x 2– 8k 2x +4k 2 – 12=0, 设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=22834k k +,x 1x 2=2241234k k -+. 由直线CD 的方程中,取x =4,的y =3k-,∴P (4,3k-),则k P A +k PB =1134y k x ---+2234y k x ---=12211233()(4)()(4)(4)(4)y x y x k k x x ---+-----=12121212243(5)()82164()k x x k kx x k k x x x x -+-+++-++=222222222438412(5)82343484121643434k k k k k k k k k k k k k--+-⋅++⋅++--⋅+++=2727236(1)k k k -+=2k -=2k PF . 综上,k P A ,k PF ,k PB 成等差数列;② ∵椭圆24x +23y =1的左焦点F (1,0),设过其右焦点F 的直线AB 的方程为:y =k (x –1),k ≠0,由方程组22(1)143y k x x y =-⎧⎪⎨+=⎪⎩,得(3+4k 2)x 2– 8k 2x +4k 2 – 12=0, 设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=22834k k +, x 1x 2=2241234k k -+. 由弦长公式得|AB2212(1)34k k ++. 同理设C (x 3,y 3),D (x 4,y 4),则|CD | =22112(1)134k k++⋅=2212(1)34k k ++.∵ |AB |+|CD | =λ|AB |∙|CD |,∴λ=||||||||AB CD AB CD +⋅=1||AB +1||CD =223412(1)k k +++223412(1)k k ++=227(1)12(1)k k ++=712.∴存在常数λ=712,使得|AB |+|CD | =λ|AB |∙|CD |成立. 5.在平面直角坐标系中,已知焦距为4的椭圆C :22x a +22y b =1 (a >b >0)左、右顶点分别为A 、B ,(1)求椭圆C 的方程;(2)设Q (t ,m )是直线x =9上的点,直线QA 、QB 与椭圆C 分别交于点M 、N ,求证:直线MN 必过x 轴上的一定点,并求出此定点的坐标.代入椭圆方程,得(80+m 2) x 2+6x +9m 2 – 720=0 代入椭圆方程,得(20+m 2) x 2– 6x +9m 2–180=0①若x 1=MN 方程为x =1,与x 轴交点为(1,0). ②若m 2≠40,直线MN 方程为y +22020m m +x ANMQOxyB9令y =0,解得:x =1.综上所述,直线MN 必过x 轴上的定点(1,0).6.如图,F 是抛物线y 2=2px (p >0)的焦点,过F 的直线交抛物线于A (x 1,y 1),B (x 2,y 2)两点,其中y 1>0,y 1y 2= – 4.过点A 作y 轴的垂线交抛物线的准线于点H ,直线HF 交抛物线于点P ,Q .(1)求p 的值;(2)求四边形APBQ 的面积S 的最小值.解析:(I )易得直线AB 的方程为(y 1+y 2)y =2px +y 1y 2,代入02p⎛⎫ ⎪⎝⎭,,得 y 1y 2= – p 2= – 4,所以p =2; (II )点A (214y ,y 1),B (224y ,y 2),则H (–1,y 1),直线PQ : y =12y-(x –1),代入y 2=4x ,得y 21x – (2y 21+16)+ y 21=0. 设P (x 3,y 3),Q (x 4,y 4),则| PQ |= x 3+x 4+2=21214(4)y y +. 设A ,B 到PQ 的距离分别为d 1,d 2,由PQ : y 1x +2y – y 1=0,得d 1+d 2321121121|2(2)|+--+-y y y y y y y311221|(2)|+--+-y y y y y3112|2|+-y y y3114|2|++y y22因此S APBQ =12|PQ |∙( d 1+d 2)=1设函数f (x )=256(4)+x x (x >0),则f '(x )=24274(4)(6)+-x x x ,可得,当x ∈(0时,f (x )单调递减;当x ∈+∞)时,f (x )单调递增, 从而当y 1S.。

蝴蝶定理问题

蝴蝶定理问题

摘 要蝴蝶定理想象洵美,蕴理深刻,近两百年来,关于蝴蝶定理的研究成果不断,引起了许多中外数学家的兴趣。

到目前为止,关于蝴蝶定理的证明就有60多种,其中初等证法就有综合证法、面积证法、三角证法、解析证法等。

而基于蝴蝶定理的推广与演变,能得到很多有趣与漂亮的结果。

关键词:蝴蝶定理;证明;推广;一 摘要蝴蝶定理最先是作为一个征求证明的问题,刊载于1815年的一份通俗杂志《男士日记》上。

由于其几何图形形象奇特、貌似蝴蝶,便以此命名,定理内容:圆O 中的弦PQ 的中点M ,过点M 任作两弦AB ,CD ,弦AD 与BC 分别交PQ 于E ,F ,则M 为EF 之中点。

关于蝴蝶定理的证明,出现过许多优美奇特的解法,并且知道现在还有很大的研究价值。

其中最早的,应首推霍纳在1815年所给出的证法。

至于初等数学的证法,在国外资料中,一般都认为是由一位中学教师斯特温首先提出的,它使用的是面积证法。

1985年,在河南省《数学教师》创刊号上,杜锡录老师以《平面几何中的名题及其妙解》为题,载文向国内介绍蝴蝶定理,从此蝴蝶定理在神州大地到处传开。

在20世纪20年代时,蝴蝶定理作为一道几何题传到我国中学数学界,严济慈教授在《几何证题法》中有构思奇巧的证明。

如可将蝴蝶定理中的圆“压缩变换”为椭圆,甚至变为双曲线、抛物线、筝形、凸四边形、两直线,都依然成立。

另外,如果将蝴蝶定理中的条件一般化,即M 点不再是中点,能得到坎迪定理、若M 、N 点是AB 的三等分点,两次应用坎迪定理,能得到“三翅蝴蝶定理”。

二 蝴蝶定理的证明(一)运用简单的初中高中几何知识的巧妙证明蝴蝶定理经常在初中和高中的试卷中出现,于是涌现了很多利用中学简单几何方法完成蝴蝶定理的方法。

图 1FEBDM OPQAC1 带有辅助线的常见蝴蝶定理证明在蝴蝶定理的证明中有各种奇妙的辅助线,同时诞生了各种美妙的思想,蝴蝶定理在这些辅助线的帮助下,翩翩起舞!证法1 如图2,作OU AD OV BC ⊥⊥,,则垂足U V ,分别为AD BC 、的中点,且由于EUO EMO 90∠=∠=︒ FVO FMO 90∠=∠=︒得M E U O 、、、共圆;M F V O 、、、共圆。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

利用初中数学知识证明蝴蝶定理
蝴蝶定理最先是作为一个征求证明的问题,刊载于1815年的一份通俗杂志《男士日记》上。

由于其几何图形形象奇特、貌似蝴蝶,便以此命名,定理内容:圆O中的弦PQ的中点M,过点M任作两弦AB,CD,弦AD与BC分别交PQ于X,Y,则M为XY之中点。

蝴蝶定理(Butterfly theorem)出现过许多优美奇特的解法,其中最早的,应首推霍纳在职1815年所给出的证法。

至于初等数学的证法,在国外资料中,一般都认为是由一位中学教师斯特温首先提出的,它给予出的是面积证法,其中应用了面积公式:S=1/2BC·sinA。

1985年,在河南省《数学教师》创刊号上,杜锡录同志以《平面几何中的名题及其妙解》为题,载文向国内介绍蝴蝶定理,从此蝴蝶定理在神州大地到处传开。

这里介绍一种利用初中数学知识证明蝴蝶定理的方法。

过O作OE,OF垂直AD,BC于点E,F,连接ME,MF,OX,OY,OM。

∵∠OEX=∠OMX=90°
∴O,E,X,M四点共圆
∴∠XOM=∠XEM
同理可证∠YOM=∠YFM
∵∠A=∠C,∠D=∠B
∴△ADM∽△CBM
∵ME,MF是对应边上的中线
∴△MED∽△MFB
∴∠XEM=∠YMF
∴∠XOM=∠YOM
又∵∠OMX=∠OMY=90°,OM是公共边∴△OMX≌△OMY
∴M为XY之中点。

相关文档
最新文档