沪科版八年级上册数学全册知识点复习【2019】

合集下载

沪科版八年级数学上课本复习讲义

沪科版八年级数学上课本复习讲义

八年级数学上期末课本复习讲义第十二章平面直角坐标系小结一、平面内点的坐标特征1、各象限内点P(a ,b)的坐标特征:第一象限:a>0,b>0;第二象限:a<0,b>0;第三象限:a<0,b<0;第四象限:a>0,b<0 (说明:一、三象限,横、纵坐标符号相同,即ab>0;二、四象限,横、纵坐标符号相反即ab<0。

)2、坐标轴上点P(a ,b)的坐标特征:x轴上:a为任意实数,b=0;y轴上:b为任意实数,a=0;坐标原点:a=0,b=0(说明:若P(a ,b)在坐标轴上,则ab=0;反之,若ab=0,则P(a ,b)在坐标轴上。

)3、两坐标轴夹角平分线上点P(a ,b)的坐标特征:一、三象限:a=b;二、四象限:a=-b二、对称点的坐标特征点P(a ,b)关于x轴的对称点是(a ,-b);关于y轴的对称点是(-a ,b);关于原点的对称点是(-a ,-b)三、点到坐标轴的距离点P(x ,y)到x轴距离为∣y∣,到y轴的距离为∣x∣四、(1)横坐标相同的两点所在直线垂直于x轴,平行于y轴;(2)纵坐标相同的两点所在直线垂直于y轴,平行于x轴。

五、点的平移坐标变化规律坐标平面内,点P(x ,y)向右(或左)平移a个单位后的对应点为(x+a,y)或(x -a,y);点P(x ,y)向上(或下)平移b个单位后的对应点为(x,y+b)或(x,y-b)。

(说明:左右平移,横变纵不变,向右平移,横坐标增加,向左平移,横坐标减小;上下平移,纵变横不变,向上平移,纵坐标增加,向下平移,纵坐标减小。

简记为“右加左减,上加下减”)六、在平面直角坐标系中求图形的面积常用“割补法”。

割:分割,把图形分割成几部分容易求解的图形,分别求解,然后相加即可。

补:补齐,把图形补成一个容易求解的图形,然后再减去补上的那些部分。

【例1】(2006,苏州)在图2的直角坐标系中,△ABC的顶点都在网格点上,其中,A•点坐标为(2,-1),则△ABC的面积为_______平方单位.解析:△ABC的面积可以看作一个长方形的面积减去三个直角三角形的面积。

八年级上册数学知识点沪科版

八年级上册数学知识点沪科版

八年级上册数学知识点沪科版【篇一】八年级上册数学知识点沪科版(一)使用公式法我们知道整式乘法与因式分解互为逆变形。

如果把乘法公式反过来就是把多项式分解因式。

于是有:a2-b2=(a+b)(a-b)a2+2ab+b2=(a+b)2a2-2ab+b2=(a-b)2如果把乘法公式反过来,就能够用来把某些多项式分解因式。

这种分解因式的方法叫做使用公式法。

(二)平方差公式平方差公式(1)式子:a2-b2=(a+b)(a-b)(2)语言:两个数的平方差,等于这两个数的和与这两个数的差的积。

这个公式就是平方差公式。

(三)因式分解1.因式分解时,各项如果有公因式应先提公因式,再进一步分解。

2.因式分解,必须实行到每一个多项式因式不能再分解为止。

(四)完全平方公式(1)把乘法公式(a+b)2=a2+2ab+b2和(a-b)2=a2-2ab+b2反过来,就能够得到:a2+2ab+b2=(a+b)2a2-2ab+b2=(a-b)2这就是说,两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方。

把a2+2ab+b2和a2-2ab+b2这样的式子叫完全平方式。

上面两个公式叫完全平方公式。

(2)完全平方式的形式和特点①项数:三项②有两项是两个数的的平方和,这两项的符号相同。

③有一项是这两个数的积的两倍。

(3)当多项式中有公因式时,应该先提出公因式,再用公式分解。

(4)完全平方公式中的a、b可表示单项式,也能够表示多项式。

这里只要将多项式看成一个整体就能够了。

(5)分解因式,必须分解到每一个多项式因式都不能再分解为止。

(五)分组分解法我们看多项式am+an+bm+bn,这四项中没有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式.如果我们把它分成两组(am+an)和(bm+bn),这两组能分别用提取公因式的方法分别分解因式.原式=(am+an)+(bm+bn)=a(m+n)+b(m+n)做到这个步不叫把多项式分解因式,因为它不符合因式分解的意义.但不难看出这两项还有公因式(m+n),所以还能继续分解,所以原式=(am+an)+(bm+bn)=a(m+n)+b(m+n)=(m+n)×(a+b).学好数学的关键就在于要适时适量地实行总结归类,接下来小编就为大家整理了这篇人教版八年级数学全等三角形知识点讲解,希望能够对大家有所协助。

八年级数学沪科版知识点

八年级数学沪科版知识点

八年级数学沪科版知识点知识是取之不尽,用之不竭的。

只有限度地挖掘它,才能体会到学习的乐趣。

任何一门学科的知识都需要大量的记忆和练习来巩固。

虽然辛苦,但也伴随着快乐!下面是小编给大家整理的一些八年级数学的知识点,希望对大家有所帮助。

初二上学期数学知识点归纳位置与坐标1、确定位置在平面内,确定一个物体的位置一般需要两个数据。

2、平面直角坐标系①含义:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系。

②通常地,两条数轴分别置于水平位置与竖直位置,取向右与向上的方向分别为两条数轴的正方向。

水平的数轴叫做x轴或者横轴,竖直的数轴叫y轴和纵轴,二者统称为坐标轴,它们的公共原点o被称为直角坐标系的原点。

③建立了平面直角坐标系,平面内的点就可以用一组有序实数对来表示。

④在平面直角坐标系中,两条坐标轴将坐标平面分成了四部分,右上方的部分叫第一象限,其他三部分按逆时针方向叫做第二象限,第三象限,第四象限,坐标轴上的点不在任何一个象限。

⑤在直角坐标系中,对于平面上任意一点,都有的一个有序实数对(即点的坐标)与它对应;反过来,对于任意一个有序实数对,都有平面上的一点与它对应。

3、轴对称与坐标变化关于x轴对称的两个点的坐标,横坐标相同,纵坐标互为相反数;关于y轴对称的两个点的坐标,纵坐标相同,横坐标互为相反数。

八年级上册数学知识点沪科版分数的加减法1.通分与约分虽都是针对分式而言,但却是两种相反的变形.约分是针对一个分式而言,而通分是针对多个分式而言;约分是把分式化简,而通分是把分式化繁,从而把各分式的分母统一起来.2.通分和约分都是依据分式的基本性质进行变形,其共同点是保持分式的值不变.3.一般地,通分结果中,分母不展开而写成连乘积的形式,分子则乘出来写成多项式,为进一步运算作准备.4.通分的依据:分式的基本性质.5.通分的关键:确定几个分式的公分母.通常取各分母的所有因式的次幂的积作公分母,这样的公分母叫做最简公分母.6.类比分数的通分得到分式的通分:把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分.7.同分母分式的加减法的法则是:同分母分式相加减,分母不变,把分子相加减。

最新(沪科版)八年级数学上册知识点总结

最新(沪科版)八年级数学上册知识点总结

最新(沪科版)八年级数学上册知识点总结
本文档对最新(沪科版)八年级数学上册的知识点进行了总结,旨在帮助学生回顾和巩固所学的数学知识。

第一章:整数
- 整数的定义和性质
- 整数的加法和减法运算
- 整数的乘法和除法运算
- 整数的应用问题解决
第二章:小数
- 小数的概念和性质
- 小数的加法和减法运算
- 小数的乘法和除法运算
- 小数的应用问题解决
第三章:代数式
- 代数式的概念和性质
- 代数式的加法和减法运算
- 代数式的乘法和除法运算
- 代数式的因式分解和提公因式
- 代数式的应用问题解决
第四章:方程
- 方程的概念和性质
- 一元一次方程的解
- 一元一次方程的应用问题解决
第五章:平面图形
- 点、线、线段、射线、角的概念和性质- 三角形、四边形、多边形的概念和性质- 平行线和平行四边形的性质
- 圆的概念和性质
- 平面图形的应用问题解决
第六章:数的比和相等
- 数的比的概念和性质
- 比例的概念和性质
- 比例的应用问题解决
第七章:百分数
- 百分数的概念和性质
- 百分数的四则运算
- 百分数的应用问题解决
第八章:数据的收集、整理和分析
- 数据的收集和整理方法
- 数据的图表表示和分析
- 数据的应用问题解决
以上是最新(沪科版)八年级数学上册的知识点总结,希望对学生复习和备考有所帮助。

沪科版数学八年级上册全册教案及单元知识点总结

沪科版数学八年级上册全册教案及单元知识点总结
y轴上的点的横坐标为0,表示为(0,y).
4.通过这节课的学习,你还有哪些疑惑,大家交流.
【教学说明】引导学生自己小结本节课的知识要点及数学方法,从而将本节知识点进行很好的回顾以加深学生的印象,同时使知识系统化.
1.课本第5页练习1、2、3.
2.完成练习册中相应的作业.
基于本节课内容的特点和学生的心理及思维发展的特征,在教学中选择激趣法、讨论法和总结法相结合.通过学习使学生理解和掌握平面直角坐标系的有关知识,领会其特征,经历现实生活中有关有序实数对的例子,让学生充分体会平面直角坐标系是构建有序实数对的平台,体会现实生活中的坐标的应用价值,激发学习的兴趣.
2.教师归纳
利用平面直角坐标系绘制区域内一些地点分布情况平面图的过程如下:
(1)建立直角坐标系,选择一个适当的参照为原点,确定x轴、y轴的正方向.
(2)依据具体问题确定适当的比例尺,在坐标轴上标出单位长度.
(3)在坐标平面的内部画出这些点,写出各点的坐标和各个地点的名称.
二、问题牵引,引入研究
【问题】如图,△ABC在坐标平面上平移后得到新图形△A1B1C1.
A.第一象限B.第二象限
C.第三象限D.第四象限
2.在平面直角坐标系中,若点P(a-3,a+1)在第二象限,则a的取值范围为()
A.-1<a<3B.a>3
C.a<-1D.a>-1
3.如图为九嶷山风景区的几个景点的平面图,以舜帝陵为坐标原点,建立平面直角坐标系,则玉王宫岩所在位置的坐标为.
4.写出图中点A、B、C、D、E、F的坐标.(注:每小格的长度代表单位“1”.)
【教学说明】学生通过思考问题,复习旧知识,为新知识建立铺垫.
2.问题提出.
提问:请同学们观看屏幕投影片,你发现了什么?

八年级上册数学总复习知识点考点沪科版

八年级上册数学总复习知识点考点沪科版

八年级上册数学总复习知识点考点沪科版【篇一】八年级上册数学知识点沪科版(一)运用公式法我们知道整式乘法与因式分解互为逆变形。

如果把乘法公式反过来就是把多项式分解因式。

于是有:a2-b2=(a+b)(a-b)a2+2ab+b2=(a+b)2a2-2ab+b2=(a-b)2如果把乘法公式反过来,就可以用来把某些多项式分解因式。

这种分解因式的方法叫做运用公式法。

(二)平方差公式平方差公式(1)式子:a2-b2=(a+b)(a-b)(2)语言:两个数的平方差,等于这两个数的和与这两个数的差的积。

这个公式就是平方差公式。

(三)因式分解1.因式分解时,各项如果有公因式应先提公因式,再进一步分解。

2.因式分解,必须进行到每一个多项式因式不能再分解为止。

(四)完全平方公式(1)把乘法公式(a+b)2=a2+2ab+b2和(a-b)2=a2-2ab+b2反过来,就可以得到:a2+2ab+b2=(a+b)2a2-2ab+b2=(a-b)2这就是说,两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方。

把a2+2ab+b2和a2-2ab+b2这样的式子叫完全平方式。

上面两个公式叫完全平方公式。

(2)完全平方式的形式和特点①项数:三项②有两项是两个数的的平方和,这两项的符号相同。

③有一项是这两个数的积的两倍。

(3)当多项式中有公因式时,应该先提出公因式,再用公式分解。

(4)完全平方公式中的a、b可表示单项式,也可以表示多项式。

这里只要将多项式看成一个整体就可以了。

(5)分解因式,必须分解到每一个多项式因式都不能再分解为止。

(五)分组分解法我们看多项式am+an+bm+bn,这四项中没有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式.如果我们把它分成两组(am+an)和(bm+bn),这两组能分别用提取公因式的方法分别分解因式.原式=(am+an)+(bm+bn)=a(m+n)+b(m+n)做到这一步不叫把多项式分解因式,因为它不符合因式分解的意义.但不难看出这两项还有公因式(m+n),因此还能继续分解,所以原式=(am+an)+(bm+bn)=a(m+n)+b(m+n)=(m+n)×(a+b).学好数学的关键就在于要适时适量地进行总结归类,接下来小编就为大家整理了这篇人教版八年级数学全等三角形知识点讲解,希望可以对大家有所帮助。

八年级上册数学知识点泸科

八年级上册数学知识点泸科

八年级上册数学知识点泸科八年级上册数学知识点概述
泸科
数学对于每一个学生来说都是非常重要的一门科目。

今天,我们要来讲解八年级上册数学的知识点,其中包含了许多重要的知识点,这些知识点是建立在以前学习的知识点之上的。

让我们一起来回顾吧。

1. 有理数
在初中数学中,有理数是比较重要的一部分。

有理数的定义是可以表示为分数形式的数字,它包括了正整数、负整数和分数。

有理数的加减乘除要掌握好,尤其需要注意分数的计算。

2. 代数式
代数式也是八年级上册数学的重点之一。

代数式是由数字、字母和运算符号组成的式子,例如:3x+5。

在计算代数式的过程中需要掌握好各种基本公式,例如:因式分解、配方法等。

3. 方程
方程在初中阶段就开始学习。

方程是由未知数和已知数及其系数以及运算符号组成的等式形式。

解方程需要掌握好方程的基本性质和变形方法。

4. 几何
几何在初中是重要的一部分。

其中,尤其需要掌握好平面图形的性质,例如:三角形、四边形等。

此外,还要注意对方向的判断和细心的观察。

5. 概率
概率也是八年级上册数学的重点之一。

概率是研究事件发生的
可能性的一门学科,需要注意计算概率的方法和概率的基本概念,例如:试验、随机事件和样本空间等。

以上是八年级上册数学的重点知识点,我们需要不断地进行练习,理论与实践相结合才能更好地掌握这些知识点。

祝大家在学
习数学的过程中取得好成绩!。

沪科版八年级上册数学知识汇总(最新最全)

沪科版八年级上册数学知识汇总(最新最全)

八年级上册数学知识汇总(HK)第十一章平面直角坐标系1、定义:在平面内由两条互相垂直且共原点的数轴组成,水平的数轴叫做x轴或横轴,取右为正,竖直的数轴叫做y轴或纵轴,取上为正. y(1)x轴上坐标(x,0); (-,+) (+,+)(2)y轴上坐标(0,y); O x(3)原点坐标(0,0). (-,-) (+,-)2、对称问题: x轴P1 (a,-b)P(a,b)关于 y轴的对称点P2 (-a,b)原点3 (-a,-b)口诀:关于谁对称,谁不变,另一个互反.3.距离问题:(1) P(a,b)到x轴的距离是︱b︱;(2) P(a,b)到y轴的距离是︱a︱;(3) P(a,b)到原点的距离是√a2+b2;(4)A、B中点公式:A(x1,y1)、B(x2,y2) P( x1+x22,y1+y22);(5)A(x1,y1)、B(x2,y2)距离公式:AB=√(x1-x2)2+(y1-y2)2(6)象限角平分线:P(a,a)在一三象限角平分线上,P(a,-a)在二四象限角平分线上.4.平行(或垂直)问题:A(x1,y1)、B(x2,y2)(1)AB∥x轴(或⊥y轴) 1=y2且x1≠x2同时AB=︱x1-x2︱;(2)AB∥y轴(或⊥x轴) 1=x2且y1≠y2同时AB=︱y1-y2︱.第十一章一次函数1.函数的表示方法:列表、图象(列表、描点、平滑线)、解析法.2.函数的定义:设在一个变化过程中有两个变量x,y.如果对于x在它允许取值范围内的每一个值,y都有唯一确定的值与它对应,那么就说x是自变量,y是因变量,y是x的函数.(1)x,y为代表,其它字母均可;(2)每一个x有唯一的y与之对应,但一个y可能有多个x与之对应;y y ···x , x1x n(3)函数图象的判定:若移动y轴时,与图象始终有唯一的交点,则图象为函数图象.3.函数自变量(x)的取值范围:(1)整式型,x∈R;(2)分式型(或负指数),分母不为零(非字母);(3)二次根式型,被开方数≥0(非字母);(4)复合型,列不等式求解集;(5)实际问题型,符合客观解.4.常见函数的图象:(1)一次函数y=kx+b:直线;(2)二次函数y=a x2+bx+c:抛物线;5.一次函数的定义:形如y=kx+b(k≠0)的函数,当b=0时,y=kx叫做正比例函数.(1)k、b的几何意义:斜率k决定直线倾斜方向与程度;截距b:直线与y轴交点的y坐标;(2)正比例函数图象与性质:y yx xk>0 k<0性质:①图象经过(0,0)与(1,k);②当k>0时,经过一、三象限,直线增而增(或减而减),当k<0时,经过二、四象限,直线增而减(或减而增);③︱k︱越大,直线越陡(靠近y轴);(3)一次函数图象与性质:y y y yx x x x①②③④①k>0,b>0 二三②k>0,b<0 一三四③k<0,b>0 二四④k<0,b<0 二三四(4)一次函数的移动:上下移动直接改变b,左右移动要数学结合(或用点截式截解析式);6.待定系数法:一设二代三求四写,具体如下:(1)两点式;(2)点斜式;(3)点截式;(4)斜截式;(5)求k公式:k=△y△x =y1-y2x1-x2=y2-y1x2-x1(6)2.5坐标策略(斜率法).7.分段函数:先求每个x取值范围的分函数,后合并.(1)一般步骤:求分函数合成画图(或求自变量)给x求y 给y求x;(2)拐点的作用:作图时,承上启下;代指时,对应范围求值.8.优化方案:(1)先求y1与y2;(2)在利用数形结合或作差法选择方案.8.一次函数与一元一次方程、一元一次不等式的关系(数形结合)锁定形而求形的范围:x轴上方:kx+b>0;x轴相交:kx+b=0;x轴下方:kx+b<0.9.一次函数与二元一次方程(组)的关系(1)二元一次方程的解可转化为有序实数对,取两点可得对应直线.l1: y1=k1x+b1①k1≠k2有唯一交点(k1·k2=-1)(2)k与b的作用:②k1﹦k2, b1﹦b2重合l2: y2=k2x+b2③k1﹦k2, b1≠b2平行第十三章三角形的边角关系、命题与证明1.三角形的定义、元素、表示、分类(边角都是两类)、性质等.2.边的性质:两角之和大于第三边,两角之差小于第三边.(1)三角形的存在:a小+a中>a大;(2)给定a,b求第三边x的范围:∣a-b∣<x<∣a+b∣(3)等腰三角形:2腰>底3.等腰三角形(以底或以角)易产生双解,几何体不给图也易产生双解.4.角的性质:三角形的内角和为180°,外角和为360°(性质定理).(1)RT△的两锐角互余(性质定理);(2)两锐角互余的三角形是RT△(判定定理);(3)三角形的一个外角等于与它不相邻的两个内角(性质定理);5.直角三角形的判定方法:(1)求出最大角为90°;(2)两角之和等于第三个角(可以是比例);(3)两角之差等于第三个角(可以是比例);6.三角形特殊线段三角形特殊线段项目结论类别图形条数交点作用特殊角角平分线三内内部(内心I) 角平分线三段论1.二分角(1)ɑ內内=90°+∠A2(1)ɑ內外=∠A2(1)ɑ外外=90°-∠A2中线三内内部(重心G)1.中线三段论2.等面积3.等积变换高线锐角三角形三内内部(垂心H)1.直角(90°)2.高3.等积变换直角三角形两边一内直角顶点 2.高平角ɑ高平=∣∠B-∠C∣2钝角三角形两外一内外部(靠钝)3.高高角ɑ高高=180°-∠A7.命题的定义:(1)分类:公理(基本事实)、定理、推理、(习题的结论);(2)元素:条件(p)与结论(q);(3)互逆.第十四章全等三角形1.定义:能够重合的两个三角形;2.记作:△ABC≌△A1B1C1;3.对应元素:对应顶点、对应角、对应边;4.性质:(1)对应角相等,(2)对应边相等,(3)对应周长、面积相等,(4)对应角平分线、中线、高线相等;5.判定定理:① AAA 假反例:一大一小的等边三角形;② ASA 真公理尺规作图(1)一般三角形的判定③ AAS 真定理由②推理④ SAS 真公理尺规作图 A(A 1)⑤ ASS 假反例: B(B 1)⑥ SSS 真公理尺规作图 C 1 C(2)直角三角形的判定(4+1):HL(尺规作图).6.三角形全等的证明思路(求角与边,可能联想证明;求高时可能使用等积变换公式):①找夹角:S A S三 (1)已知两边对应相等②找一边:SS S角③找直角:HL形 (2)已知一边一角对应相等①找一角:A A S或AS A全②找一边:SA S等 (3)已知两角对应相等①找夹边:A S A②找一边:AA S7.证明的格式(易:一次证明;较难:两次证明):(1)准备:根据策略找足条件···(2)正文:在△ABC与△A1B1C1中···(3)结论与应用:△ABC≌△A1B1C1···第十五章轴对称图形与等腰三角形1.轴对称与轴对称图形的异同点:(1)构成:两个图象关于对称轴(2+1)是对称的(adj), 轴对称图形(1)是n;(2)图象:A l A1 AB C 1 B1 B C△ABC与△A1B1C1关于直线l是对称的等腰三角形ABC是一个轴对称图形(常见的有角、线段、长方形等)2.线段的垂直平分线(中垂线)的定义:(1)画法(尺规作图,理由:先SSS后SAS);(2)性质定理:线段垂直平分线的点到线段两端的距离相等(理由:先SSS后SAS);(3)判定定理:到线段两端距离相等的点在线段的垂直平分线上(理由:先SSS后SAS).3.等腰三角形:有条边相等的三角形(即AB=AC 等腰三角形ABC).(1)性质:①两底角相等;②两腰相等;③轴对称图形;④顶角三线合一;(2)判定:①有两边相等的三角形是等腰三角形;②有两边相等的三角形是等腰三角形;4.等边三角形:三边都相等的三角形(即AB=BC=CA ABC).(1)性质:①三边相等;②三角相等;③轴对称图形(有3条对称轴);(2)判定:①三边相等;②三角相等;③有一个角为60°的等腰三角形;(3)(直角三角形的一个)定理:在直角三角形中,30°所对的直角边等于斜边的一半;5.角的平分线:(1)画法(尺规作图,理由:SSS);(2)性质性质:角平分线上的点到角的两边距离相等(理由:AAS);(3)判定定理:角的内部到角两边距离相等的点在角的平分线上(理由:HL).6.过已知点作已知直线的垂线(尺规作图):(1)点在线外;(2)点在线上.。

八年级上沪科版数学知识点

八年级上沪科版数学知识点

八年级上沪科版数学知识点八年级上学期数学课程是学生初步接触高中数学概念的阶段,因此学生需要在学习过程中认真掌握各种数学知识点,为高中数学的学习打下坚实的基础。

下面是八年级上学期沪科版数学课程的知识点总结:
一、正数、负数与小数
1、正数、负数及其互补数的概念及性质。

2、小数的基本概念和读写方法,小数的四则运算及应用。

3、数字大小的比较。

二、代数式的基本概念
1、代数式的基本概念和形式,字母的含义。

2、代数式的分类和性质,化简代数式的方法。

三、一次方程组
1、一次方程组的概念和解法。

2、应用实际问题中的一次方程组解法。

四、平面图形的认识
1、图形的基本概念和分类。

2、直角三角形和等腰三角形的特征及性质。

3、圆的基本概念及其性质,圆内角的度数和定理。

五、大数的运算
1、大数的认识和四则运算。

2、用科学计数法表示大数及其运算法则。

六、倍数和因数
1、倍数和因数的概念及其简单的应用。

2、正整数的整除与素数的概念及应用。

七、比例和比例度量
1、比例的概念、性质及其应用。

2、比例度量的概念、方法及其分析解决实际问题的能力。

八、平面直角坐标系
1、平面直角坐标系的概念及其坐标的定义。

2、平面图形及其位置关系的表示及分析。

以上是八年级上学期沪科版数学的主要知识点,每个知识点都是学生在数学课程中必须掌握的基础。

在学习过程中,学生需要理解重要的数学概念,掌握数学应用的方法,总结数学思维,培养自己的逻辑思维和分析解决问题的能力,从而在高中数学的学习过程中更加游刃有余。

沪科版数学八年级上册重点知识点汇总

沪科版数学八年级上册重点知识点汇总

沪科版数学八年级上册重点知识点汇总第十一章平面直角坐标系知识导图重点知识点要点一、有序数对把一对数按某种特定意义,规定了顺序并放在一起就形成了有序数对,人们在生产生活中经常以有序数对为工具表达一个确定的意思,如某人记录某个月不确定周期的零散收入,可用(13,2000),(17,190),(21,330)…,表示,其中前一数表示日期,后一数表示收入,但更多的人们还是用它来进行空间定位,如:(4,5),(20,12),(13,2),…,用来表示电影院的座位,其中前一数表示排数,后一数表示座位号.要点二、平面直角坐标系平面内两条互相垂直的数轴构成平面直角坐标系,简称直角坐标系.水平的数轴称为x 轴或横轴,向右为正方向;铅直方向的数轴称为y轴或纵轴,向上为正方向,两轴的交点O 是原点.如下图:要点诠释:(1)两条坐标轴将平面分成4个区域:第一象限、第二象限、第三象限、第四象限,x轴与y 轴上的点(包括原点)不属于任何一个象限.(2)在平面上建立平面直角坐标系后,坐标平面上的点与有序数对(x,y)之间建立了一一对应关系,这样就将‘形’与‘数’联系起来,从而实现了代数问题与几何问题的转化.(3)要熟记坐标系中一些特殊点的坐标及特征:①x 轴上的点纵坐标为零;y 轴上的点横坐标为零.②平行于x 轴直线上的点横坐标不相等,纵坐标相等;平行于y 轴直线上的点横坐标相等,纵坐标不相等.③关于x 轴对称的点横坐标相等,纵坐标互为相反数;关于y 轴对称的点纵坐标相等,横坐标互为相反数;关于原点对称的点横、纵坐标分别互为相反数.④象限角平分线上的点的坐标特征:一、三象限角平分线上的点横、纵坐标相等;二、四象限角平分线上的点横、纵坐标互为相反数.注:反之亦成立.(4)理解坐标系中用坐标表示距离的方法和结论:①坐标平面内点P(x,y)到x 轴的距离为|y|,到y 轴的距离为|x|.②x 轴上两点A(x 1,0)、B(x 2,0)的距离为AB=|x 1-x 2|;y 轴上两点C(0,y 1)、D(0,y 2)的距离为CD=|y 1-y 2|.③平行于x 轴的直线上两点A(x 1,y)、B(x 2,y)的距离为AB=|x 1-x 2|;平行于y 轴的直线上两点C(x,y 1)、D(x,y 2)的距离为CD=|y 1-y 2|.(5)利用坐标系求一些知道关键点坐标的几何图形的面积常用方法:切割、拼补.要点三、坐标方法的简单应用1.用坐标表示地理位置(1)建立坐标系,选择一个适当的参照点为原点,确定x 轴、y 轴的正方向;(2)根据具体问题确定适当的比例尺,在坐标轴上标出单位长度;(3)在坐标平面内画出这些点,写出各点的坐标和各个地点的名称.要点诠释:(1)我们习惯选取向东、向北分别为x 轴、y 轴的正方向,建立坐标系的关键是确定原点的位置.(2)确定比例尺是画平面示意图的重要环节,要结合比例尺来确定坐标轴上的单位长度.2.用坐标表示平移(1)点的平移点的平移引起坐标的变化规律:在平面直角坐标中,将点(x,y)向右(或左)平移a 个单位长度,可以得到对应点(x+a,y)(或(x-a,y));将点(x,y)向上(或下)平移b 个单位长度,可以得到对应点(x,y+b)(或(x,y-b)).要点诠释:上述结论反之亦成立,即点的坐标的上述变化引起的点的平移变换.(2)图形的平移在平面直角坐标系内,如果把一个图形各个点的横坐标都加(或减去)一个正数a,相应的新图形就是把原图形向右(或向左)平移a 个单位长度;如果把它各个点的纵坐标都加(或减去)一个正数a,相应的新图形就是把原图形向上(或向下)平移a 个单位长度.要点诠释:平移是图形的整体运动,某一个点的坐标发生变化,其他点的坐标也进行了相应的变化,反过来点的坐标发生了相应的变化,也就意味着点的位置也发生了变化,其变化规律遵循:“右加左减,纵不变;上加下减,横不变”.第十二章一次函数知识导图重点知识点要点一、函数的相关概念一般地,在一个变化过程中.如果有两个变量x 与y ,并且对于x 的每一个确定的值,y 都有唯一确定的值与其对应,那么我们就说x 是自变量,y 是x 的函数.y 是x 的函数,如果当x =a 时y =b ,那么b 叫做当自变量为a 时的函数值.函数的表示方法有三种:解析式法,列表法,图象法.要点二、一次函数的相关概念一次函数的一般形式为y kx b =+,其中k 、b 是常数,k ≠0.特别地,当b =0时,一次函数y kx b =+即y kx =(k ≠0),是正比例函数.要点三、一次函数的图象及性质1、函数的图象如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象.要点诠释:直线y kx b =+可以看作由直线y kx =平移|b |个单位长度而得到(当b >0时,向上平移;当b <0时,向下平移).说明通过平移,函数y kx b =+与函数y kx =的图象之间可以相互转化.变化的世界函数建立数学模型应用概念选择方案概念再认识表示方法图象性质一次函数(正比例函数)一元一次方程一元一次不等式二元一次方程组与数学问题的综合与实际问题的综合列表法解析法图象法2、一次函数性质及图象特征掌握一次函数的图象及性质(对比正比例函数的图象和性质)要点诠释:理解k 、b 对一次函数y kx b =+的图象和性质的影响:(1)k 决定直线y kx b =+从左向右的趋势(及倾斜角α的大小——倾斜程度),b 决定它与y 轴交点的位置,k 、b 一起决定直线y kx b =+经过的象限.(2)两条直线1l :11y k x b =+和2l :22y k x b =+的位置关系可由其系数确定:12k k ≠⇔1l 与2l 相交;12k k =,且12b b ≠⇔1l 与2l 平行;12k k =,且12b b =⇔1l 与2l 重合;(3)直线与一次函数图象的联系与区别一次函数的图象是一条直线;特殊的直线x a =、直线y b =不是一次函数的图象.要点四、用函数的观点看方程、方程组、不等式方程(组)、不等式问题函数问题从“数”的角度看从“形”的角度看求关于x 、y的一元一次方程ax b +=0(a ≠0)的解x 为何值时,函数y ax b =+的值为0?确定直线y ax b =+与x 轴(即直线y =0)交点的横坐标求关于x 、y 的二元一次方程组1122=+⎧⎨=+⎩,.y a x b y a x b 的解.x 为何值时,函数11y a x b =+与函数22y a x b =+的值相等?确定直线11y a x b =+与直线22y a x b =+的交点的坐标求关于x 的一元一次不等式ax b +>0(a ≠0)的解集x 为何值时,函数y ax b =+的值大于0?确定直线y ax b =+在x 轴(即直线y =0)上方部分的所有点的横坐标的范围第十三章三角形中的边角关系、命题与证明知识导图重点知识点要点一、定义、命题及证明1.定义:一般地,用来说明一个名词或者一个术语的意义的句子叫做定义.2.命题:判断一件事情的句子,叫做命题.要点诠释:(1)每个命题都由题设、结论两部分组成,题设是已知事项,结论是由已知事项推出的事项.(2)正确的命题称为真命题,不正确的命题称为假命题.(3)公认的真命题叫做公理.(4)经过证明的真命题称为定理.3.证明:在很多情况下,一个命题的正确性需要经过推理,才能作出判断,这种演绎推理的过程称为证明.要点诠释:(1)实验、观察、操作所得出的结论不一定都正确,必须推理论证后才能得出正确的结论.(2)证明中的每一步推理都要有根据,不能“想当然”,这些根据可以是已知条件,学过的定义、基本事实、定理等.(3)判断一个命题是正确的,必须经过严格的证明;判断一个命题是假命题,只需列举一个反例即可.要点二、平行线的判定与性质1.平行线的判定判定方法1:同位角相等,两直线平行.判定方法2:内错角相等,两直线平行.判定方法3:同旁内角互补,两直线平行.要点诠释:根据平行线的定义和平行公理的推论,平行线的判定方法还有:(1)平行线的定义:在同一平面内,如果两条直线没有交点(不相交),那么两直线平行.(2)如果两条直线都平行于第三条直线,那么这两条直线平行(平行线的传递性).(3)在同一平面内,垂直于同一直线的两条直线平行.(4)平行公理:经过直线外一点,有且只有一条直线与这条直线平行.2.平行线的性质性质1:两直线平行,同位角相等;性质2:两直线平行,内错角相等;性质3:两直线平行,同旁内角互补.要点诠释:根据平行线的定义和平行公理的推论,平行线的性质还有:(1)若两条直线平行,则这两条直线在同一平面内,且没有公共点.(2)如果一条直线与两条平行线中的一条直线垂直,那么它必与另一条直线垂直.要点三、三角形的内角和定理及推论三角形的内角和定理:三角形的内角和等于180°.推论:(1)三角形的一个外角等于和它不相邻的两个内角的和.(2)三角形的一个外角大于任何一个和它不相邻的内角.要点诠释:(1)由一个公理或定理直接推出的真命题,叫做这个公理或定理的推论.(2)推论可以当做定理使用.第十四章全等三角形知识导图重点知识点要点一、全等三角形的判定与性质要点二、全等三角形的证明思路SAS HL SSS AAS SAS ASA AAS ASA AAS ⎧→⎧⎪⎪→⎨⎪⎪⎪→⎩⎪⎪→→⎧⎪⎪→⎧⎪⎪⎨⎨⎪→⎨⎪⎪⎪⎪⎪→⎩⎩⎪⎪→⎧⎪⎨→⎪⎩⎪⎩找夹角已知两边找直角找另一边边为角的对边找任一角找夹角的另一边已知一边一角边为角的邻边找夹边的另一角找边的对角找夹边已知两角找任一边要点三、角平分线的性质1.角的平分线的性质定理角的平分线上的点到这个角的两边的距离相等.2.角的平分线的判定定理角的内部到角的两边距离相等的点在角的平分线上.3.三角形的角平分线三角形角平分线交于一点,且到三边的距离相等.4.与角平分线有关的辅助线在角两边截取相等的线段,构造全等三角形;一般三角形直角三角形判定边角边(SAS)角边角(ASA)角角边(AAS)边边边(SSS)两直角边对应相等一边一锐角对应相等斜边、直角边定理(HL)性质对应边相等,对应角相等(其他对应元素也相等,如对应边上的高相等)备注判定三角形全等必须有一组对应边相等在角的平分线上取一点向角的两边作垂线段.要点四、全等三角形证明方法全等三角形是平面几何内容的基础,这是因为全等三角形是研究特殊三角形、四边形、相似图形、圆等图形性质的有力工具,是解决与线段、角相关问题的一个出发点.运用全等三角形,可以证明线段相等、线段的和差倍分关系、角相等、两直线位置关系等常见的几何问题.可以适当总结证明方法.1.证明线段相等的方法:(1)证明两条线段所在的两个三角形全等.(2)利用角平分线的性质证明角平分线上的点到角两边的距离相等.(3)等式性质.2.证明角相等的方法:(1)利用平行线的性质进行证明.(2)证明两个角所在的两个三角形全等.(3)利用角平分线的判定进行证明.(4)同角(等角)的余角(补角)相等.(5)对顶角相等.3.证明两条线段的位置关系(平行、垂直)的方法;可通过证明两个三角形全等,得到对应角相等,再利用平行线的判定或垂直定义证明. 4.辅助线的添加:(1)作公共边可构造全等三角形;(2)倍长中线法;(3)作以角平分线为对称轴的翻折变换全等三角形;(4)利用截长(或补短)法作旋转变换的全等三角形.5.证明三角形全等的思维方法:(1)直接利用全等三角形判定和证明两条线段或两个角相等,需要我们敏捷、快速地发现两条线段和两个角所在的两个三角形及它们全等的条件.(2)如果要证明相等的两条线段或两个角所在的三角形全等的条件不充分时,则应根据图形的其它性质或先证明其他的两个三角形全等以补足条件.(3)如果现有图形中的任何两个三角形之间不存在全等关系,此时应添置辅助线,使之出现全等三角形,通过构造出全等三角形来研究平面图形的性质.第十五章轴对称图形与等腰三角形知识导图重点知识点要点一、轴对称1.轴对称图形和轴对称(1)轴对称图形如果一个图形沿着某一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴.轴对称图形的性质:轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线.(2)轴对称定义:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴.成轴对称的两个图形的性质:①关于某条直线对称的两个图形形状相同,大小相等,是全等形;②如果两个图形关于某条直线对称,则对称轴是任何一对对应点所连线段的垂直平分线;③两个图形关于某条直线对称,如果它们的对应线段或延长线相交,那么它们的交点在对称轴上.(3)轴对称图形与轴对称的区别和联系区别:轴对称是指两个图形的位置关系,轴对称图形是指具有特殊形状的一个图形;轴对称涉及两个图形,而轴对称图形是对一个图形来说的.联系:如果把一个轴对称图形沿对称轴分成两个图形,那么这两个图形关于这条轴对称;如果把成轴对称的两个图形看成一个整体,那么它就是一个轴对称图形.2.线段的垂直平分线垂直并且平分一条线段的直线,叫做这条线段的垂直平分线,也叫线段的中垂线.3.作轴对称图形(1)几何图形都可以看作由点组成,我们只要分别作出这些点关于对称轴的对应点,再连接这些点,就可以得到原图形的轴对称图形;(2)对于一些由直线、线段或射线组成的图形,只要作出图形中的一些特殊点(如线段端点)的对称点,连接这些对称点,就可以得到原图形的轴对称图形.4.用坐标表示轴对称点(x,y)关于x轴对称的点的坐标为(x,-y);点(x,y)关于y轴对称的点的坐标为(-x,y);点(x,y)关于原点对称的点的坐标为(-x,-y).要点二、线段、角的轴对称性1.线段的轴对称性(1)线段是轴对称图形,线段的垂直平分线是它的对称轴.(2)线段垂直平分线的性质定理:线段垂直平分线上的点到线段两端的距离相等;(3)线段垂直平分线的性质定理的逆定理:到线段两个端距离相等的点在线段的垂直平分线2.角的轴对称性(1)角是轴对称图形,角的平分线所在的直线是它的对称轴.(2)角平分线上的点到角两边的距离相等.(3)角的内部到角两边距离相等的点在角的平分线上.要点三、等腰三角形1.等腰三角形(1)定义:有两边相等的三角形,叫做等腰三角形.(2)等腰三角形性质①等腰三角形的两个底角相等,即“等边对等角”;②等腰三角形顶角的平分线、底边上的中线与底边上的高线互相重合(简称“三线合一”).特别地,等腰直角三角形的每个底角都等于45°.(3)等腰三角形的判定如果一个三角形有两个角相等,那么这两个角所对的边也相等(即“等角对等边”).2.等边三角形(1)定义:三条边都相等的三角形,叫做等边三角形.(2)等边三角形性质:等边三角形的三个角相等,并且每个角都等于60°.(3)等边三角形的判定:①三条边都相等的三角形是等边三角形;②三个角都相等的三角形是等边三角形;③有一个角为60°的等腰三角形是等边三角形.3.直角三角形的性质定理:直角三角形斜边上的中线等于斜边的一半.。

沪教版八年级上册数学(全册知识点考点梳理、重点题型分类巩固练习)(提高版)(家教、补习、复习用)

沪教版八年级上册数学(全册知识点考点梳理、重点题型分类巩固练习)(提高版)(家教、补习、复习用)

沪教版初二数学上册知识点梳理重点题型(常考知识点)巩固练习二次根式的概念和性质(提高)知识讲解【学习目标】1、理解二次根式的概念,了解被开方数是非负数的理由.2、理解并掌握下列结论:,,,并利用它们进行计算和化简.3、理解并掌握同类二次根式和最简二次根式的概念,能运用二次根式的有关性质进行化简.【要点梳理】要点一、二次根式及代数式的概念1.二次根式:一般地,我们把形如 (a≥0)•的式子叫做二次根式,“”称为二次根号.要点诠释:二次根式的两个要素:①根指数为2;②被开方数为非负数.2.代数式:形如5,a,a+b,ab,,x3,这些式子,用基本的运算符号(基本运算包括加、减、乘、除、乘方、开方)把数和表示数的字母连接起来的式子,我们称这样的式子为代数式.要点二、二次根式的性质1、;2.;3..要点诠释:1.二次根式 (a≥0)的值是非负数。

一个非负数可以写成它的算术平方根的形式,即.2.与要注意区别与联系:1).的取值范围不同,中≥0,中为任意值.2).≥0时, ==; <0时,无意义, =.要点三、最简二次根式(1)被开方数不含有分母;(2)被开方数中不含能开得尽方的因数或因式.满足这两个条件的二次根式叫最简二次根式.要点诠释:二次根式化成最简二次根式主要有以下两种情况:(1) 被开放数是分数或分式;(2)含有能开方的因数或因式.要点四、同类二次根式1.定义:几个二次根式化成最简二次根式后,如果被开方数相同,那么这几个二次根式就叫做同类二次根式.要点诠释:(1)判断几个二次根式是否是同类二次根式,必须先将二次根式化成最简二次根式,再看被开方数是否相同;(2)几个二次根式是否是同类二次根式,只与被开方数及根指数有关,而与根号外的因式无关.2.合并同类二次根式合并同类二次根式,只把系数相加减,根指数和被开方数不变(合并同类二次根式的方法与整式加减运算中的合并同类项类似).要点诠释:(1)根号外面的因式就是这个根式的系数;(2)二次根式的系数是带分数的要变成假分数的形式.【典型例题】类型一、二次根式的概念1.(2016春•天津期末)已知y=+﹣4,计算x﹣y2的值.【思路点拨】根据二次根式有意义的条件可得:,解不等式组可得x的值,进而可求出y的值,然后代入x﹣y2求值即可.【答案与解析】解:由题意得:,解得:x=,把x=代入y=+﹣4,得y=﹣4,当x=,y=﹣4时x﹣y2=﹣16=﹣14.【总结升华】此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.举一反三【变式】方程,当时,的取值范围是()A. B.≥2 C. D.≤2【答案】 C.类型二、二次根式的性质2.根据下列条件,求字母x的取值范围:(1); (2).【答案与解析】(1)(2)【总结升华】二次根式性质的运用.举一反三【变式】(2014春•铁东区校级月考)问题探究:因为,所以,因为,所以请你根据以上规律,结合你的以验化简下列各式:(1);(2).【答案】解:(1)==;(2)==.3. (2015•罗平县校级模拟)已知,1≤x≤3,化简: =_______.【思路点拨】由题意1≤x≤3,可以判断1﹣x≤0;x﹣3≤0,然后再直接开平方进行求解.【答案】2.【解析】解:∵1≤x≤3,∴1﹣x≤0,x﹣3≤0,∴=x﹣1+3﹣x=2.【总结升华】此题主要考查二次根式的性质和化简,计算时要仔细,是一道基础题.【:高清: 381279:经典例题4】4.已知为三角形的三边,则=.【答案】.【解析】为三角形的三边, ,即原式==.【总结升华】重点考查二次根式的性质:的同时,复习了三角形三边的性质.类型三、最简二次根式5.已知0<<,化简.【答案与解析】原式===.【总结升华】成立的条件是>0;若<0,则.类型四、同类二次根式6. 如果两个最简二次根式和是同类二次根式,那么、的值是( ) A. =2, =1 B. =1, =2 C. =1, =-1 D. =1, =1 【答案】 D.【解析】根据题意,得,解之,得,故选D.【总结升华】同类二次根式必须满足两个条件:(1)根指数是2;(2)被开方数相同;由此可以得到关于a、b的二元一次方程组,此类问题都可如此.举一反三【变式】若最简根式与根式是同类二次根式,求、的值.【答案】同类二次根式是指几个二次根式化成最简二次根式后,被开方数相同;•事实上,根式不是最简二次根式,因此把化简==|b|×由题意得,∴,∴=1,b=1.沪教版初二数学上册知识点梳理重点题型(常考知识点)巩固练习二次根式的概念和性质(提高)巩固练习【巩固练习】一、选择题1.(2016•贵港)式子在实数范围内有意义,则x的取值范围是()A.x<1 B.x≤1 C.x>1 D.x≥12.使式子有意义的未知数x有( )个A.0 B.1 C.2 D.无数3. 把根号外的因式移到根号内,得().A. B. C. D.4.(2015•蓬溪县校级模拟)下列四个等式:①;②(﹣)=16;③()=4;④.正确的是()A.①②B.③④C.②④D.①③5. 若,则等于()A.B. C. D.6.将中的移到根号内,结果是()A. B. C. D.二. 填空题7. 若最简二次根式与是同类二次根式,则.8. (2015•江干区一模)在,,,﹣,中,是最简二次根式的是_________.9.已知,求的值为____________.10.若,则化简的结果是__________.11. 观察下列各式:,,,……请你探究其中规律,并将第n(n≥1)个等式写出来________________.12.(2016•乐山)在数轴上表示实数a的点如图所示,化简+|a﹣2|的结果为.三. 综合题13. 已知,求的值.14. 若时,试化简.15. (2015春•武昌区期中)已知a、b、c满足+|a﹣c+1|=+,求a+b+c的平方根.【答案与解析】一、选择题1.【答案】C.【解析】依题意得:x﹣1>0,解得x>1.2.【答案】B.3.【答案】C.4.【答案】D.【解析】解:①==4,正确;②=(﹣1)2=1×4=4≠16,不正确;③=4符合二次根式的意义,正确;④==4≠﹣4,不正确.①③正确.故选:D.5.【答案】D.【解析】因为=,即.6.【答案】 A.【解析】因为≤0,所以=.二、填空题7.【答案】1;1.【解析】,所以.8.【答案】.9.【答案】.【解析】,即,,即原式=.10.【答案】3.【解析】因为原式==.11.【答案】 .12.【答案】 3.【解析】由数轴可得:a﹣5<0,a﹣2>0,则+|a﹣2|=5﹣a+a﹣2=3.三、解答题13.【解析】因为,所以2x-1≥0,1-2x≥0,即x=,y=则.14.【解析】因为,所以原式==.15.【解析】解:由题意得,b﹣c≥0且c﹣b≥0,所以,b≥c且c≥b,所以,b=c,所以,等式可变为+|a﹣b+1|=0,由非负数的性质得,,解得,所以,c=2,a+b+c=1+2+2=5,所以,a+b+c的平方根是±.沪教版初二数学上册知识点梳理重点题型(常考知识点)巩固练习二次根式的运算(提高)知识讲解【学习目标】1、理解并掌握二次根式的加减法法则,会合并同类二次根式,进行简单的二次根式加减运算;2、掌握二次根式的乘除法法则和化简二次根式的常用方法,熟练进行二次根式的乘除运算;3、会利用运算律和运算法则进行二次根式的混合运算.【要点梳理】要点一、二次根式的加减二次根式的加减实质就是合并同类二次根式,即先把各个二次根式化成最简二次根式,再把其中的同类二次根式进行合并.对于没有合并的二次根式,仍要写到结果中.要点诠释:(1)在进行二次根式的加减运算时,整式加减运算中的交换律、结合律及去括号、添括号法则仍然适用.(2)二次根式加减运算的步骤:1)将每个二次根式都化简成为最简二次根式;2)判断哪些二次根式是同类二次根式,把同类的二次根式结合为一组;要点二、二次根式的乘法及积的算术平方根1.乘法法则:(≥0,≥0),即两个二次根式相乘,根指数不变,只把被开方数相乘.要点诠释:(1).在运用二次根式的乘法法则进行运算时,一定要注意:公式中a、b都必须是非负数;(在本章中,如果没有特别说明,所有字母都表示非负数).(2).该法则可以推广到多个二次根式相乘的运算:≥0,≥0,…..≥0).(3).若二次根式相乘的结果能写成的形式,则应化简,如.2.积的算术平方根:(≥0,≥0),即积的算术平方根等于积中各因式的算术平方根的积.要点诠释:(1)在这个性质中,a、b可以是数,也可以是代数式,无论是数,还是代数式,都必须满足≥0,≥0,才能用此式进行计算或化简,如果不满足这个条件,等式右边就没有意义,等式也就不能成立了; (2)二次根式的化简关键是将被开方数分解因数,把含有形式的a移到根号外面.要点三、二次根式的除法及商的算术平方根1.除法法则:(≥0, >0),即两个二次根式相除,根指数不变,把被开方数相除.。

八年级上册数学沪科版复习提纲

八年级上册数学沪科版复习提纲

八年级上册数学沪科版复习提纲数学是三大主科之一,同时也是必考科目。

你知道怎么才能考好数学吗?做好复习提纲吧,下面小编给大家分享一些八年级上册数学沪科版复习提纲,希望能够帮助大家,欢迎阅读!八年级上册数学沪科版复习提纲第一章一元一次不等式和一元一次不等式组一、一般地,用符号(或),(或)连接的式子叫做不等式.能使不等式成立的未知数的值,叫做不等式的解. 不等式的解不,把所有满足不等式的解集合在一起,构成不等式的解集. 求不等式解集的过程叫解不等式.由几个一元一次不等式组所组成的不等式组叫做一元一次不等式组不等式组的解集 :一元一次不等式组各个不等式的解集的公共部分.等式基本性质1:在等式的两边都加上(或减去)同一个数或整式,所得的结果仍是等式. 基本性质2:在等式的两边都乘以或除以同一个数(除数不为0),所得的结果仍是等式.二、不等式的基本性质1:不等式的两边都加上(或减去)同一个整式,不等号的方向不变. (注:移项要变号,但不等号不变.)性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变.性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.不等式的基本性质1、若ab, 则a+cb+c;2、若ab, c0 则acbc若c0, 则ac不等式的其他性质:反射性:若ab,则bb,且bc,则ac三、解不等式的步骤:1、去分母; 2、去括号; 3、移项合并同类项;4、系数化为1. 四、解不等式组的步骤:1、解出不等式的解集2、在同一数轴表示不等式的解集. 五、列一元一次不等式组解实际问题的一般步骤:(1) 审题;(2)设未知数,找(不等量)关系式;(3)设元,(根据不等量)关系式列不等式(组)(4)解不等式组;检验并作答.六、常考题型:1、求4x-6 7x-12的非负数解. 2、已知3(x-a)=x-a+1r的解适合2(x-5) 8a,求a 的范围.3、当m取何值时,3x+m-2(m+2)=3m+x的解在-5和5之间.第二章分解因式一、公式:1、ma+mb+mc=m(a+b+c)2、a2-b2=(a+b)(a-b)3、a22ab+b2=(ab)2 二、把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式. 1、把几个整式的积化成一个多项式的形式,是乘法运算.2、把一个多项式化成几个整式的积的形式,是因式分解.3、ma+mb+mc m(a+b+c)4、因式分解与整式乘法是相反方向的变形.三、把多项式的各项都含有的相同因式,叫做这个多项式的各项的公因式.提公因式法分解因式就是把一个多项式化成单项式与多项式相乘的形式. 找公因式的一般步骤:(1)若各项系数是整系数,取系数的公约数;(2)取相同的字母,字母的指数取较低的;(3)取相同的多项式,多项式的指数取较低的.(4)所有这些因式的乘积即为公因式.四、分解因式的一般步骤为:(1)若有-先提取-,若多项式各项有公因式,则再提取公因式.(2)若多项式各项没有公因式,则根据多项式特点,选用平方差公式或完全平方公式.(3)每一个多项式都要分解到不能再分解为止.五、形如a2+2ab+b2或a2-2ab+b2的式子称为完全平方式. 分解因式的方法:1、提公因式法.2、运用公式法.第三章分式注:1对于任意一个分式,分母都不能为零.2分式与整式不同的是:分式的分母中含有字母,整式的分母中不含字母.3分式的值为零含两层意思:分母不等于零;分子等于零.( 中B0时,分式有意义;分式中,当B=0分式无意义;当A=0且B0时,分式的值为零.)常考知识点:1、分式的意义,分式的化简.2、分式的加减乘除运算.3、分式方程的解法及其利用分式方程解应用题.第四章相似图形一、定义表示两个比相等的式子叫比例.如果a与b的比值和c与d的比值相等,那么或a∶b=c∶d,这时组成比例的四个数a,b,c,d叫做比例的项,两端的两项叫做外项,中间的两项叫做内项.即a、d为外项,c、b为内项. 如果选用同一个长度单位量得两条线段AB、CD的长度分别是m、n,那么就说这两条线段的比(ratio)AB∶CD=m∶n,或写成 = ,其中,线段AB、CD分别叫做这两个线段比的前项和后项.如果把表示成比值k,则=k或AB=kCD. 四条线段a,b,c,d中,如果a与b的比等于c 与d的比,即,那么这四条线段a,b,c,d叫做成比例线段,简称比例线段. 黄金分割的定义:在线段AB上,点C把线段AB分成两条线段AC和BC,如果,那么称线段AB被点C黄金分割(golden section),点C叫做线段AB的黄金分割点,AC与AB的比叫做黄金比.其中0.618. 引理:平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例. 相似多边形:对应角相等,对应边成比例的两个多边形叫做相似多边形. 相似多边形:各角对应相等、各边对应成比例的两个多边形叫做相似多边形. 相似比:相似多边形对应边的比叫做相似比.二、比例的基本性质:1、若ad=bc(a,b,c,d都不等于0),那么 .如果(b,d都不为0),那么ad=bc.2、合比性质:如果,那么 .3、等比性质:如果 == (b+d++n0),那么 .4、更比性质:若那么 .5、反比性质:若那么三、求两条线段的比时要注意的问题:(1)两条线段的长度必须用同一长度单位表示,如果单位长度不同,应先化成同一单位,再求它们的比;(2)两条线段的比,没有长度单位,它与所采用的长度单位无关;(3)两条线段的长度都是正数,所以两条线段的比值总是正数.四、相似三角形(多边形)的性质:相似三角形对应角相等,对应边成比例,相似三角形对应高的比、对应角平分线的比和对应中线的比都等于相似比.相似多边形的周长比等于相似比,面积比等于相似比的平方.五、全等三角形的判定方法有:ASA,AAS,SAS,SSS,直角三角形除此之外再加HL六、相似三角形的判定方法,判断方法有:1.三边对应成比例的两个三角形相似;2.两角对应相等的两个三角形相似;3.两边对应成比例且夹角相等;4.定义法: 对应角相等,对应边成比例的两个三角形相似.5、定理:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似. 在特殊的三角形中,有的相似,有的不相似.1、两个全等三角形一定相似.2、两个等腰直角三角形一定相似.3、两个等边三角形一定相似.4、两个直角三角形和两个等腰三角形不一定相似.七、位似图形上任意一对对应点到位似中心的距离之比等于位似比. 如果两个图形不仅是相似图形,而且每组对应点所在的直线都经过同一个点,那么这样的两个图形叫做位似图形,这个点叫位似中心,这时的相似比又称为位似比.八、常考知识点:1、比例的基本性质,黄金分割比,位似图形的性质.2、相似三角形的性质及判定.相似多边形的性质.第五章数据的收集与处理(1)普查的定义:这种为了一定目的而对考察对象进行的全面调查,称为普查.(2)总体:其中所要考察对象的全体称为总体.(3)个体:组成总体的每个考察对象称为个体(4)抽样调查:(sampling investigation):从总体中抽取部分个体进行调查,这种调查称为抽样调查.(5)样本(sample):其中从总体中抽取的一部分个体叫做总体的一个样本.(6) 当总体中的个体数目较多时,为了节省时间、人力、物力,可采用抽样调查.为了获得较为准确的调查结果,抽样时要注意样本的代表性和广泛性.还要注意关注样本的大小. (7)我们称每个对象出现的次数为频数.而每个对象出现的次数与总次数的比值为频率.数据波动的统计量:极差:指一组数据中数据与最小数据的差.方差:是各个数据与平均数之差的平方的平均数.标准差:方差的算术平方根.识记其计算公式.一组数据的极差,方差或标准差越小,这组数据就越稳定.还要知平均数,众数,中位数的定义.刻画平均水平用:平均数,众数,中位数. 刻画离散程度用:极差,方差,标准差.常考知识点:1、作频数分布表,作频数分布直方图.2、利用方差比较数据的稳定性.3、平均数,中位数,众数,极差,方差,标准差的求法.3、频率,样本的定义第六章证明一、对事情作出判断的句子,就叫做命题. 即:命题是判断一件事情的句子.一般情况下:疑问句不是命题.图形的作法不是命题. 每个命题都有条件(condition)和结论(conclusion)两部分组成. 条件是已知的事项,结论是由已知事项推断出的事项. 一般地,命题都可以写成如果,那么的形式.其中如果引出的部分是条件,那么引出的部分是结论. 要说明一个命题是一个假命题,通常可以举出一个例子,使它具备命题的条件,而不具有命题的结论.这种例子称为反例.二、三角形内角和定理:三角形三个内角的和等于180度.1、证明三角形内角和定理的思路是将原三角形中的三个角凑到一起组成一个平角.一般需要作辅助线.既可以作平行线,也可以作一个角等于三角形中的一个角.2、三角形的外角与它相邻的内角是互为补角.三、三角形的外角与它不相邻的内角关系是:(1)三角形的一个外角等于和它不相邻的两个内角的和.(2)三角形的一个外角大于任何一个和它不相邻的内角.四、证明一个命题是真命题的基本步骤是:(1)根据题意,画出图形.(2)根据条件、结论,结合图形,写出已知、求证.(3)经过分析,找出由已知推出求证的途径,写出证明过程. 在证明时需注意:(1)在一般情况下,分析的过程不要求写出来.(2)证明中的每一步推理都要有根据. 如果两条直线都和第三条直线平行,那么这两条直线也相互平行.30.所对的直角边是斜边的一半.斜边上的高是斜边的一半.学好数学的方法有哪些1.学好初中数学课前预习是重点数学解题思路和能力的培养主要在于课堂上,所以想要学好初中数学一定要重视数学的学习效率和提前预习。

沪科版数学八年级上册总复习

沪科版数学八年级上册总复习

B(5,2)
x
C(-1,-4)
A(5,-4)
例3 已知点A(6,2),B(2,-4)。
求△AOB的面积(O为坐标原点)
y
4 D 2 O -4 -2 -2
A
2
4
6
x
C -4
B
y
A (-2 , 8 ) (-11 , 6 ) B
C (-14 , 0 )
E
D
0 DLeabharlann X.4.如图,四边形ABCD各个顶点的坐标分别为 (– 2,8),(– 11,6),(– 14,0),(0,0)。 (1)确定这个四边形的面积,你是怎么做的? (2)如果把原来ABCD各个顶点纵坐标保持不变,横坐标 增加2,所得的四边形面积又是多少?
注:判断点的位置关键抓住象限内点的
坐标的符号特征.
四:坐标轴上点的坐标符号
y
3
第二象限 2 第一象限
1
-4 -3 -2 -1 -1 O 1 2 3
A(3,0)在第几象限 ?
x
第三象限 -2 第四象限
-3
注:坐标轴上的点不属于任何象限。
四:坐标轴上点的坐标符号
1.点P(m+2,m-1)在x轴上,则点P的坐标是 ( 3, 0 ) .
5、在平面直角坐标系中,点M(1,2)可由点N(1,0)怎样 平移得到,写出简要过程。
6、三角形ABC中BC边上的中点为M,在把三角 形ABC向左平移2个单位,再向上平移3个单位后 ,得到三角形A1B1C1的B1C1边上中点M1此时的坐 标为(-1,0),则M点坐标为 。
知识要点: 1.函数,变量,常量; 2.函数的三种表示法; 3.正比例函数:定义,图象,性质; 4.一次函数:定义,图象,性质; 5.一次函数的应用. 6.一次函数与一元一次方程,一元一次不 等式,二元一次方程组的关系.

沪科版八年级数学上册知识点总结

沪科版八年级数学上册知识点总结

沪科版八年级数学上册知识点总结《沪科版八年级数学上册》是根据国家课程标准编写的教材,主要涵盖了代数、函数、图像、几何、统计等多个数学领域的知识。

以下是对该教材中的重要知识点进行总结:一、代数1. 代数式的概念:由字母、数字和运算符号组成,可以进行运算和化简。

2. 代数式的加、减、乘、除运算法则。

3. 一元一次方程:由一个未知数的项组成,如ax+b=0,可以通过移项、合并同类项、消数等方法求解。

4. 一元一次方程的应用:解决实际问题,如速度、距离、价格等。

5. 通解和特解的概念:一元一次方程的通解是形如x=a的解集,特解是指满足具体条件的解。

6. 一元一次方程的实际应用:解决实际问题,如购买商品打折、折扣等。

7. 负数的概念和性质:负数的定义、加减法运算规则,及负数与正数的关系。

二、函数和图像1. 函数的概念和表示方法:函数是一种对应关系,用公式、图表、文字等形式表示。

2. 函数的自变量、因变量、定义域、值域的概念和含义。

3. 一次函数的概念和性质:一次函数的一般形式为y=kx+b,斜率k和截距b的含义和作用。

4. 一次函数的图像特点:斜率可表示直线的斜率及其变化趋势,截距可表示直线与y轴的交点。

5. 一次函数的应用:解决实际问题,如速度、距离、价格等。

6. 函数的增减性:用导数的概念表示函数的增减性,确定函数在定义域内的上升区间和下降区间。

7. 直线与曲线的交点:两条直线或曲线的交点是使其方程同时成立的点。

三、几何1. 几何基本概念:点、线、面及其相互关系的基本概念和性质。

2. 图形的分类和命名:按照边数、角数、对称性等进行分类。

3. 三角形的分类和性质:按照边长、角度等进行分类和判断,了解等腰三角形、等边三角形的性质。

4. 三角形的面积:根据底边和高,计算三角形的面积。

5. 相似三角形的判定和性质:通过角度和边长的比较判断相似三角形,了解相似三角形的性质。

6. 平面镶嵌:将平面图形按照一定规则组合排列,了解平面镶嵌的基本概念和方法。

沪科版八年级数学上册总复习PPT课件

沪科版八年级数学上册总复习PPT课件
m=5.5
3、一次函数y=(m+7)x -(n-4) 经过原点的条件2是021 _ 。m≠-7,n=4 14
4.已知正比例函数y=kx(k≠0)的 函数值随X的增大而增大,则一次函 数y=kx-k的图象大致是( )
B
y
y
y
y
Ox
A .
O x
Ox
Ox
B.
C.
2021
D.
15
5、直线y1=ax+b与直线y2=bx-a在同一 坐标系内的大致图象是 ( B )
1
-4 -3 -2 -1 O 1 2 3
x
-1
第三象限 -2 第四象限
-3
坐标轴上的点不属于任何象限
2021
4
三:坐标轴上点的坐标符号
1.点P(m+2,m-1)在x轴上,则点P的坐标是 ( 3, 0 ) . 2.点P(m+2,m-1)在y轴上,则点P的坐标是 ( 0, -3 ) . 3. 点P(x,y)满足 xy=0, 则点P在 x 轴上 或 y 轴上 .
2021
32
考点三:三角 形的三线 例4:下列说法错误的是( B)
A:三角形的三条中线都在三角形内。 B:直角三角形的高线只有一条。 C:三角形的三条角平分线都在三角形内。 D:钝角三角形内只有一条高线。
例5:在三条边都不相等的三角形中,同一条边上的中 线,高和这边所对角的角平分线,最短的是(B )
分析与解: ∠O=180°-(∠OBC+∠OCB)
=180°-(180°-(∠1+∠2+∠A)
A
=∠1+∠2+∠A=135°.
B
2021
O 1
图1

八年级上数学沪科版知识点

八年级上数学沪科版知识点

八年级上数学沪科版知识点八年级上数学沪科版包括一些重要知识点,这些知识点为学生提供了坚实的数学基础,使他们更好地理解高中数学知识。

本文将介绍八年级上数学沪科版的主要知识点。

一、有理数的扩展与应用1.正数、负数及其相反数2.有理数3.实数4.有理数的加减乘除运算5.应用:温度、海拔、深度等二、代数式的运算与应用1.代数式2.代数式的加减乘法3.代数式的因式分解4.应用:速度、比例、面积等三、方程式的解法与应用1.方程式2.方程式的解法3.一次方程式的应用4.应用:比例、金额、时速等四、直线图形的认识和应用1.点、直线、射线、线段等2.角、余角3.平行线及其性质4.垂直线及其性质5.应用:三角形、梯形、矩形等五、几何运动的认识和应用1.几何运动2.对称3.平移4.旋转5.应用:等腰三角形、正方形、菱形等六、数列的基本概念与应用1.数列2.公差3.等差数列的求和公式4.等差数列的应用5.应用:年龄、身高、渐进等七、图形的相似性及其应用1.相似形2.比例3.相似形的性质4.应用:纪念邮票、地图等八、比例、百分数和倍数的运算1.比例2.相似比例3.百分数4.百分数与比例5.倍数6.应用:打折、利率、几何放大等结论这是八年级上数学沪科版的主要知识点,它们提供了基本的数学概念,可以帮助学生在进阶的数学中获得成功。

这些概念是数学知识的重要基础,学生们必须熟练掌握,才能更好地应对高中数学。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学·沪科版(HK)
第11章 |复习
方法技巧 本题考查了在平面直角坐标系内点的平移与坐 标的变化规律,本题我们先根据对应点的坐标的数 值变化,得到平移方式,然后再根据平移方式,写 出另一个对应点的坐标.
数学·沪科版(HK)
Байду номын сангаас
第11章 |复习 ►考点三 求图形的面积
例 3 如图 11-1,A、B、C 为一个平行四边形 的三个顶点,且 A、B、C 三点的坐标分别为(3,3)、 (6,4)、(4,6).
[解析] 由点 M(-4,-1)和其对应点 M′(-2,2),可知 平移的规律是把点 M 先向右平移 2 个单位,再向上平移 3 个 单位. 由于线段平移时, 线段上每一点平移的方式都是一样的, 所以点 N 按此方式平移后, 其对应点的横坐标为 0+2=2, 纵 坐标为 1+3=4,即点 N′的坐标为(2,4).
数学·沪科版(HK)
第11章 |复习
3.点的坐标特点 (1)各象限内的点的坐标符号特征:第一象限 (+,+) ,第 二象限 (-,+) ,第三象限 (-,-),第四象限 (+,-) . (2)坐标轴上的点的坐标特征:x 轴和 y 轴统称为坐标轴, 坐标轴上的点不属于任何一个象限,x 轴上任何一点的纵坐标 为 0, y 轴上任何一点的 横坐标为0 ,原点的坐标为 (0,0) . (3)平行于 x 轴的直线上的点的 纵坐标 相同,平行于 y 轴 的直线上的点的 横坐标 相同. (4) 点到坐标轴的距离:点 P(a , b) 到 x 轴 ( 横轴 ) 的距离 b 为 ,到 y 轴(纵轴)的距离为 |a| .
数学·沪科版(HK)
第11章 |复习
方法技巧 我们以前就已经知道, 平行四边形的两组对边平行 且相等,而线段平移后得到的线段与原线段平行且相 等, 于是我们可以利用平移求平行四边形第四个顶点的 坐标;求平面直角坐标系中多边形的面积时,一般采用 补形法, 即将所求图形的面积转化成若干个特殊的四边 形和三角形的面积的和与差, 如本题中求△ABC 的面积, 就是转化为一个正方形的面积与三个三角形面积的差 来求解.
数学·沪科版(HK)
第11章 |复习
1.下列各点中在 y 轴负半轴上的是( B A.(0,3) B.(0,-3) C.(3,0) D.(-3,0)
)
2.点 A(x-1,x+1)在直角坐标系的 y 轴 (0,2) . 上,则点 A 的坐标为________
数学·沪科版(HK)
数学·沪科版(HK)
第11章 |复习
4.图形在坐标系中的平移规律 (1)在平面直角坐标系中,若图形向左(或向右)平移 k(k >0)个单位,则原图形上的点 P(x,y)的对应点的坐标 P′ 为 );若图形向上(或向 (x-k,y) (或 (x+k,y) 下)平移 h(h>0)个单位,则原图形上的点 P(x,y)的对应点 的坐标 P′为 ). (x,y+h) (或 (x,y-h) (2)若图形上各点的纵坐标不变, 而横坐标同时加上(或 减去)k(k>0), 则图形 向右 (或 向左 )平移 k 个单位; 若图形上各点的横坐标不变,而纵坐标同时加上 ( 或减 去)h(h>0), 则图形 向上 (或 向下 )平移 h 个单位.
y,到 y 轴(纵轴)的距离是x,所以 它到 x 轴(横轴)的距离是
我们可以根据题目所述,求得 x 和 y 的值,再根据点的坐标 的特征,进一步确定出点 P 的坐标.
数学·沪科版(HK)
第11章 |复习 ►考点二 确定图形平移后的点的坐标
例 2 在平面直角坐标系中,已知线段 MN 的两个端 点的坐标分别是 M(-4,-1)、N(0,1),将线段 MN 平移 后得到线段 M′N′, 点 M、 N 的对应点分别为 M′、 N′, (2,4) . 若点 M′的坐标为(-2,2),则点 N′的坐标为________
y=4, x=3, 到 y 轴的距离等于 3, 所以有 所以 x=± 3, y=± 4.
又因为点 P 在第二象限,所以点 P 的坐标为(-3,4).
数学·沪科版(HK)
第11章 |复习
方法技巧 点到 x 轴(横轴)的距离是纵坐标的绝对值,点到 y 轴(纵 轴)的距离是横坐标的绝对值.若设点 P 的坐标为(x,y),则
沪科版八年级上册数学 期末知识点复习
第11章 |复习
知识归纳
1.平面直角坐标系 在平面内画两条互相垂直并且原点重合的数轴, 其中 水 平 的 数 轴 叫 做 x轴或横轴 ,垂直的数轴叫 原点 ,这样就建 做 y轴或纵轴 ,两轴的交点 O 称为 立了 平面直角坐标系 .这个平面叫做坐标平面. 2.平面内的点与有序实数对一一对应 表示平面上的点的坐标是一组 有序实数对 ,通 常把横坐标写在纵坐标的前面,这样坐标平面内的点 与 有序实数对 之间一一对应.
(1) 请直接写出这个平行四边 形第四个顶点的坐标; (2)求此平行四边形的面积.
数学·沪科版(HK)
第11章 |复习
解:(1)确定平行四边形,可以平移线段 AB,使点 B 与 点 C 重合, 可得到第四个顶点的坐标为(1,5); 可以平移线段 AB, 使点 A 与点 C 重合, 可得到第四个顶点的坐标为(7,7); 可以平移线段 AC,使点 C 与点 B 重合,可得到第四个顶点 的坐标为 (5,1) .所以这个平行四边形第四个顶点的坐标为 (1,5)或(7,7)或(5,1). 1 1 (2)△ABC 的面积为 3×3- ×3×1- × 2 2 1 3×1- ×2×2=4, 2 所以这个平行四边形的面积为 4×2=8.
数学·沪科版(HK)
第11章 |复习
考点攻略
►考点一 确定点的坐标
例 1 如果点 P 在第二象限内,点 P 到 x 轴的距离 是 4,到 y 轴的距离是 3,那么点 P 的坐标为( C ) A.(-4,3) B.(-4,-3) C.(-3,4) D.(-3,-4)
[解析] 设点 P 的坐标为(x, y) , 因为 P 到 x 轴的距离等于 4,
相关文档
最新文档