2017高三一模二模分类汇编电磁感应
2017高三一模二模分类汇编磁场及混合场
2017北京一模二模物理试题分类--磁场及混合场1.(2017丰台二17题)如图所示,两平行金属板P 、Q 水平放置,上极板带正电,下极板带负电;板间存在匀强电场和匀强磁场(图中未画出)。
一个带电粒子在两板间沿虚线所示路径做匀速直线运动。
粒子通过两平行板后从O 点垂直进入另一个垂直纸面向外的匀强磁场中,粒子做匀速圆周运动,经过半个周期后打在挡板MN 上的A 点。
不计粒子重力。
则下列说法不正确...的是() A .此粒子一定带正电B .P 、Q 间的磁场一定垂直纸面向里C .若另一个带电粒子也能做匀速直线运动,则它一定与该粒子具有相同的荷质比D .若另一个带电粒子也能沿相同的轨迹运动,则它一定与该粒子具有相同的荷质比2.(2017东城一18题)如图所示是磁流体发电机的示意图,两平行金属板P 、Q 之间有一个强磁场。
一束等离子体(即高温下电离气体,含有大量正、负带电粒子)沿垂直于磁场的方向喷入磁场。
把P 、Q 与电阻R 相连。
下列说法正确的是()A .Q 板电势高于P 点电势B .R 中有由b 向a 方向的电流C .若只改变磁场的强弱,R 中电流保持不变D .若只增大粒子入射的速度,R 中电流变大3.(2017西城一17题)在粒子物理学的研究中,经常应用“气泡室”装置。
粒子通过 气泡室中的液体时能量降低,在它的周围有气泡形成,显示出它的径迹。
如图所示为带电粒子在气泡室运动径迹的照片,气泡室处于垂直纸面向里的匀强磁场中。
下列有关甲、乙两粒子的判断正确的是()A .甲粒子带正电B .乙粒子带负电C .甲粒子从b 向a 运动D .乙粒子从c 向d 运动4.(2017海淀一18题)在匀强磁场中有一带正电的粒子甲做匀速圆周运动,当它运动到M 点时,突然向与原运动相反的方向放出一个不带电的粒子乙,形成一个新的粒子丙。
如图3所示,用实线表示粒子甲运动的轨迹,虚线表示粒子丙运动的轨迹。
若不计粒子所受重力及空气阻力的影响,则粒子甲和粒子丙运动的轨迹可能是()图3ACD5.(2017东城一22题)(16分)如图所示,将一个质量为m,电荷量为+q的小球,以初速度v,自h高处水平抛出。
(2017-2019)高考物理真题分类汇编专题12电磁感应(教师版)
专题12 电磁感应1.(2019·新课标全国Ⅰ卷)空间存在一方向与直面垂直、大小随时间变化的匀强磁场,其边界如图(a )中虚线MN 所示,一硬质细导线的电阻率为ρ、横截面积为S ,将该导线做成半径为r 的圆环固定在纸面内,圆心O 在MN 上。
t =0时磁感应强度的方向如图(a )所示。
磁感应强度B 随时间t 的变化关系如图(b )所示,则在t =0到t =t 1的时间间隔内A .圆环所受安培力的方向始终不变B .圆环中的感应电流始终沿顺时针方向C .圆环中的感应电流大小为004B rS t ρD .圆环中的感应电动势大小为200π4B r t 【答案】BC【解析】AB 、根据B-t 图象,由楞次定律可知,线圈中感应电流方向一直为顺时针,但在t 0时刻,磁场的方向发生变化,故安培力方向A F 的方向在t 0时刻发生变化,则A 错误,B 正确;CD 、由闭合电路欧姆定律得:E I R =,又根据法拉第电磁感应定律得:22B r E t t φπ∆∆==∆∆,又根据电阻定律得:2r R S πρ=,联立得:004B rS I t ρ=,则C 正确,D 错误。
故本题选BC 。
2.(2019·新课标全国Ⅱ卷)如图,两条光滑平行金属导轨固定,所在平面与水平面夹角为θ,导轨电阻忽略不计。
虚线ab 、cd 均与导轨垂直,在ab 与cd 之间的区域存在垂直于导轨所在平面的匀强磁场。
将两根相同的导体棒PQ 、MN 先后自导轨上同一位置由静止释放,两者始终与导轨垂直且接触良好。
已知PQ 进入磁场时加速度变小恰好为零,从PQ 进入磁场开始计时,到MN 离开磁场区域为止,流过PQ 的电流随时间变化的图像可能正确的是【答案】AD【解析】于PQ进入磁场时加速度为零,AB.若PQ出磁场时MN仍然没有进入磁场,则PQ出磁场后至MN进入磁场的这段时间,由于磁通量φ不变,无感应电流。
由于PQ、MN同一位置释放,故MN进入磁场时与PQ进入磁场时的速度相同,所以电流大小也应该相同,A正确B错误;CD.若PQ出磁场前MN已经进入磁场,由于磁通量φ不变,PQ、MN均加速运动,PQ出磁场后,MN由于加速故电流比PQ进入磁场时电流大,故C正确D错误。
17年高考物理试题分项版汇编系列专题12电磁感应(含解析)
专题12电磁感应一、单选题1.如图所示,一圆形金属环与两固定的平行长直导线在同一竖直平面内,环的圆心与两导线距离相等,环的直径小于两导线间距。
两导线中通有大小相等、方向向下的恒定电流。
以下说法正确的是()A. 金属环向上运动,则环上的感应电流方向为顺时针方向B. 金属环向下运动,则环上的感应电流方向为顺时针方向C. 金属环向右侧直导线靠近,则环上的感应电流方向为逆时针D. 金属环向左侧直导线靠近,则环上的感应电流方向为逆时针【答案】 C【点睛】本题考查楞次定律的应用,掌握感应电流的产生条件,理解右手螺旋定则的内容.穿过线框的磁通量变化有几种方式,有磁场变化导致磁通量变化,也有面积变化导致磁通量变化,还有磁场与面积均变化导致磁通量变化的,最后有磁场与面积均没有变,而是放置的角度变化导致磁通量变化.2.如图甲所示,线圈ABCD固定于匀强磁场中,磁场方向垂直纸面向外,当磁场变化时,线圈AB边所受安培力向右且变化规律如图乙所示,则磁场的变化情况可能是下列选项中的( )A. B. C. D.【答案】 D【解析】由法拉第电磁感应定律可知BE St∆=∆,结合闭合电路欧姆定律,则安培力的表达式F=BIL=BB SLtR∆∆,由图可知安培力的大小不变,而SL是定值,若磁场B增大,则△B/△t减小,若磁场B减小,则△B/△t增大;线圈AB边所受安培力向右,则感应电流的方向是顺时针,原磁场磁感强度应是增加的,故D正确,ABC错误;故选:D.3.一个闭合线圈中没有产生感应电流,因此可以得出().A. 此时该处一定没有磁场B. 此时该处一定没有磁场的变化C. 闭合线圈的面积一定没有变化D. 穿过线圈平面的磁通量一定没有变化【答案】 D【解析】感应电流的产生其条件是闭合线圈的磁通量发生变化,闭合线圈中没有感应电流产生可能线圈始终与磁场平行,故A错误;感应电流的产生其条件是闭合线圈的磁通量发生变化,磁通量的变化可以由磁场引起的,也可以由线圈的面积的变化引起的,闭合线圈中没有感应电流产生,不能判断出此地一定没有磁场的变化或没有面积的变化,故BC错误;没有电流只能说明穿过闭合线圈的磁通量没有发生变化.故D正确;故选D.点睛:解答本题主要是抓住感应电流产生的条件:闭合线圈的磁通量发生变化,而磁通量的变化可以是由磁场变化引起,也可以是线圈的面积变化,或位置变化引起的.4.有一个匀强磁场边界是EF,在EF右侧无磁场,左侧是匀强磁场区域,如图甲所示.现有一个闭合的金属线框以恒定速度从EF右侧水平进入匀强磁场区域.线框中的电流随时间变化的i-t图象如图乙所示,则可能的线框是下列四个选项中的( )A. B. C. D.【答案】 A【解析】导体棒切割磁感线产生的感应电动势E=BLv,设线框总电阻是R示图象可知,感应电流先变大,后变小,且电流大小与时间成正比,由于B、v、R是定值,故导体棒的有效长度L应先变长,后变短,且L随时间均匀变化,即L与时间t成正比.三角形线框匀速进入磁场时,有效长度L先增加,后减小,且随时间均匀变化,符合题意,故A正确;梯形线框匀速进入磁场时,有效长度L先均匀增加,后不变,最后均匀减小,不符合题意,故B错误;长方形线框进入磁场时,有效长度L不变,感应电流不变,不符合题意,故B错误;闭合圆环匀速进入磁场时,有效长度L先变大,后变小,但L不随时间均匀变化,不符合题意,故D错误;故选A.点睛:本题是一道关于感应电流的图象题,熟练应用导体棒切割磁感线产生的感应电动势公式、欧姆定律、分析清楚图象特点是正确解题的关键.5.有人把自行车进行了改装,在后车轮上装上了一个小型发电机,想看电视时,就骑在自行车上不停地蹬车,可供电视、照明用电.发电机原理如图甲所示,在匀强磁场中,磁感应强度为B,放置一个有固定转轴的发电轮,如图所示,发电轮平面与磁感应强度垂直,发电轮半径为r,轮轴和轮缘为两个输出电极,该发电机输出电压接一理想变压器,再给一小灯泡供电,则下列说法中正确的是( )A. 当人蹬车的速度增大时,小灯泡两端的电压降低B. 当人蹬车的速度增大时,小灯泡两端的电压不变C. 小灯泡的功率与发电机转速无关D. 小灯泡的功率随发电机转速的增大而增大【答案】 D【解析】PQ AB错误;小C错误,D正确;故选D. 6.如图所示,边长为L,匝数为N的正方形线圈abcd位于纸面内,线圈内接有电阻值为R的电阻,过ab中点和cd中点的连线OO′恰好位于垂直纸面向里的匀强磁场的右边界上,磁场的磁感应强度为B.当线圈转过90°时,通过电阻R的电荷量为( )A. 22BL RB. 22NBL RC. 2BL RD. 2NBL R【答案】 B【解析】当正方形线圈abcd 有一半处在磁感应强度为B 的匀强磁场中时,磁通量为:221122B L BL Φ=⋅=,根据22BL q N N R R∆Φ==,故B 正确,ACD 错误;故选B . 点睛:本题考查对于匀强磁场中磁通量的求解能力.对于公式Φ=BS ,要懂得S 的意义:有效面积,即有磁感线穿过的面积.7.如图,由某种粗细均匀的总电阻为3R 的金属条制成的矩形线框abcd ,固定在水平面内且处于方向竖直向下的匀强磁场B 中.一接入电路电阻为R 的导体棒PQ ,在水平拉力作用下沿ab 、dc 以速度v 匀速滑动,滑动过程PQ 始终与ab 垂直,且与线框接触良好,不计摩擦.在PQ 从靠近ad 处向bc 滑动的过程中( )A. PQ 中电流一直增大B. PQ 中电流一直减小C. 线框消耗的电功率先增大后减小D. 线框消耗的电功率先减小后增大【答案】 C【解析】A 、B 项,设导体棒的长度为L ,磁感应强度为B ,导体棒的速度v 保持不变,根据法拉第电磁感应定律,感应的电动势E BLv =不变,设线框左边的电阻为r ,则左右两边线框的电阻为R 并,PQPQ 从靠近ad 向bc 靠近过程中,r 从零增大到3R ,从而可以判断电流先减小后增大,故A 、B 项错误。
高考物理一模试题分类汇编——电磁感应现象的两类情况推断题综合及详细答案
高考物理一模试题分类汇编——电磁感应现象的两类情况推断题综合及详细答案一、电磁感应现象的两类情况1.如图所示,水平放置的两根平行光滑金属导轨固定在平台上导轨间距为1m ,处在磁感应强度为2T 、竖直向下的匀强磁场中,平台离地面的高度为h =3.2m 初始时刻,质量为2kg 的杆ab 与导轨垂直且处于静止,距离导轨边缘为d =2m ,质量同为2kg 的杆cd 与导轨垂直,以初速度v 0=15m/s 进入磁场区域最终发现两杆先后落在地面上.已知两杆的电阻均为r =1Ω,导轨电阻不计,两杆落地点之间的距离s =4m (整个过程中两杆始终不相碰)(1)求ab 杆从磁场边缘射出时的速度大小; (2)当ab 杆射出时求cd 杆运动的距离;(3)在两根杆相互作用的过程中,求回路中产生的电能.【答案】(1) 210m/s v =;(2) cd 杆运动距离为7m ; (3) 电路中损耗的焦耳热为100J . 【解析】 【详解】(1)设ab 、cd 杆从磁场边缘射出时的速度分别为1v 、2v设ab 杆落地点的水平位移为x ,cd 杆落地点的水平位移为x s +,则有2h x v g =2h x s v g+=根据动量守恒012mv mv mv =+求得:210m/s v =(2)ab 杆运动距离为d ,对ab 杆应用动量定理1BIL t BLq mv ==V设cd 杆运动距离为d x +∆22BL xq r r∆Φ∆== 解得1222rmv x B L ∆=cd 杆运动距离为12227m rmv d x d B L+∆=+= (3)根据能量守恒,电路中损耗的焦耳热等于系统损失的机械能222012111100J 222Q mv mv mv =--=2.如图所示,足够长且电阻忽略不计的两平行金属导轨固定在倾角为α=30°绝缘斜面上,导轨间距为l =0.5m 。
沿导轨方向建立x 轴,虚线EF 与坐标原点O 在一直线上,空间存在垂直导轨平面的磁场,磁感应强度分布为1()00.60.8()0T x B x T x -<⎧=⎨+≥⎩(取磁感应强度B垂直斜面向上为正)。
2017年高三物理一模 电磁感应专题汇编资料
`上海市各区县2017届高三物理试题电磁感应专题分类精编一、选择题1、(2017宝山第9题)如图所示,直导线MN与闭合线框abcd位于同一平面,要使导线框中产生方向为abcd的感应电流,则直导线中电流方向及其变化情况应为()Mda,电流逐渐增大N (A)电流方向为M到,电流逐渐增大(B)电流方向为N到M (C)电流方向为M到N,电流大小不变cbM,电流逐渐减小)电流方向为N到(DN题)如图所示,一圆形金属环与两固定的平行长直导线在同一竖直平6题、杨浦区第820172、(虹口第面内,环的圆心与两导线距离相等,环的直径小于两导线间距。
两导线中通有大小相等、方向向下的恒)定电流,若(()金属环向上运动,则环中产生顺时针方向的感应电流A(B)金属环向下运动,则环中产生顺时针方向的感应电流(C)金属环向左侧直导线靠近,则环中产生逆时针方向的感应电流(D)金属环向右侧直导线靠近,则环中产生逆时针方向的感应电流右左?逆O以角速度3、(2017静安第12题)左图虚线上方是有界匀强磁场,扇形导线框绕垂直于框面的轴时针匀速转动,线框中感应电流方向以逆时针为正,则能正确反映线框转动一周感应电流随时间变化的)图像是(区域的IIIIII为两匀强磁场区,I区域的磁场方向垂直纸面向里,、(2017黄浦第12题)如图所示,I、4的正方形金l,有边长为L=2磁场方向垂直纸面向外,磁感强度均为B,两区域中间为宽l 的无磁场区II。
现使金属框向右匀速区域分界处为坐标原点O区域,ab边与磁场边界平行,以I、II置于属框abcdI )=0移动,在ab边从x到x=3l的过程中,能定性描述线框中感应电流随位置变化关系的是( 1`b BB da OxIII I IIiiiiOO O O xxxl3l3xlll4l4l223llll4l2ll3l4l2)(D (C)((A)B),用平行于斜面的轻弹10题)如图所示,条形磁铁放在光滑的斜面上(斜面固定不动)、(2017闵行第5;当导线为水平放置的直导线的截面,导线中无电流时,磁铁对斜面的压力为F簧拉住而平衡,A1)(中通有电流时,发现弹簧的伸长量减小,设此时磁铁对斜面的压力为F。
2017年高考题和高考模拟题物理 分项版汇编 专题06 电磁感应 含解析
1.【2017·新课标Ⅰ卷】扫描隧道显微镜(STM)可用来探测样品表面原子尺度上的形貌.为了有效隔离外界振动对STM的扰动,在圆底盘周边沿其径向对称地安装若干对紫铜薄板,并施加磁场来快速衰减其微小振动,如图所示.无扰动时,按下列四种方案对紫铜薄板施加恒磁场;出现扰动后,对于紫铜薄板上下及左右振动的衰减最有效的方案是【答案】A【解析】感应电流产生的条件是闭合回路中的磁通量发上变化.在A图中系统振动时在磁场中的部分有时多有时少,磁通量发生变化,产生感应电流,受到安培力,阻碍系统的振动,故A正确;而BCD三个图均无此现象,故错误.【考点定位】感应电流产生的条件【名师点睛】本题不要被题目的情景所干扰,抓住考查的基本规律,即产生感应电流的条件,有感应电流产生,才会产生阻尼阻碍振动.2.【2017·新课标Ⅲ卷】如图,在方向垂直于纸面向里的匀强磁场中有一U形金属导轨,导轨平面与磁场垂直.金属杆PQ置于导轨上并与导轨形成闭合回路PQRS,一圆环形金属线框T位于回路围成的区域内,线框与导轨共面.现让金属杆PQ突然向右运动,在运动开始的瞬间,关于感应电流的方向,下列说法正确的是A .PQRS 中沿顺时针方向,T 中沿逆时针方向B .PQRS 中沿顺时针方向,T 中沿顺时针方向C .PQRS 中沿逆时针方向,T 中沿逆时针方向D .PQRS 中沿逆时针方向,T 中沿顺时针方向【答案】D【考点定位】电磁感应、右手定则、楞次定律【名师点睛】解题关键是掌握右手定则、楞次定律判断感应电流的方向,还要理解PQRS 中感应电流产生的磁场会使T 中的磁通量变化,又会使T 中产生感应电流.3.【2017·天津卷】如图所示,两根平行金属导轨置于水平面内,导轨之间接有电阻R .金属棒ab 与两导轨垂直并保持良好接触,整个装置放在匀强磁场中,磁场方向垂直于导轨平面向下.现使磁感应强度随时间均匀减小,ab 始终保持静止,下列说法正确的是A .ab 中的感应电流方向由b 到aB .ab 中的感应电流逐渐减小C .ab 所受的安培力保持不变D .ab 所受的静摩擦力逐渐减小【答案】D【解析】导体棒ab 、电阻R 、导轨构成闭合回路,磁感应强度均匀减小(k tB =∆∆为一定值),则闭合回路中的磁通量减小,根据楞次定律,可知回路中产生顺时针方向的感应电流,ab 中的电流方向由a 到b ,故A 错误;根据法拉第电磁感应定律,感应电动势B S E k S t t Φ∆∆⋅===⋅∆∆,回路面积S 不变,即感应电动势为定值,根据欧姆定律RE I =,所以ab 中的电流大小不变,故B 错误;安培力BILF =,电流大小不变,磁感应强度减小,则安培力减小,故C 错误;导体棒处于静止状态,所受合力为零,对其受力分析,水平方向静摩擦力f 与安培力F 等大反向,安培力减小,则静摩擦力减小,故D 正确.【考点定位】楞次定律,法拉第电磁感应定律,安培力【名师点睛】本题应从电磁感应现象入手,熟练应用法拉第电磁感应定律和楞次定律.4.【2017·新课标Ⅱ卷】两条平行虚线间存在一匀强磁场,磁感应强度方向与纸面垂直.边长为0.1 m、总电阻为0.005 Ω的正方形导线框abcd位于纸面内,cd边与磁场边界平行,如图(a)所示.已知导线框一直向右做匀速直线运动,cd边于t=0时刻进入磁场.线框中感应电动势随时间变化的图线如图(b)所示(感应电流的方向为顺时针时,感应电动势取正).下列说法正确的是A.磁感应强度的大小为0.5 TB.导线框运动速度的大小为0.5 m/sC.磁感应强度的方向垂直于纸面向外D.在t=0.4 s至t=0.6 s这段时间内,导线框所受的安培力大小为0.1 N【答案】BC【考点定位】法拉第电磁感应定律;楞次定律;安培力【名师点睛】此题是关于线圈过磁场的问题;关键是能通过给出的E–t图象中获取信息,得到线圈在磁场中的运动情况,结合法拉第电磁感应定律及楞次定律进行解答.此题意在考查学生基本规律的运用能力以及从图象中获取信息的能力.5.【2017·北京卷】图1和图2是教材中演示自感现象的两个电路图,L1和L2为电感线圈.实验时,断开开关S1瞬间,灯A1突然闪亮,随后逐渐变暗;闭合开关S2,灯A2逐渐变亮,而另一个相同的灯A3立即变亮,最终A2与A3的亮度相同.下列说法正确的是A.图1中,A1与L1的电阻值相同B.图1中,闭合S1,电路稳定后,A1中电流大于L1中电流C.图2中,变阻器R与L2的电阻值相同D.图2中,闭合S2瞬间,L2中电流与变阻器R中电流相等【答案】C【考点定位】自感【名师点睛】线圈在电路中发生自感现象,根据楞次定律可知,感应电流要“阻碍”使原磁场变化的电流变化情况.电流突然增大时,会感应出逐渐减小的反向电流,使电流逐渐增大;电流突然减小时,会感应出逐渐减小的正向电流,使电流逐渐减小.6.【2017·江苏卷】(15分)如图所示,两条相距d的平行金属导轨位于同一水平面内,其右端接一阻值为R的电阻.质量为m的金属杆静置在导轨上,其左侧的矩形匀强磁场区域MNPQ的磁感应强度大小为B、方向竖直向下.当该磁场区域以速度v0匀速地向右扫过金属杆后,金属杆的速度变为v.导轨和金属杆的电阻不计,导轨光滑且足够长,杆在运动过程中始终与导轨垂直且两端与导轨保持良好接触.求:(1)MN刚扫过金属杆时,杆中感应电流的大小l;(2)MN刚扫过金属杆时,杆的加速度大小a;(3)PQ刚要离开金属杆时,感应电流的功率P.【答案】(1)BdvIR=(2)22B d vamR=(3)222()B d v vPR-=【考点定位】电磁感应【名师点睛】本题的关键在于导体切割磁感线产生电动势E=Blv,切割的速度(v)是导体与磁场的相对速度,分析这类问题,通常是先电后力,再功能.7.【2017·北京卷】(20分)发电机和电动机具有装置上的类似性,源于它们机理上的类似性.直流发电机和直流电动机的工作原理可以简化为如图1、图2所示的情景.在竖直向下的磁感应强度为B的匀强磁场中,两根光滑平行金属轨道MN、PQ固定在水平面内,相距为L,电阻不计.电阻为R的金属导体棒ab垂直于MN、PQ放在轨道上,与轨道接触良好,以速度v(v平行于MN)向右做匀速运动.图1轨道端点MP间接有阻值为r的电阻,导体棒ab受到水平向右的外力作用.图2轨道端点MP间接有直流电源,导体棒ab通过滑轮匀速提升重物,电路中的电流为I.(1)求在Δt时间内,图1“发电机”产生的电能和图2“电动机”输出的机械能.(2)从微观角度看,导体棒ab中的自由电荷所受洛伦兹力在上述能量转化中起着重要作用.为了方便,可认为导体棒中的自由电荷为正电荷.a.请在图3(图1的导体棒ab)、图4(图2的导体棒ab)中,分别画出自由电荷所受洛伦兹力的示意图.b.我们知道,洛伦兹力对运动电荷不做功.那么,导体棒ab中的自由电荷所受洛伦兹力是如何在能量转化过程中起到作用的呢?请以图2“电动机”为例,通过计算分析说明.【答案】(1)222B L v t R r∆+ BLv t ∆ (2)a .如图3、图4 b .见解析【解析】(1)图1中,电路中的电流1BLv I R r=+ 棒ab 受到的安培力F 1=BI 1L 在Δt 时间内,“发电机”产生的电能等于棒ab 克服安培力做的功2221B L v t E F v t R r∆=⋅∆=+电 图2中,棒ab 受到的安培力F 2=BIL在Δt 时间内,“电动机”输出的机械能等于安培力对棒ab 做的功2E F v t BILv t =⋅∆=∆机 (2)a .图3中,棒ab 向右运动,由左手定则可知其中的正电荷受到b →a 方向的洛伦兹力,在该洛伦兹力作用下,正电荷沿导体棒运动形成感应电流,有沿b →a 方向的分速度,受到向左的洛伦兹力作用;图4中,在电源形成的电场作用下,棒ab 中的正电荷沿a →b 方向运动,受到向右的洛伦兹力作用,该洛伦兹力使导体棒向右运动,正电荷具有向右的分速度,又受到沿b →a 方向的洛伦兹力作用.如图3、图4.b .设自由电荷的电荷量为q ,沿导体棒定向移动的速率为u .如图4所示,沿棒方向的洛伦兹力1f qvB '=,做负功11W f u t qvBu t '=-⋅∆=-∆ 垂直棒方向的洛伦兹力2f quB '=,做正功22W f v t quBv t '=⋅∆=∆所示12W W =-,即导体棒中一个自由电荷所受的洛伦兹力做功为零.1f '做负功,阻碍自由电荷的定向移动,宏观上表现为“反电动势”,消耗电源的电能;2f '做正功,宏观上表现为安培力做正功,使机械能增加.大量自由电荷所受洛伦兹力做功的宏观表现是将电能转化为等量的机械能,在此过程中洛伦兹力通过两个分力做功起到“传递能量的作用.【考点定位】闭合电路欧姆定律、法拉第电磁感应定律、左手定则、功能关系【名师点睛】洛伦兹力永不做功,本题看似洛伦兹力做功,实则将两个方向的分运动结合起来,所做正、负功和为零.1.【2017·郑州市第三次质量预测】如图所示,铜管内有一片羽毛和一个小磁石.现将铜管抽成真空并竖直放置,使羽毛、小磁石同时从管内顶端由静止释放,已知羽毛、小磁石下落过程中无相互接触且未与管道内璧接触,则A .羽毛的下落时间大于小磁石的下落时间B .羽毛的下落时间等于小磁石的下落时间C .羽毛落到管底时的速度大于小磁石落到管底时的速度D .羽毛落到管底时的速度小于小滋石落到管底时的速度【答案】C2.【2017·郑州市第三次质量预测】铁路运输中设计的多种装置都运用了电磁感应原理.有一种电磁装致可以向控制中心传输信号以确定火车的位置和运动状态,装置的原理是:将能产生匀强磁场的磁铁安装在火车首节车厢下面,如图甲所示(俯视图),当它经过安放在两铁轨间的矩形线圈时,线圈便产生一个电信号传输给控制中心.线圈长为ι1,宽为ι2.匝数为n.若匀强磁场只分布在一个矩形区域内,当火车首节车厢通过线圈时,控制中心接收到线圈两端电压u与时间t的关系如图乙所示(ab、cd均为直线),则在t1-t2时间内A.火车做匀速直线运动B.M点电势低于N点电势C.火车加速度大小为D.火车平均速度大小为【答案】BD【解析】A、由E=BLv可知,动生电动势与速度成正比,而在乙图中ab段的电压与时间成线性关系,因此可知在t1到t2这段时间内,火车的速度随时间均匀增加,所以火车在这段时间内做的是匀加速直线运动.故A错误.B、根据右手定则,线圈中的感应电流是逆时针的,M点电势低于N点电势,B正确;C、由图知t1时刻对应的速度为:,t2时刻对应的速度为:,故这段时间内的加速度为:,故C错误;D、由C可知这段时间内的平均速度为:,D正确.故选BD.【名师点睛】判定运动状态,可以找出动生电动势与速度的关系,进而确定速度和时间的关系,就可以知道火车在ab事件段内的运动性质;根据右手定则可判断电势的高低;加速度可以由AB中判定出的速度时间关系来确定;同C项一样,也是通过AB判定出的速度时间关系来解. 3.【2017·安徽省江淮十校第三次联考】宽为L的两光滑竖直裸导轨间接有固定电阻R,导轨(电阻忽略不计)间I、Ⅱ区域中有垂直纸面向里宽为d、磁感应强度为B的匀强磁场,I、Ⅱ区域间距为h,如图,有一质量为m、长为L电阻不计的金属杆与竖直导轨紧密接触,从距区域I上端H处杆由静止释放.若杆在I、Ⅱ区域中运动情况完全相同,现以杆由静止释放为计时起点,则杆中电流随时间t变化的图像可能正确的是A.B.C.D.【答案】B4.【2017·广东省惠州市4月模拟】在家庭电路中,为了安全,一般在电能表后面的电路中安装一个漏电开关,其工作原理如图所示,其中甲线圈两端与脱扣开关控制器相连,乙线圈由两条电源线采取双线法绕制,并与甲线圈绕在同一个矩形硅钢片组成的铁芯上.以下说法正确的是()A.当用户用电正常时,甲线圈两端没有电压,脱扣开关接通.B.当用户用电正常时,甲线圈两端有电压,脱扣开关接通.C.当用户发生漏电时,甲线圈两端没有有电压,脱扣开关断开D.当用户发生漏电时,甲线圈两端有电压,脱扣开关断开【答案】AD【名师点睛】保护器中火线和零线中电流相等时,产生的磁场应完全抵消,穿过甲线圈的磁通量始终为零,甲线圈中没有电压,脱扣开关K保持接通.漏电时,流过火线与零线的电流不相等,保护器中火线和零线中电流产生的磁场应不能完全抵消,会使甲线圈中产生感应电动势,脱扣开关断开.5.【2017·河南省南阳、信阳等六市高三第二次联考】如图所示,水平面上相距l=0.5m的两根光滑平行金属导轨MN和PQ,他们的电阻可忽略不计,在M和P之间接有最大阻值为6.0Ω的滑动变阻器R,导体棒ab电阻r=1Ω,与导轨垂直且接触良好,整个装置处于方向竖直向下的匀强磁场中,磁感应强度B =0.4T,滑动变阻器滑片处在正中间位置,ab在外力F作用下以v=l0m/s的速度向右匀速运动,以下判断正确的是A.通过导体棒的电流大小为0.5A,方向由b到aB.导体棒受到的安培力大小为1N,方向水平向左C.外力F的功率大小为1WD.若增大滑动变阻器消耗的劝率,应把滑片向M端移动【答案】CD6.【2017·湖南省永州市高三三模】如图(a)所示,在光滑水平面上放置一质量为1 kg的单匝均匀正方形铜线框,线框边长为0.1m.在虚线区域内有竖直向下的匀强磁场,磁感应强度为T.现用恒力F拉线框,线框到达1位置时,以速度v0=3 m/s进入匀强磁场并开始计时.在t=3 s 时刻线框到达2位置开始离开匀强磁场.此过程中v-t图像如图(b)所示,那么A.t=0时刻线框右侧边两端MN间的电压为0.75 VB.恒力F的大小为0.5 NC.线框完全离开磁场的瞬间的速度大小为3 m/sD.线框完全离开磁场的瞬间的速度大小为1 m/s【答案】AB【点睛】该图象为速度--时间图象,斜率表示加速度.根据加速度的变化判断物体的受力情况.要注意当通过闭合回路的磁通量发生变化时,闭合回路中产生感应电流,所以只有在进入和离开磁场的过程中才有感应电流产生7.【2017·大连市高三二模】如图所示,倾角为的光滑斜面固定在水平面上,水平虚线PQ下方有垂直于斜面向下的匀强磁场,磁感应强度为B.正方向闭合金属线框边长为l,质量为m,电阻为R,放置于PQ上方一定距离处,保持线框底边ab与PQ平行并由静止释放,当ab边到达PQ时,线框速度为,ab边到达PQ下方距离d(d>l)处时,线框速度也为,下列说法正确的是A.ab边刚进入磁场时,电流方向为a→bB.ab边刚进入磁场时,线框做加速运动C.线框进入磁场过程中的最小速度可能等于D.线框进入磁场过程中产生的热量为【答案】ACD【解析】根据右手定则知,ab边刚进入磁场时,电流方向为a→b.故A正确.当ab边到达L 时,线框速度为v0.ab边到达L下方距离d处时,线框速度也为v0,知线框进入磁场时做减速运动,完全进入磁场后做加速运动,则ab边刚进入磁场时,做减速运动,加速度方向向上.故B错误.线框从进入磁场到完全进入的过程中,做减速运动,完全进入的瞬间速度最小,此时安培力大于重力沿斜面方向的分力,根据E=BIl,,F A=BIL,根据F A≥mgsinθ,有,解得,即线框进入磁场过程中的最小速度可能等于,故C 正确.对线框进入磁场的过程运用能量守恒定律得,mgdsinθ=Q.故D正确.故选ACD.点睛:本题综合考查了右手定则、安培力大小公式、闭合电路欧姆定律、切割产生的感应电动势公式和能量守恒,知道线框进入磁场的运动规律是解决本题的关键.。
2017-2019年高考真题物理分项汇编专题12 电磁感应
专题12 电磁感应1.(2019·新课标全国Ⅰ卷)空间存在一方向与直面垂直、大小随时间变化的匀强磁场,其边界如图(a )中虚线MN 所示,一硬质细导线的电阻率为ρ、横截面积为S ,将该导线做成半径为r 的圆环固定在纸面内,圆心O 在MN 上。
t =0时磁感应强度的方向如图(a )所示。
磁感应强度B 随时间t 的变化关系如图(b )所示,则在t =0到t =t 1的时间间隔内A .圆环所受安培力的方向始终不变B .圆环中的感应电流始终沿顺时针方向C .圆环中的感应电流大小为004B rS t ρD .圆环中的感应电动势大小为200π4B r t 【答案】BC【解析】AB 、根据B-t 图象,由楞次定律可知,线圈中感应电流方向一直为顺时针,但在t 0时刻,磁场的方向发生变化,故安培力方向A F 的方向在t 0时刻发生变化,则A 错误,B 正确;CD 、由闭合电路欧姆定律得:E I R =,又根据法拉第电磁感应定律得:22B r E t t φπ∆∆==∆∆,又根据电阻定律得:2r R S πρ=,联立得:004B rS I t ρ=,则C 正确,D 错误。
故本题选BC 。
2.(2019·新课标全国Ⅱ卷)如图,两条光滑平行金属导轨固定,所在平面与水平面夹角为θ,导轨电阻忽略不计。
虚线ab 、cd 均与导轨垂直,在ab 与cd 之间的区域存在垂直于导轨所在平面的匀强磁场。
将两根相同的导体棒PQ 、MN 先后自导轨上同一位置由静止释放,两者始终与导轨垂直且接触良好。
已知PQ 进入磁场时加速度变小恰好为零,从PQ 进入磁场开始计时,到MN 离开磁场区域为止,流过PQ 的电流随时间变化的图像可能正确的是【答案】AD【解析】于PQ进入磁场时加速度为零,AB.若PQ出磁场时MN仍然没有进入磁场,则PQ出磁场后至MN进入磁场的这段时间,由于磁通量φ不变,无感应电流。
由于PQ、MN同一位置释放,故MN进入磁场时与PQ进入磁场时的速度相同,所以电流大小也应该相同,A正确B错误;CD.若PQ出磁场前MN已经进入磁场,由于磁通量φ不变,PQ、MN均加速运动,PQ出磁场后,MN由于加速故电流比PQ进入磁场时电流大,故C正确D错误。
2017-2019年高考真题物理分项汇编专题12 电磁感应
专题12 电磁感应1.(2019·新课标全国Ⅰ卷)空间存在一方向与直面垂直、大小随时间变化的匀强磁场,其边界如图(a )中虚线MN 所示,一硬质细导线的电阻率为ρ、横截面积为S ,将该导线做成半径为r 的圆环固定在纸面内,圆心O 在MN 上。
t =0时磁感应强度的方向如图(a )所示。
磁感应强度B 随时间t 的变化关系如图(b )所示,则在t =0到t =t 1的时间间隔内A .圆环所受安培力的方向始终不变B .圆环中的感应电流始终沿顺时针方向C .圆环中的感应电流大小为004B rS t ρD .圆环中的感应电动势大小为200π4B r t 【答案】BC【解析】AB 、根据B-t 图象,由楞次定律可知,线圈中感应电流方向一直为顺时针,但在t 0时刻,磁场的方向发生变化,故安培力方向A F 的方向在t 0时刻发生变化,则A 错误,B 正确;CD 、由闭合电路欧姆定律得:E I R =,又根据法拉第电磁感应定律得:22B r E t t φπ∆∆==∆∆,又根据电阻定律得:2r R S πρ=,联立得:004B rS I t ρ=,则C 正确,D 错误。
故本题选BC 。
2.(2019·新课标全国Ⅱ卷)如图,两条光滑平行金属导轨固定,所在平面与水平面夹角为θ,导轨电阻忽略不计。
虚线ab 、cd 均与导轨垂直,在ab 与cd 之间的区域存在垂直于导轨所在平面的匀强磁场。
将两根相同的导体棒PQ 、MN 先后自导轨上同一位置由静止释放,两者始终与导轨垂直且接触良好。
已知PQ 进入磁场时加速度变小恰好为零,从PQ 进入磁场开始计时,到MN 离开磁场区域为止,流过PQ 的电流随时间变化的图像可能正确的是【答案】AD【解析】于PQ进入磁场时加速度为零,AB.若PQ出磁场时MN仍然没有进入磁场,则PQ出磁场后至MN进入磁场的这段时间,由于磁通量φ不变,无感应电流。
由于PQ、MN同一位置释放,故MN进入磁场时与PQ进入磁场时的速度相同,所以电流大小也应该相同,A正确B错误;CD.若PQ出磁场前MN已经进入磁场,由于磁通量φ不变,PQ、MN均加速运动,PQ出磁场后,MN由于加速故电流比PQ进入磁场时电流大,故C正确D错误。
2017年高考物理最新模拟试题精选分类 电磁感应
2017年高考物理最新模拟试题精选分类电磁感应一.选择题1.(2017福建省福州市外国语学校高三适应性考试)如图甲所示,在竖直方向上有四条间距相等的水平虚线L1、L2、L3、L4,在L1L2之间、L3L4之间存在匀强磁场,大小均为1T,方向垂直于虚线所在平面.现有一矩形线圈abcd,宽度cd=L=0.5m,质量为0.1kg,电阻为2Ω,将其从图示位置静止释放(cd边与L1重合),速度随时间的变化关系如图乙所示,t1时刻cd边与L2重合,t2时刻ab边与L3重合,t3时刻ab边与L4重合,已知t1~t2的时间间隔为0.6s,整个运动过程中线圈平面始终处于竖直方向.(重力加速度g取10m/s2)则()A.在0~t1时间内,通过线圈的电荷量为0.75 CB.线圈匀速运动的速度大小为8 m/sC.线圈的长度为1 mD.0~t3时间内,线圈产生的热量为4.2 J【参考答案】AB2.(2016百校联盟猜题卷)如图所示,在匀强磁场中有一倾斜的足够长平行金属导轨,导轨间距为L,两导轨顶端连有一定值电阻R,导轨平面与水平面的夹角为θ,匀强磁场的磁感应强度大小为B、方向垂直导轨平面向上,质量为m、电阻为r的光滑导体棒从某一高度处由静止释放,导体棒运动过程中始终与导轨垂直且与导轨接触良好,其他部分的电阻不计,重力加速度为g,则下列说法正确的是A.导体棒先做加速度减小的加速运动,后做匀速运动B.若导体棒的速度为v,则R两端的电压为BLvC.导体棒的最大速度为D.在导体棒下滑过程中,电路中产生的焦耳热等于导体棒克服安培力所做的功【参考答案】AD3.(2016•珠海二模)如图,匀强磁场B上下边界间距为a,磁感应强度方向垂直纸面向里,现将边长为b的正方形线框CDEF从距磁场上边界h处无初速释放,若下落过程中,线框平面始终位于纸平面内,下边框始终与磁场上下边界平行,当()A.线框匀速进入磁场时,则穿出磁场时速度可能减小或不变B.线框匀速进入磁场时,则穿出磁场时加速度可能减小或不变C.线框穿过磁场时,关于D、E两点的电势始终有φD<φED.线框穿过磁场时,产生的焦耳热一定小于其重力势能的减少量【考点】导体切割磁感线时的感应电动势;闭合电路的欧姆定律;焦耳定律.线框匀速进入磁场时,如果a=b,线框匀速通过磁场区域,a=0,加速度不变;如果a<b或a>b,离开磁场时,经过了一段加速运动,,,合力向上,向下做减速运动,根据牛顿第二定律有:,随着速度减小加速度也减小,故B正确线框穿过磁场时,根据右手定则,当DE边离开磁场,CF边切割磁感线时,感应电流顺时针方向,流过DE边的电流由E→D,有;DE边切割磁感线时,由右手定则,DE是电源,感应电流逆时针方向,有,故C正确.线框可能匀速通过整个磁场区,产生的焦耳热等于重力势能的增加量,故D错误.【参考答案】ABC【点评】解决本题的关键对正方形线框进行受力分析,明确研究过程的运动情况,注意磁场区域的宽度可能大于、小于、等于线框边长,分析问题要全面.二.计算题1.(2016四川最后一卷)如图所示,一边长为L=2.5 m、质量m=0.5 kg的正方形金属线框放在光滑绝缘的水平面上,线框处于方向竖直向上、磁感应强度大小为B=0.8 T的有界匀强磁场中,它的一边与磁场的边界MN重合。
2017年度高三一模二模分类汇编电磁感应
2017北京一模二模物理试题分类--电磁感应1.(2017昌平二20题)图6(甲)为手机及无线充电板。
图(乙)为充电原理示意图。
充电板接交流电源,对充电板供电,充电板内的送电线圈可产生交变磁场,从而使手机内的受电线圈产生交变电流,再经整流电路转变成直流电后对手机电池充电。
为方便研究,现将问题做如下简化:设受电线圈的匝数为n ,面积为S ,若在t 1到t 2时间内,磁场垂直于受电线圈平面向上穿过线圈,其磁感应强度由B 1均匀增加到B 2。
下列说法正确的是A .c 点的电势高于d 点的电势B .受电线圈中感应电流方向由d 到cC .c 、d 之间的电势差为1212t t SB B n --)(D .c 、d 之间的电势差为1212t t B B n --)(2.(2017东城二18题)如图所示,在光滑水平桌面上有一边长为L 、总电阻为R 的正方形导线框abcd ,在导线框右侧有一边长为2L 、磁感应强度为B 、方向竖直向下的正方形匀强磁场区域。
磁场的左边界与导线框的ab 边平行。
在导线框以速度v 匀速向右穿过磁场区域的全过程中A .感应电动势的大小为B .感应电流的方向始终沿abcda 方向C .导线框受到的安培力先向左后向右D .导线框克服安培力做功及绕在其上的线圈组成。
磁体产生的磁场使钢质琴弦磁化而产生磁性,即琴弦也产生自己的磁场。
当某根琴弦被拨动而相对线圈振动时,线圈中就会产生相应的电流,并最终还原为声音信号。
下列说法中正确的是A.若磁体失去磁性,电吉他仍能正常工作B.换用尼龙材质的琴弦,电吉他仍能正常工作C.琴弦振动的过程中,线圈中电流的方向不会发生变化D.拾音器的作用是利用电磁感应把琴弦的振动转化成电信号4.(2017东城一19题)用如图所示器材“研究电磁感应现象”。
闭合开关时灵敏电流计指针向左偏转。
在保持开关闭合的状态下A.将线圈1全部放入线圈2中,然后向左较快或较慢推动滑片时,灵敏电流计指针均向左偏转,且偏转角度不同B.将线圈1全部放入线圈2中,然后向右较快或较慢推动滑片时,灵敏电流计指针均向左偏转,且偏转角度不同C.将滑片位于中间位置不动,将线圈1从线圈2中的同一位置较快或较慢抽出,灵敏电流计的指针偏转方向不同,偏转角度也不同D.将滑片位于中间位置不动,将线圈1从图示位置较快或较慢放入线圈2中,灵敏电流计的指针偏转方向不同,偏转角度也相同强磁铁比铝管内径小一些的圆柱形的强磁铁从铝管上端由静止释放,强磁铁在铝管中始终与管壁不接触。
3年高考2年模拟1年原创备战2017高考精品系列之物理:专题09+电磁感应(原卷版)
【2017年高考考点定位】本考点从磁通量开始,以引起磁通量变化的各种原因为线索,以判断磁通量变化导致的感应电动势和感应电流大小和方向的楞次定律和法拉第电磁感应定律为重点,综合力学和电学的相关知识点,电磁感应考点主要的知识网络。
【考点p k 】名师考点透析考点一、磁通量 电磁感应现象和楞次定律【名师点睛】1、 磁通量:穿过平面的磁感线条数,公式sin BS φθ=,θ为磁场方向和平面的夹角。
引起磁通量变化的原因可能是磁感应强度的变化,线圈面积的变化以及二者夹角的变化,磁通量变化量记做0φφφ∆=-。
2、 电磁感应现象:法拉第发现并总结出产生感应电流的五种情况:○1变化的电流○2变化的磁场○3运动的恒定电流○4运动的磁铁○5在磁场中运动的导体⇒进一步总结发现:当穿过闭合回路的磁通量发生变化时,电路中有感应电流产生。
电磁感应的实质是产生感应电动势,如果回路闭合则产生感应电流,若回路不闭合则产生感应电动势,电路中没有感应电流。
3、 楞次定律:感应电流产生的磁场总要阻碍引起感应电流的磁通量的变化。
⇒阻碍不是阻止,“增反减同”即若磁通量减小,感应电流产生的磁场与原磁场方向相同,若磁通量增大,感应电流产生的磁场与原磁场同向。
“增缩减扩”对线圈分析,若磁通量增大,线圈与缩小的趋势,若磁通量减小,线圈有扩大的趋势。
4、 右手定则:导体切割磁感线时判断感应电流方向用右手定则⇒伸开右手,让大拇指和其他四指垂直,并且和手掌在同一个平面内,让磁感线从掌心传入,并使拇指方向指向导体棒运动的方向,此时四指所指的方向就是感应电流方向考点二、法拉第电磁感应定律 自感和涡流【名师点睛】1、 闭合电路中感应电动势的大小与磁通量变化率成正比即E ntφ∆=∆,其中n 为线圈匝数,普遍适用。
2、 若导体棒垂直切割磁感线则有sin E Blv θ=,若导体棒在匀强磁场张绕其中一端点做匀速圆周运动,则产生的感应电动势212E Bl ω=。
若线圈面积不变,则感应电动势B E nns t t φ∆∆==∆∆,B t∆∆即B t -图像的斜率。
高考物理二模试题分类汇编——法拉第电磁感应定律推断题综合
高考物理二模试题分类汇编——法拉第电磁感应定律推断题综合一、法拉第电磁感应定律1.光滑平行的金属导轨MN 和PQ,间距L=1.0m,与水平面之间的夹角α=30°,匀强磁场磁感应强度B=2.0T,垂直于导轨平面向上,MP 间接有阻值R=2.0Ω的电阻,其它电阻不计,质量m=2.0kg 的金属杆ab 垂直导轨放置,如图(a)所示.用恒力F 沿导轨平面向上拉金属杆ab,由静止开始运动,v−t 图象如图(b)所示.g=10m/s 2,导轨足够长.求:(1)恒力F 的大小;(2)金属杆速度为2.0m/s 时的加速度大小;(3)根据v−t 图象估算在前0.8s 内电阻上产生的热量.【答案】(1)18N(2)2m/s 2(3)4.12J【解析】【详解】(1)由题图知,杆运动的最大速度为4/m v m s =, 有22sin sin m B L v F mg F mg Rαα=+=+安,代入数据解得F=18N . (2)由牛顿第二定律可得:sin F F mg ma α--=安 得222222212sin 182100.52/2/2B L v F mg R a m s m s m α⨯⨯----⨯⨯===, (3)由题图可知0.8s 末金属杆的速度为1 2.2/v m s =,前0.8s 内图线与t 轴所包围的小方格的个数约为28个,面积为28×0.2×0.2=1.12,即前0.8s 内金属杆的位移为 1.12x m =, 由能量的转化和守恒定律得:211sin 2Q Fx mgx mv α=--, 代入数据解得: 4.12J Q =.【点睛】本题电磁感应与力学知识的综合,抓住速度图象的两个意义:斜率等于加速度,“面积”等于位移辅助求解.估算位移时,采用近似的方法,要学会运用.2.如图所示,两根相距为L 的光滑平行金属导轨CD 、EF 固定在水平面内,并处在竖直向下的匀强磁场中,导轨足够长且电阻不计.在导轨的左端接入阻值为R 的定值电阻,将质量为m 、电阻可忽略不计的金属棒MN 垂直放置在导轨上,可以认为MN 棒的长度与导轨宽度相等,且金属棒运动过程中始终与导轨垂直并接触良好,不计空气阻力.金属棒MN 以恒定速度v 向右运动过程中,假设磁感应强度大小为B 且保持不变,为了方便,可认为导体棒中的自由电荷为正电荷.(1)请根据法拉第电磁感应定律,推导金属棒MN 中的感应电动势E ;(2)在上述情景中,金属棒MN 相当于一个电源,这时的非静电力与棒中自由电荷所受洛伦兹力有关.请根据电动势的定义,推导金属棒MN 中的感应电动势E .(3)请在图中画出自由电荷所受洛伦兹力示意图.我们知道,洛伦兹力对运动电荷不做功.那么,金属棒MN 中的自由电荷所受洛伦兹力是如何在能量转化过程中起到作用的呢?请结合图中自由电荷受洛伦兹力情况,通过计算分析说明.【答案】(1)E BLv =;(2)v E BL =(3)见解析【解析】【分析】(1)先求出金属棒MN 向右滑行的位移,得到回路磁通量的变化量∆Φ ,再由法拉第电磁感应定律求得E 的表达式;(2)棒向右运动时,电子具有向右的分速度,受到沿棒向下的洛伦兹力,1v f e B =,棒中电子在洛伦兹力的作用下,电子从M 移动到N 的过程中,非静电力做功v W e Bl =,根据电动势定义W E q=计算得出E. (3)可以从微观的角度求出水平和竖直方向上的洛伦兹力做功情况,在比较整个过程中做功的变化状况.【详解】(1)如图所示,在一小段时间∆t 内,金属棒MN 的位移x v t ∆=∆这个过程中线框的面积的变化量S L x Lv t ∆=∆=∆穿过闭合电路的磁通量的变化量B S BLv t ∆Φ=∆=∆根据法拉第电磁感应定律 E t ∆Φ=∆ 解得 E BLv = (2)如图所示,棒向右运动时,正电荷具有向右的分速度,受到沿棒向上的洛伦兹力1v f e B =,f 1即非静电力在f 的作用下,电子从N 移动到M 的过程中,非静电力做功v W e BL =根据电动势定义 W E q=解得 v E BL =(3)自由电荷受洛伦兹力如图所示.设自由电荷的电荷量为q ,沿导体棒定向移动的速率为u .如图所示,沿棒方向的洛伦兹力1f q B =v ,做正功11ΔΔW f u t q Bu t =⋅=v 垂直棒方向的洛伦兹力2f quB =,做负功22ΔΔW f v t quBv t =-⋅=-所以12+=0W W ,即导体棒中一个自由电荷所受的洛伦兹力做功为零.1f 做正功,将正电荷从N 端搬运到M 端,1f 相当于电源中的非静电力,宏观上表现为“电动势”,使电源的电能增加;2f 做负功,宏观上表现为安培力做负功,使机械能减少.大量自由电荷所受洛伦兹力做功的宏观表现是将机械能转化为等量的电能,在此过程中洛伦兹力通过两个分力做功起到“传递”能量的作用.【点睛】本题较难,要从电动势定义的角度上去求电动势的大小,并学会从微观的角度分析带电粒子的受力及做功情况.3.水平面上平行固定两长直导体导轨MN 和PQ ,导轨宽度L =2m ,空间存在竖直向下的匀强磁场,磁感应强度B =0.5T ,在垂直于导轨方向静止放置两根导体棒1和2,其中1的质量M =4kg,有效电阻R =0.6Ω,2的质量m =1kg ,有效电阻r =0.4Ω,现使1获得平行于导轨的初速度v 0=10m/s ,不计一切摩擦,不计其余电阻,两棒不会相撞.请计算:(1)初始时刻导体棒2的加速度a 大小.(2)系统运动状态稳定时1的速度v 大小.(3)系统运动状态达到稳定的过程中,流过导体棒1某截面的电荷量q 大小. (4)若初始时刻两棒距离d =10m ,则稳定后两棒的距离为多少?【答案】(1)10m/s 2(2)8m/s (3)8C (4)2m【解析】【详解】解:(1)初始时:0E BLv =E I R r=+ 对棒2:F 安BIL ma == 解得:222010m/s B L v a R r==+ (2)对棒1和2的系统,动量守恒,则最后稳定时:0()Mv m M v =+解得:8m/s v =(3)对棒2,由动量定理:BIL t mv ∆= ,其中q I t =∆ 解得:8C mv q BL == (4)由E t φ∆=∆ 、E I R r=+、 q I t =∆ 联立解得:BL x q R r R r φ∆∆==++ 又mv q BL= 解得:22()mv R r x B L +∆= 则稳定后两棒的距离:22()2m mv R r d d x d B L +'=-∆=-=4.如图甲所示,两根足够长、电阻不计的光滑平行金属导轨相距为L 1=1m,导轨平面与水平面成θ=30°角,上端连接阻值R =1.5Ω的电阻,质量为m =0.2Kg 、阻值r=0.5Ω的金属棒放在两导轨上,距离导轨最上端为L 2=4m,棒与导轨垂直并保持良好接触.整个装置处于一匀强磁场中,该匀强磁场方向与导轨平面垂直,磁感应强度大小随时间变化的情况如图乙所示.为保持ab 棒静止,在棒上施加了一平行于导轨平面的外力F ,g =10m/s 2求:(1)当t =1s 时,棒受到安培力F 安的大小和方向;(2)当t =1s 时,棒受到外力F 的大小和方向;(3)4s 后,撤去外力F ,金属棒将由静止开始下滑,这时用电压传感器将R 两端的电压即时采集并输入计算机,在显示器显示的电压达到某一恒定值后,记下该时刻棒的位置,测出该位置与棒初始位置相距2m,求棒下滑该距离过程中通过金属棒横截面的电荷量q.【答案】(1)0.5N ;方向沿斜面向上(2)0.5N ,方向沿斜面向上(3)1.5C【解析】【分析】【详解】(1)0-3s 内,由法拉第电磁感应定律得:122V B E L L t t∆Φ∆===∆∆ T =1s 时,F 安=BIL 1=0.5N 方向沿斜面向上(2)对ab 棒受力分析,设F 沿斜面向下,由平衡条件:F +mg sin30° -F 安=0F =-0.5N外力F 大小为0.5N .方向沿斜面向上(3)q =It ,E I R r =+;E t ∆Φ=∆; 1∆Φ=BL S 联立解得1 1.512C 1.5C 1.50.5BL S q R r ⨯⨯===++5.如图所示,在匀强磁场中有一足够长的光滑平行金属导轨,与水平面间的夹角θ=30°,间距L =0.5 m ,上端接有阻值R =0.3 Ω的电阻.匀强磁场的磁感应强度大小B =0.4 T ,磁场方向垂直导轨平面向上.一质量m =0.2 kg ,电阻r =0.1 Ω的导体棒MN ,在平行于导轨的外力F 作用下,由静止开始向上做匀加速运动,运动过程中导体棒始终与导轨垂直,且接触良好.当棒的位移d =9 m 时,电阻R 上消耗的功率为P =2.7 W .其它电阻不计,g 取10 m/s 2.求:(1)此时通过电阻R 上的电流;(2)这一过程通过电阻R 上的电荷量q ;(3)此时作用于导体棒上的外力F 的大小.【答案】(1)3A (2)4.5C (3)2N【解析】【分析】【详解】(1)根据热功率:P =I 2R ,解得:3A I == (2)回路中产生的平均感应电动势:E nt φ∆=∆ 由欧姆定律得:+E I R r= 得电流和电量之间关系式:q I t nR r φ∆=⋅∆=+ 代入数据得: 4.5C BLd q R r==+ (3)此时感应电流I =3A ,由E BLv I R r R r ==++ 解得此时速度:()6m/s I R r v BL +==由匀变速运动公式:v 2=2ax , 解得:222m/s 2v a d== 对导体棒由牛顿第二定律得:F -F 安-mgsin30°=ma ,即:F -BIL -mgsin30°=ma ,解得:F =ma +BIL +mgsin30°=2 N【点睛】本题考查电功率,电量表达式及电磁感应电动势表达式结合牛顿第二定律求解即可,难度不大,本题中加速度的求解是重点.【考点】动生电动势、全电路的欧姆定律、牛顿第二定律.6.如图所示,两条平行的金属导轨相距L =lm ,金属导轨的倾斜部分与水平方向的夹角为37°,整个装置处在竖直向下的匀强磁场中.金属棒MN 和PQ 的质量均为m =0.2kg ,电阻分别为R MN =1Ω和R PQ =2Ω.MN 置于水平导轨上,与水平导轨间的动摩擦因数μ=0.5,PQ 置于光滑的倾斜导轨上,两根金属棒均与导轨垂直且接触良好.从t =0时刻起,MN 棒在水平外力F 1的作用下由静止开始以a =1m /s 2的加速度向右做匀加速直线运动,PQ 则在平行于斜面方向的力F 2作用下保持静止状态.t =3s 时,PQ 棒消耗的电功率为8W ,不计导轨的电阻,水平导轨足够长,MN 始终在水平导轨上运动.求:(1)磁感应强度B 的大小;(2)t =0~3s 时间内通过MN 棒的电荷量;(3)求t =6s 时F 2的大小和方向;(4)若改变F 1的作用规律,使MN 棒的运动速度v 与位移s 满足关系:v =0.4s ,PQ 棒仍然静止在倾斜轨道上.求MN 棒从静止开始到s =5m 的过程中,系统产生的焦耳热.【答案】(1)B = 2T ;(2)q = 3C ;(3)F 2=-5.2N (负号说明力的方向沿斜面向下)(4)203Q J = 【解析】【分析】t =3s 时,PQ 棒消耗的电功率为8W ,由功率公式P =I 2R 可求出电路中电流,由闭合电路欧姆定律求出感应电动势.已知MN 棒做匀加速直线运动,由速度时间公式求出t =3s 时的速度,即可由公式E =BLv 求出磁感应强度B ;根据速度公式v =at 、感应电动势公式E =BLv 、闭合电路欧姆定律和安培力公式F =BIL 结合,可求出PQ 棒所受的安培力大小,再由平衡条件求解F 2的大小和方向;改变F 1的作用规律时,MN 棒做变加速直线运动,因为速度v 与位移x 成正比,所以电流I 、安培力也与位移x 成正比,可根据安培力的平均值求出安培力做功,系统产生的热量等于克服安培力,即可得解.【详解】(1)当t =3s 时,设MN 的速度为v 1,则v 1=at =3m/s感应电动势为:E 1=BL v 1根据欧姆定律有:E 1=I (R MN + R PQ )根据P =I 2 R PQ代入数据解得:B =2T(2)当t =6 s 时,设MN 的速度为v 2,则速度为:v 2=at =6 m/s感应电动势为:E 2=BLv 2=12 V根据闭合电路欧姆定律:224MN PQE I A R R ==+ 安培力为:F 安=BI 2L =8 N规定沿斜面向上为正方向,对PQ 进行受力分析可得:F 2+F 安cos 37°=mg sin 37°代入数据得:F 2=-5.2 N(负号说明力的方向沿斜面向下)(3)MN 棒做变加速直线运动,当x =5 m 时,v =0.4x =0.4×5 m/s =2 m/s因为速度v 与位移x 成正比,所以电流I 、安培力也与位移x 成正比,安培力做功:12023MN PQ BLv W BL x J R R =-⋅⋅=-+安 【点睛】本题是双杆类型,分别研究它们的情况是解答的基础,运用力学和电路.关键要抓住安培力与位移是线性关系,安培力的平均值等于初末时刻的平均值,从而可求出安培力做功.7.如图所示,导体棒ab 质量m 1=0.1kg ,,电阻10.3R =Ω,长度L=0.4m ,横放在U 型金属框架上。
高考物理一模试题分类汇编——电磁感应现象的两类情况推断题综合含答案
高考物理一模试题分类汇编——电磁感应现象的两类情况推断题综合含答案一、电磁感应现象的两类情况1.如图甲所示,MN 、PQ 两条平行的光滑金属轨道与水平面成θ = 30°角固定,M 、P 之间接电阻箱R ,导轨所在空间存在匀强磁场,磁场方向垂直于轨道平面向上,磁感应强度为B = 1T .质量为m 的金属杆ab 水平放置在轨道上,其接入电路的电阻值为r ,现从静止释放杆ab ,测得最大速度为v m .改变电阻箱的阻值R ,得到v m 与R 的关系如图乙所示.已知轨距为L = 2m ,重力加速度g 取l0m/s 2,轨道足够长且电阻不计.求:(1)杆ab 下滑过程中流过R 的感应电流的方向及R =0时最大感应电动势E 的大小; (2)金属杆的质量m 和阻值r ;(3)当R =4Ω时,求回路瞬时电功率每增加2W 的过程中合外力对杆做的功W . 【答案】(1)电流方向从M 流到P ,E =4V (2)m =0.8kg ,r =2Ω (3)W =1.2J 【解析】本题考查电磁感应中的单棒问题,涉及动生电动势、闭合电路欧姆定律、动能定理等知识.(1)由右手定则可得,流过R 的电流方向从M 流到P 据乙图可得,R=0时,最大速度为2m/s ,则E m = BLv = 4V (2)设最大速度为v ,杆切割磁感线产生的感应电动势 E = BLv 由闭合电路的欧姆定律EI R r=+ 杆达到最大速度时0mgsin BIL θ-= 得 2222sin sin B L mg mg v R r B Lθθ=+ 结合函数图像解得:m = 0.8kg 、r = 2Ω(3)由题意:由感应电动势E = BLv 和功率关系2E P R r =+得222B L V P R r=+则22222221B L V B L V P R r R r∆=-++再由动能定理22211122W mV mV =- 得22()1.22m R r W P J B L +=∆=2.如图所示,足够长的光滑平行金属导轨MN 、PQ 倾斜放置,两导轨间距离为L ,导轨平面与水平面间的夹角θ,所处的匀强磁场垂直于导轨平面向上,质量为m 的金属棒ab 垂直于导轨放置,导轨和金属棒接触良好,不计导轨和金属棒ab 的电阻,重力加速度为g .若在导轨的M 、P 两端连接阻值R 的电阻,将金属棒ab 由静止释放,则在下滑的过程中,金属棒ab 沿导轨下滑的稳定速度为v ,若在导轨M 、P 两端将电阻R 改接成电容为C 的电容器,仍将金属棒ab 由静止释放,金属棒ab 下滑时间t ,此过程中电容器没有被击穿,求:(1)匀强磁场的磁感应强度B 的大小为多少? (2)金属棒ab 下滑t 秒末的速度是多大? 【答案】(1)2sin mgR B L vθ=2)sin sin tgvt v v CgR θθ=+ 【解析】试题分析:(1)若在M 、P 间接电阻R 时,金属棒先做变加速运动,当加速度为零时做匀速运动,达到稳定状态.则感应电动势E BLv =,感应电流EI R=,棒所受的安培力F BIL =联立可得22B L vF R=,由平衡条件可得F mgsin θ=,解得2mgRsin B L v θ (2)若在导轨 M 、P 两端将电阻R 改接成电容为C 的电容器,将金属棒ab 由静止释放,产生感应电动势,电容器充电,电路中有充电电流,ab 棒受到安培力. 设棒下滑的速度大小为v ',经历的时间为t 则电容器板间电压为 U E BLv ='=此时电容器的带电量为Q CU = 设时间间隔△t 时间内流经棒的电荷量为Q V则电路中电流Q C U CBL v i t t t ∆∆∆===∆∆∆,又va t∆=∆,解得i CBLa = 根据牛顿第二定律得mgsin BiL ma θ-=,解得22mgsin gvsin a m B L C v CgRsin θθθ==++所以金属棒做初速度为0的匀加速直线运动,ts 末的速度gvtsin v at v CgRsin θθ'==+.考点:导体切割磁感线时的感应电动势;功能关系;电磁感应中的能量转化【名师点睛】本题是电磁感应与电路、力学知识的综合,关键要会推导加速度的表达式,通过分析棒的受力情况,确定其运动情况.3.如图所示,两根竖直固定的足够长的金属导轨ad 和bc ,相距为L=10cm ;另外两根水平金属杆MN 和EF 可沿导轨无摩擦地滑动,MN 棒的质量均为m=0.2kg ,EF 棒的质量M =0.5kg ,在两导轨之间两棒的总电阻为R=0.2Ω(竖直金属导轨的电阻不计);空间存在着垂直于导轨平面的匀强磁场,磁感应强度为B=5T ,磁场区域足够大;开始时MN 与EF 叠放在一起放置在水平绝缘平台上,现用一竖直向上的牵引力使MN 杆由静止开始匀加速上升,加速度大小为a =1m/s 2,试求:(1)前2s 时间内流过MN 杆的电量(设EF 杆还未离开水平绝缘平台); (2)至少共经多长时间EF 杆能离开平台。
【三年高考两年模拟】2017年高考物理新课标一轮复习第十章 电磁感应 第3讲 电磁感应中的电路与图像问题
D 根据右手定则判断出感应电流的方向,根据切割磁感线产生的
感应电动势和闭合电路欧姆定律求出感应电流的大小。根据安培力公式 求出安培力的大小,通过左手定则判断安培力的方向。 线圈在进入磁场0~L的过程中,E=BLv,电流I= ,方向为逆时针方向,安培
BLv R
B 2 L2 v 力的大小F=BIL= ,根据左手定则,知安培力方向水平向左。在L~2L的 R 2 B 2 L2 v 2BLv 过程中,E=2BLv,电流I= ,方向为顺时针方向,安培力的大小F=2× R R 4 B 2 L2 v = ,根据左手定则,知安培力方向水平向左。在2L~3L的过程中,E= R B 2 L2 v BLv BLv,电流I= ,方向为逆时针方向,安培力的大小为F=BIL= ,根据左 R R
1 Br2ωc=0.9 V Uc= 2 1 2 1 2
ω 1 100 20
(3)由图像中电流变化规律可知电子元件P在b点时开始导通,则: 在ab段 IP=0 在bc段
U R ω 而I= -0.05 100 1 2 UP= Br ω 2
P IP=I-
联立可得
UP IP= - 6
1 20
3-1 (2016福建福州模拟)在一周期性变化的匀强磁场中有一圆形闭合线 圈,线圈平面与磁场垂直,如图甲所示,规定图中磁场方向为正。已知线圈 的半径为r、匝数为N,总电阻为R,磁感应强度的最大值为B0,变化周期为T, 磁感应强度按图乙所示规律变化。求:
电流由b到a,由F=BIL和左手定则,知安培力F恒定且水平向左,为负方向;同 理 ~T内,F恒定且水平向右,为正方向,故B正确,A、C、D错误。
T 2
考点三
电磁感应图像与电路综合问题
1.问题类型 由电磁感应图像得出的物理量和规律分析求解动力学、电路等问题。 2.解题关键 (1)定性分析物理图像 ①要明确图像坐标轴的意义; ②借助有关物理概念、公式、定理和定律等作出分析和判断。 (2)定量计算 ①确定图像所揭示的物理规律或物理量间的关系; ②挖掘图像中的隐含条件,明确有关图线所包围的面积、图线的斜率(或其
高考物理一模试题分类汇编——电磁感应现象的两类情况推断题综合及答案解析
高考物理一模试题分类汇编——电磁感应现象的两类情况推断题综合及答案解析一、电磁感应现象的两类情况1.如图所示,线圈工件加工车间的传送带不停地水平传送长为L ,质量为m ,电阻为R 的正方形线圈,在传送带的左端线圈无初速地放在以恒定速度v 匀速运动的传送带上,经过一段时间,达到与传送带相同的速度v 后,线圈与传送带始终相对静止,并通过一磁感应强度为B 、方向竖直向上的匀强磁场,已知当一个线圈刚好开始匀速度运动时,下一个线圈恰好放在传送带上,线圈匀速运动时,每两个线圈间保持距离L 不变,匀强磁场的宽度为3L ,求:(1)每个线圈通过磁场区域产生的热量Q .(2)在某个线圈加速的过程中,该线圈通过的距离S 1和在这段时间里传送带通过的距离S 2之比.(3)传送带每传送一个线圈,电动机多消耗的电能E (不考虑电动机自身的能耗)【答案】(1)232B L vQ R= (2) S 1:S 2=1:2 (3)E=mv 2+2B 2L 3v/R【解析】 【分析】 【详解】(1)线圈匀速通过磁场,产生的感应电动势为E=BLv ,则每个线圈通过磁场区域产生的热量为223()22BLv L B L vQ Pt R v R===(2)对于线圈:做匀加速运动,则有S 1=vt /2 对于传送带做匀速直线运动,则有S 2=vt 故S 1:S 2=1:2(3)线圈与传送带的相对位移大小为2112vts s s s ∆=-== 线圈获得动能E K =mv 2/2=fS 1传送带上的热量损失Q /=f (S 2-S 1)=mv 2/2送带每传送一个线圈,电动机多消耗的电能为E =E K +Q +Q /=mv 2+2B 2L 3v/R 【点睛】本题的解题关键是从能量的角度研究电磁感应现象,掌握焦耳定律、E=BLv 、欧姆定律和能量如何转化是关键.2.如图所示,足够长的光滑平行金属导轨MN 、PQ 倾斜放置,两导轨间距离为L ,导轨平面与水平面间的夹角θ,所处的匀强磁场垂直于导轨平面向上,质量为m 的金属棒ab 垂直于导轨放置,导轨和金属棒接触良好,不计导轨和金属棒ab 的电阻,重力加速度为g .若在导轨的M 、P 两端连接阻值R 的电阻,将金属棒ab 由静止释放,则在下滑的过程中,金属棒ab 沿导轨下滑的稳定速度为v ,若在导轨M 、P 两端将电阻R 改接成电容为C 的电容器,仍将金属棒ab 由静止释放,金属棒ab 下滑时间t ,此过程中电容器没有被击穿,求:(1)匀强磁场的磁感应强度B 的大小为多少? (2)金属棒ab 下滑t 秒末的速度是多大?【答案】(1)2sin mgR B L vθ=2)sin sin t gvt v v CgR θθ=+ 【解析】试题分析:(1)若在M 、P 间接电阻R 时,金属棒先做变加速运动,当加速度为零时做匀速运动,达到稳定状态.则感应电动势E BLv =,感应电流EI R=,棒所受的安培力F BIL =联立可得22B L vF R=,由平衡条件可得F mgsin θ=,解得2mgRsin B L v θ (2)若在导轨 M 、P 两端将电阻R 改接成电容为C 的电容器,将金属棒ab 由静止释放,产生感应电动势,电容器充电,电路中有充电电流,ab 棒受到安培力. 设棒下滑的速度大小为v ',经历的时间为t 则电容器板间电压为 U E BLv ='=此时电容器的带电量为Q CU = 设时间间隔△t 时间内流经棒的电荷量为Q则电路中电流Q C U CBL v i t t t ∆∆∆===∆∆∆,又va t∆=∆,解得i CBLa = 根据牛顿第二定律得mgsin BiL ma θ-=,解得22mgsin gvsin a m B L C v CgRsin θθθ==++所以金属棒做初速度为0的匀加速直线运动,ts 末的速度gvtsin v at v CgRsin θθ'==+.考点:导体切割磁感线时的感应电动势;功能关系;电磁感应中的能量转化【名师点睛】本题是电磁感应与电路、力学知识的综合,关键要会推导加速度的表达式,通过分析棒的受力情况,确定其运动情况.3.如图所示,无限长平行金属导轨EF、PQ固定在倾角θ=37°的光滑绝缘斜面上,轨道间距L=1m,底部接入一阻值R=0.06Ω的定值电阻,上端开口,垂直斜面向上的匀强磁场的磁感应强度B=2T。
全国各地高考模拟试卷物理分类:电磁感应现象的两类情况推断题综合题汇编附答案
全国各地高考模拟试卷物理分类:电磁感应现象的两类情况推断题综合题汇编附答案一、电磁感应现象的两类情况1.如图所示,竖直放置、半径为R的圆弧导轨与水平导轨ab、在处平滑连接,且轨道间距为2L,cd、足够长并与ab、以导棒连接,导轨间距为L,b、c、在一条直线上,且与平行,右侧空间中有竖直向上、磁感应强度大小为B的匀强磁场,均匀的金属棒pq和gh垂直导轨放置且与导轨接触良好。
gh静止在cd、导轨上,pq从圆弧导轨的顶端由静止释放,进入磁场后与gh没有接触。
当pq运动到时,回路中恰好没有电流,已知pq的质量为2m,长度为2L,电阻为2r,gh的质量为m,长度为L,电阻为r,除金属棒外其余电阻不计,所有轨道均光滑,重力加速度为g,求:(1)金属棒pq到达圆弧的底端时,对圆弧底端的压力;(2)金属棒pq运动到时,金属棒gh的速度大小;(3)金属棒gh产生的最大热量。
【答案】(1) (2) (3)【解析】【分析】金属棒pq下滑过程中,根据机械能守恒和牛顿运动定律求出对圆弧底端的压力;属棒gh在cd、导轨上加速运动,回路电流逐渐减小,当回路电流第一次减小为零时,pq运动到ab、导轨的最右端,根据动量定理求出金属棒gh的速度大小;金属棒pq进入磁场后在ab、导轨上减速运动,金属棒gh在cd、导轨上加速运动,根据能量守恒求出金属棒gh产生的最大热量;解:(1)金属棒pq下滑过程中,根据机械能守恒有:在圆弧底端有根据牛顿第三定律,对圆弧底端的压力有联立解得(2)金属棒pq进入磁场后在ab、导轨上减速运动,金属棒gh在cd、导轨上加速运动,回路电流逐渐减小,当回路电流第一次减小为零时,pq运动到ab、导轨的最右端,此时有对于金属棒pq有对于金属棒gh有联立解得(3)金属棒pq 进入磁场后在ab 、导轨上减速运动,金属棒gh 在cd 、导轨上加速运动,回路电路逐渐减小,当回路电流第一次减小为零时,回路中产生的热量为该过程金属棒gh 产生的热量为金属棒pq 到达cd 、导轨后,金属棒pq 加速运动,金属棒gh 减速运动,回路电流逐渐减小,当回路电流第二次减小为零时,金属棒pq 与gh 产生的电动势大小相等,由于此时金属棒切割长度相等,故两者速度相同均为v ,此时两金属棒均做匀速运动,根据动量守恒定律有金属棒pq 从到达cd 、导轨道电流第二次减小为零的过程,回路产生的热量为该过程金属棒gh 产生的热量为联立解得2.某科研机构在研究磁悬浮列车的原理时,把它的驱动系统简化为如下模型;固定在列车下端的线圈可视为一个单匝矩形纯电阻金属框,如图甲所示,MN 边长为L ,平行于y 轴,MP 边宽度为b ,边平行于x 轴,金属框位于xoy 平面内,其电阻为1R ;列车轨道沿Ox 方向,轨道区域内固定有匝数为n 、电阻为2R 的“”字型(如图乙)通电后使其产生图甲所示的磁场,磁感应强度大小均为B ,相邻区域磁场方向相反(使金属框的MN 和PQ 两边总处于方向相反的磁场中).已知列车在以速度v 运动时所受的空气阻力f F 满足2f F kv =(k 为已知常数).驱动列车时,使固定的“”字型线圈依次通电,等效于金属框所在区域的磁场匀速向x 轴正方向移动,这样就能驱动列车前进.(1)当磁场以速度0v 沿x 轴正方向匀速移动,列车同方向运动的速度为v (0v <)时,金属框MNQP 产生的磁感应电流多大?(提示:当线框与磁场存在相对速度v 相时,动生电动势E BLv =相)(2)求列车能达到的最大速度m v ;(3)列车以最大速度运行一段时间后,断开接在“” 字型线圈上的电源,使线圈与连有整流器(其作用是确保电流总能从整流器同一端流出,从而不断地给电容器充电)的电容器相接,并接通列车上的电磁铁电源,使电磁铁产生面积为L b ⨯、磁感应强度为B '、方向竖直向下的匀强磁场,使列车制动,求列车通过任意一个“”字型线圈时,电容器中贮存的电量Q .【答案】(1) 012() BL v v R- (2) 222210122BL B L kR v B L +- (3) 24nB Lb R '【解析】 【详解】解:(1)金属框相对于磁场的速度为:0v v - 每边产生的电动势:0()E BL v v =- 由欧姆定律得:12EI R = 解得:01(2 )BL v v I R -=(2)当加速度为零时,列车的速度最大,此时列车的两条长边各自受到的安培力:B F BIL =由平衡条件得:20B f F F -= ,已知:2f F kv =解得:222210122m BL B L kR v B L v +-=(3)电磁铁通过字型线圈左边界时,电路情况如图1所示:感应电动势:n E tφ∆=∆,而B Lb φ∆=' 电流:12E I R =电荷量:11Q I t =∆ 解得:12nB LbQ R '=电磁铁通过字型线圈中间时,电路情况如图2所示:B Lb φ∆=',2222E nI R tφ∆==∆ 22Q I t =∆解得:222nB LbQ R '= 电磁铁通过字型线圈右边界时,电路情况如图3所示:n E tφ∆=∆, B Lb φ∆=',32E I R =33Q I t =∆解得:32nB LbQ R '=, 总的电荷量:123Q Q Q Q =++ 解得:24nB LbQ R '=3.如图所示,无限长平行金属导轨EF 、PQ 固定在倾角θ=37°的光滑绝缘斜面上,轨道间距L=1m ,底部接入一阻值R=0.06Ω的定值电阻,上端开口,垂直斜面向上的匀强磁场的磁感应强度B=2T 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017北京一模二模物理试题分类--电磁感应1.(2017昌平二20题)图6(甲)为手机及无线充电板。
图(乙)为充电原理示意图。
充电板接交流电源,对充电板供电,充电板内的送电线圈可产生交变磁场,从而使手机内的受电线圈产生交变电流,再经整流电路转变成直流电后对手机电池充电。
为方便研究,现将问题做如下简化:设受电线圈的匝数为n ,面积为S ,若在t 1到t 2时间内,磁场垂直于受电线圈平面向上穿过线圈,其磁感应强度由B 1均匀增加到B 2。
下列说法正确的是A .c 点的电势高于d 点的电势B .受电线圈中感应电流方向由d 到cC .c 、d 之间的电势差为1212t t SB B n --)(D .c 、d 之间的电势差为1212t t B B n --)(2.(2017东城二18题)如图所示,在光滑水平桌面上有一边长为L 、总电阻为R 的正方形导线框abcd ,在导线框右侧有一边长为2L 、磁感应强度为B 、方向竖直向下的正方形匀强磁场区域。
磁场的左边界与导线框的ab 边平行。
在导线框以速度v 匀速向右穿过磁场区域的全过程中A .感应电动势的大小为B .感应电流的方向始终沿abcda 方向C .导线框受到的安培力先向左后向右D .导线框克服安培力做功3.(2017顺义一19题)与一般吉他以箱体的振动发声不同,电吉他靠拾音器发声。
如图所示,拾音器由磁体 及绕在其上的线圈组成。
磁体产生的磁场使钢质琴弦磁化而产生磁性,即琴弦也产生自己的磁场。
当某根琴弦被拨动而相对线圈振动时,线圈中就会产生相应的电流,并最终还原为声音信号。
下列说法中正确的是A .若磁体失去磁性,电吉他仍能正常工作B .换用尼龙材质的琴弦,电吉他仍能正常工作C .琴弦振动的过程中,线圈中电流的方向不会发生变化D .拾音器的作用是利用电磁感应把琴弦的振动转化成电信号4.(2017东城一19题)用如图所示器材“研究电磁感应现象”。
闭合开关时灵敏电流计指针向左偏转。
在保持开关闭合的状态下A .将线圈1全部放入线圈2中,然后向左较快或较慢推动滑片时,灵敏电流计指针均向左偏转,且偏转角度不同B .将线圈1全部放入线圈2中,然后向右较快或较慢推动滑片时,灵敏电流计指针均向左偏转,且偏转角度不同C .将滑片位于中间位置不动,将线圈1从线圈2中的同一位置较快或较慢抽出,灵敏电流计的指针偏转方向不同,偏转角度也不同D .将滑片位于中间位置不动,将线圈1从图示位置较快或较慢放入线圈2中,灵敏电流计的指针偏转方向不同,偏转角度也相同5.(2017海淀一19题)课堂上,老师演示了一个有趣的电磁现象:将一铝管竖立,把一块直径比铝管内径小一些的圆柱形的强磁铁从铝管上端由静止释放,强磁铁在铝管中始终与管壁不接触。
可以观察到,相比强磁铁自由下落,强磁铁在铝管中的下落会延缓许多。
下课后,好奇的小明将一块较厚的泡沫塑料垫在电子秤上,再将这个铝管竖直固定在泡沫塑料上(用以消除电子秤内部铁磁性材料与磁铁相互作用的影响),如图4所示,重复上述实验操作。
在强磁铁由静止释放至落到泡沫塑料上之前,关于电子秤示数的变化,下列情况可能发生的是A .始终不变B .先变小后变大C .不断变大D .先变大后变小6.(2017丰台一18题)如图所示,一水平面内固定两根足够长的光滑平行金属导轨,导轨上面横放着两根完全相同的铜棒a b 和cd ,构成矩形回路,在整个导轨平面内都有竖直向上的匀强磁场B 。
开始时,棒cd 静止,棒a b 有一个向左的初速度v 0,则关于两棒以后的运动,下列说法正确的是A. a b 棒做匀减速直线运动,cd 棒做勻加速直线运动B. a b 棒减小的动量等于cd 棒增加的动量 C 、a b 棒减小的动能等于cd 棒增加的动能 D 、两棒一直运动,机械能不断转化为电能图41 2 4 5 7 8如图所示,固定于水平面上的金属框架CDEF 处在竖直向下的匀强磁场中。
t =0时,磁感应强度为B 0,此时金属棒MN 的位置恰好使MDEN 构成一个边长为l 的正方形。
已知金属棒MN 的电阻为r ,金属框架DE 段的电阻为R ,其他电阻不计。
(1)若金属棒MN 保持静止,磁场的磁感应强度按图乙所示的规律变化,求回路中的感应电动势。
(2)若磁感应强度B 0保持不变,金属棒MN 以速度v 0贴着金属框架向右匀速运动,会产生感应电动势,相当于电源。
用电池、电阻等符号画出这个装置的等效电路图,并求通过回路的电流大小。
(3)若金属棒MN 以速度v 0贴着金属框架向右匀速运动,为使回路中不产生感应电流,从t =0开始,磁感应强度B 应怎样随时间t 变化?请推导B 与t 的关系式。
8.(2017西城一22题)(16分)如图所示,水平面上有两根足够长的光滑平行金属导轨MN 和PQ ,两导轨间距为l =0.40m ,电阻均可忽略不计。
在M 和P 之间接有阻值为R =0.40Ω的定值电阻,导体杆ab 的质量为m =0.10kg 、电阻r =0.10Ω,并与导轨接触良好。
整个装置处于方向竖直向下、磁感应强度为B =0.50T 的匀强磁场中。
导体杆ab 在水平向右的拉力F 作用下,沿导轨做速度v =2.0m/s 的匀速直线运动。
求: (1)通过电阻R 的电流I 的大小及方向; (2)拉力F 的大小;(3)撤去拉力F 后,电阻R 上产生的焦耳热Q R 。
图甲图乙足够长的平行光滑金属轨道水平放置,间距L =0.4 m ,一端连接R =1 Ω的电阻,导轨所在空间存在竖直向上的匀强磁场,磁感应强度B =1 T ,其俯视图如图所示。
导体棒MN 放在轨道上,长度恰好等于导轨间距,其电阻r =1 Ω,与导轨接触良好,导轨电阻不计。
在平行于导轨的拉力F 的作用下,导体棒沿着导轨向右做匀速直线运动,速度v =5 m/s 。
求:(1)通过导体棒的电流I 的大小;(2)导体棒两端的电压U ,并指出M 、N 两点哪一点的电势高; (3)拉力F 的功率F P 以及整个电路的热功率Q P 。
10.(2017平谷一22题)(16分)如图所示,两根竖直放置的足够长的光滑平行金属导轨间距L =0.50m ,导轨上端接有电阻R =0.40Ω,导轨电阻忽略不计.导轨下部的匀强磁场区有虚线所示的水平上边界,磁感应强度B =0.40T ,方向垂直于金属导轨平面向外.电阻r =0.20Ω的金属杆MN ,从静止开始沿着金属导轨下落,下落一定高度后以v =6.0m/s 的速度进入匀强磁场区,且进入磁场区域后恰能匀速运动,金属杆下落过程中始终与导轨垂直且接触良好.不计空气阻力.金属杆进入磁场区域后,求:(1)感应电动势的大小;(2)金属杆所受安培力的大小和重力做功的功率; (3)M 、N 两端的电压;在电磁感应现象中,感应电动势分为动生电动势和感生电动势两种。
产生感应电动势的那部分导体就相当于“电源”,在“电源”内部非静电力做功将其它形式的能转化为电能。
(1)利用图甲所示的电路可以产生动生电动势。
设匀强磁场的磁感应强度为B ,导体棒ab 的长度为L ,在外 力作用下以速度v 水平向右匀速运动。
请从法拉第电磁感应定律出发推导动生电动势E 的表达式;甲 乙 丙(2)磁场变化时会在空间激发感生电场,该电场与静电场不同,其电场线是一系列同心圆,如图乙中的虚线所示。
如果此刻空间存在导体,就会在导体中产生感应电流。
如图丙所示,一半径为r 、单位长度电阻为R 0的金属导体环垂直放置在匀强磁场中,当磁场均匀增强时,导体环中产生的感应电流为I 。
请你判断导体环中感应电流的方向(俯视)并求出磁感应强度随时间的变化率; (3)请指出在(1)(2)两种情况下,“电源”内部的非静电力分别是哪一种作用力;并分析说明在感生电场中能否像静电场一样建立“电势”的概念。
Bt∆∆如图所示,光滑且足够长的平行金属导轨MN 、PQ 固定在竖直平面内,两导轨间的距离为L ,导轨间连接一个定值电阻,阻值为R ,导轨上放一质量为m ,电阻为的金属杆ab ,金属杆始终与导轨连接良好,其余电阻不计,整个装置处于磁感应强度为B 的匀强磁场中,磁场的方向垂直导轨平面向里。
重力加速度为g ,现让金属杆从虚线水平位置处由静止释放。
(1)求金属杆的最大速度v m ;(2)若从金属杆开始下落到刚好达到最大速度的过程中,金属杆下落的位移为x ,经历的时间为t ,为了求出电阻R 上产生的焦耳热Q ,某同学做了如下解答:t xv =① rR BLv I += ② Rt I Q 2= ③ 联立①②③式求解出Q 。
请判断该同学的做法是否正确;若正确请说明理由,若不正确请写出正确解答。
(3)在金属杆达最大速度后继续下落的过程中,通过公式推导验证:在Δt 时间内,重力对金属杆所做的功W G 等于电路获得的电能W 电,也等于整个电路中产生的焦耳热Q 。
R r 21=RM aP麦克斯韦电磁理论认为:变化的磁场会在其周围空间激发一种电场,这种电 场与静电场不同,称为感生电场或涡旋电场,如图甲所示。
(1) 若图甲中磁场B 随时间t 按B =B 0+kt (B 0、k 均为正常数)规律变化,形成涡旋电场的电场线是一系列 同心圆,单个圆上形成的电场场强大小处处相等。
将一个半径为r 的闭合环形导体置于相同半径的电 场线位置处,导体中的自由电荷就会在感生电场的 作用下做定向运动,产生感应电流,或者说导体中 产生了感应电动势。
求:a.环形导体中感应电动势E 感大小;b.环形导体位置处电场强度E 大小。
(2) 电子感应加速器是利用感生电场使电子加速的设备。
它的基本原理如图乙所示,图 的上部分为侧视图,上、下为电磁铁的两个磁极,磁极之间有一个环形真空室,电 子在真空室中做圆周运动。
图的下部分为真空室的俯视图,电子从电子枪右端逸出, 当电磁铁线圈电流的大小与方向变化满足相应的要求时,电子在真空室中沿虚线圆 轨迹运动,不断地被加速。
若某次加速过程中,电子圆周运动轨迹的半径为R ,圆形轨迹上的磁场为B 1, 圆形轨迹区域内磁场的平均值记为2B (由于圆形轨迹区域内各处磁场分布可能不均匀,2B 即为穿过圆形轨道区域内的磁通量与圆的面积比值)。
电磁铁中通有如图丙 所示的正弦交变电流,设图乙装置中标出的电流方向为正方向。
a. 在交变电流变化一个周期的时间内,分析说明电子被加速的时间范围;b. 若使电子被控制在圆形轨道上不断被加速,1B 与2B 之间应满足2112B B的关系, 请写出你的证明过程。
金属导轨,导轨足够长,导轨平面与磁场垂直,导轨间距为L,顶端接有阻值为R的电阻。
将一根金属棒从导轨上的M处由静止释放。
已知棒的长度为L,质量为m,电阻为r。
金属棒始终在磁场中运动,处于水平且与导轨接触良好,忽略导轨的电阻。