圆锥曲线-基本定义-第二定义

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

学术正刊 圆锥曲线 基本定义
高中 2 LeO 著 第二定义
定义3.0(圆锥曲线第二定义):平面内到定点与定直线的距离的比为常数e(e >0)的点的轨迹,称之为圆锥曲线。

定义3.1(圆锥曲线焦点):称这个定点为圆锥曲线的焦点。

定义3.2(圆锥曲线准线):称这条定直线为圆锥曲线的准线。

定义3.3(圆锥曲线离心率):称这个常数e 为圆锥曲线的离心率。

定义3.4(圆锥曲线焦准距):焦点到其对应准线的距离称之为圆锥曲线的焦准距。

图1 图2
解:如图1,给定离心率e 和焦准距p ,建立直角坐标系,将焦点定于坐标原点,准线垂直横轴。

设P 点坐标P (x,y ),根据“圆锥曲线第二定义”有:
|PF |PD =e ⋯〈1〉 代入坐标,解得:
√x 2+y 2
x +p =e ⋯〈2〉 〈2〉式化简得:
(1−e 2)∙x 2−2e 2px +y 2−e 2p 2=0⋯〈3〉
〈3〉式即为圆锥曲线的统一方程。

如图2,当离心率取不同值时,得到对应三种不同的圆锥曲线:
{e ∈(0,1), 1−e 2>0,表示椭圆;
e =1, 1−e 2=0,表示抛物线;e ∈(1,∞),1−e 2<0,表示双曲线。

三种圆锥曲线分别对坐标系进行适当平移后,可得三种圆锥曲线的标准方程。

证毕。

相关文档
最新文档