高阶马尔科夫链的张量模型

合集下载

马尔可夫链专题讲义——2025届高三数学一轮复习

马尔可夫链专题讲义——2025届高三数学一轮复习

马尔科夫链专题讲义马尔科夫链是以俄罗斯数学家安德烈·马尔科夫的名字命名,是一个数学随机模型,描述了一连串可能发生的事件,从一个状态到另外一个状态,也可以是保持当前状态的随机过程.下一个状态的概率分布只能由当前状态决定,在时间序列中它前面的事件均与之无关.高中数学中经常与条件概率,全概率公式,贝叶斯公式相结合,构造递推关系求的概率.一、马尔科夫链的性质马尔科夫链具有状态空间,无记忆性,转移概率(转移矩阵)等三个要素,马尔科夫链是从一个状态到另一个状态转化的随机过程,每个状态称为状态空间.无记忆性是而的事件均与之无关.这种特定类型的“无记忆性”称作马尔科天性.在马尔科夫链的每一步,根据概率分布,可以从个状态变频另外一个状态,也可以保持当前状态.状态的改变叫做转移,与不同状态改变相关的概率叫做转移项率.对于随机变量序列X m已知第n小时的状态X n.如果X n−1的随机变化规律与前面的各项X1,X2,⋯,X n−1的取值都没有关系,那么称随机变量序列X n具有马尔科夫性,称具有马尔科夫性的随机变量序列{X n}为马尔科夫链。

二、马尔科夫链基本原理虽然贝叶斯公式不做要求,但是全概率公式已经是新高考考查内容,利用全概率公式,我们既可以构造某些递推关系求解概率,还可以推导经典的一维随机游走模型,即设数轴上一个点,它的位置只能位于整点处,在时刻t=0时,位于点X=i(i∈N∗)一个时刻,它将以概率α或者β(α∈(0,1),α+β=1)向左或者向右平移一个单位.若记状态X t=i表示在时刻t该点位于位置X=i(i∈N∗),那么由全概率公式可得P(X t+1=i)=P(X t=i−1)⋅P(X t+1=i∣X t=i−1)+P(X t=i+1)⋅P(X t+1=i∣X t=i+1).另一方面,由于P(X t+1=i∣X t=i−1)=β,P(X t+1=i∣X t=i+1)=α,代入上式可得P i=α⋅P i+1+β⋅P i−1.进一步,我们假设在x=0与x=m(m>0,m∈N∗)处各有一个吸收壁,当点到达吸收壁时被吸收,不再游走.于是P0=0,P m=1.随机游走模型是一个典型的马尔科夫过程.进一步,若点在某个位置后有三种情况:向左平移一个单位,其概率为a,原地不动,其概率为b,向右平移一个单位,其概率为c,那么根据全概率公式可得P i=aP i−1+bP i+cP i+1.三、应用举例1.药物试验问题例1(2019全国1卷21)为治疗某种欢病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,脱停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白贝治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得−1分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得-1分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈半分别记为α和β,一轮试验中甲药的得分记为X.(1)求X的分布列:(2)若甲药、乙药在试验开始时都赋予4分,p i(i=0,1.⋯.8)表示“甲药的累计得分为i时,最终认为甲药比乙药更有效”的概率,则p0=0,p i=1,p i=ap i−1+bp i+cp i+1(i=1,2,⋯,7),其中a=P(X=−1),b=P(X=0),c=P(X=1).假设α=0.5,β=0.8.(i)证明:{p i−1−p i}(i=0,1,2,⋯,7)为等比数列;(iii)求p c,并根据p c的值解释这种试验方案的合理性.解:(1)由超意知,X的所有可能取值为-1.0,1.P(X=−1)=(1−α)β,P(X=0)=αβ+(1−α)(1−β),P(X=1)=a(1−β),∴X的分布列为X−10 1P(1−α)βαβ+(1−α)(1−β)α(1−β)(2)(i)由(1)知,a=(1−0.5)×0.8=0.4,b=0.5×0.8+(1−0.5)(1−0.8)=0.5,c=0.5×(1−0.8=0.1.∴p i=0.4p i−1+0.5p i+0.1p i+1,∴0.1(p i+1−p i)=0.4(p i−p i−1),∴p i+1−p i=4(p i−p i−1),又p1−p0=p1≠0,∴{p i+1−p i}(i=0,1,2,⋯,7)是首项为p1,公比为4的等比数列. (ii)由(i)可得p i+1−p i=p1⋅4i,∴p8=p8−p7+p7−p6+⋯+p1−p0+p0=(p8−p7)+(p7−p6)+⋯+(p1−p0)=p1(47+46+⋯+4)=4(1−47) 1−4p1=48−4 3p1∵p8=1,∴48−43p1=1,∴p1=348−4.∴p4=(p4−p3)+(p3−p2)+(p2−p1)+(p1−p0)=p1(43+42+4+1)=1−44 1−4p1=44−13p1=44−13×348−4 =144+1=1257p4表示最终认为甲药更有效的概率.由计算结果可以看出,在甲药治愈率为0.5,乙药治愈率为0.8时,认为甲药更有效的概率为p4=1257≈0.0039,此时得出错误结论的概率非常小,说明这种试验注:虽然当时学生未学过全概率公式,但命题人直接把p i=ap i−1+bp i+cp i+1给出,并没有让考生推导这个递推关系,实际上,这就是一个一维随机游走模型。

马尔可夫模型名词解释 -回复

马尔可夫模型名词解释 -回复

马尔可夫模型名词解释-回复
马尔可夫模型是一种描述随机过程的数学模型。

它基于马尔可夫性质,即当前状态只与其前一状态相关,与之前的状态无关。

马尔可夫模型可以用于预测未来状态的概率、计算状态转移概率、估计参数等。

马尔可夫模型包括马尔可夫链和马尔可夫过程两种形式。

1. 马尔可夫链:马尔可夫链是一种状态转移模型,表示在离散时间下一个状态仅取决于当前状态的概率分布。

马尔可夫链可以用有限状态空间或无限状态空间来表示,其动态性质可以通过转移概率矩阵或转移概率函数来描述。

2. 马尔可夫过程:马尔可夫过程是一种连续时间下的随机过程,它具有马尔可夫性质,即未来状态仅依赖于当前状态的条件概率分布。

马尔可夫过程可以分为离散态马尔可夫过程和连续态马尔可夫过程两种类型。

马尔可夫模型在很多领域中有着广泛的应用,例如自然语言处理、机器学习、信号处理、金融建模等。

它能够帮助建立概率模型、进行状态预测和预测未来状态概率等。

马尔可夫链▏小白都能看懂的马尔可夫链详解

马尔可夫链▏小白都能看懂的马尔可夫链详解

马尔可夫链▏小白都能看懂的马尔可夫链详解1.什么是马尔可夫链在机器学习算法中,马尔可夫链(Markov chain)是个很重要的概念。

马尔可夫链(Markov chain),又称离散时间马尔可夫链(discrete-time Markov chain),因俄国数学家安德烈·马尔可夫(俄语:Андрей Андреевич Марков)得名,为状态空间中经过从一个状态到另一个状态的转换的随机过程。

该过程要求具备“无记忆”的性质:下一状态的概率分布只能由当前状态决定,在时间序列中它前面的事件均与之无关。

这种特定类型的“无记忆性”称作马尔可夫性质。

马尔科夫链作为实际过程的统计模型具有许多应用。

在马尔可夫链的每一步,系统根据概率分布,可以从一个状态变到另一个状态,也可以保持当前状态。

状态的改变叫做转移,与不同的状态改变相关的概率叫做转移概率。

随机漫步就是马尔可夫链的例子。

随机漫步中每一步的状态是在图形中的点,每一步可以移动到任何一个相邻的点,在这里移动到每一个点的概率都是相同的(无论之前漫步路径是如何的)。

2.一个经典的马尔科夫链实例用一句话来概括马尔科夫链的话,那就是某一时刻状态转移的概率只依赖于它的前一个状态。

举个简单的例子,假如每天的天气是一个状态的话,那个今天是不是晴天只依赖于昨天的天气,而和前天的天气没有任何关系。

这么说可能有些不严谨,但是这样做可以大大简化模型的复杂度,因此马尔科夫链在很多时间序列模型中得到广泛的应用,比如循环神经网络RNN,隐式马尔科夫模型HMM等。

假设状态序列为由马尔科夫链定义可知,时刻Xt+1 的状态只与Xt 有关,用数学公式来描述就是:既然某一时刻状态转移的概率只依赖前一个状态,那么只要求出系统中任意两个状态之间的转移概率,这个马尔科夫链的模型就定了。

看一个具体的例子。

这个马尔科夫链是表示股市模型的,共有三种状态:牛市(Bull market), 熊市(Bear market)和横盘(Stagnant market)。

高阶马尔可夫链无线链路连通性建模

高阶马尔可夫链无线链路连通性建模

高阶马尔可夫链无线链路连通性建模陈冬明;汪洋;张继良;李银;向少华【摘要】In order to meet the demand of dynamic wireless network precised link connectivity modeling, considering wireless channel propagation characteristics and mobility models, the link connectivity model based on high order Markov chain is established. Parameters of the model are statistically analyzed. The model is employed to evaluate the link life time of wireless network. The relationship of link life time error and Markov chain order is compared. Analysis shows that the accuracy of link life time improves with the increasing order of Markov chain. In addition, the accuracy of link life time generated by Markov chain whose order is higher than 4 improves inconspicuously. Compared to the multi⁃state one⁃order Markov link connectivity model, the error of four⁃order Markov model link life time decreases 68%.%针对动态无线网络对高精度链路连通性建模的需求,结合无线电波传播特性和节点运动模式,基于高阶马尔可夫链建立链路连通性模型。

第八章 马氏链模型

第八章 马氏链模型

0.8w1 0.7w2 w1 0.2w1 0.3w2 w2
0.2w1 0.7w2
w (7 / 9,2 / 9)
w满足 wi 1
i 1
k
w1 w2 1
2. 吸收链 表示存在吸收状态(一旦到达就不会离 开的状态i, pii=1),且从任一非吸收状态出发经 有限次转移能以正概率到达吸收状态(如例2)。 有r个吸收状态的吸收链 I r r P 的转移概率阵标准形式 R
(非负,行和为 1)
马氏链的两个重要类型
a(n 1) a(n)P
1. 正则链 ~ 从任一状态出发经有限次转移 能以正概率到达另外任一状态(如例1)。
正则链 N , P N 0
正则链 w, a(n) w(n ) w ~ 稳态概率
w满足 wP w
0.8 0.2 例1. P 0.7 0.3
0.8
0.18
0.65
0.25
1
0.02 1
2 3
0.1
a1 (n 1) a1 (n) p11 a2 (n) p21 a3 (n) p31 a2 (n 1) a1 (n) p12 a2 (n) p22 a3 (n) p32 a3 (n 1) a1 (n) p13 a2 (n) p23 a3 (n) p33
第八章
马氏链模型
马氏链模型——马尔可夫链模型
1、描述一类重要的随机动态系统(过程)的模型 2、系统在每个时期所处的状态是随机的 3、 从一个时期到下时期的状态按一定概率转移 4、 下时期状态只取决于本时期状态和转移概率 (已知现在,将来与过去无关(无后效性)) 马氏链 (Markov Chain) ——时间、状态均为离散的随机转移过程

马尔科夫链模型

马尔科夫链模型

所研究的时间是无限的,是连续变量,其数值是连续不 断的,相邻两个值之间可作无限分割。马尔柯夫过程所 研究的状态也是无效的。而马尔柯夫链的时间参数取离 散数值如日、月、季、年,其状况是有限的只有可到个 状态
马尔柯夫链表明事物的状态由过去转变到现在,
由现在转变到将来,一环接一环,象一根链条。其
3
特点是“无后效应性”
犏 犏 P 11 P 11 P 11 (k ) (0) 犏 S = S 犏 犏 犏 P 犏 11 P 11 P 11 臌
此式即为马尔可夫预测模型。
2、市场占有率预测
例 设有甲乙丙三家企业,生产同一种产品, 共同供应1000家用户,各用户在各企业间自 由选购,但不超出这三家企业,也无新用户。 假定在10月末经过市场调查得知,甲乙丙三 家企业拥有的客户分别是250户,300户, 450户,而11月份用户可能的流动情况如下:
从 甲 到 甲 230 乙 10 丙 10 ∑ 250

丙 ∑
20
30 280
250
10 270
30
410 450
300
450 1000
问题: 假定该产品用户的流动按上述方向继 续变化下去(转移矩阵不变),预测12月 份三家企业市场用户各自的拥有量,并计 算经过一段时间后,三家企业在稳定状态 下该种产品的市场占有率。
2
12月份三个企业市场用户拥有量分别为: 甲: 1000? 0.306 306 户 乙: 1000? 0.246 246 户 丙: 1000? 0.448 448 户
现在假定该产品用户的流动情况按上述 方向继续变化下去,我们来求三个企业的该 种产品市场占有的稳定状态概率。 易证 P 为正规矩阵,设t = ( x, y,1- x - y) 令 tP = t ,则

概率统计学—马尔可夫链

概率统计学—马尔可夫链

由题知
p0 (0)
1 3
p1 (0)
2 3
1
P{X2 1, X3 1, X6 1}
pi
(0)
p(2) i1
p11
p(3) 11
i0
1
p11
p(3) 11
(
pi
(0)
p(2) i1
)
0.4128
i0
25
马尔可夫链在任何时刻 tn 的一维概率分布
pj (tn) P{X (tn) j}, j 0,1,2,
第十三章 马尔可夫链
马尔可夫过程是一类特殊的随机过程, 马尔可夫链 是离散状态的马尔可夫过程,
最初是由俄国数学家马尔可夫1896年 提出和研究的应用十分广泛,其应用领域涉 及计算机,通信,自动.控制,随机服务,可靠性, 生物学,经济,管理,教育,气象物理,化学等等.
1
例:一维随机游动 一个质点在直线上的五个位置:0, 1, 2, 3, 4做随机 游动.当它处在位置1或2或3时,以的1/3概率向左移 动一步而以2/3的概率向右移动一步;当它到达位置 0时,以概率1返回位置1;当它到达位置4时以概率1停 留在该位置上(称位置0为反射壁,称位置4为吸收壁).
p(2) 1k
pk1
18 100
1 10
82 100
9 10
0.756
P( Xn1 1, Xn2 1 | Xn 1) P( Xn1 1 | Xn 1)P( Xn2 1 | Xn 1, Xn1 1)
P( Xn1 1 | Xn 1)P( Xn2 1 | Xn1 1) p11 p11 0.81
0时,以概率1返回位置1;当它到达位置4时以概率1停
留在该位置上(称位置0为反射壁,称位置4为吸收壁).

人工智能开发中的马尔科夫链算法详解

人工智能开发中的马尔科夫链算法详解

人工智能开发中的马尔科夫链算法详解人工智能是当今世界科技领域的一项重要研究领域,它涉及到很多复杂的算法和模型。

其中,马尔科夫链算法在人工智能的开发中扮演着重要的角色。

马尔科夫链算法是一种基于概率的模型,可以用于预测和模拟复杂的系统行为。

本文将详细介绍马尔科夫链算法的原理和应用。

1. 马尔科夫链的基本原理马尔科夫链是一种状态转移模型,它描述了在给定系统中,从一个状态转移到下一个状态的概率。

这种模型的基本思想是,当前状态的转移只与前一个状态相关,与其他状态的转移无关。

这也被称为“无记忆性”。

马尔科夫链可以用数学表达式表示。

假设我们有一系列的状态,用S1,S2,S3,...,Sn表示,其中S1是初始状态。

我们还需要定义一个状态转移矩阵A,其中aij表示从状态Si转移到状态Sj的概率。

那么,对于任意的k,我们可以计算出状态在第k步的概率分布向量Pk,其中Pk=[pk1,pk2,...,pkn],pkj表示在第k步系统处于状态Sj的概率。

马尔科夫链有一个重要的性质,即它具有收敛性。

当马尔科夫链的状态转移矩阵满足一定条件时,系统的状态分布将会趋于稳定。

这使得马尔科夫链可以用于预测和模拟系统的长期行为。

2. 马尔科夫链的应用马尔科夫链在人工智能领域有许多应用。

以下是其中几个典型的应用案例。

2.1 自然语言处理在自然语言处理中,马尔科夫链可以用来生成文本。

通过学习文本的统计规律,我们可以构建一个马尔科夫链模型,利用状态转移概率生成新的句子。

例如,我们可以通过学习一本小说的句子结构和词语频率,构建一个马尔科夫链模型,从而生成新的小说段落。

2.2 金融市场分析马尔科夫链可以用于预测金融市场的走势。

通过分析历史数据,我们可以构建一个马尔科夫链模型,根据当前市场状态的转移概率预测未来的市场走势。

这对于投资者来说是一个有用的参考。

2.3 图像识别在图像识别领域,马尔科夫链可以用来识别和跟踪图像中的对象。

通过学习图像的像素分布和颜色特征,我们可以构建一个马尔科夫链模型,从而实现对目标对象的识别和跟踪。

介绍马尔可夫模型原理

介绍马尔可夫模型原理

介绍马尔可夫模型原理马尔可夫模型介绍什么是马尔可夫模型?•马尔可夫模型是一类统计模型,用于描述随机过程中从一个状态转移到另一个状态的概率。

•马尔可夫模型假设一个系统在某个时刻的状态只依赖于前一个时刻的状态,与之前的历史状态无关。

马尔可夫模型的原理•马尔可夫模型通过一个状态转移概率矩阵描述了系统在不同状态之间的转移概率。

•在简单的一阶马尔可夫模型中,每个状态都有一个固定的转移概率,这些概率构成了状态转移矩阵。

•马尔可夫模型可以用有向图表示,其中每个状态是一个节点,转移概率是有向边的权重。

马尔可夫链•马尔可夫链是马尔可夫模型中最常见的一种形式。

它是一个离散时间的随机过程,具有无记忆性。

•马尔可夫链的状态空间是有限的,且状态之间的转移概率是稳定不变的。

•马尔可夫链的特点是当前状态只与前一个状态有关,与过去的状态无关。

马尔可夫模型的应用•马尔可夫模型在自然语言处理中有广泛的应用,用于语言模型、机器翻译等任务。

•马尔可夫模型也用于时间序列分析、金融市场预测等领域。

•马尔可夫模型还可以用于图像处理、音频信号处理等任务。

马尔可夫模型的改进•马尔可夫模型的一阶假设是状态只与前一个状态相关,但实际应用中,有些系统的状态可能与更多的历史状态相关。

•可以使用高阶马尔可夫模型来解决这个问题,它考虑了系统在多个历史时刻的状态。

•高阶马尔可夫模型可以提供更准确的状态预测和转移概率估计。

总结•马尔可夫模型是一种用于描述随机过程中状态转移的统计模型。

•马尔可夫模型假设当前状态只与前一个状态相关,与过去的历史状态无关。

•马尔可夫模型可以通过状态转移概率矩阵进行建模,可以用于语言模型、时间序列分析和其他领域的任务。

•高阶马尔可夫模型可以进一步改进预测准确性,考虑更多历史状态的影响。

马尔科夫链 解析版-高中数学

马尔科夫链 解析版-高中数学

马尔科夫链1.(2024·高三·广东·开学考试)马尔科夫链因俄国数学家安德烈・马尔科夫得名,其过程具备“无记忆”的性质,即第n +1次状态的概率分布只跟第n 次的状态有关,与第n -1,n -2,n -3,⋯次状态无关.马尔科夫链是概率统计中的一个重要模型,也是机器学习和人工智能的基石,在强化学习、自然语言处理、金融领域、天气预测等方面都有着极其广泛的应用.现有A ,B 两个盒子,各装有2个黑球和1个红球,现从A ,B 两个盒子中各任取一个球交换放入另一个盒子,重复进行n n ∈N * 次这样的操作后,记A 盒子中红球的个数为X n ,恰有1个红球的概率为p n .(1)求p 1,p 2的值;(2)求p n 的值(用n 表示);(3)求证:X n 的数学期望E X n 为定值.【解析】(1)设第n n ∈N * 次操作后A 盒子中恰有2个红球的概率为q n ,则没有红球的概率为1-p n -q n .由题意知p 1=C 12C 12+C 11C 11C 13C 13=59,q 1=C 12C 11C 13C 13=29,p 2=p 1⋅C 12C 12+C 11C 11C 13C 13+q 1⋅C 12C 13C 13C 13+1-p 1-q 1 ⋅C 13C 12C 13C 13=4981.(2)因为p n =p n -1⋅C 12C 12+C 11C 11C 13C 13+q n -1⋅C 12C 13C 13C 13+1-p n -1-q n -1 ⋅C 13C 12C 13C 13=-19p n -1+23.所以p n -35=-19p n -1-35 .又因为p 1-35=-245≠0,所以p n -35 是以-245为首项,-19为公比的等比数列.所以p n -35=-245×-19 n -1,p n =-245×-19 n -1+35.(3)因为q n =C 12C 11C 13C 13p n -1+C 11C 13C 13C 13q n -1=29p n -1+13q n -1,①1-q n -p n =C 11C 12C 13C 13p n -1+C 13C 11C 13C 131-q n -1-p n -1 =29p n -1+131-q n -1-p n -1 ,②.所以①一②,得2q n +p n -1=132q n -1+p n -1-1 .又因为2q 1+p 1-1=0,所以2q n +p n -1=0,所以q n =1-p n2.X n 的可能取值是0,1,2,P X n =0 =1-p n -q n =1-p n2,P X n =1 =p n ,P X n =2 =q n =1-p n2.所以X n 的概率分布列为X n 012p1-p n2p n1-p n2所以E X n =0×1-p n 2+1×p n +2×1-p n2=1.2.马尔科夫链是概率统计中的一个重要模型,也是机器学习和人工智能的基石,在强化学习、自然语言处理、金融领域、天气预测等方面都有着极其广泛的应用.其数学定义为:假设我们的序列状态是⋯⋯X t -2,X t -1,X t ,X t +1,⋯,那么X t +1时刻的状态的条件概率仅依赖前一状态X t ,即P X t +1⋯,X t -2,X t -1,X t =P X t +1X t .现实生活中也存在着许多马尔科夫链,例如著名的赌徒模型.假如一名赌徒进入赌场参与一个赌博游戏,每一局赌徒赌赢的概率为50%,且每局赌赢可以赢得1元,每一局赌徒赌输的概率为50%,且赌输就要输掉1元.赌徒会一直玩下去,直到遇到如下两种情况才会结束赌博游戏:记赌徒的本金为A A ∈N *,A <B 一种是赌金达到预期的B 元,赌徒停止赌博;另一种是赌徒输光本金后,赌徒可以向赌场借钱,最多借A 元,再次输光后赌场不再借钱给赌徒.赌博过程如图的数轴所示.当赌徒手中有n 元-A ≤n ≤B ,n ∈Z 时,最终欠债A 元(可以记为该赌徒手中有-A 元)概率为P (n ),请回答下列问题:(1)请直接写出P (-A )与P (B )的数值.(2)证明{P (n )}是一个等差数列,并写出公差d .(3)当A =100时,分别计算B =300,B =1500时,P (A )的数值,论述当B 持续增大时,P (A )的统计含义.【解析】(1)当n =-A 时,赌徒已经欠债-A 元,因此P (-A )=1.当n =B 时,赌徒到了终止赌博的条件,不再赌了,因此输光的概率P (B )=0;(2)记M :赌徒有n 元最后输光的事件,N :赌徒有n 元上一场赢的事件,P M =P N P M N +P N P M N ,即P (n )=12P (n -1)+12P (n +1),所以P (n )-P (n -1)=P (n +1)-P (n ),所以{P (n )}是一个等差数列,设P (n )-P (n -1)=d ,则P (n -1)-P (n -2)=d ,⋯,P (-A +1)-P (-A )=d ,累加得P (n )-P (-A )=(n +A )d ,故P (B )-P (-A )=(A +B )d ,得d =-1A +B;(3)A =100,由(2)P (n )-P (-A )=(n +A )d =-n +AA +B,代入n =A 可得P (A )-P (-A )=-2A A +B ,即P (A )=1-2AA +B,当B =300时,P A =12,当B =1500时,P (A )=78,当B 增大时,P (A )也会增大,即输光欠债的可能性越大,因此可知久赌无赢家,即便是一个这样看似公平的游戏,只要赌徒一直玩下去就会100%的概率输光并负债.3.马尔科夫链是概率统计中的一个重要模型,也是机器学习和人工智能的基石,为状态空间中经过从一个状态到另一个状态的转换的随机过程.该过程要求具备“无记忆”的性质:下一状态的概率分布只能由当前状态决定,在时间序列中它前面的事件均与之无关.甲、乙两口袋中各装有1个黑球和2个白球,现从甲、乙两口袋中各任取一个球交换放入另一口袋,重复进行n n∈N*次这样的操作,记口袋甲中黑球的个数为X n,恰有1个黑球的概率为p n.(1)求p1,p2的值;(2)求p n的值(用n表示);(3)求证:X n的数学期望E X n为定值.【解析】(1)设恰有2个黑球的概率为q n,则恰有0个黑球的概率为1-p n-q n.由题意知p1=C12C12+C11C11C13C13=59,q1=C12C11C13C13=29,所以p2=C12C12+C11C11C13C13p1+C12C13C13C13q1+C13C12C13C131-p1-q1=4981.(2)因为p n=C12C12+C11C11C13C13p n-1+C12C13C13C13q n-1+C13C12C13C131-p n-1-q n-1=-19p n-1+23,所以p n-35=-19p n-1-35.又因为p1-35=-245≠0,所以p n-35是以-245为首项,-19为公比的等比数列.所以p n-35=-245×-19n-1,p n=-245×-19n-1+35.(3)因为q n=C12C11C13C13p n-1+C11C13C13C13q n-1=29p n-1+13q n-1①,1-q n-p n=C11C12C13C13p n-1+C13C11C13C131-q n-1-p n-1=29p n-1+131-q n-1-p n-1②.所以①-②,得2q n+p n-1=132q n-1+p n-1-1.又因为2q1+p1-1=0,所以2q n+p n-1=0.所以q n=1-p n 2.所以X n的概率分布列为:X n012p1-p n-1-p n2p n1-p n2所以E X n=0×1-p n-1-p n 2+1×p n+2×1-p n2=1.所以X n的数学期望E X n为定值1.4.(2024·高三·江西·开学考试)马尔科夫链是概率统计中的一个重要模型,其过程具备“无记忆”的性质:下一状态的概率分布只能由当前状态决定,即第n+1次状态的概率分布只与第n次的状态有关,与第n -1,n-2,n-3,⋯次的状态无关,即P(X n+1|X1,X2,⋯,X n-1,X n)=P(X n+1|X n).已知甲盒中装有1个白球和2个黑球,乙盒中装有2个白球,现从甲、乙两个盒中各任取1个球交换放入对方的盒中,重复n 次(n∈N∗)这样的操作,记此时甲盒中白球的个数为X n,甲盒中恰有2个白球的概率为a n,恰有1个白球的概率为bn.(1)求a1,b1和a2,b2.(2)证明:a n+2b n-65为等比数列.(3)求X n的数学期望(用n表示).【解析】(1)若甲盒取黑球、乙盒取白球,互换,则甲盒中的球变为2白1黑,乙盒中的球变为1白1黑,概率a1 =23;若甲盒取白球、乙盒取白球,互换,则甲盒中的球仍为1白2黑,乙盒中的球仍为2白,概率b1=1 3,研究第2次交换球时的概率,根据第1次交换球的结果讨论如下:①当甲盒中的球为2白1黑,乙盒中的球为1白1黑时,对应概率为a1=2 3,此时,若甲盒取黑球、乙盒取黑球,互换,则甲盒中的球仍为2白1黑,乙盒中的球仍为1白1黑,概率为a1×13×12=16a1;若甲盒取黑球、乙盒取白球,互换,则甲盒中的球变为3白,乙盒中的球变为2黑,概率为a1×13×12=16a1;若甲盒取白球、乙盒取黑球,互换,则甲盒中的球变为1白2黑,乙盒中的球变为2白,概率为a1×23×12=13a1;若甲盒取白球、乙盒取白球,互换,则甲盒中的球仍为2白1黑,乙盒中的球仍为1白1黑,概率为a1×23×12=13a1,②当甲盒中的球为1白2黑,乙盒中的球为2白时,对应概率为b1=1 3,此时,若甲盒取黑球、乙盒取白球,互换,则甲盒中的球变为2白1黑,乙盒中的球变为1白1黑,概率为b1×23=23b1若甲盒取白球,乙盒取白球,互换,则甲盒中的球仍为1白2黑,乙盒中的球仍为2白,概率为b1×13=13b1,综上,a2=16a1+13a1+23b1=59,b2=13a1+13b1=13.(2)依题意,经过n次这样的操作,甲盒中恰有2个白球的概率为a n,恰有1个白球的概率为b n,则甲盒中恰有3个白球的概率为1-a n-b n,研究第n+1次交换球时的概率,根据第n次交换球的结果讨论如下:①当甲盒中的球为2白1黑,乙盒中的球为1白1黑时,对应概率为a n,此时,若甲盒取黑球、乙盒取黑球,互换,则甲盒中的球仍为2白1黑,乙盒中的球仍为1白1黑,概率为a n×13×12=16a n;若甲盒取黑球、乙盒取白球,互换,则甲盒中的球变为3白,乙盒中的球变为2黑,概率为a n×13×12=16a n;若甲盒取白球、乙盒取黑球,互换,则甲盒中的球变为1白2黑,乙盒中的球变为2白,概率为a n×23×12=13a n;若甲盒取白球、乙盒取白球,互换,则甲盒中的球仍为2白1黑,乙盒中的球仍为1白1黑,概率为a n×23×12=13a n,②当甲盒中的球为1白2黑,乙盒中的球为2白时,对应概率为b n,此时,若甲盒取黑球、乙盒取白球,互换,则甲盒中的球变为2白1黑,乙盒中的球变为1白1黑,概率为b n×2 3=23b n;若甲盒取白球、乙盒取白球,互换,则甲盒中的球仍为1白2黑,乙盒中的球仍为2白,概率为b n ×13=13b n ,③当甲盒中的球为3白,乙盒中的球为2黑时,对应概率为1-a n -b n ,此时,甲盒只能取白球、乙盒只能取黑球,互换,则甲盒中的球变为2白1黑,乙盒中的球变为1白1黑,概率为1-a n -b n ,综上,a n +1=13a n +16a n +23b n +1-a n -b n =1-12a n -13b n ,b n +1=13a n +13b n则a n +1+2b n +1-65=1-12a n -13b n +23a n +23b n -65=16a n +13b n -15,整理得a n +1+2b n +1-65=16a n +2b n -65 ,又a 1+2b 1-65=215>0,所以数列a n +2b n -65 是公比为16的等比数列.(3)由(2)知a n +2b n -65=215×16 n -1,则a n +2b n =65+215×16n -1,随机变量X n 的分布列为X n123Pb n a n 1-a n -b n所以E (X n )=b n +2a n +3-3b n -3a n =3-(a n +2b n )=95-215×16n -1.5.在概率论中,马尔可夫不等式给出了随机变量的函数不小于某正数的概率的上界,它以俄国数学家安德雷·马尔可夫命名,由马尔可夫不等式知,若ξ是只取非负值的随机变量,则对∀a >0,都有P ξ≥a ≤E ξa.某市去年的人均年收入为10万元,记“从该市任意选取3名市民,则恰有1名市民去年的年收入超过100万元”为事件A ,其概率为P A .则P A 的最大值为()A.271000B.2431000C.427D.49【答案】B【解析】记该市去年人均收入为X 万元,从该市任意选取3名市民,年收入超过100万元的人数为Y .设从该市任选1名市民,年收入超过100万元的概率为p ,则根据马尔可夫不等式可得p =P X ≥100 ≤E X 100=10100=110,∴0≤p ≤110,因为Y ~B (3,p ),所以P A =P Y =1 =C 13p 1-p 2=3p 1-p 2=3p 3-6p 2+3p ,令f (p )=3p 3-6p 2+3p ,则f (p )=9p 2-12p +3=3(3p -1)(p -1),∵0≤p ≤110,∴3p -1<0,p -1<0,即f (p )>0,∴f (p )在0,110上单调递增.∴f (p )max =f 110 =3×110×1-110 2=2431000,即P (A )max =2431000.故选:B6.(2024·广东肇庆·模拟预测)马尔科夫链是概率统计中的一个重要模型,也是机器学习和人工智能的基下一状态的概率分布只能由当前状态决定,在时间序列中它前面的事件均与之无关.甲口袋中各装有1个黑球和2个白球,乙口袋中装有2个黑球和1个白球,现从甲、乙两口袋中各任取一个球交换放入另一口袋,重复进行n (n ∈N *)次这样的操作,记口袋甲中黑球的个数为X n ,恰有1个黑球的概率为p n ,则p 1的值是;X n 的数学期望E X n 是.【答案】4932-1213n【解析】考虑到乙袋中拿出的球可能是黑的也可能是白的,由全概率公式可得p 1=13×23+23×13=49;记X n -1取0,1,2,3的概率分别为p 0,p 1,p 2,p 3,推导X n 的分布列:P X n =1 =p 0+49p 1+49p 2,P X n =2 =49p 1+49p 2+p 3,P X n =3 =19p 2,则E X n =0⋅P X n =0 +1⋅P X n =1 +2⋅P X n =2 +3⋅P X n =3 =p 0+43p 1+53p 2+2p 3=1+13p 1+2p 2+3p 3 =1+13E X n -1 ,则E X n -32=13E X n -1 -32,故E X n -32=E X 1 -32 ×13n -1给合E X 1 =43,可知E X n =32-1213 n.故答案为:49;32-1213n.7.马尔科夫链是概率统计中的一个重要模型,也是机器学习和人工智能的基石,为状态空间中经过从一个状态到另一个状态的转换的随机过程.该过程要求具备“无记忆”的性质:下一状态的概率分布只能由当前状态决定,在时间序列中它前面的事件均与之无关.甲乙两个口袋中各装有1个黑球和2个白球,现从甲、乙两口袋中各任取一个球交换放入另一口袋,重复进行n n ∈N ∗ 次这样的操作,记甲口袋中黑球个数为X n ,恰有1个黑球的概率为p n ,则p 1=;p n =.【答案】5925⋅-19 n +35【解析】由题意,p 1=C 12C 12+C 11C 11C 13C 13=59;当n ≥2n ∈N ∗时,p n =C 12C 12+C 11C 11C 13C 13p n -1+C 12C 13C 13C 13P X n -1=0 +C 13C 12C 13C 13P X n -1=2 =59p n -1+23P X n -1=0 +P X n -1=2 =59p n -1+231-p n -1 =-19p n -1+23,整理得p n -35=-19p n -1-35 ,p 1-35=59-35=-245,故可知p n -35 是以-245为首项,以-19为公比的等比数列,所以p n =25⋅-19 n +35.故答案为:59;25⋅-19 n +358.马尔科夫链是机器学习和人工智能的基石,其数学定义为:假设序列状态是...,X t -2,X t -1,X t ,X t +1,⋯,那么X t +1时刻的状态的条件概率仅依赖前一状态X t ,即P X t +1∣⋯,X t -2,X t -1,X t =P X t +1∣X t .著名的赌徒模型就应用了马尔科夫链:假如一名赌徒进入赌场参与一个赌博游戏,每一局赌徒赌赢的概率都为50%,每局赌赢可以赢得1金币,赌输就要输掉1金币.赌徒自以为理智地决定,遇到如下两种情况就会结束赌博游戏:一是输光了手中金币;二是手中金币达到预期的1000金币,出现这两种情况赌徒都会停止赌博.记赌徒的本金为70金币,求赌徒输光所有金币的概率.【答案】93100/0.93【解析】设当赌徒手中有n 元0≤n ≤1000,n ∈N 时,最终输光的概率为P (n ),当n =0时,赌徒已经输光了,所以P (0)=1,当n =1000时,赌徒到了终止赌博的条件,不再赌了,因此输光的概率为P (1000)=0,记M :赌徒有n 元最后输光的事件,N :赌徒有n 元下一次赢的事件,所以P M =P N P (M |N )+P N P (M |N),即P (n )=12P (n -1)+12P (n +1),所以P (n +1)-P (n )=P (n )-P (n -1),所以P (n ) 为等差数列,设P (n )-P (n -1)=d ,由于P (1000)=P (0)+1000d =1+1000d =0,所以d =-11000,所以P (n )=P (0)+nd =1-n1000,故P (70)=1-701000=93100故答案为:931009.(2024·广东茂名·二模)马尔可夫链是因俄国数学家安德烈·马尔可夫得名,其过程具备“无记忆”的性质,即第n +1次状态的概率分布只跟第n 次的状态有关,与第n -1,n -2,n -3,⋅⋅⋅次状态是“没有任何关系的”.现有甲、乙两个盒子,盒子中都有大小、形状、质地相同的2个红球和1个黑球.从两个盒子中各任取一个球交换,重复进行n n ∈N * 次操作后,记甲盒子中黑球个数为X n ,甲盒中恰有1个黑球的概率为a n ,恰有2个黑球的概率为b n .(1)求X 1的分布列;(2)求数列a n 的通项公式;(3)求X n 的期望.【解析】(1)(1)由题可知,X 1的可能取值为0,1,2.由相互独立事件概率乘法公式可知:P X 1=0 =13×23=29;P X 1=1 =13×13+23×23=59;P X 1=2 =23×13=29,故X 1的分布列如下表:X 1012P295929(2)由全概率公式可知:P X n +1=1=P X n =1 ⋅P X n +1=1X n =1 +P X n =2 ⋅P X n +1=1X n =2 +P X n =0 ⋅P X n +1=1X n =0=13×13+23×23 P X n =1 +23×1 P X n =2 +1×23 P X n =0=59P X n =1 +23P X n =2 +23P X n =0 ,即:a n +1=59a n +23b n +231-a n -b n ,所以a n +1=-19a n +23,所以a n +1-35=-19a n -35,又a 1=P X 1=1 =59,所以,数列a n -35 为以a 1-35=-245为首项,以-19为公比的等比数列,所以a n -35=-245⋅-19 n -1=25⋅-19 n,即:a n =35+25⋅-19n.(3)由全概率公式可得:P X n +1=2 =P X n =1 ⋅P X n +1=2X n =1 +P X n =2 ⋅P X n +1=2X n =2 +P X n =0 ⋅P X n +1=2X n =0=23×13 ⋅P X n =1 +13×1 ⋅P X n =2 +0⋅P X n =0 ,即:b n +1=29a n +13b n ,又a n =35+25⋅-19n,所以b n +1=13b n +2935+25-19 n,所以b n +1-15+15-19 n +1=13b n -15+15-19 n,又b 1=P X 1=2 =29,所以b 1-15+15×-19 =29-15-145=0,所以b n -15+15-19 n=0,所以b n =15-15-19n,所以E X n =a n +2b n +01-a n -b n =a n +2b n =1.10.马尔科夫链是概率统计中的一个重要模型,也是机器学习和人工智能的基石,为状态空间中经过从一个状态到另一个状态的转换的随机过程.该过程要求具备“无记忆”的性质:下一状态的概率分布只能由当前状态决定,在时间序列中它前面的事件均与之无关.甲、乙两口袋中各装有1个黑球和2个白球,现从甲、乙两口袋中各任取一个球交换放入另一口袋,重复进行n n ∈N * 次这样的操作,记口袋甲中黑球的个数为X n ,恰有1个黑球的概率为p n ,恰有2个黑球的概率为q n ,恰有0个黑球的概率为r n .(1)求p 1,p 2的值;(2)根据马尔科夫链的知识知道p n =a ⋅p n -1+b ⋅q n -1+c ⋅r n -1,其中a ,b ,c ∈0,1 为常数,同时p n +q n +r n =1,请求出p n ;(3)求证:X n 的数学期望E X n 为定值.【解析】(1)由题意恰有0个黑球的概率为1-p n -q n .由题意知p 1=C 12C 12+C 11C 11C 13C 13=59,q 1=C 12C 11C 13C 13=29,所以p2=C12C12+C11C11C13C13p1+C12C13C13C13q1+C13C12C13C131-p1-q1=4981.(2)因为p n=C12C12+C11C11C13C13p n-1+C12C13C13C13q n-1+C13C12C13C131-p n-1-q n-1=-19p n-1+23,所以p n-35=-19p n-1-35.又因为p1-35=-245≠0,所以p n-35是以-245为首项,-19为公比的等比数列.所以p n-35=-245×-19n-1,p n=-245×-19n-1+35.(3)因为q n=C12C11C13C13p n-1+C11C13C13C13q n-1=29p n-1+13q n-1①,1-q n-p n=C11C12C13C13p n-1+C13C11C13C131-q n-1-p n-1=29p n-1+131-q n-1-p n-1②所以①-②,得2q n+p n-1=132q n-1+p n-1-1 .又因为2q1+p1-1=0,所以2q n+p n-1=0.所以q n=1-p n 2.所以X n的概率分布列为:X n012p1-p n-1-p n2p n1-p n2所以E X n=0×1-p n-1-p n 2+1×p n+2×1-p n2=1.所以X n的数学期望E X n为定值1.11.(2024·云南·模拟预测)材料一:英国数学家贝叶斯1701∼1763在概率论研究方面成就显著,创立了贝叶斯统计理论,对于统计决策函数、统计推断等做出了重要贡献.贝叶斯公式就是他的重大发现,它用来描述两个条件概率之间的关系.该公式为:设A1,A2,⋯,A n是一组两两互斥的事件,A1∪A2∪⋯∪A n=Ω,且P A i>0,i=1,2,⋯,n,则对任意的事件B⊆Ω,P B >0,有P A i∣B=P A iP B∣A iP(B)=P A iP B∣A i∑n k=1P A kP B∣A k,i=1,2,⋯,n.材料二:马尔科夫链是概率统计中的一个重要模型,也是机器学习和人工智能的基石,在强化学习、自然语言处理、金融领域、天气预测等方面都有着极其广泛的应用.其数学定义为:假设我们的序列状态是⋯,X t-2,X t-1,X t,X t+1,⋯,那么X t+1时刻的状态的条件概率仅依赖前一状态X t,即P X t+1∣⋯,X t-2,X t-1,X t=P X t+1∣X t.请根据以上材料,回答下列问题.(1)已知德国电车市场中,有10%的车电池性能很好.W公司出口的电动汽车,在德国汽车市场中占比3%,其中有25%的汽车电池性能很好.现有一名顾客在德国购买一辆电动汽车,已知他购买的汽车不是W公司的,求该汽车电池性能很好的概率;(结果精确到0.001)(2)为迅速抢占市场,W公司计划进行电动汽车推广活动.活动规则如下:有11个排成一行的格子,编号从左至右为0,1,⋯,10,有一个小球在格子中运动,每次小球有34的概率向左移动一格;有14的概率向右移动一格,规定小球移动到编号为0或者10的格子时,小球不再移动,一轮游戏结束.若小球最终停在10号格子,则赢得6百欧元的购车代金券;若小球最终停留在0号格子,则客户获得一个纪念品.记P i 为以下事件发生的概率:小球开始位于第i 个格子,且最终停留在第10个格子.一名顾客在一次游戏中,小球开始位于第5个格子,求他获得代金券的概率.【解析】(1)记事件A 为一辆德国市场的电车性能很好,事件B 为一辆德国市场的车来自W 公司.由全概率公式知:P A =P A |B P B +P A |B P B,故:P A |B =P A -P A |B ⋅P B P B=10%-0.25×3%97%≈0.095.(2)记事件A i i =0,1,⋯,10 表示小球开始位于第i 个格子,且最终停留在第10个格子,事件C 表示小球向右走一格.小球开始于第i 格,此时的概率为P i ,则下一步小球向左或向右移动,当小球向右移动,即可理解为小球始于P i +1,当小球向左移动,即可理解为小球始于P i -1,即P i =14P i +1+34P i -1.由题知P 0=0,P 10=1,又4P i =3P i -1+P i +1,故P i +1-P i =3P i -P i -1 ,所以P i -P i -1 是以P 1-P 0为首项,3为公比的等比数列,即:P i -P i -1=3i -1P 1-P 0 ,即:P 10-P 9=39P 1-P 0 ,P 9-P 8=38P 1-P 0 ,⋯P 1-P 0=30P 1-P 0 ,故P 10=39+38+⋯+30P 1-P 0 =310-12P 1,P 5=34+33+⋯+30P 1-P 0 =35-12P 1,则P 5=P 5P 10=35-1310-1=135+1=1244,故这名顾客获得代金券的概率为1244.。

马尔可夫链模型

马尔可夫链模型

马尔可夫链模型(重定向自马尔可夫链)马尔可夫链模型(Markov Chain Model)[编辑]马尔可夫链模型概述马尔可夫链因安德烈·马尔可夫(Andrey Markov,1856-1922)得名,是数学中具有马尔可夫性质的离散时间随机过程。

该过程中,在给定当前知识或信息的情况下,过去(即当期以前的历史状态)对于预测将来(即当期以后的未来状态)是无关的。

时间和状态都是离散的马尔可夫过程称为马尔可夫链, 简记为。

马尔可夫链是随机变量的一个数列。

这些变量的范围,即他们所有可能取值的集合,被称为“状态空间”,而Xn的值则是在时间n的状态。

如果Xn + 1对于过去状态的条件概率分布仅是Xn的一个函数,则这里x为过程中的某个状态。

上面这个恒等式可以被看作是马尔可夫性质。

马尔可夫在1906年首先做出了这类过程。

而将此一般化到可数无限状态空间是由柯尔莫果洛夫在1936年给出的。

马尔可夫链与布朗运动以及遍历假说这两个二十世纪初期物理学重要课题是相联系的,但马尔可夫寻求的似乎不仅于数学动机,名义上是对于纵属事件大数法则的扩张。

马尔可夫链是满足下面两个假设的一种随机过程:1、t+l时刻系统状态的概率分布只与t时刻的状态有关,与t时刻以前的状态无关;2、从t时刻到t+l时刻的状态转移与t的值无关。

一个马尔可夫链模型可表示为=(S,P,Q),其中各元的含义如下:1)S是系统所有可能的状态所组成的非空的状态集,有时也称之为系统的状态空间,它可以是有限的、可列的集合或任意非空集。

本文中假定S是可数集(即有限或可列)。

用小写字母i,j(或S i,S j)等来表示状态。

2)是系统的状态转移概率矩阵,其中Pij表示系统在时刻t处于状态i,在下一时刻t+l处于状态i的概率,N是系统所有可能的状态的个数。

对于任意i∈s,有。

3)是系统的初始概率分布,qi是系统在初始时刻处于状态i的概率,满足。

[编辑]马尔可夫链模型的性质马尔可夫链是由一个条件分布来表示的P(Xn + 1 | X n)这被称为是随机过程中的“转移概率”。

马尔可夫链模型课件

马尔可夫链模型课件
M/G/1排队系统中字母M代表顾客来到时间间隔服从 指数分布, G代表服务时间的分布, 数字1代表只有一个 服务员。
若以X(t)记在t时刻系统中的顾客数,{X(t),t≥0}则不 具马尔可夫性。因为,若我们知道在t时刻系统中的顾客 数,那么为了预测将来的状态,我们不用关心从最近的一 位顾客来到后已过去了多长时间(因为来到过程是无记忆 的),但和服务中的顾客服务了多长时间有关(因为服务 时间分布不具无记忆性)。
销,2代表滞销。以X n 表示第n个季度的味精销售状态,
则 X n 可取1或2的值。若未来的味精市场状态只与现在的 市场状态有关,与以前的市场状态无关,则味精的市场销
售状态 {X n , n 1} 构成一个马尔可夫链。

P( X n1 j X n i) pij
p11 0.5 p12 0.5
马氏链模型
描述一类重要的随机动态系统(过程)的模型
• 系统在每个时期所处的状态是随机的 • 从一时期到下时期的状态按一定概率转移 • 下时期状态只取决于本时期状态和转移概率
已知现在,将来与过去无关(无后效性)
马氏链 (Markov Chain) ——时间、状态均为离散的随机转移过程
例如:在某数字通信系统中传递0,1两种信
解:一步转移概率为:
Pi,i1 Pi,i1
p q
1
p
Pi,
j
0
(j i-1,i+1)
........................
...q
0
p
0
0...
P ...0 q 0 p 0...
...0
0
q
0
p...
........................

(完整word版)马氏链模型及matlab程序

(完整word版)马氏链模型及matlab程序

一、用法,用来干什么,什么时候用 二、步骤,前因后果,算法的步骤,公式 三、程序 四、举例五、前面国赛用到此算法的备注一下马氏链模型用来干什么马尔可夫预测法是应用概率论中马尔可夫链(Markov chain )的理论和方法来研究分析时间序列的变化规律,并由此预测其未来变化趋势的一种预测技术。

什么时候用应用马尔可夫链的计算方法进行马尔可夫分析, 主要目的是根据某些变量现在的情 况及其变动趋向,来预测它在未来某特定区间可能产生的变动,作为提供某种决策的依 据.马尔可夫链的基本原理我们知道,要描述某种特定时期的随机现象如某种药品在未来某时期的销售情况,比如说第n 季度是畅销还是滞销,用一个随机变量X n 便可以了,但要描述未来所有时期的情况,则需要一系列的随机变量 X 1,X 2,…,X n ,….称{ X t ,t ∈T ,T 是参数集}为随机过程,{ X t }的取值集合称为状态空间.若随机过程{ X n }的参数为非负整数, X n 为离散随机变量,且{ X n }具有无后效性(或称马尔可夫性),则称这一随机过程为马尔可夫链(简称马氏链).所谓无后效性,直观地说,就是如果把{ X n }的参数n 看作时间的话,那么它在将来取什么值只与它现在的取值有关,而与过去取什么值无关.对具有N 个状态的马氏链,描述它的概率性质,最重要的是它在n 时刻处于状态i 下一时刻转移到状态j 的一步转移概率:N j i n p i X j X P j i n n ,,2,1,)()|(1 ====+若假定上式与n 无关,即 ====)()1()0(n p p p j i j i j i ,则可记为j i p (此时,称过程是平稳的),并记⎪⎪⎪⎪⎪⎭⎫⎝⎛=N N N N N N p p p p p p p p p P212222111211(1) 称为转移概率矩阵.转移概率矩阵具有下述性质:(1)N j i p j i ,,2,1,,0 =≥.即每个元素非负.(2)N i p Nj j i ,,2,1,11 ==∑=.即矩阵每行的元素和等于1.如果我们考虑状态多次转移的情况,则有过程在n 时刻处于状态i ,n +k 时刻转移到状态j 的k 步转移概率:N j i n p i X j X P k j i n k n ,,2,1,)()|()( ====+同样由平稳性,上式概率与n 无关,可写成)(k j i p .记⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=)()(2)(1)(2)(22)(21)(1)(12)(11)(k N N k N k N k N k k k N k k k p p p p p p p p p P(2)称为k 步转移概率矩阵.其中)(k j i p 具有性质:N j i p k ji ,,2,1,,0)( =≥; N i p Nj k j i ,,2,1,11)( ==∑=.一般地有,若P 为一步转移矩阵,则k 步转移矩阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=)()(2)(1)(2)(22)(21)(1)(12)(11)(k N N k N k N k N k k k N k k k p p p p p p p p p P(3) (2)状态转移概率的估算在马尔可夫预测方法中,系统状态的转移概率的估算非常重要.估算的方法通常有两种:一是主观概率法,它是根据人们长期积累的经验以及对预测事件的了解,对事件发生的可能性大小的一种主观估计,这种方法一般是在缺乏历史统计资料或资料不全的情况下使用.二是统计估算法,现通过实例介绍如下.例3 记录了某抗病毒药的6年24个季度的销售情况,得到表1.试求其销售状态的转移概率矩阵.表1 某抗病毒药24个季度的销售情况季度 销售状态 季度 销售状态 季度 销售状态 季度 销售状态 1 1 (畅销) 7 1(畅销) 13 1(畅销) 19 2(滞销) 2 1(畅销) 8 1(畅销) 14 1(畅销) 20 1(畅销) 3 2(滞销) 9 1(畅销) 15 2(滞销) 21 2(滞销) 4 1(畅销) 10 2(滞销) 16 2(滞销) 22 1(畅销) 5 2(滞销) 11 1(畅销) 17 1(畅销) 23 1(畅销) 62(滞销)122(滞销)181(畅销)241(畅销)分析表中的数据,其中有15个季度畅销,9个季度滞销,连续出现畅销和由畅销转入滞销以及由滞销转入畅销的次数均为7,连续滞销的次数为2.由此,可得到下面的市场状态转移情况表(表2).表2 市场状态转移情况表现计算转移概率.以频率代替概率,可得连续畅销的概率:1170.5151p ===-连续出现畅销的次数出现畅销的次数分母中的数为15减1是因为第24季度是畅销,无后续记录,需减1.同样得由畅销转入滞销的概率:1270.5151p ===-畅销转入滞销的次数出现畅销的次数滞销转入畅销的概率:2170.789p ===滞销转入畅销的次数出现滞销的次数连续滞销的概率:2220.229p ===连续滞销的次数出现滞销的次数综上,得销售状态转移概率矩阵为:⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=22.078.05.05.022211211p pp p P 从上面的计算过程知,所求转移概率矩阵P 的元素其实可以直接通过表2中的数字计算而得到,即将表中数分别除以该数所在行的数字和便可:77711+=p77712+=p 27721+=p 77222+=pMatlab 程序:format rat clca=[ 1 1 2 1 2 2 1 1 1 2 1 2,1 1 2 2 1 1 2 1 2 1 1 1]; for i=1:2 for j=1:2f (i,j)=length(findstr ([i j],a)); end end fni=(sum(f ’))' for i=1:2p(i,:)=f(i ,:)/ni(i ); end p由此,推广到一般情况,我们得到估计转移概率的方法:假定系统有m 种状态S 1,S 2,…,S m ,根据系统的状态转移的历史记录,得到表3的统计表格,以j i p ˆ表示系统从状态i 转移到状态j 的转移概率估计值,则由表3的数据计算估计值的公式如下:表3 系统状态转移情况表(3)带利润的马氏链在马氏链模型中,随着时间的推移,系统的状态可能发生转移,这种转移常常会引起某种经济指标的变化.如抗病毒药的销售状态有畅销和滞销两种,在时间变化过程中,有时呈连续畅销或连续滞销,有时由畅销转为滞销或由滞销转为畅销,每次转移不是盈利就是亏本.假定连续畅销时盈r 11元,连续滞销时亏本r 22元,由畅销转为滞销盈利r 12元,由滞销转为畅销盈利r 21元,这种随着系统的状态转移,赋予一定利润的马氏链,称为有利润的马氏链.对于一般的具有转移矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛=N N N N N N p p p p p p p p p P212222111211的马氏链,当系统由i 转移到j 时,赋予利润r ij(i ,j =1,2,…,N ),则称⎪⎪⎪⎪⎪⎭⎫⎝⎛=N N N N N N r r r r r r r r r R212222111211(5) 为系统的利润矩阵,r ij >0称为盈利,r ij <0称为亏本,r ij = 0称为不亏不盈.随着时间的变化,系统的状态不断地转移,从而可得到一系列利润,由于状态的转移是随机的,因而一系列的利润是随机变量,其概率关系由马氏链的转移概率决定.例如从抗病毒药的销售状态的转移矩阵,得到一步利润随机变量)1(1x 、)1(2x 的概率分布分别为:)1(1x r 12)1(2x r 21 r 22其中 p 11+ p 12 = 1 ,p 21+ p 22 = 1.如果药品处于畅销阶段,即销售状态为i =1,我们想知道,经过n 个季度以后,期望获得的利润是多少?为此,引入一些计算公式.首先,定义)(n i v 为抗病毒药现在处于)2,1(=i i ,经过n 步转移之后的总期望利润,则 一步转移的期望利润为:∑==+==212211)1()1()(j j i j i i i i i i i p r p r p r x E v其中)()1(i x E 是随机变量)1(i x 的数学期望.二步转移的期望利润为:∑=+=+++==21)1(2)1(221)1(11)2()2(][][][)(j j i j j i i i i i i i p v r p v r p v r x E v其中随机变量)2(i x (称为二步利润随机变量)的分布为:2,1,)()1()2(==+=j p v r x P j i j j i i例如,若⎪⎪⎭⎫ ⎝⎛=6.04.05.05.0P , ⎪⎪⎭⎫⎝⎛-=7339R则抗病毒药销售的一步利润随机变量:抗病毒药畅销和滞销时的一步转移的期望利润分别为:65.035.09)(12121111)1(1)1(1=⨯+⨯=+==p r p r x E v 36.074.03)(22222121)1(2)1(2-=⨯-⨯=+==p r p r x E v二步利润随机变量为:)2(1x 3—3)2(2x —7-3抗病毒药畅销和滞销时的二步转移的期望利润分别为:12)1(21211)1(111)2(1)2(1][][)(p v r p v r x E v +++==5.75.0)33(5.0)69(=⨯-+⨯+=22)1(22221)1(121)2(2)2(2][][)(p v r p v r x E v +++==4.26.0)37(4.0)63(-=⨯--+⨯+=一般地定义k 步转移利润随机变量),2,1()(N i x k i =的分布为:N j p v r x P ji k j j i k i ,2,1)()1()(==+=-则系统处于状态i 经过k 步转移后所得的期望利润)(k i v 的递推计算式为:j i k j Nj j i k i k i p v r x E v )()()1(1)()(-=+==∑∑∑∑=-=-=+=+=Nj j i k j i Nj ji k j Nj j i j i p v v p v p r 1)1()1(1)1(1(6)当k =1时,规定边界条件0)0(=i v .称一步转移的期望利润为即时的期望利润,并记N i q v i i ,2,1,)1(==.可能的应用题型题型一、市场占有率预测例题1在购买该药的总共1000家对象(购买力相当的医院、药店等)中,买A 、B 、C 三药厂的各有400家、300家、300家,预测A 、B 、C 三个厂家生产的某种抗病毒药在未来的市场占有情况。

(完整word版)马尔可夫链的概念及转移概率(word文档良心出品)

(完整word版)马尔可夫链的概念及转移概率(word文档良心出品)

2). ������1 ∪ ������2 ∪ ⋯ ∪ ������������ = ������,且有P(������������) > 0, i = 1,2, ⋯ , n,则 P(A) = ∑������������=1 P(������������)P(������|������������)
������{������������+1 = ������������+1|������0 = ������0, ������1 = ������1, … , ������������ = ������������}
= ������{������������+1 = ������������+1|������������ = ������������}
要到从箱子中再抽出一球后才放回箱中,每抽出一球作为一次取样试验。 现引进随机变量序列为{X(n), n = 1,2, ⋯ },每次取样试验的所有可能结果只
可见,马尔科夫链的统计特性完全由条件概率
������{������������+1 = ������������+1|������������ = ������������} 所决定。如何确定这个条件概率,是马尔科夫链理论和应用中的重要问题之一。
现举一例说明上述概念: 例 4.1.1 箱中装有 c 个白球和 d 个黑球,每次从箱子中任取一球,抽出的球
(4.1.1)
则称{������������, n ∈ T}为马尔科夫链,简称马氏链。
式(4.1.1)即为马氏链,他表明在状态������(0) = ������0, ������(1) = ������1, … ������(n) = ������������已知的

专业人力资源100项工具-82马尔可夫链模型

专业人力资源100项工具-82马尔可夫链模型

100项工具82、马尔可夫链模型马尔可夫模型(Markov Model)是一种统计模型,广泛应用在语音识别,词性自动标注,音字转换,概率文法等各个自然语言处理等应用领域。

经过长期发展,尤其是在语音识别中的成功应用,使它成为一种通用的统计工具。

马儿可夫过程到目前为止,它一直被认为是实现快速精确的语音识别系统的最成功的方法。

复杂的语音识别问题通过隐含马尔可夫模型能非常简单地被表述、解决,让人们由衷地感叹数学模型之妙。

主要应用于语音识别、音字转换、词性标注。

自然语言是人类交流信息的工具。

很多自然语言处理问题都可以等同于通信系统中的解码问题--一个人根据接收到的信息,去猜测发话人要表达的意思。

这其实就象通信中,人们根据接收端收到的信号去分析、理解、还原发送端传送过来的信息。

比如一个典型的通信系统中:其中s1,s2,s3...表示信息源发出的信号。

o1,o2,o3...是接受器接收到的信号。

通信中的解码就是根据接收到的信号o1,o2,o3...还原出发送的信号s1,s2,s3...。

其实人们平时在说话时,脑子就是一个信息源。

人们的喉咙(声带),空气,就是如电线和光缆般的信道。

听众耳朵的就是接收端,而听到的声音就是传送过来的信号。

根据声学信号来推测说话者的意思,就是语音识别。

这样说来,如果接收端是一台计算机而不是人的话,那么计算机要做的就是语音的自动识别。

同样,在计算机中,如果我们要根据接收到的英语信息,推测说话者的汉语意思,就是机器翻译;如果我们要根据带有拼写错误的语句推测说话者想表达的正确意思,那就是自动纠错。

那么怎么根据接收到的信息来推测说话者想表达的意思呢?人们可以利用叫做“隐含马尔可夫模型”(HiddenMarkovModel) 来解决这些问题。

以语音识别为例,当我们观测到语音信号o1,o2,o3时,要根据这组信号推测出发送的句子s1,s2,s3。

显然,人们应该在所有可能的句子中找最有可能性的一个。

马尔可夫过程模型及其应用研究

马尔可夫过程模型及其应用研究

马尔可夫过程模型及其应用研究随着人工智能、人工智能驱动的机器学习和数据处理技术的发展,越来越多的领域开始将马尔可夫过程的模型应用到其研究领域中。

马尔可夫过程是一种随机过程,其描述了在某个时刻的状态与在下一时刻的状态之间的条件性概率分布。

本文将重点介绍马尔可夫过程的主要性质、分类及其应用研究。

1. 马尔可夫过程的基本概念1.1 马尔可夫链马尔可夫链是指一个具有马尔可夫性质的随机过程。

马尔可夫性质是指,在时间的变化过程中,一个系统只与其先前的状态有关,而与先前的状态历史无关。

1.2 马尔可夫性质马尔可夫性质是指一个过程中,某个状态的发生概率只与其前一个状态有关,而与更早的状态无关。

这种性质称为马尔可夫性质。

1.3 马尔可夫模型马尔可夫模型可以看作是一种将可观察数据与状态之间建立联系的模型。

在马尔可夫模型中,状态是不可观测的,但是其下一时刻的状态则可以通过一个概率转移矩阵来计算。

2. 马尔可夫过程的分类2.1 离散时间马尔可夫过程离散时间马尔可夫过程是指在一定的时刻,系统可以从某个状态转移到另一个状态。

在离散时间马尔可夫过程中,状态的转移只有在离散时间点时才能发生。

2.2 连续时间马尔可夫过程连续时间马尔可夫过程指的是一个系统在任意时刻都能从一个状态转移到另一个状态。

在连续时间马尔可夫过程中,状态的转移是在连续时间内发生的。

3. 马尔可夫过程的应用3.1 金融领域马尔可夫过程被广泛应用于金融领域中的资产定价和风险管理。

在金融领域中,马尔可夫过程可以帮助人们确定一种资产的未来价格走势,进而帮助利用这些信息进行投资和风险管理。

3.2 自然语言处理马尔可夫过程还可以应用在自然语言处理方面。

自然语言处理是人工智能领域的一个重要研究方向,其目的是在计算机上自然地理解和生成人类语言。

3.3 生态学马尔可夫过程还可以在生态学领域中被应用。

在生态学中,马尔可夫过程可以帮助科学家了解某一物种在特定环境下的数量随时间变化的规律,以便进行更好的保护和管理。

3.2 马尔可夫预测模型

3.2  马尔可夫预测模型


pij1 p j1 j2 p jk j
。n步转移概率矩阵 P( n ) 与一步转移概率矩阵P的关
系为 P( n ) Pn 。
定义3.2.2 马尔可夫链 X T {X n , n 0,1,2,} ,初始时刻
取各状态的概率 P{ X 0 i} pi , i I .称为 X T 的初始概
其中状态空间为 I ={0,1,2,} ,若对任意的正整数
ti ti 1 ( i 0,1, 2,,k 1 ) k,任意 ti T ,
及任意非负整数 i0 , i1 , , ik 1 ,
有 P{X t
k 1
ik 1 | X t0 i0 , X t1 i1 ,, X tk ik } P{ X tk 1 ik 1 | X tk ik }
条件概率称为在时刻n系统从状态i经过k步转移到状态j的k步转移概率记为一般地转移概率不仅与状态i和j有关而且与时刻n有关当与n无关时表明马尔可nknpxjxikijnknpnpxjxiijikijpnkijpn夫链具有平稳的转移概率此时称马尔可夫链为时间齐次的马尔可夫链并把记为
数学模型
安徽大学数学科学学院 周礼刚 lg_zhou@
3.2 马尔可夫预测模型
马尔可夫(Markov)链模型是1906年由俄国
数学家Markov对其研究而命名的,后来
Kolmogorrov、Feller、Doob等数学家对其进行了
进一步的研究与发展。马尔可夫链的定义如下:
T {0,1, 2,} 定义3.2.1 设有随机过程 X T { X T , t T },
i 0
,满足条件 ( j) 0
的惟一解,即该有限状态空间的马尔可夫链平稳分布 存在且惟一。

概率论第十三章-马尔可夫链

概率论第十三章-马尔可夫链
k 1
s
s u s u v
t
i, j 1,2,
这就是著名的chapman kolmogorov方程,简称C K 方程
即"从时刻s所处的状态ai出发,经时段u v转移到状态a j "
这一事件可分解成: "从X s ai出发,先经时段u转移到中间状态ak k 1, 2, 再从ak 经时段v转移到状态a j"这样一些事件和
p j i P i, j 0,1 ij P X n 1 j | X n i q j i
p P q
q p
9
例2:排队模型
随机到达者
等候室
服务台
离去者
系统
服务系统由一个服务员和只可以容纳两个人的等候室组成。 服务规则为:先到先服务,后来者需在等候室依次排队;若一 个需要服务的顾客到达系统时发现系统内已有3个顾客,则该 顾客立即离去。 设: (1)时间间隔⊿t内有一个顾客进入系统的概率为q,有一 接受服务的顾客离开系统(即服务完毕)的概率为p; (2)当⊿t充分小时,在这时间间隔内多于一个顾客进入或 离开系统实际上是不可能的; (3)再设有无顾客来到与服务是否完毕是相互独立的。 10
Pin1in tn tn 1
pi 0 Pii1 t1 Pi1i2 t2 t1
马尔可夫链的有限维分布完全由初始分布和转移概率所确定
例如:P{X 0 a0,X 2 a2} P{X 2 a2 | X 0 a0}P{X 0 a 0} p0 (0) p02 (2)
, X (tn 1 ) xn 1}
马尔可夫性(无后效性 ):已知过程“现在” 的条件下, “将来”不依赖于“过 去”。

如何使用马尔可夫链蒙特卡洛进行高维概率图模型推断(Ⅲ)

如何使用马尔可夫链蒙特卡洛进行高维概率图模型推断(Ⅲ)

马尔可夫链蒙特卡洛(MCMC)是一种用于进行高维概率图模型推断的统计方法。

通过模拟从概率分布中抽取样本,MCMC能够有效地估计概率图模型中的参数和未知变量。

在本文中,将探讨MCMC的基本原理、常用算法以及在高维概率图模型推断中的应用。

MCMC的基本原理是利用马尔可夫链的性质,通过迭代生成样本序列,使得样本分布逼近目标分布。

在高维概率图模型中,目标分布通常表示为后验分布,即给定观测数据下未知变量的条件分布。

通过MCMC方法,可以从后验分布中抽取样本,从而进行参数估计和推断。

MCMC的核心思想是在参数空间中进行随机游走,以达到从目标分布中抽取样本的目的。

常用的MCMC算法包括Metropolis-Hastings算法、Gibbs抽样算法和Hamiltonian Monte Carlo算法等。

这些算法在高维概率图模型推断中都有广泛的应用,可以有效地处理参数维度较大、复杂度较高的模型。

Metropolis-Hastings算法是最早的MCMC算法之一,其基本思想是通过接受-拒绝的方式生成样本序列。

该算法通过定义转移核函数来实现参数空间的随机游走,从而逼近目标分布。

Gibbs抽样算法则是一种特殊的Metropolis-Hastings算法,适用于条件分布易抽样的情况。

这两种算法在高维概率图模型中都有较好的表现,能够有效地进行推断和预测。

另一种常用的MCMC算法是Hamiltonian Monte Carlo算法,它通过引入动量变量和哈密顿动力学方程来实现参数空间中的随机游走。

相比于传统的MCMC算法,Hamiltonian Monte Carlo算法具有更好的收敛性和抽样效率,在高维概率图模型中有着广泛的应用。

在实际应用中,MCMC方法常常用于高维概率图模型的参数估计和推断。

例如,在贝叶斯网络中,MCMC可以用于估计节点之间的条件概率分布,从而进行概率推断和预测。

在潜在变量模型中,MCMC可以用于估计潜在变量的后验分布,从而进行模型选择和比较。

高阶马尔科夫链的张量模型.pptx

高阶马尔科夫链的张量模型.pptx
[2] W Li, Lu-Bin Cui, M. Ng, Perturbation bound for the Perron vector of a transition probability tensor, BUHK, 2011
第26页/共31页
k2 ,...,km 1
其中
x
0,
x n
i1 i
1
对模型(7)我们有如下需要解决的问题:
(a)模型(7)的解向量,即平稳分布x是存在吗?唯一吗?
如果不唯一,什么情况下唯一?
(b)保证唯一性条件下,如何给出(7)平稳概率分布向量

的求解算法?
(c) 如何给出(7)的敏感性(扰动)分析?
第13页/共31页
第16页/共31页
三、求解(7)平稳分布的迭代 法
如下是考虑第一节中的问题(b),即:保证唯一性条 件下,如何给出(7)平稳概率分布向量的求解算法?我 们给出迭代法如下(见LN2011):
第17页/共31页
注记1: t+1步迭代得到的向量x_{t+1} 不必单位化处理 。需讨论的问题是:
(a) 在(7)有唯一解的条件下,上述算法是否收敛? (b) 如果不收敛,收敛条件是什么? (c) 收敛率如何给出?效果如何?
张量有非常重要的应用. 这里,我们比较
感兴趣的是与高阶Markov链有关的非负张
量的谱理论,张和祁给出张量谱理论的很
好的综述。张量的H-特征值和特征向量定
义为 :
第9页/共31页
Ax m-1 x [ m1] ,
其中 Axm-1
a x ...x , n
i1 ,...,im 1 i1 ,...im i1 im
的线性组合近似得到。由非负张量的关于H-特征值的
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
张量有非常重要的应用. 这里,我们比 较感兴趣的是与高阶Markov链有关的非负 张量的谱理论,张和祁给出张量谱理论的很 好的综述。张量的H-特征值和特征向量定义 为:
Am x-1 x[m1],
其中 A m - 1 x i n 1 ,i . m 1 .a i . 1 ,, i m .x i . 1 ..x i m .,.x [ m 1 ] [ x 1 m 1 ,x .1 m 1 . ]..
如果不唯一,什么情况下唯一?
(b)保证唯一性条件下,如何给出(7)平稳概率分布向量
的求解算法?
(c) 如何给出(7)的敏感性(扰动)分析?
二、关于模型(7)平稳分布存在唯一性
1、存在性:文[Li, Ng, 2019]定理2.2 (p.21) 给出了Байду номын сангаас 不可约非负张量,方程(7)的存在性证明,即:
2、唯一性:文[Li, Ng, 2019]给出了如果概率转移张量P没有任何 限制,(7)的解不是唯一的(p. 24 Remark 1)。对方程(7)文 [Li,Ng, 2019]首次给出了唯一性的充分条件(见Theorems 2.3 and 2.4, p. 22--35),即
间S = {1, 2, . . . , m}内取值,x t 1 的概率
只和 x t 有关。一个Markov过程是由它的概
率转移矩阵 P( pij )刻画的,其中, p i j P o ( x t 1 r b i | x 0 i 0 , x 1 i 1 ,x . t j . ) P .o , ( x t 1 r b i | x t j ) (1. )
参数。这有助于我们理解基因网络和理解网络中不同 的基因的作用。然后提出基因干预的治疗或基因控制 策略。然而,网络的规模随基因数量的增长而呈指数 阶增长。一个PBN可以建立有关Markov模型,进而利 用该Markov链模型分析该网络; 在信用危机模型中的 应用中,信用等级在信用危机分析和建模中非常重要。 以往建立信用等级和他们之间的转移的常规的方法就 是Markov链模型及其概率转移矩阵。当今 人们面临的 问题越来越复杂,复杂的事物通常可以用高维数据来 刻画。
最近,高阶非负张量用于建立高阶Markov链模型, 这给研究Markov链带来新的具有挑战性的课题。
因此,对Markov过程及其应用的研究至今仍然是 数学及许多领域的研究热点,其研究在生物、医学、 计算机科学、数据分析和数学等各方面都要重要的理 论和实践意义。
1、 Markov链模型
给定一个Markov链过程x(t),设它在 离散的时间段t = 1, 2, 3, . . .内在状态空
其中,P满足(5),且 x(t ) 0,
x n (t ) i1 i
1
则平稳概率分布向量可以通过如下模型得到:
n
xPm x -1(
pik2..k.mxk2..xk.m)in 1 (7)
k2,.k .m .,1
其中
x
0,
x n i1 i
1
对模型(7)我们有如下需要解决的问题:
(a)模型(7)的解向量,即平稳分布x是存在吗?唯一吗?
这时,P 是列和为1的非负矩阵。
对某些数据序列进行分析时, 一阶Markov模型不能满足进一 步的分析要求,因为在时刻t的概率与它前面的n 个时刻有关, 即需要求如下概率:
P o ( r x tb k 0 |x t 1 k 1 ,,.x t . n .k n ,).
Raftery于1985年给出了估计方法:
而Z-特征值和特征向量定义:
Axm1- x,
x ( 0 ) C n ,x 1 1 :Z 1 eig;ex n 2 1 p : Z a 2 e ir ige
(see Chang and Zhang, manuscript, 2019).文 [Ng,Qi, Zhou, SIMAX, 2009]指出,对某些数据系列建 立高阶Markov模型时通常可以计算如下高阶转移概率:
高阶马尔科夫链的张量模型
黎稳 华南师范大学数学科学学院
广州,510631
Joint work with Prof. Michael Ng and LB Cui
提纲
引言 关于张量模型平稳分布存在与唯一性 求解张量模型平稳分布的迭代法 平稳分布的扰动分析 数值例子
一、引言:
Markov链的研究有非常悠久的历史,在建模以及 分析实系统时,Markov链的应用非常广泛,例如对制 造系统,随机自动化网络(SAMs),排队系统,生物 信息工程,数据序列、网页排序以及其他和计算有关的 应用和网络决策分析等等, Markov链模型能作出很好 的预测和优化计划等作用。
非负张量(5)来计算有关概率分布向量。
对计算高阶张量的在时刻t概率分布 x ( t )
[Qi,2019]等给出了如下模型:
x(t ) P(-t1 x.)x .(t. m 1)(
p i2 k.k .m .xk (2 t 1).x .k (m t. m 1)in 1,(6)
k2,.k.m . 1 ,
0Por(bxt k1|xt1k2,,..xt.n,km)pk1,.k.m .,1,
n
pk1,.k.m .,1, 1k2,.k.m . ,n
k11
(5)
在模型(2)和(4)中, pk1 ,...,km 的值分别由某些 p kik j
的线性组合近似得到。由非负张量的关于H-特征值的 Perron-Frobenius定理知道[N-Q-Z,09]可以直接利用
在某些应用研究中,例如在生物信息学中,不同基 因之间的相互作用构成了复杂的细胞活动。对作用于细 胞、组织和器官的基因共同性研究在生物信息学中是一 个重要的课题。代替独立看待单细胞,全局的或历史性 的观点在理解细胞作用和控制大量正常功能运作的机制 中显得越来越重要。通过概率布尔网络(PBN)建立基 因调控网络模型,利用实际的数据推断网络结构和
n
P o ( r x tb k 0 |x t 1 k 1 ,,.x t .n .k n ,) i 1iq k 0 k i.2 ( )
2、高阶非负张量模型
对高阶Markov模型的分析也可以利用高 阶非负张量的有关理论,所谓m阶n维非负 张量指 A ( a i 1 ,. i m .) .,,a i 1 ,. i m . .0 ,,1 i 1 ,i .m .n .,
相关文档
最新文档