2015深圳杯数学建模a题课程论文

合集下载

数学建模2015深圳A题医保诈骗论文(完整版)

数学建模2015深圳A题医保诈骗论文(完整版)

建立在医保欺诈中的应用模型摘要:本文围绕医保欺诈的识别而展开讨论,运用层次分析法和模糊综合评价相结合的方法对可能的医保欺诈进行判断。

首先,对附件中大量数据进行筛选整理得到所需可用的数据。

然后,根据层次分析法确定模型的准则层、方案层并确定各识别因子的权重。

接着,结合模糊综合评价确立的各识别因子的隶属函数和医保欺诈度阈值,建立了医保欺诈识别模型,找出了可能的医保欺诈。

对于医保欺诈的识别,首先运用EXCEL中数据透视表、VLOOKUP函数等对附件中多张表的大量数据进行筛选整理,提炼出病人ID号、性别、年龄、所对应的账单号、处方中药物的种类、单张处方费用、单张处方拿药次数、单张处方总费用、单张医保卡的使用次数等与欺诈有关的数据。

然后,根据层次分析法确定医保诈骗识别模型的准则层:单张医保卡使用次数和单张处方总费用,方案层:病人年龄、性别,处方中药物种类、单张处方费用、单张处方拿药次数,并确定各识别因子的权重。

接着运用模糊统计法确立各识别因子的隶属函数,并设定结点阀值作为检测判断的依据,最后,运用matlab语言对附件中的数据进行判断,得到可能的医保欺诈的数据。

该模型可以在一定程度上可以识别医保诈骗。

关键字:医疗保险;诈骗识别;层次分析;模糊综合评价一、问题重述医疗保险欺诈,是指公民、法人或者其他组织在参加医疗保险、缴纳医疗保险费、享受医疗保险待遇过程中,故意捏造事实、弄虚作假、隐瞒真实情况等造成医疗保险基金损失的行为。

骗保人进行医保欺诈时通常使用的手段,一是拿着别人的医保卡配药,二是在不同的医院和医生处重复配药。

下面这些情况都有可能是医保欺诈:单张处方药费特别高,一张卡在一定时间内反复多次拿药等。

请根据附件中的数据,找出可能的欺诈记录。

注:数据中病人姓名、身份证号、电话号码、医保卡号为非真实数据。

数据见2.1 2.2 2.3 2.4 2.5 2.6二、问题分析医疗保险是为补偿疾病所带来的医疗费用的一种保险,关系到国家民生和发展的重大问题,而从全国范围来看,医保欺诈呈逐年递增态势;医保欺诈不仅扭曲了保险定价机制,损害保险经营的最大诚信原则,而且还严重威胁医保基金安全,妨碍医保政策的有效实施。

2015数学建模竞赛优秀论文

2015数学建模竞赛优秀论文
4
图 2 太阳高度角
由三角形性质,显然,
OB
tan θ =
(1)
OA
即得,
OB H
L = OA =
=
(2)
tan θ tan θ
根据参考文献[1],太阳高度角θ的计算公式为:
sin θ = sin φ sin δ + cos φ cos δ cos σ
(3)
其中,φ为观测地地理纬度,δ为赤纬角,σ为时角。 参考文献[2]:所谓日面中心的时角,即从观测点天球子午圈沿天赤道量至太阳所在时圈的
图 1 夏半年日影运动
由于太阳和地球最短距离为1.471 × 108km,所以太阳光接近地球表面时可以近似看成 是平行光。参考文献[1],太阳高度角是指太阳光的入射方向和地平面之间的夹角,专业上 讲太阳高度角是指某地太阳光线与通过该地与地心相连的地表切线的夹角。如图(2)所 示,OB为竿长,OA为影长,θ即为太阳高度角。
4. 模型的建立
4.1. 问题一模型的建立
4.1.1. 立杆影长随参数变化的模型的建立 为了探求不同时间、不同经纬度下立杆影长的变化规律,我们建立以立杆为参考系的数
学模型。一年四季中除去春分、夏至、秋分、冬至以外,太阳相对于地球都不是严格由正东 向正西方向运动,因此立杆的影子变化不仅在于长度的改变,方向也在改变。同一天,随着 时间的推移,立杆的影子顶点应当是一个弧状轨迹。如图(1),为夏半年日影运动静态模 拟图。图中白色虚线表示影子顶点运动的部分轨迹。
太阳影子定位
摘要
本文通过分析影响立杆影长的相关参数的变化,建立了时间、太阳位置和影子轨迹关系 的数学模型,探究了影子变化的影响因素,以及通过影子变化如何确定拍摄时间和地点。
针 对 问 题1, 我 们 利 用 太 阳 高 度 角 的 定 义 及 太 阳 高 度 角 的 大 小 跟 赤 纬 角 、 时 角 、 当 地纬度相关,建立了影长关于太阳高度角、杆长、日期这三个因素变化的模型。然后依 据题目给定的参数利用MATLAB得到影长,并进行检验。结果显示2015年10月22日当天北 京时间9:00–15:00之间天安门广场上一根3米高的竿子在12:36分时取到最短影长为3.68米, 在9:00时取到最长影长为6.78米。

2015数学建模A题小论文

2015数学建模A题小论文

太阳影子定位模型摘要“日长影移”是生活中人人熟知的自然现象,这个词说明地面上的影子变化与太阳活动有着密切的联系。

而古代智慧的先民就利用了这个现象制作了日晷是最早且最精确的计时工具之一。

本文主要研究的是太阳影子定位问题,需要确定出太阳影长变化模型,通过逆向思维,借助直杆太阳影子变化建立数学优化模型推算出直杆的位置、日期等信息。

对于问题一,首先从对直杆长度,基于地理坐标,时间这三个影响影子长度的参数,计算出时角,赤纬角,太阳高度角,进而给出了影子长度与三个参数之间的关系式。

结果显示,影长对日期和时刻都呈现出先减小后增大的趋势;对杆长呈正比关系增长;对经度呈现先急剧增长到峰值再突变为0,而后突变到峰值后再急剧下降;对纬度呈缓慢上升趋势。

然后,根据附件 1 中提供的数据,画出了天安门广场上直杆的太阳影子分布曲线图。

对于问题二,使用最小二乘近似法以及遗传算法建立了一个完整的优化模型,将杆长与直杆地理纬度作为变量参数,进行 100 次迭代,得出 20 组可能的解,通过合理性比较得出最可能地点在海南岛东部对于模型的推广,根据物体采集到的太阳地理信息进行计算,可以应用到求建筑物群合理间距问题。

以保证不同楼层,不同地区住户的采光质量。

关键词:正比;峰值;最小二乘法;遗传算法。

一、问题的重述1.1问题的背景现代科技的发展使得人们能够更为方便地记录高质量的视频文件。

在分析视频材料时,有时需要确定视频的拍摄地点及日期,而利用天文学知识,对视频物体中的太阳影子变化进行分析是确定视频拍摄地点及日期的一种方法。

1.2要解决的问题根据题中所给信息,本文将问题细化为以下五个问题,并建立数学模型进行分析和研究。

问题一:以北京 9:00 15:00 为时间,天安门广场(北纬3 9 5 4 2 6,东经1162329)为地点,建立描述影子长度变化的数学模型,分设若干参数分析高 3 米的直杆影子长度的变化规律;问题二:为了确定在水平地面上固定直杆的拍摄地点,以直杆的太阳影子顶点为坐标数据建立数学模型,并将建立的模型应用于附件1,求解出若干可能的拍摄地点;二、问题分析2.1问题一分析题目要求在固定地点,给定日期和杆长的条件下,求解出直杆投影长度的变化曲线。

2015数学建模A题论文介绍

2015数学建模A题论文介绍

2015数学建模A题论⽂介绍A题太阳影⼦定位摘要本⽂⾸先确定了不同地点不同⽇期的直杆影长的模型,利⽤该模型解决了不同地点不同⽇期直杆影⼦变化和时间的的关系,为分析视频的拍摄地点和⽇期提供了模型上的基础。

对于问题⼀,为了确⽴直杆的影长与时间的关系,建⽴了地球坐标系和天球坐标系,引⼊太阳⾼度⾓、⾚纬、太阳时⾓、时差等参数变量。

利⽤太阳⾼度⾓和时间的关系建⽴了影长和时间的关系模型。

利⽤MATLAB软件求得影长关于时间的变化曲线,从9点到15点影⼦长度先减⼩后增⼤,在北京时间12点14分直杆影长最短,最短为3.5⽶,在北京时间9点直杆影长最长,长度为7.3⽶。

对于问题⼆,结合问题⼀中各参数变量之间的关系,使⽤Bourges算法和太阳⽅位⾓与时间的关系,得到确定直杆所在地点的数学模型,将附件1所给数据带⼊模型,利⽤excel和MATLAB软件进⾏求参数和拟合函数图像,求得直杆所处的可能地点为北纬19.21,东经108.43。

该地点在海南。

或者为南纬3.9412度,东经137.3度。

该地点在为印度尼西亚纳⽐雷附近。

对于问题三,由所给影⼦顶点坐标数据计算出各时间点的太阳⽅位⾓,利⽤excel 软件拟合出太阳⽅位⾓与时间的关系,进⽽确定直杆点的经度,结合问题⼆的数学模型得到直杆地点和⽇期求法的数学模型。

再次通过MATLAB进⾏求参数和拟合函数图像,求出了附件2地点可能为北纬39.88,东经79.7925或南纬39.88,东经79.7925,可能⽇期为:5⽉25号和7⽉20号或1⽉17号和1⽉26号。

对于问题四,提取出视频所有的帧数,等差得选取其中的20张进⾏模拟,利⽤3DMAX 软件仿真出视频的场景,通过测量所建模型中影⼦长度,确定出20组影⼦顶点坐标数据,再⽤问题⼆中所⽤到的模型进⾏求解,得到经纬度为北纬15.2,东经113.9.拍摄地点在海南省的三沙市。

⽤问题三中的模型求解得到拍摄地点纬度为0,东经123.8度在印度尼西亚,⽇期为3⽉21号或10⽉23号。

【全国大学生数学建模竞赛获奖优秀论文作品学习借鉴】2015年全国数学建模竞赛A题全国一等奖论文17

【全国大学生数学建模竞赛获奖优秀论文作品学习借鉴】2015年全国数学建模竞赛A题全国一等奖论文17
杆在某一点的投影与当地经线的夹角为太阳方位角,在只知道投影坐标的情 况下,先建立太阳方位角与经度纬度的函数关系,然后建立太阳方位角与杆投影 坐标的函数关系,接着把经纬度当做参数确定投影坐标与经纬度的关系,最后对 所给数据进行数据处理得到经纬度的值。
4.3. 对问题 3 的分析
问题 3 相比于问题 2,附件的数据中没有给出日期,并且要求根据数据求出 观测数据时的日期。而太阳赤纬角在周年运动中任何时刻的具体值都是严格已知 的,并且可以通过日期(距离 1 月 1 日的天数)计算。在太阳方位角的计算中, 将日期转化为一个参数,通过问题 2 中的拟合同时求出,得到经纬度的值以及日 期。
对于不同时刻的太阳高度角 [2] ,已知杆长,有 tanh H L
结合公式(1)(2)(3)(4)(5),即可求得杆在不同时刻的影子长度关于北京经 纬度、当地时间以及测量日期四个参数的函数关系式
L Htan(arcsin( n m )) nm
6
5.1.2. 模型的求解
北京的纬度为北纬 3954'26'' ,经度为11623'29'' 。以正午 12 点为基准,t0 时
五. 模型的建立与求解
5.1. 问题 1 模型的建立与求解——空间向量模型 5.1.1. 模型的建立
影长随时间的变化是在地球自转和公转影响下产生的地理物理现象,根据地 球的特征,将地球看做一个球体,建立一个空间直角坐标系,地心为坐标系原点, 球的方程为 x2 y2 z2 1,构造空间向量模型。地球自西向东自转,在空间直 角坐标系中,选取一个时间点作为标准,用 x、y 轴坐标的变化来描述地球的自 转(24 小时内时间变化)过程中某一点位置的变化。
针对问题 3:首先,根据附件 2 和附件 3 建立直角坐标系,用日期序数表示 赤纬角;其次,在问题 2 得到的 y 关于 x 与经纬度的函数方程的基础上,增函数 方程的未知参数个数日期序数,得到新的函数方程;然后,用 MATLAB 进行非 线性最小二乘拟合,拟合得到经纬度以及日期序数;最后,根据拟合参数计算杆 长,通过标准差选择最优解。

太阳影子定位-2015年全国数学建模比赛a题全国二等奖论文

太阳影子定位-2015年全国数学建模比赛a题全国二等奖论文

太阳影子定位摘要本文研究的问题是分析直杆在太阳的照射下,影子的角度和长度的变化,再结合相关地理知识和数学几何模型,推算出具体的所在地点和具体日期。

该模型可以用于太阳影子定位技术中,根据物体在阳光照射下影子的变化进行定位。

对于问题一,我们首先根据地球与太阳的位置关系列出太阳赤纬角,太阳高度角,太阳时角的计算式,其中需对较粗略的太阳赤纬角计算式进行修正,得出精准的计算式。

再建立数学几何模型,根据太阳高度角,影长与杆长形成的角边关系,列出影长的计算式。

最后建立一个太阳日照影长模型,该模型以太阳高度角计算式,太阳赤纬角计算式,太阳时角计算式为子函数,以太阳赤纬角,太阳日角,太阳时角,时间初值为中间变量,以当地经纬度,从1月1日到测量日的天数,时间,杆长,年份为自变量的复合函数数学模型。

然后采用由内到外计算法对此复合函数进行求解,计算出从九点到十五点的影长和太阳高度角的变化,得出直杆的太阳影子长度的变化曲线。

对于问题二,我们首先分析因为时间日期已给出,所以根据太阳赤纬角计算式可知太阳赤纬角为已知量,接着我们将影长的计算式进行等式移项变换,得到一个拟合杆长及经纬度的非线性最小二乘模型,该模型将问题一中太阳日照影长模型作为参数拟合对象,以杆长和影长与太阳高度角正切值之积的差值最小误差平方和为目标函数,以太阳高度角计算式,太阳时角计算式为约束条件,以测量时间,天数,影长为已知量。

将该模型在1stopt 软件中运行,采用麦夸尔特算法和通用全局最优化法对该模型进行迭代计算,对实验结果统计分析后得出该直杆相应的北纬为19.29392848度,东经为108.7225248度(海南岛的西海岸)。

对于问题三,除了需要拟合杆长和经纬度以外,还需拟合日期,同样参照影长等式移项变换公式,得到一个拟合杆长、经纬度及日期的非线性最小二乘模型。

同样采用问题二的计算方法得到多组结果,其中附件二最优解地点为新疆维吾尔自治区喀什地区巴楚县(40.0025°N,79.6587°E),附件三最优解地点为湖北省十堰市郧西县(32.9638°N,110.277°E )。

2015年全国大学生数学建模竞赛A题全国二等奖优秀论文设计

2015年全国大学生数学建模竞赛A题全国二等奖优秀论文设计

太阳影子定位摘要如何确定视频的拍摄地点和拍摄日期是视频数据分析的重要方面,太阳影子定位技术就是通过分析视频中物体的太阳影子变化,确定视频拍摄的地点和日期的一种方法,该技术的日益成熟将有利于对视频中的场景进行大致定位和推算出拍摄时间。

可能会对部分案件的破解等事件产生极大的帮助。

为了更精确的计算视频中的拍摄地点和摄影时间,本文主要基于 MATLAB 与Excel处理软件,运用了遗传优化算法与模拟退火算法等,采用了视频数据化法、图片灰度化等处理手法,使计算更简便精确,使模型更完整可靠。

针对问题一,根据权威文献给出的太阳高度角算法建立模型一,先计算出太阳时角和太阳赤纬角后得到太阳高度角,再经过三角函数转换得到直杆的影长。

随后我们还考虑到因地球的大气状态并非真空状态会使到达地球的阳光折射,于是对太阳高度角进行了修正,使结果更加精确。

针对问题二,可以把这个问题当做是第一问的逆过程。

直杆影子的理论值与实际值的最小误差所对应的经纬度即为最优解。

在模型一的基础上,建立模型二并利用遗传算法计算此优化模型。

利用所给的21组坐标数据得到最优的直杆地点若干。

针对问题三,相较于问题二多了一个未知参数,在问题二的模型中加入这个未知参数即可得到模型三,得到最优的直杆地点与日期若干。

针对问题四,第一问中,利用 MATLAB 将视频每隔1min截取一张图片,把图片灰度化,测出影子、直杆底端与顶端的坐标,算得图中影长。

再根据已知图中影长、直杆实际长度与图中直杆长度的比例算出影长,运用模型二并进行优化后得出结果。

第二问中,运用模型三得到最优的视频的拍摄地点与日期若干,再进行优化得到最后结果关键词:遗传算法太阳高度角模拟退火算法最小二乘拟合问题粒子群算法1一、问题重述如何确定视频的拍摄地点和拍摄日期是视频数据分析技术的一个重要方面。

太阳影子定位技术就是通过分析视频中物体的太阳影子变化,确定视频拍摄的地点和日期的一种方法。

现需通过数学建模解决以下四个问题。

2015年全国大学生数学建模竞赛A题

2015年全国大学生数学建模竞赛A题

太阳影子定位技术问题的数学模型摘要本文涉及的是太阳影子定位技术问题。

在已知视频中物体的太阳影子变化的情况下,要确定视频的拍摄地点和拍摄日期。

首先,分析了文中四个问题的关系,发现前三个问题的已知条件逐步减少,问题难度依次递进。

第四问则给出一个实际问题,该问题需要转化成数学模型利用前三问的方法求解;随后,建立了L-G模型、MinZ-模型等,并应用非线性最小二乘法、遗传算法等算法对模型求解。

得到基于模型的合理结果。

最后,将第四问的实际问题转化数学模型并求解,进而解决问题。

对于问题一,要解决的问题是杆长与影子长度的关系,根据天文、几何知识,我们建立了模型来刻画问题给出的参数之间联系,如赤纬角模型、时角模型、太阳高度角模型、影子长度模型(L-G模型)等;分析了各参数对影子长度的影响;最后运用MATLAB绘制出具体给定参数下的3米高直杆的影子变化曲线;从曲线可以看出在9:00到15:00这段时间里,影子长度先变短后变长,最短为3.627米,最长为7.182米。

问题二提供了一个关于时间、影子坐标的附件1,杆长未知,为了确定直杆所处的地点,本问建立了MinZ-模型,首先将经度、纬度、杆长离散化,搜索出大概的可行解,然后运用非线性最小二乘算法,选取matlab中的lsqcurvefit命令,以可行解为初值,再运用非线性最小二乘算法,选取MATLAB中的lsqcurvefit命令,在控制残差在10−8之内范围的情况下得到了三个可能地点皆在海南省昌江县内,最小误差的地点为海南省江黎族自治县,北纬19.3025°,东经108.6988°,此时对应直杆高度为2.0219m。

同时,将结果代入问题一的模型进行检验,验证了模型的稳定性和算法的合理性。

问题三沿用问题一的模型和问题二的算法,由于一个已知量变成一个变量,根据算法特点,在增加一个变量的情况下,算法搜索影长差时只需要增加一重循环。

关于附件2数据,残差最小对应的位置为北纬39.8926°,东经79.7438°,具体地点在新疆维吾尔自治区喀什地区巴楚县。

2015年全国大学生数学建模竞赛A题优秀论文太阳影子定位模型教程

2015年全国大学生数学建模竞赛A题优秀论文太阳影子定位模型教程
5.1. 旗杆影长的求解 5.1.1. 模型建立
我们依据太阳位置算法[2]( SPA)得到太阳位置的几何模型图如图 1 所示:
图 1 太阳位置的几何模型
图中 为高度角, 为方位角, 为纬度角, 为赤纬角, 为太阳时角, 和 能由下列式子计算得到(公式来源:/1GU1iS):
(1.2)
其中 为一个参数,能通过如下公式得到
2 (d 1) 365
(1.3)
式中, h 为北京时间, 为当地经度, d 为日期,即 1 月 1 日就用 d 1来表
示,假设一年为 365 天,则 d 365表示 12 月 31 日。由式(1.1)可知,相邻两天的赤
纬角 差值几乎为 0,因此当闰年时,我们设定 2 月 28 日的 d 59 ,29 日时 d 59 ,
g( ) (0.006918 - 0.399912 cos( ) 0.070257 sin( ) - 0.006758 cos(2 ) 0.000907 sin(2 ) - 0.002697 cos(3 ) 0.00148 sin(3 ))
(1.1 )
h15 300
关键词:太阳位置算法 最小二乘法 遗传算法 太阳影子定位模型
一. 问题重述
1.1. 问题背景 如何确定视频的拍摄地点和拍摄日期是视频数据分析的重要方面,太阳影子定位
技术就是通过分析视频中物体的太阳影子变化来确定视频拍摄的地点和日期的一种方 法。 1.2. 问题提出 1. 建立影子长度变化的数学模型,分析影子长度关于各个参数的变化规律,并应用建
5.1.2. 模型求解
首先根据问题分析和模型,我们将观测日期代入得到赤纬角 21.8985 ,负号表
示太阳直射点在南半球,然后代入求出太阳时角 和高度角 在不同时刻的值,得到表

2015年数学建模国赛A题全国优秀论文40

2015年数学建模国赛A题全国优秀论文40

三.模型假设
1.假设一天中的太阳赤纬角保持不变; 2.假设附件 4 中视频里的时间为北京时间; 3.假设大气层对太阳光的折射率保持不变; 4.假设影子长度和角度与该点的海拔无关;
四.符号说明
符号
h
表示含义 表示太阳高度角 表示修正后的太阳高度角 表示杆子的长度 表示杆子的影长 表示太阳赤纬角 表示某点的地理纬度 表示某点的地理经度 表示太阳时角 表示大气层的折射率 表示日期 表示某一具体时刻 表示太阳方位角
1
一.问题的背景与重述
1.1 问题的背景 早在 15 世纪时, 定位技术就已经随着海洋探索的开始而产生。 随着社会和科技的不 断发展,我们对定位的需求已不再局限于航海、航空等领域,对于地球上的精确坐标定 位已逐渐成为人们关注的热点问题。对于地球表面经纬度的精确定位,可利用变化的太 阳影子来进行分析,其作为一种直观简便的定位技术,已受到广泛关注。 1.2 问题的重述 太阳影子定位技术是通过分析视频中物体的太阳影子变化,确定视频拍摄的地点和 日期的一种方法,请建立合理的数学模型解决以下问题: 1.建立影子长度变化的数学模型,分析影子长度关于各个参数的变化规律,并根据 建立的模型画出 2015 年 10 月 22 日北京时间 9:00-15:00 之间天安门广场 (北纬 39 度 54 分 26 秒,东经 116 度 23 分 29 秒)3 米高的直杆的太阳影子长度的变化曲线。 2.根据某固定直杆在水平地面上的太阳影子顶点坐标数据,建立数学模型确定直杆 所处的地点,并将模型应用于附件 1 的影子顶点坐标数据,给出若干个可能的地点。 3. 根据某固定直杆在水平地面上的太阳影子顶点坐标数据, 建立数学模型确定直杆 所处的地点和日期,并将模型分别应用于附件 2 和附件 3 的影子顶点坐标数据,给出若 干个可能的地点与日期。 4.附件 4 为一根直杆在太阳下的影子变化的视频,并且已通过某种方式估计出直 杆的高度为 2 米。请建立确定视频拍摄地点的数学模型,并应用该模型给出若干个可能 的拍摄地点。如果拍摄日期未知,是否可以根据视频确定出拍摄地点与日期。

2015年数模A题

2015年数模A题
合理的假设1假设论文的抽样网评是完全随机的具有代表性2假设评委打分数据是客观真实有效的出现偏差是评委水平导致3假设当时评委的精神处于最佳状态评委分数可信度不受客观因素影响4假设论文的网评和集中评审的评阅信息是相互独立的各评委打分之间没有相互交流影响个评委对第j份试卷打分份论文的第j份试卷的平均分数份论文的第j份试卷平均分数矩阵数据的预处理51初步分析数据根据数据文件给出的数据分别算出某一个评委所评阅的所有论文的平均分为x均方差为并利用附录给出的公式算出该评委的第k份论文的标准分具体数据见下表1
2.2问题二的分析
第二个问题根据对竞赛评委有不同的基本素质要求,给出合理的度量评委基本素质的指标体系。我们根据题目附件给出的数据,去发掘测评评委基本素质要求的一些指标体系。测评基本素质指标体系主要三个方面构成:指标一是评委打分的准确度,指标二是评委打分的稳定度,指标三是评委打分的偏差度。为了使指标准确可靠,需要把不同的论文的结果分为两大类,一个是得奖论文,另一个是未得奖论文。为简化问题的复杂度,我们从得奖论文入手,分别找到这三个指标的评价标准:
序号
阅卷号
评委
打分
标准分
1
A1
评委A04
35
46.25937
2
A2
评委A11
53
55.66406
3
A3
评委A06
46
60.54732
……
……
……
……
……
353
A9020
评委A03
62
61.27679
354
A9021
评委A12
28
46.8965
355
A9022
评委A11
30
36.32556

2015年全国数学建模竞赛A题全国一等奖论文14

2015年全国数学建模竞赛A题全国一等奖论文14
阳光线的影响; 6、假设春分日为每年的 3 月 21 日,夏至日为每年的 6 月 22 日,秋分日为每年
的 9 月 23 日,冬至日为每年的 12 月 22 日。
三、符号说明
符号 R
含义 地球半径,6371km
2

测量地点的纬度
(南纬为负,北纬为正)

测量地点的经度
(西经为负,东经为正)

太阳赤纬角
到各个点的空间坐标:A R cos,0, Rsin ,BR cos cos, R cos sin, Rsin , C R cos, Rsin,0 , D R,0,0 。
Z
N
E
阳光
B βO
A α
Y
C
θ
D
X S
图 1 太阳光直射地球正面图(1)
通过对包含点 A,B 的最大圆进行几何学分析,我们得到长度为 AE 的物体在 太阳光的照射下,投影长度为 AF,则:
子与 Y 轴夹角 arctan(xi / yi ),进一步求出 20 组相邻时刻的影子之间的夹角 i arctan(xi / yi ) arctan(xi1 / yi1) 作为实际值。接着再引入影子与正北方向的 夹角 作为参数。我们运用几何学知识可以求出 与各参数, , 之间的函数关 系。并且与上一模型类似,我们对直杆所在地点的经度 ,纬度 ,测量时间 t 进行穷举法遍历,通过建立的模型对于每一组 ( , ) 求解出 20 组 i i i1 作
1
一、问题重述
确定视频的拍摄地点和拍摄日期是视频数据分析的重要方面,太阳影子定位 技术就是通过分析视频中物体的太阳影子变化,确定视频拍摄的地点和日期的一 种方法。
1、建立影子长度变化的数学模型,分析影子长度关于各个参数的变化规律, 并用建立的模型画出 2015 年 10 月 22 日北京时间 9:00-15:00 之间天安门广场(北 纬 39 度 54 分 26 秒,东经 116 度 23 分 29 秒)3 米高的直杆的太阳影子长度的变 化曲线。

2015深圳杯优秀论文

2015深圳杯优秀论文

7 6.459782 8.474264
χ2 = 22.1881
问题的 p-value
0.005 的假设

1 − χ2(22.1881, 6) = 0.0011
假设

4.1.3 型


分的

的分析





设 Q3 − Q1 = ∆Q
[Q3 + 1.5∆Q, Q1 − 1.5∆Q],

的重
3

模 与 分

p(x)
的 模型
p(y|x) 假设 的


模型

SDEM
Sequentially Discounting Expectation and Maximizing


p(y|x)
p(x, y) = p(x)p(y|x)




4.2.2 SDLE

rh
的1
1 − rh

(j1, j2, ..., jn), T (j1, j2, ..., jn) = 0
次 药。对此我们可以统计出每张卡在
医院开药单的时间频率,同时还必须探究开药频率和病人自身属性的关联性,通过
比较数据在不同分类水平下的频率直方图,进一步通过列联表法检验了不同病人属
性下就诊频次之间的独立性是否存在,通过 制 式图,通过分位数界定了一部
分离群点,作为高度怀疑的对象。
模型 对于单张 方药 过高进行 别。对于特定类型的病人,医生往往会有
对应的开药模式,若某些外在因素相似的病人,在开药模式上呈现出很大的差异
性,则有理由怀疑为行为异常者。对此,我们采用了在 无监督机器学习,建

2015年全国大学生数学建模竞赛A题秀论文介绍

2015年全国大学生数学建模竞赛A题秀论文介绍
8
7
7
6
6
太 阳 影 子 的 长 度 (m)
太 阳 影 子 的 长 度 (m)
5
5
4
4
3
3
2
2
1 -60
-40
-20 0 20 观测点的纬度(角度)
40
60
1 -25
-20
-15
-10 -5 0 5 10 太阳直射点的纬度(角度)
15
20
25
图 4 直杆影长与观测点纬度关系图
图 5 直杆影长与太阳直射点纬度的关系图
5
观测点与太阳直射点的经度差 进行灵敏度分析,分别分析改变此变量对直杆影 子长度的影响。 直杆影长与观测点纬度关系图如图 4 所示(图 4 为 11:00 时的关系图像) 。当 观测点纬度从南往当前的太阳高度角所在纬度靠近时,影长缩短,当观测点纬度 与太阳高度角处于同一纬度时,影长达到最小,随后观测点再往北移动,影长又 呈增大趋势,且增大速率明显加快。由图,在其他影响因素的取值都不变的前提 下,观测点纬度与太阳高度角处于同一纬度时,影长为 1m 左右,据推测, 12:00 时的图像,最小值应为 0m ,为太阳直射的情况。 直杆影长与太阳直射点纬度的关系图如图 5 所示。首先,太阳直射点的纬度 范围在南北回归线之间,而题设天安门所处的纬度在北回归线以北,故太阳直射 点纬度在由南到北的过程中,影长一直是减小的,且减小速率逐渐趋缓。
图 2 地球上过 A , B 的大圆
考虑到太阳与地球之间相距较远,我们认为同一时刻照射到地球表面的太阳 光线是平行的,即 HF / / BO ,从而 AOB AHF 。
A 地 t 时刻的太阳高度角记为 angel 90 。
设图 1 中向量 AK 是与 A 点处经线相切且方向向北的单位向量,向量 AE 是与

深圳杯数学建模A题获奖论文

深圳杯数学建模A题获奖论文

网络侧估计终端用户视频体验建模摘要现代社会,使用手机APP观看视频已经成为当代社会的一种普遍形式,本文依据统计回归方法,对网络侧变量和用户体验变量之间的函数关系进行拟合,令其余无关变量均近似地服从正态分布。

采用多重拟合方式拟合出不同的评价函数,并进行误差检验。

选择误差最小的评价函数。

并基于评价函数,两个用户体验变量进行预测。

同时对用户观看视频体验进行综合评价,采用多级指标,运用AHP及模糊综合评价法评价用户观看视频的满意度。

求出权重,建立评价矩阵。

得到用户观看视频满意度处在较满意和一般满意之间。

最后,由于多种原因,本文建立的用户体验变量评价函数具有一定程度的误差,因此基于原有数据,建立灰色系统模型,再次进行预测,比较结果。

建立GM(1,1)模型对相关指标进行预测,取预测区间长度为100,得出预测值,并绘制残差图对预测值进行检验。

并与评价函数预测结果进行对比。

验证评价函数的正确性。

同时得到结论,基于原始数据直接建立灰色系统,预测相对更加准确。

关键词:统计回归;综合评价;灰色预测;残差检验一.问题重述随着科技的日益进步,无线宽带网络也随之无限升级。

智能终端在大众生活中普及,越来越多的用户选择在智能终端上(以手机为主)应用客户端APP来观看网络视频,这是一种基于TCP(是一种面向连接的、可靠的、基于字节流的传输层通信协议)的视频传输以及播放。

在观看网络视频时,有很多因素指标会影响用户对于视频的观看体验,而其中两个关键指标是初始缓冲等待时间和卡顿缓冲时间,我们可以用初始缓冲时延和卡顿时长占比(卡顿时长占比=卡顿时长/视频播放时长)来定量评价用户体验。

研究表明影响初始缓冲时延和卡顿时长占比的主要因素有初始缓冲峰值速率、播放阶段平均下载速率、端到端环回时间(E2ERTT)以及视频参数。

然而这些因素和初始缓冲时延以及卡顿时长占比之间的关系并不明确。

本文拟通过数学建模的方式对网络端视频用户体验做综合评价和预测,以采取针对性的措施提高网络端视频用户体验的满意程度。

2015数学建模获奖论文A题

2015数学建模获奖论文A题
②6 月 22 日,太阳直射北回归线,北回归线及其以北各地的正午太阳高度 达到全年最大,其日影也达到全年最短。
③6 月 22 日—12 月 22 日,在太阳直射点向南移动过程中,北回归线及其 以北各地的正午太阳高度逐渐减小,那么其日影逐渐增长;
④12 月 22 日,太阳直射南回归线,北回归线及其以北各地的正午太阳高度 达到全年最小,其日影也达到全年最长。
一年中,各地的日影长度会随季节变化而变化,这种变化主要体现在正午的 日影长短上。它与当地的正午太阳高度有直接关系:正午太阳高度越大,日影越 短;正午太阳高度越小,日影越长。例如:
①12 月 22 日—6 月 22 日,在太阳直射点向北移动过程中,北回归线及其以 北各地的正午太阳高度逐渐增大,那么其日影逐渐缩短;
图 4 天安门广场 15 年 10 月 22 日影子长度随时间(9 点到 15 点)变化图
在该问题中,影子长度的变化曲线根据计算出是一个关于真太阳时 12 点对 称的二次函数拟合曲线,所以我们利用题中所给的时间数据运用 MATLAB(附 录二)求解该附件的拟合曲线的表达式为
l(t) = 0.3179 t2 - 7.7982t + 51.4250
对于地球上的某个地点,太阳高度角是指太阳光的入射方向和地平面之间的 夹角,专业上讲太阳高度角是指某地太阳光线与通过该地与地心相连的地表切线 的夹角。太阳高度角简称高度角。当太阳高度角为 90°时,此时太阳辐射强度 最大;当太阳斜射地面时,太阳辐射强度就小。
图 1 太阳高度角示意图
太阳方位角即太阳所在的方位,指太阳光线在地平面上的投影与当地经线的 夹角,可近似地看作是竖立在地面上的直线在阳光下的阴影与正南方的夹角。方 位角以目标物正北方向为零,顺时针方向逐渐变大,其取值范围是 0—360°。 因此太阳方位角一般是以目标物的北方向为起始方向,以太阳光的入射方向 为 终止方向,按顺时针方向所测量的角度。

2015年全国大学生数学建模竞赛A题

2015年全国大学生数学建模竞赛A题

太阳影子定位(一)摘要根据影子的形成原理和影子随时间的变化规律,可以建立时间、太阳位置和影子轨迹的数学模型,利用影子轨迹图和时间可以推算出地点等信息,从而进行视频数据分析可以确定视频的拍摄地点。

本文根据此模型求解确定时间地点影子的运动轨迹和对于已知运动求解地点或日期。

直立杆的影子的位置在一天中随太阳的位置不断变化,而其自身的所在的经纬度以及时间都会影响到影子的变化。

但是影子的变化是一个连续的轨迹,可以用一个连续的函数来表达。

我们可以利用这根长直杆顶端的影子的变化轨迹来描述直立杆的影子。

众所周知,地球是围绕太阳进行公转的,但是我们可以利用相对运动的原理,将地球围绕太阳的运动看成是太阳围绕地球转动。

我们在解决问题一的时候,利用题目中所给出的日期、经纬度和时间,来解出太阳高度角h,太阳方位角Α,赤纬角δ,时角Ω,直杆高度H和影子端点位置(x0,y o),从而建立数学模型。

影子的端点坐标是属于时间的函数,所以可以借助时间写出参数方程来描述影子轨迹的变化。

问题二中给出了日期和随时间影子端点的坐标变化,可以根据坐标变化求出运用软件拟合出曲线找到在正午时纵坐标最小,横坐标最大,影子最短的北京时间,根据时差与经度的关系,求出测量地点的经度。

根据太阳方位角Α,赤纬角δ,时角Ω,可以求出太阳高度角h。

再结合问题一中的表达式,建立方程求解测量地点的纬度Ф。

我们在求解第三问的思路也是沿用之间的模型,但第三问上需要解出日期。

对于问题四的求解,先获取自然图像序列或者视频帧,并对每一帧图像检测出影子的轨迹点;然后确定多个灭点,并拟合出地平线;拟合互相垂直的灭点,计算出仿射纠正和投影纠正矩阵;进而还原出经过度量纠正的世界坐标;在拟合出经过度量纠正世界坐标中的影子点的轨迹,利用前面几问中的关系求出经纬度。

关键字:太阳影子轨迹Matlab曲线拟合(二)问题重述确定视频拍摄地点和拍摄日期是视频数据分析的重要方面,太阳影子定位技术就是通过分析视频中物体的太阳影子变化,确定视频拍摄的地点和日期的一种方法。

数学建模A优秀论文

数学建模A优秀论文

数学建模A优秀论文数学建模A优秀论文在日常学习、工作生活中,大家都接触过论文吧,论文是对某些学术问题进行研究的手段。

一篇什么样的论文才能称为优秀论文呢?以下是小编为大家收集的数学建模A优秀论文,供大家参考借鉴,希望可以帮助到有需要的朋友。

数学建模A优秀论文11. 问题重述:(略)2. 问题背景:交待问题背景,说明处理此问题的意义和必要性。

优点:叙述详尽,条理清楚,论证充分缺点:前两段过于冗长,可作适当删节3. 问题分析:进一步阐述解决此问题的意义所在,分析了问题,简述要解决此问题需要哪些条件和大体的解决途径优点:条理比较清晰,论述符合逻辑,表达清楚缺点:似乎不够详细,尤其是第三段有些过于概括。

4. 模型的假设与约定:共有8条比较合理的假设优点:假设有依据,合情合理。

比如第3条对上座率的假设,参考了上届奥运会的情况并充分考虑了我国国情,客观真实。

第8条假设用了分块规划和割补的方法,估计面积形状比较合理,而且达到了充分花剑问题的作用。

缺点:有些假设阐述不太清楚也存在不合理之处,第4条假设中面积在50-100之间,下面的假设应该是介于50-100之间的数,假设为最小的50平方米,有失一般性。

第6条假设中,假设MS最大营业额为20万,没有说明是多长时间内的,而且此处没有对下文提到的LMS作以说明。

5. 符号说明及名词定义优点:比较详细清楚,考虑周全,而且较合理地将定性指标数量化。

缺点:有些地方没有标注量纲,比如A和B的量纲不明确。

6. 模型建立与求解6.1问题一:对所给数据惊醒处理和统计,得出规律,找到联系。

优点:统计方法合理,所统计数据对解决问题确实必不可少,而且用图表和条形图的方式反映不同量的变化趋势,图文并茂,叙述清楚而且简明扼要,除了对数据统计情况进行报告以外,还就他们之间相关量之间的关系进行了详细阐述,使数据统计更具实效性。

6.2问题二:6.2.1最短路的确定为确定最短路径又提出了一系列假设并阐述了理由,在这些假设下规定了最短路径优点:假设有根据,理由合情合理缺点:第4条中假设观众消费是单向的,虽然简化了问题但有失一般性,事实上观众往返经过商业区消费的概率是相差比较大的,我认为应改为假设观众在往返过程中消费且仅消费一次。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《数学建模II》课程论文组别学生一学生二学生三时间成绩摘要:医疗保险是关系到国计民生和国家发展的重大问题,基金统筹定额标准对医疗保险的发展、完善和社会稳定发展有重要影响。

本文探讨了年基金支付总额与年龄之间的关系,给出新的定额标准,并对按参保人年龄结构分类的每一类定点医疗机构下一年度的定额总费用进行预测。

针对问题一,我们建立模型一和模型二。

模型一计算出人均支付基金总额,利用excel 画出折线图,并且根据折线图的分布进行不同区间对你曲线进行拟合,利用隶函数,确定出人均支付基金总额与年龄的之间的函数关系,并通过相关性检验,得到了相应的方程。

模型二分析得到年基金支付总额与看病次数近似成正比关系,然后将年基金支付总额0到180万分成6 段,利用每个年龄看病次数占总的看病次数的比重求的每段一个平均年基金支付总额,再求的每个区间段的平均人数,平均总额与平均人数的比即为新的定价。

针对问题二,对附件4的数据进行分析,建立了聚类分析模型,对46个医疗机构进行的分类,运用SPSS 进行求解,把医疗机构分成了5类,分类结果见表五,然后在新的定额标准下,利用excel 求的每一个医疗机构的总费用,最后用均值表示为每一类医疗机构的下一年的预测费用为:关键词::统计回归聚类分析拟合一、问题描述近来,为给各县市居民的医保方便,各县市纷纷出台有关社会基本医疗保险普通门诊统筹的相关办法,其中,职工医疗保险、外来劳务人员大病医疗保险、未成年人医疗保险、城乡居民基本医疗保险的参保人全部纳入门诊统筹的范围。

医疗保险欺诈,是指公民、法人或者其他组织在参加医疗保险、缴纳医疗保险费、享受医疗保险待遇过程中,故意捏造事实、弄虚作假、隐瞒真实情况等造成医疗保险基金损失的行为。

骗保人进行医保欺诈时通常使用的手段,一是拿着别人的医保卡配药,二是在不同的医院和医生处重复配药。

下面这些情况都有可能是医保欺诈:单张处方药费特别高,一张卡在一定时间内反复多次拿药等。

社会基本医疗保险门诊统筹实行定点医疗。

某市医疗保险定点医疗机构为社区卫生服务机构及镇卫生院。

保险按照年度定额筹集,每人每年100元。

由于医疗保险基金收入规模是相对固定的,而医疗消费的种类与数量具有较大的不确定性,导致年基金支付额是相对不确定的,因此医院、医疗保险经办机构、患者三者的经济关系是相当复杂的,经过分析已有数据发现,参保人的实际医疗费用与其年龄有很大的关系,因此必须考虑年龄结构的因素来制定门诊统筹定额标准。

分析附件中的数据,并建立模型求解下列问题:1.由已有数据分析年基金支付额与年龄之间的关系,并根据年龄的不同分成若干类,为各年龄段的人给出新的定额标准。

2.在新的定额标准下把各家定点医疗机构按照其目前定点签约人的年龄结构将其分成若干类,制定每一类定点医疗机构下一年度的定额总费用模型。

二、问题分析从附件中发现,本题带有较多的数据表,分析数据表发现,年基金支付额与参保人的年龄、看病次数、每个医疗机构的定点人数都有一定的相关性,可以先用spss 对其进行相关性分析,根据结果和用excel 绘制的各种图表进一步分析,建立模型,求解出年龄与年基金支付总额之间的关系,也可以根据各年龄的年基金支付总额对总基金支付额的贡献值来求出它们的关系。

然后可以根据年龄的不同将年支付基金按一定的标准进行划分为若干类,在均衡各医疗机构所得利益与居民所获基金赔偿的条件下,并为各个不同年龄段的人给出新的定额标准。

由附件中给出的医疗机构与定点签约人年龄的关系可以看出,定点医疗机构与定点签约人年龄的关系不是很明显,而且只有年龄这一个单一的因素来将医疗机分类,可以用模糊聚类分析法来考虑医疗机构的分类问题,选取合适的相似系数,建立模糊相似矩阵,从而对所有医保门诊进行分类。

但首先对所给数据进行标准化可以提高数据计算的精度,从而使计算结果的准确性得到进一步的提高,由新的定额标准结合各年龄的基金支付特点来考虑下一年度的定额总费用。

三、符号说明四、模型假设1、假设该市基金金额只下一年度与年龄、参保人数,看保人数有关,因素的影响2、假设不同人群间统济、统一管理和统一待遇水平3、假设所有参件中的保人都遵相关数据真实可靠守医疗有发生侵害医疗筹共保险基金行为的参保人员4、假设附所有保险的有关规定没各个指标5、假设所有的相关数据具有独立性相呼影响6、由于数据过少,假设参保排除其他人数与今年一样五、模型建立模型一为了研究年基金支付与年龄的关系,对附件1、2、3所给数据进行分析,分别得出年龄与看病人数、年龄与看病次数(见表五)、年龄与定点参保人数及年龄与年基金支付总额之间的关系图,其中年龄与基金支付总额见下表由上图可知,年龄与年基金支付总额之间并不是一直存在简单的线性、二次或三次的函数关系,故以图额的关系进行拟合,由图可将年龄分为三段:0到17岁、18到49 岁、50到110岁。

1、0到17 岁经过对0到17岁之间年龄与年基金支付总额之间的关系,用spss 分别对其进行二次三次的拟合,拟合结果如下:由上表可知,对年龄与年基金支付总额进行二次拟合的F 值为4.728,sig值为0.029,而对其进行三次拟合时F的值为中两个最低点17和19 为分割点,对年龄进行分段,并对各个年龄段中年龄与基金支付总16.667、sig的值为0.000,即相比之下,进行三次拟合时显著性更强,故采用三次拟合的结果,即:问题一要求从已有数据分析年基金支付额跟年龄之间的关系,我们根据题中给的第一个表利用excel 做出了一个年基金支付总额跟年龄的折现统计图,如图一。

我们观察图形得到:从图形看我们可以把图形大致划分成几段来分析:从刚出来开始,在很小的一个年龄段中,年基金支付总额随着年龄的增加而增加;在从五岁到十五六这个年龄段里,年基金支付总额随着年龄的增加而减小;从十五六岁再,四十岁到五十岁、到四十岁左右这个年龄段里,年基金支付总额随着年龄的增加而增加;在接下来的年龄段中六十岁以后这两个年龄段中,年基金支付总额随着年龄的增加而减小;五十岁到六十这个年龄段,年基金支付总额随着年龄的增加而增加。

年基金支付总额从图中分析,与年龄没有成数学上某种特定的函数关系,因此我们又做出一个看病次数与年龄的关系,如图:从图形中,我们不难发现,各年龄的看病次数与年龄的关系,跟年基金支付总额跟年龄的关系大致相同。

在不同年龄段的上升趋势以及在不同年龄段的下降趋势都基本上是吻合一致的。

为此,我们运用统计学中的知识以及年基金支付总额与看病次数的关系建立模型二——统计学模型。

模型二从数据表中我们到180万这个区间范围内,因此,我们可以把年基金支付总额所属的区间段分为六段:A段年基金支付总额0到30万的区间;得出:年基金支付总额都在0 B段年基金支付总间;C 段年基金支付总额60万到90万的区间;D段年基金支付总额90万到120 万的区间;E段额30万到60 万的区年基金支付总额120 万到150 万的区间;F段年基金支付总额150 万到180万的区间。

对于A段,年基金支付总额与看病次数与年龄见附录。

设每个年龄的总的看病次数为,每个年龄的年基金支付总额为,对于A段来说,P 表示所有年龄对应的看病次数的总和,可得P=748657利用Excel 可以算得P=748657为了要得到A段基金支付总额,我们需要根据每个年龄的看病次数占所有年龄对应的看病次数的总和的比重,然后给出一个一个平均的年相应的平均年基金支付总额。

设每个年龄的看病次数占看病次数的总和为,得到平均年基金支付总额是每个年龄的年基金支付总额与所对应的看病次数的比重的乘积,然后在总的和。

设平均年基金支付总额为Q可得Q= (5)同样利用excel 计算得到Q=18452345.1634设每个年龄的参保人数为,对于A段来说总的参保人数为X,可得X= (6)平均参保人数M,可得:M=利用excel 计算得到M=177826最终的定价为每个区间段的平均年基金支付总额与平均参保人的比值,A段的最终定价利用excel 求解得到下面结果:=20.46根据上面的算法,对于B段区间:设平均基金支付总额为,= (7)表示对于B区间段每个年龄的基金支付总额,表示对于B区间段每个年龄的看病次数占看病次数总和的比重。

利用excel 计算得到结果:=45345530.0447又因为对于B区间段平均参保人数为,利用excel 计算得到:=6732可以得到最终的定价为,得利用excel 求解,可得结果:=78.8 表示对于C 区间段最终的定价,表示 C 区间段的年基金支付总额,表示C区间段平均参保人数。

利用excel 求解,结果如下:=84.51对于D,E,F区间段,同样利用excel 求解,可得各自的结果如下:对于D区间段来说,=48.82对于E区间段来说,=71.83对于F区间段来说,=80.03此上的数据定价是按照基金会不以盈利为目的的参保定价,如果我们需要把基金会盈利考虑到其中,我们做了下面的改进计算,以后的盈利按照现在的盈利比率,根据表中的数据我们得到参保人员所缴纳的总的费用是总的参保人数与的金额。

利用excel 我们计算得到参保人员缴纳的总的费用为:R=10584600元,所在年龄的年基金支每个人参保所要缴纳付总额的和为:I=731187613。

所以我们设盈利比率为z,可得z=*100/100 (8)利用excel 就行求解,可以的到:z=0.42然后我们按照此比率,分别将每个区间段的定价调整新的定价,对于A区间段来说:=*(1+0.42)=29.95对于B区间段来说:=*(1+0.42)=109.09对于C 区间段来说:=*(1+0.42)=119.82对于D区间段来说:=*(1+0.42)=63.84对于E区间段来说:=*(1+0.42)=171对于F区间段来说:=*(1+0.42)=124.92所以从年龄上看:0 岁,1 岁以及79 岁到110岁都属于A区间段,他们新的定额为30 元;2 岁,9 到18岁,63岁到78 岁都属于B区间段,他们新的定额为110元;7 岁,8 岁,51到62岁都属于C 区间段,他们新的定额为120 元;5 岁,6 岁,19到23岁都属于D区间段,他们新的定额为45 元;3 岁,4 岁24到28,43到50 度属于E区间段,他们新的定额为101元;29岁到42 岁都属于F 区间段,他们新的定额为115 元。

问题二要求新的定额标准下把各家定点医疗机构按照其目前定点签约人的年龄构将其分为若干类。

因为考虑到医疗机构比较多,年龄数量也比较多,总体的数据量比较大,因此在分些特点,我们可以运用基于模糊等价关系的动态聚类分析法来建立模糊数学模型对所有的医疗类方面也没有很严格的标准。

综合这机构进行分类。

相关文档
最新文档