冶金原理中南大学课件
合集下载
中南大学冶金原理第5章
图59 FeOMnOSiO2系中MnO的活度曲 线(1500C) 标准态:纯固体MnO
图 510 (CaO+MnO)A12O3SiO2 系 的 MnO 活度系数曲线(1500C) 标准态:纯固体MnO
5.5.2 熔锍组元的活度
一、铜锍组分的活度 利用吉布斯杜亥姆方程计算出含Cu45%~65%的铜锍中各组分的活度曲线。
图56 与CaOSiO2FeO系平衡的铁液中 氧的浓度(1600C)
【例题】
图53
四、其它三元系熔渣的等活度曲线图
图57 MnOSiO2FeO系中组元的活度曲线 (1600C)
标准态:液态FexO,液态MnO,纯石英
图58 (CaO+MgO)(FeO+MnO) SiO2系的MnO 活度系数曲线
温度:1530 ~1710C,标准态:纯固体MnO
渣中其它氧化物较少时
Al2O3或MgO含量较高的 炉渣(高炉渣) P2O5含量较高的炼钢炉渣 考 虑 了 MgO 、 MnO 、 A12O3 、 P2O5 对碱度的影响
二、熔渣的酸度
有色冶金中,习惯上用酸度(硅酸度)表示熔渣的酸碱性。 酸度 —— 熔渣中结合成酸性氧化物的氧的质量与结合成碱性氧化物的氧 的质量之比,一般用 r 表示:
该炉渣为酸性渣。
0.3632
r
60
1.44
0.10160.40160.0816
56
71.8
81.4
三、熔渣的酸碱性与熔渣结构理论的关系
碱性氧化物向渣中提供O2,酸性氧化物吸收渣中的自由O2。
碱性氧化物提高渣中O2的活度,酸性氧化物降低渣中O2的活度。
a 在离子理论中,用渣中自由O2 的活度(即 )的大小作为熔O 渣2 - 酸碱性的
冶金原理课件(中南)-第4章课件PPT学习
第3页/共78页
4.1 熔化温度
图41 MgOFeOSiO2渣系熔化等温线图
第4页/共78页
4.1 熔化温度
当炼镍原料中含有较多的CaO时,可选用高钙渣。 图42中的C点为高钙渣CaO含量的下限,位于鳞石英相区 内1200C等温线下面。 D点代表高钙渣CaO含量的上限,位于硅灰石CaO SiO2相 区,紧靠1100C等温线。 高钙渣的熔化温度处于1100~1200C之间。 由于渣中MgO含量约为4%~9%或更高,高钙渣的熔化温度 可能更高。
+ 0.367(MgO) + 0.48 (P2O5) + 0.402(A12O3),103m3·kg1
(MxOy) —— 氧化物MxOy的质量分数。
当T >1673K时,可按下式计算任意温度下的熔渣密度:
T
1673
0.071673 T , 10 3 kg m3 100
第14页/共78页
4.2 密 度
SiO2
CaO / %(质量) CaO / %(mol)
/ %(mol) SiO 2 / %(质量) SiO 2
Al2O3 / %(质量) 图45 A12O3CaOSiO2渣系的密度 (1500C,单位为103kg·m3)
Cu
1083
熔盐
熔渣 熔锍
Pb 铝电解质 镁电解质 锂电解质
327.5 ~960 580~700 350~360 1100~1400 700~1100
第2页/共78页
4.1 熔化温度
冶炼镍铜品位低、钙镁含量高的镍精矿时的渣型选择
根据矿石成分的变化可选择两种酸性渣型:高硅渣和高钙渣 两种渣型都能抑制氧化镁和磁性氧化铁的有害作用。 对于含镁高的矿石,采用高硅渣可以增加炉渣硅酸度,抑制 MgO(熔点约2800C) 的危害,同时使Fe3O4造渣: 2MgO + SiO2 = 2MgO·SiO2 2Fe3O4 + FeS + 5SiO2 = 5(2FeO·SiO2) + SO2 SiO2的加入量随原料成分而变化。 图中A点代表高硅渣中SiO2含量的下限,B点代表其上限。 高硅渣的熔化温度大致在1400~1500C之间。 炼镍鼓风炉的风口区温度可达1500~1800C,足以保证渣 的过热与排放。
4.1 熔化温度
图41 MgOFeOSiO2渣系熔化等温线图
第4页/共78页
4.1 熔化温度
当炼镍原料中含有较多的CaO时,可选用高钙渣。 图42中的C点为高钙渣CaO含量的下限,位于鳞石英相区 内1200C等温线下面。 D点代表高钙渣CaO含量的上限,位于硅灰石CaO SiO2相 区,紧靠1100C等温线。 高钙渣的熔化温度处于1100~1200C之间。 由于渣中MgO含量约为4%~9%或更高,高钙渣的熔化温度 可能更高。
+ 0.367(MgO) + 0.48 (P2O5) + 0.402(A12O3),103m3·kg1
(MxOy) —— 氧化物MxOy的质量分数。
当T >1673K时,可按下式计算任意温度下的熔渣密度:
T
1673
0.071673 T , 10 3 kg m3 100
第14页/共78页
4.2 密 度
SiO2
CaO / %(质量) CaO / %(mol)
/ %(mol) SiO 2 / %(质量) SiO 2
Al2O3 / %(质量) 图45 A12O3CaOSiO2渣系的密度 (1500C,单位为103kg·m3)
Cu
1083
熔盐
熔渣 熔锍
Pb 铝电解质 镁电解质 锂电解质
327.5 ~960 580~700 350~360 1100~1400 700~1100
第2页/共78页
4.1 熔化温度
冶炼镍铜品位低、钙镁含量高的镍精矿时的渣型选择
根据矿石成分的变化可选择两种酸性渣型:高硅渣和高钙渣 两种渣型都能抑制氧化镁和磁性氧化铁的有害作用。 对于含镁高的矿石,采用高硅渣可以增加炉渣硅酸度,抑制 MgO(熔点约2800C) 的危害,同时使Fe3O4造渣: 2MgO + SiO2 = 2MgO·SiO2 2Fe3O4 + FeS + 5SiO2 = 5(2FeO·SiO2) + SO2 SiO2的加入量随原料成分而变化。 图中A点代表高硅渣中SiO2含量的下限,B点代表其上限。 高硅渣的熔化温度大致在1400~1500C之间。 炼镍鼓风炉的风口区温度可达1500~1800C,足以保证渣 的过热与排放。
中南大学冶金原理第5章
第五章 冶金熔体的化学性质 与热力学性质
5.1 熔渣的碱度与酸度 5.2 熔渣的氧化性 5.3 熔渣与气体的反应 5.4 熔渣与液态金属的反应 5.5 冶金熔体中组元的活度
5.1 熔渣的碱度与酸度
熔渣的碱度或酸度表示炉渣酸碱性 的相对强弱 。 熔渣的化学性质主要决定于其中占 优势的氧化物所显示含量表示熔渣的碱度或 酸度。
熔渣 a O 2- 值的大小不表示该渣氧化性的强弱。
a O 2与- 熔渣中各种氧化物的数量及种类有关,而熔渣
的氧化性只与其中能提供氧的组分(如炼钢渣中的FeO
,铜氧化精炼渣中的Cu2O等)的含量有关。
5.2 熔渣的氧化性
一、氧化渣与还原渣
熔渣可分为两种:氧化渣和还原渣。 氧化渣——能向金属液输送氧、使金属液被氧饱和或 使金属液中的杂质氧化的渣。 还原渣——能从金属液中吸收氧、即发生金属液脱氧 过程的渣。
K %[O] a(FeO)
氧在铁液熔渣间的分配比(LO):
LO
K
%[O] a(FeO)
当a(FeO)增大时,即渣的氧化性增强时,铁液中[O]的活度a[O]亦 增大。
5.3 熔渣与气体的反应
一、氢气在熔渣中的行为 二、氮气在熔渣中的行为 三、熔渣的透气性
(自学内容)
5.4 熔渣与液态金属的反应
一、熔渣的离子溶液模型
离子溶液模型的作用:计算熔渣组元活度。 建立模型的方法:假定熔渣离子的结构,离 子间的作用能,离子的分布状态以及离子浓 度的计算方法。
离子溶液模型的分类:
➢ 经典热力学模型——假定硅酸盐熔渣中的各种复合阴离 子和氧离子之间存在着聚合型的化学反应平衡。利用这 类聚合反应的平衡常数可计算熔渣组元的活度。
(自学内容)
图51 熔渣液态金属间的电化学反应
5.1 熔渣的碱度与酸度 5.2 熔渣的氧化性 5.3 熔渣与气体的反应 5.4 熔渣与液态金属的反应 5.5 冶金熔体中组元的活度
5.1 熔渣的碱度与酸度
熔渣的碱度或酸度表示炉渣酸碱性 的相对强弱 。 熔渣的化学性质主要决定于其中占 优势的氧化物所显示含量表示熔渣的碱度或 酸度。
熔渣 a O 2- 值的大小不表示该渣氧化性的强弱。
a O 2与- 熔渣中各种氧化物的数量及种类有关,而熔渣
的氧化性只与其中能提供氧的组分(如炼钢渣中的FeO
,铜氧化精炼渣中的Cu2O等)的含量有关。
5.2 熔渣的氧化性
一、氧化渣与还原渣
熔渣可分为两种:氧化渣和还原渣。 氧化渣——能向金属液输送氧、使金属液被氧饱和或 使金属液中的杂质氧化的渣。 还原渣——能从金属液中吸收氧、即发生金属液脱氧 过程的渣。
K %[O] a(FeO)
氧在铁液熔渣间的分配比(LO):
LO
K
%[O] a(FeO)
当a(FeO)增大时,即渣的氧化性增强时,铁液中[O]的活度a[O]亦 增大。
5.3 熔渣与气体的反应
一、氢气在熔渣中的行为 二、氮气在熔渣中的行为 三、熔渣的透气性
(自学内容)
5.4 熔渣与液态金属的反应
一、熔渣的离子溶液模型
离子溶液模型的作用:计算熔渣组元活度。 建立模型的方法:假定熔渣离子的结构,离 子间的作用能,离子的分布状态以及离子浓 度的计算方法。
离子溶液模型的分类:
➢ 经典热力学模型——假定硅酸盐熔渣中的各种复合阴离 子和氧离子之间存在着聚合型的化学反应平衡。利用这 类聚合反应的平衡常数可计算熔渣组元的活度。
(自学内容)
图51 熔渣液态金属间的电化学反应
中南大学粉末冶金原理PPT(3)
非模压成形
冷、热等静压,注射成形,粉 末挤压,
粉末轧制,粉浆浇注,无模成 型,喷射成
形,爆炸成形等
第一章 粉末压制 Powder Pressing or Compaction
§1 压制前粉末料准备 1) 还原退火 reducing and
annealing 作用: 降低氧碳含量,提高纯度 消除加工硬化,改善粉末压制
外在因素:残余应力大小
压坯密度分布的均匀性 粉末的填充均匀性 粉末压坯的弹性后效 模具设计的合理性 过高的压制压力 表征方法 抗弯强度或转鼓试验的压
坯重量损失
§3 压坯密度与压制压力间的关系
1 压制过程力的分析
P施加在模腔中的粉末体 →粉末向周围膨胀 →侧压力Fn(Pn) 粉末与模壁之间出现相对
课程名称:
粉末冶金原理(二)
授课专业:粉体材料科学与工程
1 本课程的任务和意义
粉末冶金材料加工的两个 基本过程
金属粉末 小部分直接应用 隐形涂料 Fe,Ni粉末 食品医药 超细铁粉
涂料 汽车用Al粉, 变压器用超细铜粉 自发热材料(取暖和野外食品自热) 超
细Fe粉 固体火箭发动机燃料 超细Al, Mg粉
机械法混合
化学法混合
混合较前者更为均匀,可以实现原子 级混合
W-Cu-Ni包覆粉末的制造工艺 W粉+Ni(NO3)2溶液→混合→热解还
原(700-750℃) →W-Ni包覆粉 + CuCl2溶液→混合 →热解还原(400-450℃) →W-Cu-Ni包覆粉末
无偏聚(segregation-free)粉末 binder-treated mixture 消除元素粉末组元(特别是轻重组元)
冶金原理课件(中南大学)
可划分为15个子三角形,对应15个无变点。
其中 8个低共熔点 8个独立三角形; 7个转熔点 无对应的独立三角形。 23条二元低共熔线,5条二元转熔线。 8个二元低共熔点,5个二元转熔点。
返 回 ① ② ③ ④ ⑤ ⑥
体系特点(续)
图229 ①
在靠近纯 SiO2 附近有一个不大的液相分层区。 当Al2O3含量达到3%时,液相分层区消失。
图2ቤተ መጻሕፍቲ ባይዱ22 ④
体系特点(续) 各种钙硅酸盐的熔化温度都很高 熔化温度不超过 1600°C的体系只局限于含 32~59%CaO范围内。 超过 50% CaO的体系,熔化温度急剧上升。 高炉渣中CaO含量控制在35~50%之间; 有色冶金炉渣CaO含量一般在15%以下。 CaO的作用 降低炉渣密度、减少重金属硫化物在炉渣中的 溶解度 → 降低金属在炉渣中的损失。
图222 ②
体系特点(续) 一致熔融化合物C2S及CS的稳定程度是不同的。
C2S比较稳定,熔化时只部分分解; CS在熔化时则几乎完全分解。
一般而言,可根据化合物组成点处液相线的形状(平滑 程度),近似推断熔融态内化合物的分解程度。
若化合物组成点处的液相线出现尖峭高峰形,则该化 合物非常稳定,甚至在熔融时也不分解; 若化合物组成点处的液相线比较平滑,则该化合物熔 融时会部分分解; 化合物组成点处的液相线越平滑,该化合物熔融时的 分解程度也越大。
库尔纳柯夫规则 (1)
库尔纳柯夫规则 (2)
图222 ③
体系特点(续)
图中水平线可分为五大类 低 共 熔 线 : 3 条 ( 2065°C , 1455°C , 1436°C) 转熔线:1条(1475°C) 偏晶线:l条(1700°C) 固相分解线:2条(1250°C,1900°C) 晶型转变线:6条(1470°C,1420°C, 1210°C,870°C,725°C,575°C)
中南大学冶金原理
模型 I
接近熔点时,液态金属中部分原子的排列方式与固 态金属相似,它们构成了许多晶态小集团。 这些小集团并不稳定,随着时间延续,不断分裂消 失,又不断在新的位置形成。 这些小集团之间存在着广泛的原子紊乱排列区。 模型I突出了液态金属原子存在局部排列的规则性。
模型II
液态金属中的原子相当于紊乱的密集球堆,这里既没有晶 态区,也没有能容纳其他原子的空洞。 在紊乱密集的球堆中,有着被称为“伪晶核”的高致密区。 模型II突出了液态金属原子的随机密堆性。
? 原子的热运动特性大致相同,原子在大部分时间仍是在 其平衡位(结点)附近振动,只有少数原子从一平衡位 向另一平衡位以跳跃方式移动。
基本事实II 表3? 1
液态金属中原子之间的平均间距比固态中原子间距略大, 而配位数略小,通常在 8~l0 范围内 ? 熔化时形成空隙使自由体积略有序排列。 图3?1
? 每个阳离子的第一配位层内都由阴离子所包围; ? 在每个阴离子的第一配位层内由阳离子包围。 ? 阴、阳离子随机统计地分布在熔体中。
熔盐结构的空穴模型
熔盐在熔化时体积的增加比金属熔体的大得多。 对于碱金属卤化物,体积可增加 20% 以上。 对比:大多数金属的体积仅增加 2.5%~5% 假定体积的增加是由于液体晶格的离子间距的增 加引起的, ? 离子间平均距离至少必须增加 6~7% 以上。 X射线衍射分析结果:离子间距稍有减少。 ? 熔盐熔化时的体积增加不是自由体积的增加。
铁的结构: 原子半径: 1.28? 10?l0m,
三种晶型: ? Fe → ?Fe (1185K) ?Fe → ?Fe (1667K)
? Fe、?Fe:体心立方晶格,配位数为 8 ?Fe:面心立方晶格,配位数为 12
固溶体:当有其它固体原子溶入某种固体 置换型固溶体 —— 各组分的原子在晶格结点位相互置换,
接近熔点时,液态金属中部分原子的排列方式与固 态金属相似,它们构成了许多晶态小集团。 这些小集团并不稳定,随着时间延续,不断分裂消 失,又不断在新的位置形成。 这些小集团之间存在着广泛的原子紊乱排列区。 模型I突出了液态金属原子存在局部排列的规则性。
模型II
液态金属中的原子相当于紊乱的密集球堆,这里既没有晶 态区,也没有能容纳其他原子的空洞。 在紊乱密集的球堆中,有着被称为“伪晶核”的高致密区。 模型II突出了液态金属原子的随机密堆性。
? 原子的热运动特性大致相同,原子在大部分时间仍是在 其平衡位(结点)附近振动,只有少数原子从一平衡位 向另一平衡位以跳跃方式移动。
基本事实II 表3? 1
液态金属中原子之间的平均间距比固态中原子间距略大, 而配位数略小,通常在 8~l0 范围内 ? 熔化时形成空隙使自由体积略有序排列。 图3?1
? 每个阳离子的第一配位层内都由阴离子所包围; ? 在每个阴离子的第一配位层内由阳离子包围。 ? 阴、阳离子随机统计地分布在熔体中。
熔盐结构的空穴模型
熔盐在熔化时体积的增加比金属熔体的大得多。 对于碱金属卤化物,体积可增加 20% 以上。 对比:大多数金属的体积仅增加 2.5%~5% 假定体积的增加是由于液体晶格的离子间距的增 加引起的, ? 离子间平均距离至少必须增加 6~7% 以上。 X射线衍射分析结果:离子间距稍有减少。 ? 熔盐熔化时的体积增加不是自由体积的增加。
铁的结构: 原子半径: 1.28? 10?l0m,
三种晶型: ? Fe → ?Fe (1185K) ?Fe → ?Fe (1667K)
? Fe、?Fe:体心立方晶格,配位数为 8 ?Fe:面心立方晶格,配位数为 12
固溶体:当有其它固体原子溶入某种固体 置换型固溶体 —— 各组分的原子在晶格结点位相互置换,
冶金原理课件中南大学
✓ 如电渣重熔用渣、铸钢用保护渣、钢液炉外精炼用渣 等。
✓ 这些炉渣所起的冶金作用差别很大。
▪ 例如,电渣重熔渣一方面作为发热体,为精炼提供 所需要的热量;另一方面还能脱出金属液中的杂质 、吸收非金属夹杂物。
▪ 保护渣的主要作用是减少熔融金属液面与大气的接 触、防止其二次氧化,减少金属液面的热损失。
五、熔渣的其它作用
作为金属液滴或锍的液滴汇集、长大和沉降的介质
冶炼中生成的金属液滴或锍的液滴最初是分散在熔渣中的,这些分 散的微小液滴的汇集、长大和沉降都是在熔渣中进行的。
在竖炉(如鼓风炉)冶炼过程中,炉渣的化学组成直接决定了炉缸 的最高温度。
对于低熔点渣型,燃料消耗量的增加,只能加大炉料的熔化量而不 能进一步提高炉子的最高温度。
化 学 组 成 / %(质量)
铝电解的电解质 镁电解的电解质
(电解氯化镁)
镁电解的电解质 (电解光卤石)
锂电解的电解质 铝电解精炼的电解质
(氟氯化物体系)
铝电解精炼的电解质 (纯氟化物体系)
镁熔剂精炼熔剂
Na3AlF6 82~90,AlF3 5~6,Al2O3 3~7,添加剂 (CaF2、MgF2 或 LiF) 3~5 MgCl2 10,CaCl2 30~40,NaCl 50~60,KCl 10~6
▪ 其它的碱金属、碱土金属,钛、铌、钽等高熔点金属以
及某些重金属(如铅)的熔盐电解法生产
▪ 利用熔盐电解法制取合金或化合物
如铝锂合金、铅钙合金、稀土铝合金、WC、TiB2等
熔盐的冶金应用(二)
▪ 某些氧化物料(如TiO2、MgO)的熔盐氯化
◇ 适合处理CaO、MgO含量高的高钛渣或金红石 ◇ 流程短、原料适应性强、设备生产率高、产物杂质含量低。
✓ 这些炉渣所起的冶金作用差别很大。
▪ 例如,电渣重熔渣一方面作为发热体,为精炼提供 所需要的热量;另一方面还能脱出金属液中的杂质 、吸收非金属夹杂物。
▪ 保护渣的主要作用是减少熔融金属液面与大气的接 触、防止其二次氧化,减少金属液面的热损失。
五、熔渣的其它作用
作为金属液滴或锍的液滴汇集、长大和沉降的介质
冶炼中生成的金属液滴或锍的液滴最初是分散在熔渣中的,这些分 散的微小液滴的汇集、长大和沉降都是在熔渣中进行的。
在竖炉(如鼓风炉)冶炼过程中,炉渣的化学组成直接决定了炉缸 的最高温度。
对于低熔点渣型,燃料消耗量的增加,只能加大炉料的熔化量而不 能进一步提高炉子的最高温度。
化 学 组 成 / %(质量)
铝电解的电解质 镁电解的电解质
(电解氯化镁)
镁电解的电解质 (电解光卤石)
锂电解的电解质 铝电解精炼的电解质
(氟氯化物体系)
铝电解精炼的电解质 (纯氟化物体系)
镁熔剂精炼熔剂
Na3AlF6 82~90,AlF3 5~6,Al2O3 3~7,添加剂 (CaF2、MgF2 或 LiF) 3~5 MgCl2 10,CaCl2 30~40,NaCl 50~60,KCl 10~6
▪ 其它的碱金属、碱土金属,钛、铌、钽等高熔点金属以
及某些重金属(如铅)的熔盐电解法生产
▪ 利用熔盐电解法制取合金或化合物
如铝锂合金、铅钙合金、稀土铝合金、WC、TiB2等
熔盐的冶金应用(二)
▪ 某些氧化物料(如TiO2、MgO)的熔盐氯化
◇ 适合处理CaO、MgO含量高的高钛渣或金红石 ◇ 流程短、原料适应性强、设备生产率高、产物杂质含量低。
中南大学 粉末冶金 课件
按制粉过程中有无物理化学反应—机械法 (物理法)、物理化学法 最重要的制粉方法: 雾化方法Atomization: 还原法Reduction: 电解法Electrolysis:
b.粉末预处理
粉末成形工艺的准备工序。
为满足产品最终性能的需要或成形的要求,在粉末成形 之前对粉末原料进行的预先处理。 退火。在一定气氛中于适当温度对原料粉末进行加热处理 。其目的有还原氧化物、降低碳和其他杂质含量,提高粉 末纯度;同时,也能消除粉末在处理过程中产生的加工硬 化,提高粉末压缩性。 筛分。其目的在于将粉末原料按粒度大小进行分级处理。 混合。将两种以上不同成分的粉末混合均匀的过程。 制粒。将小颗粒粉末制成大颗粒粉末或团粒的操作过程。 常用来改善粉末的流动性和稳定粉末的松装密度。 加成形剂和润滑剂。在压形前,粉末混合料中常需要添加 一些改善压制过程的物质。
工艺复杂性
原料:元素粉末、合金粉末 成形:热压( 热等静压、挤压...) 冷压(模压、冷等静压...) 烧结:真空、气氛、外场 其它制备技术:复压、精整、熔浸...
其它后续处理技术:热处理、机加工...
性能优异
材料具有特殊结构和性能。如硬质合金、摩擦
材料、多孔材料、钨铜假合金、钨钼难熔金属 制品等。
2、粉末冶金工艺过程(PM Process) (1)常规粉末冶金工艺过程
传统粉末冶金工艺以钢(刚)模压制成形(压制、 压型)为基础; 包括三个基本的工序 粉末准备(制粉、粉末混合)、压制成形、烧结 在基本工序后可增加一些辅助工序,赋予材料、制 品特殊的性能、形状尺寸等
a. 金属粉末生产Metal Powder Manufacture 许多方法可以生产各种金属(合金)粉末
随后出现Au(300年)、Ag、Cu、Sn (1000年)、Pt 粉及Pt块;
b.粉末预处理
粉末成形工艺的准备工序。
为满足产品最终性能的需要或成形的要求,在粉末成形 之前对粉末原料进行的预先处理。 退火。在一定气氛中于适当温度对原料粉末进行加热处理 。其目的有还原氧化物、降低碳和其他杂质含量,提高粉 末纯度;同时,也能消除粉末在处理过程中产生的加工硬 化,提高粉末压缩性。 筛分。其目的在于将粉末原料按粒度大小进行分级处理。 混合。将两种以上不同成分的粉末混合均匀的过程。 制粒。将小颗粒粉末制成大颗粒粉末或团粒的操作过程。 常用来改善粉末的流动性和稳定粉末的松装密度。 加成形剂和润滑剂。在压形前,粉末混合料中常需要添加 一些改善压制过程的物质。
工艺复杂性
原料:元素粉末、合金粉末 成形:热压( 热等静压、挤压...) 冷压(模压、冷等静压...) 烧结:真空、气氛、外场 其它制备技术:复压、精整、熔浸...
其它后续处理技术:热处理、机加工...
性能优异
材料具有特殊结构和性能。如硬质合金、摩擦
材料、多孔材料、钨铜假合金、钨钼难熔金属 制品等。
2、粉末冶金工艺过程(PM Process) (1)常规粉末冶金工艺过程
传统粉末冶金工艺以钢(刚)模压制成形(压制、 压型)为基础; 包括三个基本的工序 粉末准备(制粉、粉末混合)、压制成形、烧结 在基本工序后可增加一些辅助工序,赋予材料、制 品特殊的性能、形状尺寸等
a. 金属粉末生产Metal Powder Manufacture 许多方法可以生产各种金属(合金)粉末
随后出现Au(300年)、Ag、Cu、Sn (1000年)、Pt 粉及Pt块;
中南大学粉末冶金原理PPT(1)-PPT课件
Powder Metallurgy Principle
Ruan Jianming
Powder Metallurgy Research Institute
2019
Particle Science and Engineering
粉末冶金原理(课程分布) 40学时
教学方式: 双语讲学 Chinese/English 课程内容: Part I Powder fabrication 粉体制备
•Which method is suitable to sphere particles?
• How about the particle morphologies? • How can we obtain the high purity? • What takes place during the powder fabri.? • Which condition to control the particle size? • What can we do? related powder makings.
alloys microstructures (example:stainless steel filters )
The future of powder metallurgy
Iron and steel Aluminum Copper Nickel Tungsten
Stainiess steel Tin
Mold Roll
Extrude
Density Ductility Magnetic
powder
Size Shape Fabrication
tooling
processing
Sinter Forge Hot press
Ruan Jianming
Powder Metallurgy Research Institute
2019
Particle Science and Engineering
粉末冶金原理(课程分布) 40学时
教学方式: 双语讲学 Chinese/English 课程内容: Part I Powder fabrication 粉体制备
•Which method is suitable to sphere particles?
• How about the particle morphologies? • How can we obtain the high purity? • What takes place during the powder fabri.? • Which condition to control the particle size? • What can we do? related powder makings.
alloys microstructures (example:stainless steel filters )
The future of powder metallurgy
Iron and steel Aluminum Copper Nickel Tungsten
Stainiess steel Tin
Mold Roll
Extrude
Density Ductility Magnetic
powder
Size Shape Fabrication
tooling
processing
Sinter Forge Hot press
冶金原理中南
203867/2.303RT
203867 /1100 2.303 8.314
9.702
P /P WOCl4 WO2Cl2 10 9.072 (PCl2 /Pθ )/(PO2 /Pθ )1/2
PWO2Cl2 : PWOCl4 1 : 10 9.072 (PCl2 /Pθ )/(PO2 / P )1/ 2
■ 冶金及化工领域中经常遇到凝聚相与气相(或溶液相)中发生
多种反应,生成多种气态化合物(或溶液)的复杂情况。
■ 例如:在 600K 以上 WO3 与 Cl2 作用时,可能的反应有:
WO3(s) + Cl2=WO2Cl2(g) +
1 2
O2
WO3(s) + 2Cl2 = WOCl4(g) + O2
WO3(s) + 3Cl2 = WCl6(g) +
◆ 环节一:查明系统物质旳种类及其热力学性质。
● 在2500K以内,FeO、Fe3O4、Fe2O3均为凝聚态。 ● 固体FeO、Fe3O4、Fe2O3旳fG值分别为:
fG(FeO) = 269540 + 70.275T fG(Fe3O4) = 1126640 + 338.48T fG(Fe2O3) = 848890 282.4T
Nb O5(s)
C (s)
2 5
Nb (s)
CO
(反应 8-5)
lg
K
P
(85)
13410 / T
8.945
试求在 PCO/Pθ=1 及温度为 1500K 的条件下得到的还原产物的形态。
表 8-1
Nb-C-O
系某些反应的
lg
K
θ P
值(1500K)
中南大学粉末冶金原理PPT(2)
diameters
25
Part 2:粉末性能表征
• 粗糙度:(皱度系数) 球形度的倒数称粗糙度。 Coarse degree Reverse to globability
• 颗粒表面有凹陷pits、缝隙和台阶stages等缺陷均 使颗粒的实际表面积增大,这时皱度系数值也将 增大。
• 圆形度glabability:与颗粒具有相等equal投影面 project area积的圆的周长对颗粒投影像的实际周 长之比称为圆形度glabability 。
24
Part 2:粉末性能表征
The projected image of an irregular particle and two forms of measuring the size in terms of the circular
• 合金元素alloying elements,形成合金的加入 元素-形成固溶体,化合物合金的生成元素, 如Fe-C, WC-Co,Ti3Al,Ai3Ti, LanNi5(电池 材料)等。
• Surface chemical adsorption and physical adsorption表面吸附物,水,氧,空气;
5
Part 2:粉末性能表征
• Firstly primary particles一次颗粒往往不能单独存在 而聚集在一起,agglomeration force 聚集力主要是 物理作用力agglomeration,而非强化学健结合 chemistry bonding;
• 一次颗粒粒度测定particle size testing, inert gas absorbent 惰性气体表面吸附方法BET
23
Part 2:粉Βιβλιοθήκη 性能表征• 球形度sphere ability :与颗粒相同体积same volume的相 当球体的表面积对颗粒的实际表面积real surface area之比 称为球形度。它不仅表征express了颗粒的symmetry对称 性,而且与颗粒的表面粗糙程度有关。一般情况下,球形 度均远小于1。
25
Part 2:粉末性能表征
• 粗糙度:(皱度系数) 球形度的倒数称粗糙度。 Coarse degree Reverse to globability
• 颗粒表面有凹陷pits、缝隙和台阶stages等缺陷均 使颗粒的实际表面积增大,这时皱度系数值也将 增大。
• 圆形度glabability:与颗粒具有相等equal投影面 project area积的圆的周长对颗粒投影像的实际周 长之比称为圆形度glabability 。
24
Part 2:粉末性能表征
The projected image of an irregular particle and two forms of measuring the size in terms of the circular
• 合金元素alloying elements,形成合金的加入 元素-形成固溶体,化合物合金的生成元素, 如Fe-C, WC-Co,Ti3Al,Ai3Ti, LanNi5(电池 材料)等。
• Surface chemical adsorption and physical adsorption表面吸附物,水,氧,空气;
5
Part 2:粉末性能表征
• Firstly primary particles一次颗粒往往不能单独存在 而聚集在一起,agglomeration force 聚集力主要是 物理作用力agglomeration,而非强化学健结合 chemistry bonding;
• 一次颗粒粒度测定particle size testing, inert gas absorbent 惰性气体表面吸附方法BET
23
Part 2:粉Βιβλιοθήκη 性能表征• 球形度sphere ability :与颗粒相同体积same volume的相 当球体的表面积对颗粒的实际表面积real surface area之比 称为球形度。它不仅表征express了颗粒的symmetry对称 性,而且与颗粒的表面粗糙程度有关。一般情况下,球形 度均远小于1。
冶金原理课件(中南大学)
第三章 冶金熔体的结构
3.0 3.1 3.2 3.3 1.4 概述 金属熔体的结构 熔盐的结构 熔渣的结构 熔 锍
3.0 概 述
冶金熔体的结构:指冶金熔体中各种质点的排列状态。 熔体结构主要取决于质点间的交互作用能。 冶金熔体的物理化学性质与其结构密切相关。
相对于固态和气态,人们对液态结构,尤其是冶金熔体 结构的认识还很不够。
3.3 熔渣的结构
3.3.1 分子结构理论
一、分子理论的基本观点 二、分子理论的应用及存在的问题
3.3.2 离子结构理论
一、固体氧化物的结构与性质 二、液态炉渣的结构 三、离子理论的应用举例 四、离子理论存在的问题
3.3.3
分子与离子共存理论
一、共存理论的主要依据 二、共存理论的基本观点
3.3.4
图31
结论II
金属熔体在过热度不高的温度下具有准晶态的结构——晶
体中的相同(保持了近程序);
在稍远处原子的分布几乎是无序的(远程序消失)。
表 31 金属液态和固态的结构数据比较
金 属 Al Mg Zn Cd Cu Au 液 原子间距/nm 0.296 0.335 0.294 0.306 0.257 0.286 态 配位数 10.6 10 11 8 11.5 8.5 固 原子间距/nm 0.286 0.320 0.265, 0.294 0.297, 0.330 0.256 0.288 态 配位数 12 12 6+6 6+6 12 12
基本概念:单位晶胞、晶格常数、配位数、晶格结 点、金属键 典型的晶体结构:面心立方、体心立方和密堆六方 铁的结构:原子半径:1.2810l0m,
三种晶型: Fe → Fe (1185K) Fe → Fe (1667K) Fe、Fe:体心立方晶格,配位数为8 Fe:面心立方晶格,配位数为12
3.0 3.1 3.2 3.3 1.4 概述 金属熔体的结构 熔盐的结构 熔渣的结构 熔 锍
3.0 概 述
冶金熔体的结构:指冶金熔体中各种质点的排列状态。 熔体结构主要取决于质点间的交互作用能。 冶金熔体的物理化学性质与其结构密切相关。
相对于固态和气态,人们对液态结构,尤其是冶金熔体 结构的认识还很不够。
3.3 熔渣的结构
3.3.1 分子结构理论
一、分子理论的基本观点 二、分子理论的应用及存在的问题
3.3.2 离子结构理论
一、固体氧化物的结构与性质 二、液态炉渣的结构 三、离子理论的应用举例 四、离子理论存在的问题
3.3.3
分子与离子共存理论
一、共存理论的主要依据 二、共存理论的基本观点
3.3.4
图31
结论II
金属熔体在过热度不高的温度下具有准晶态的结构——晶
体中的相同(保持了近程序);
在稍远处原子的分布几乎是无序的(远程序消失)。
表 31 金属液态和固态的结构数据比较
金 属 Al Mg Zn Cd Cu Au 液 原子间距/nm 0.296 0.335 0.294 0.306 0.257 0.286 态 配位数 10.6 10 11 8 11.5 8.5 固 原子间距/nm 0.286 0.320 0.265, 0.294 0.297, 0.330 0.256 0.288 态 配位数 12 12 6+6 6+6 12 12
基本概念:单位晶胞、晶格常数、配位数、晶格结 点、金属键 典型的晶体结构:面心立方、体心立方和密堆六方 铁的结构:原子半径:1.2810l0m,
三种晶型: Fe → Fe (1185K) Fe → Fe (1667K) Fe、Fe:体心立方晶格,配位数为8 Fe:面心立方晶格,配位数为12
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
冶金原理中南大学
1.2 熔 渣
3、富集渣
✓ 是某些熔炼过程的产物。 ✓ 作用——使原料中的某些有用成分富集于炉渣
中,以便在后续工序中将它们回收利用。 ✓ 例如,钛铁矿常先在电炉中经还原熔炼得到所
谓的高钛渣,再从高钛渣进一步提取金属钛。 对于铜、铅、砷等杂质含量很高的锡矿,一般 先进行造渣熔炼,使绝大部分锡(90%)进入 渣中,而只产出少量集中了大部分杂质的金属 锡,然后再冶炼含锡渣提取金属锡。
冶金原理中南大学
1.2 熔 渣 三、熔渣组分的来源
矿石或精矿中的脉石 如高炉冶炼:Al2O3、CaO、SiO2等
为满足冶炼过程需要而加入的熔剂 如CaO、SiO2、CaF2等——改善熔渣的物理化学性能
冶炼过程中金属或化合物(如硫化物)的氧化产物 如炼钢:FeO、Fe2O3、MnO、TiO2、P2O5等 造锍熔炼:FeO、Fe3O4等。
▪ 保护渣的主要作用是减少熔融金属液面与大气的接 触、防止其二次氧化,减少金属液面的热损失。
冶金原理中南大学
1.2 熔 渣 五、熔渣的其它作用
作为金属液滴或锍的液滴汇集、长大和沉降的介质 冶炼中生成的金属液滴或锍的液滴最初是分散在熔渣中的,这些分 散的微小液滴的汇集、长大和沉降都是在熔渣中进行的。 在竖炉(如鼓风炉)冶炼过程中,炉渣的化学组成直接决定了炉缸 的最高温度。 对于低熔点渣型,燃料消耗量的增加,只能加大炉料的熔化量而不 能进一步提高炉子的最高温度。 在许多金属硫化矿物的烧结焙烧过程中,熔渣是一种粘合剂。 烧结时,熔化温度较低的炉渣将细粒炉料粘结起来,冷却后形成了 具有一定强度的烧结块或烧结球团。 在金属和合金的精炼时,熔渣覆盖在金属熔体表面,可以防止金属 熔体被氧化性气体氧化,减小有害气体(如H2、N2)在金属熔体中 的溶解。
1.0 概 念
➢ 许多高温冶金过程,都是在熔融介质中进行的; 很多冶炼过程,产物或中间产品为熔融状态物质。
➢ 冶金熔体——在高温冶金过程中处于熔融状态 的反应介质或反应产物
➢ 冶金熔体的分类——根据组成熔体的主要成分的不同 • 金属熔体 • 熔渣 • 熔盐 非金属熔体 • 熔锍
冶金原理中南大学
1.1 金属熔体
冶金原理中南大学
1.2 熔4、渣合成渣
✓ 是指由为达到一定的冶炼目的、按一定成分预先配制 的渣料熔合而成的炉渣。
✓ 如电渣重熔用渣、铸钢用保护渣、钢液炉外精炼用渣 等。
✓ 这些炉渣所起的冶金作用差别很大。
▪ 例如,电渣重熔渣一方面作为发热体,为精炼提供 所需要的热量;另一方面还能脱出金属液中的杂质 、吸收非金属夹杂物。
5~10 0.5~1 S 1~2
转炉炼钢渣 电炉炼钢渣
9~20 0.1~2.5 37~59 5~20 0.6~8 1.3~10 P2O5 1~6 10~25 0.7~8.3 20~65 0.5~35 0.6~2.5 0.3~11
电渣重熔渣 铜闪速炉熔炼渣
0~10 28~38
0~30 2~12
0~20 5~15
被熔融金属或熔渣侵蚀和冲刷下来的炉衬材料 如碱性炉渣炼钢时,MgO主要来自镁砂炉衬
冶金原理中南大学
1.2 熔 渣 四、熔渣的主要作用与分类
—— 不同的熔渣所起的作用是不一样的 —— 根据熔渣在冶炼过程中的作用,可将其分成四类: 1、冶炼渣(熔炼渣) ✓ 是在以矿石或精矿为原料、以粗金属或熔锍为冶炼产物的熔炼过程中 生成的 ✓ 主要作用——汇集炉料(矿石或精矿、燃料、熔剂等)中的全部脉石 成分、灰分以及大部分杂质,从而使其与熔融的主要冶炼产物(金属 、熔锍等)分离。 ✓ 例如,高炉炼铁中,铁矿石中的大量脉石成分与燃料(焦炭)中的灰 份以及添加的熔剂(石灰石、白云石、硅石等)反应,形成炉渣,从 而与金属铁分离。 造锍熔炼中,铜、镍的硫化物与炉料中铁的的硫化物熔融在一起,形 成熔锍;铁的氧化物则与造渣熔剂SiO2及其他脉石成分形成熔渣。
➢ 除氧化物外,炉渣还可能含有少量其它类型的化合
物甚至金属
如氟化物、氯化物、硫化物、硫酸盐等
冶金原理中南大学
1.2 熔 渣 二、常见冶金炉渣的组成
表 11 常见冶金炉渣的主要化学成分
炉渣
组 成 / %(质量)
SiO2 A12O3 CaO
FeO MgO MnO
其它
高炉炼铁渣
30~40 10~20 35~50 < 1
38~54
0~15 1~3
铅鼓风炉熔炼渣 19~35 3~5 0~20 28~40 3~5
CaF2 45~80
Fe3O4 12~15,
S 0.2~0.4, Cu 0.5~0.8 Pb 1~3.5
锡反射炉熔炼渣 19~24 8~10 1.5~6 45~50
Sn 7~9
高 钛 渣 2.8~5.6 2~6 0.3~1.2 2.7~6.5 2~5.6 1~1.5 TiO2 82~87
第一篇 冶金熔体
第一篇 冶金熔体
第一章 冶金熔体概述 第二章 冶金熔体的相平衡图 第三章 冶金熔体的结构 第四章 冶金熔体的物理性质 第五章 冶金熔体的化学性质
冶金原理中南大学
第一章 冶金熔体概述
第一章 冶金熔体概述
1.0 概 念 1.1 金属熔体 1.2 熔 渣 1.3 熔 盐 1.4 熔 锍
冶金原理中南大学
冶金原理中南大学
1.2 熔 渣
2、精炼渣(氧化渣)
✓ 是粗金属精炼过程的产物。 ✓ 主要作用——捕集粗金属中杂质元素的氧
化产物,使之与主金属分离。 ✓ 例如,在冶炼生铁或废钢时,原料中杂质
元素的氧化产物与加入的造渣熔剂融合成 CaO和FeO含量较高的炉渣,从而除去钢 液中的硫、磷等有害杂质,同时吸收钢液 中的非金属夹杂物。
冶金原理中南大学
1.2 熔 渣
结 论:
冶金炉渣通常由五、六种或更多的氧化物组成。 炉渣常含有其他化合物,如氟化物、硫化物等。 炉渣中含量最多的氧化物通常只有三种,其总含量 可达80%以上。 大多数有色冶金炉渣和钢渣的主要氧化物是: FeO、CaO、SiO2 高炉渣和某些有色冶金炉渣的主要氧化物为: CaO、Al2O3、SiO2
1.1 金属熔体 ➢ 金属熔体 —— 液态的金属和合金
如铁水、钢水、粗铜、铝液等
➢ 金属熔体不仅是火法冶金过程的主要产品, 而且也是冶炼过程中多相反应的直接 熔 渣
1.2 熔 渣
➢ 熔渣主要由冶金原料中的氧化物或冶金过
程中生成的氧化物组成的熔体。
如CaO、FeO、MnO、MgO、Al2O3、SiO2、P2O5、Fe2O3
1.2 熔 渣
3、富集渣
✓ 是某些熔炼过程的产物。 ✓ 作用——使原料中的某些有用成分富集于炉渣
中,以便在后续工序中将它们回收利用。 ✓ 例如,钛铁矿常先在电炉中经还原熔炼得到所
谓的高钛渣,再从高钛渣进一步提取金属钛。 对于铜、铅、砷等杂质含量很高的锡矿,一般 先进行造渣熔炼,使绝大部分锡(90%)进入 渣中,而只产出少量集中了大部分杂质的金属 锡,然后再冶炼含锡渣提取金属锡。
冶金原理中南大学
1.2 熔 渣 三、熔渣组分的来源
矿石或精矿中的脉石 如高炉冶炼:Al2O3、CaO、SiO2等
为满足冶炼过程需要而加入的熔剂 如CaO、SiO2、CaF2等——改善熔渣的物理化学性能
冶炼过程中金属或化合物(如硫化物)的氧化产物 如炼钢:FeO、Fe2O3、MnO、TiO2、P2O5等 造锍熔炼:FeO、Fe3O4等。
▪ 保护渣的主要作用是减少熔融金属液面与大气的接 触、防止其二次氧化,减少金属液面的热损失。
冶金原理中南大学
1.2 熔 渣 五、熔渣的其它作用
作为金属液滴或锍的液滴汇集、长大和沉降的介质 冶炼中生成的金属液滴或锍的液滴最初是分散在熔渣中的,这些分 散的微小液滴的汇集、长大和沉降都是在熔渣中进行的。 在竖炉(如鼓风炉)冶炼过程中,炉渣的化学组成直接决定了炉缸 的最高温度。 对于低熔点渣型,燃料消耗量的增加,只能加大炉料的熔化量而不 能进一步提高炉子的最高温度。 在许多金属硫化矿物的烧结焙烧过程中,熔渣是一种粘合剂。 烧结时,熔化温度较低的炉渣将细粒炉料粘结起来,冷却后形成了 具有一定强度的烧结块或烧结球团。 在金属和合金的精炼时,熔渣覆盖在金属熔体表面,可以防止金属 熔体被氧化性气体氧化,减小有害气体(如H2、N2)在金属熔体中 的溶解。
1.0 概 念
➢ 许多高温冶金过程,都是在熔融介质中进行的; 很多冶炼过程,产物或中间产品为熔融状态物质。
➢ 冶金熔体——在高温冶金过程中处于熔融状态 的反应介质或反应产物
➢ 冶金熔体的分类——根据组成熔体的主要成分的不同 • 金属熔体 • 熔渣 • 熔盐 非金属熔体 • 熔锍
冶金原理中南大学
1.1 金属熔体
冶金原理中南大学
1.2 熔4、渣合成渣
✓ 是指由为达到一定的冶炼目的、按一定成分预先配制 的渣料熔合而成的炉渣。
✓ 如电渣重熔用渣、铸钢用保护渣、钢液炉外精炼用渣 等。
✓ 这些炉渣所起的冶金作用差别很大。
▪ 例如,电渣重熔渣一方面作为发热体,为精炼提供 所需要的热量;另一方面还能脱出金属液中的杂质 、吸收非金属夹杂物。
5~10 0.5~1 S 1~2
转炉炼钢渣 电炉炼钢渣
9~20 0.1~2.5 37~59 5~20 0.6~8 1.3~10 P2O5 1~6 10~25 0.7~8.3 20~65 0.5~35 0.6~2.5 0.3~11
电渣重熔渣 铜闪速炉熔炼渣
0~10 28~38
0~30 2~12
0~20 5~15
被熔融金属或熔渣侵蚀和冲刷下来的炉衬材料 如碱性炉渣炼钢时,MgO主要来自镁砂炉衬
冶金原理中南大学
1.2 熔 渣 四、熔渣的主要作用与分类
—— 不同的熔渣所起的作用是不一样的 —— 根据熔渣在冶炼过程中的作用,可将其分成四类: 1、冶炼渣(熔炼渣) ✓ 是在以矿石或精矿为原料、以粗金属或熔锍为冶炼产物的熔炼过程中 生成的 ✓ 主要作用——汇集炉料(矿石或精矿、燃料、熔剂等)中的全部脉石 成分、灰分以及大部分杂质,从而使其与熔融的主要冶炼产物(金属 、熔锍等)分离。 ✓ 例如,高炉炼铁中,铁矿石中的大量脉石成分与燃料(焦炭)中的灰 份以及添加的熔剂(石灰石、白云石、硅石等)反应,形成炉渣,从 而与金属铁分离。 造锍熔炼中,铜、镍的硫化物与炉料中铁的的硫化物熔融在一起,形 成熔锍;铁的氧化物则与造渣熔剂SiO2及其他脉石成分形成熔渣。
➢ 除氧化物外,炉渣还可能含有少量其它类型的化合
物甚至金属
如氟化物、氯化物、硫化物、硫酸盐等
冶金原理中南大学
1.2 熔 渣 二、常见冶金炉渣的组成
表 11 常见冶金炉渣的主要化学成分
炉渣
组 成 / %(质量)
SiO2 A12O3 CaO
FeO MgO MnO
其它
高炉炼铁渣
30~40 10~20 35~50 < 1
38~54
0~15 1~3
铅鼓风炉熔炼渣 19~35 3~5 0~20 28~40 3~5
CaF2 45~80
Fe3O4 12~15,
S 0.2~0.4, Cu 0.5~0.8 Pb 1~3.5
锡反射炉熔炼渣 19~24 8~10 1.5~6 45~50
Sn 7~9
高 钛 渣 2.8~5.6 2~6 0.3~1.2 2.7~6.5 2~5.6 1~1.5 TiO2 82~87
第一篇 冶金熔体
第一篇 冶金熔体
第一章 冶金熔体概述 第二章 冶金熔体的相平衡图 第三章 冶金熔体的结构 第四章 冶金熔体的物理性质 第五章 冶金熔体的化学性质
冶金原理中南大学
第一章 冶金熔体概述
第一章 冶金熔体概述
1.0 概 念 1.1 金属熔体 1.2 熔 渣 1.3 熔 盐 1.4 熔 锍
冶金原理中南大学
冶金原理中南大学
1.2 熔 渣
2、精炼渣(氧化渣)
✓ 是粗金属精炼过程的产物。 ✓ 主要作用——捕集粗金属中杂质元素的氧
化产物,使之与主金属分离。 ✓ 例如,在冶炼生铁或废钢时,原料中杂质
元素的氧化产物与加入的造渣熔剂融合成 CaO和FeO含量较高的炉渣,从而除去钢 液中的硫、磷等有害杂质,同时吸收钢液 中的非金属夹杂物。
冶金原理中南大学
1.2 熔 渣
结 论:
冶金炉渣通常由五、六种或更多的氧化物组成。 炉渣常含有其他化合物,如氟化物、硫化物等。 炉渣中含量最多的氧化物通常只有三种,其总含量 可达80%以上。 大多数有色冶金炉渣和钢渣的主要氧化物是: FeO、CaO、SiO2 高炉渣和某些有色冶金炉渣的主要氧化物为: CaO、Al2O3、SiO2
1.1 金属熔体 ➢ 金属熔体 —— 液态的金属和合金
如铁水、钢水、粗铜、铝液等
➢ 金属熔体不仅是火法冶金过程的主要产品, 而且也是冶炼过程中多相反应的直接 熔 渣
1.2 熔 渣
➢ 熔渣主要由冶金原料中的氧化物或冶金过
程中生成的氧化物组成的熔体。
如CaO、FeO、MnO、MgO、Al2O3、SiO2、P2O5、Fe2O3