抛物线中考压轴题(精选)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.(08福建莆田)如图:抛物线经过A (-3,0)、B (0,4)、C (4,0)三点. (1) 求抛物线的解析式.
(2)已知AD = AB (D 在线段AC 上),有一动点P 从点A 沿线段AC 以每秒1个单位长度的速度移动;同时另一个动点Q 以某一速度从点B 沿线段BC 移动,经过t 秒的移动,线段PQ 被BD 垂直平分,求t 的值;
(3)在(2)的情况下,抛物线的对称轴上是否存在一点M ,使MQ+MC 的值最小?若存在,请求出点M 的坐标;若不存在,请说明理由。
(注:抛物线2
y ax bx c =++的对称轴为2b x a
=-
)
4.(08广东深圳)如图9,在平面直角坐标系中,二次函数)0(2
>++=a c bx ax y 的图象的顶点为D 点,与y 轴交于C 点,与x 轴交于A 、B 两点, A 点在原点的左侧,B 点的坐标为(3,0),
OB =OC ,tan∠ACO=
3
1
. (1)求这个二次函数的表达式.
(2)经过C 、D 两点的直线,与x 轴交于点E ,在该抛物线上是否存在这样的点F ,使以点A 、C 、E 、F 为顶点的四边形为平行四边形?若存在,请求出点F 的坐标;若不存在,请说明理由.
(3)若平行于x 轴的直线与该抛物线交于M 、N 两点,且以MN 为直径的圆与x 轴相切,求该圆半径的长度.
(4)如图10,若点G (2,y )是该抛物线上一点,点P 是直线AG 下方的抛物线上一动点,当点P 运动到什么位置时,△APG 的面积最大?求出此时P 点的坐标和△APG 的最
大面积.
y x O E D C
B A G
A B
C
D O x
y
7.(08湖北荆门)
已知抛物线y =ax 2
+bx +c 的顶点A 在x 轴上,与y 轴的交点为B (0,1),且b =-4ac . (1) 求抛物线的解析式;
(2) 在抛物线上是否存在一点C ,使以BC 为直径的圆经过抛物线的顶点A ?若不存在说明
理由;若存在,求出点C 的坐标,并求出此时圆的圆心点P 的坐标;
(3) 根据(2)小题的结论,你发现B 、P 、C 三点的横坐标之间、纵坐标之间分别有何关系?
10.(08湖北武汉)如图 1,抛物线y=ax2-3ax+b 经过A (-1,0),C (3,2)两点,与y 轴
交于点D ,与x 轴交于另一点B.(1)求此抛物线的解析式;(2)若直线y=kx-1(k≠0)将 四 边 形ABCD 面积二等分,求k 的值;(3)如图2,过点 E (1,-1)作EF ⊥x 轴于点F ,将△AEF 绕平面内某点旋转 180°后得△MNQ (点M ,N ,Q 分别与 点 A ,E ,F 对应),使点M ,N 在抛物线上,求点M ,N 的坐标.
3(08湖南益阳)我们把一个半圆与抛物线的一部分合成的封闭图形称为“蛋圆”,如果一
条直线与“蛋圆”只有一个交点,那么这条直线叫做“蛋圆”的切线.
如图,点A 、B 、C 、D 分别是“蛋圆”与坐标轴的交点,已知点D 的坐标为(0,-3),AB 为半圆的直径,半圆圆心M 的坐标为(1,0),半圆半径为2.
(1) 请你求出“蛋圆”抛物线部分的解析式,并写出自变量的取值范围; (2)你能求出经过点C 的“蛋圆”切线的解析式吗?试试看;
O x y A
B
O x y A C B P P 1 D P 2 P
A
O
B
M
D
C
y
x
(3)开动脑筋想一想,相信你能求出经过点D 的“蛋圆”切线的解析式.
14.(08江苏常州)如图,抛物线2
4y x x =+与x 轴分别相交于点B 、O ,它的顶点为A ,连接AB,把AB 所的直线沿y 轴向上平移,使它经过原点O,得到直线l ,设P 是直线l 上一动点.
(1) 求点A 的坐标;
(2) 以点A 、B 、O 、P 为顶点的四边形中,有菱形、等腰梯形、直角梯形,请分别直接写
出这些特殊四边形的顶点P 的坐标;
(3) 设以点A 、B 、O 、P 为顶点的四边形的面积为S,点P 的横坐标为x,当
462682S +≤≤+,求x 的取值范围.
15、(08江苏淮安)如图所示,在平面直角坐标系中.二次函数y=a(x-2)2-1图象的顶点为P ,与x 轴交点为 A 、B ,与y 轴交点为C .连结BP 并延长交y 轴于点D. (1)写出点P 的坐标;
(2)连结AP ,如果△APB 为等腰直角三角形,求a 的值及点C 、D 的坐标; (3)在(2)的条件下,连结BC 、AC 、AD ,点E(0,b)在线段CD(端点C 、D 除外)上,将△BCD 绕点E 逆时针方向旋转90°,得到一个新三角形.设该三角形与△ACD 重叠部分的面积为S ,根据不同情况,分别用含b 的代数式表示S .选择其中一种情况给出解答过程,其它情况直接写出结果;判断当b 为何值时,重叠部分的面积最大?写出最大值.
27、(08江西南昌)如图,抛物2
11y ax ax =--+经过点19
(,)28
P -,且与抛物线
221y ax ax =--相交于A 、B 两点
(1)求a 值;
(2)设2
11y ax ax =--+与x 轴分别交于M N ,两点(点M 在点N 的左边),
221y ax ax =--与x 轴分别交于E F ,两点(点E 在点F 的左边),观察M N E F ,,,四
点的坐标,写出一条正确的结论,并通过计算说明;
(3)设A B ,两点的横坐标分别记为A B x x ,,若在x 轴上有一动点(0)Q x ,,且
A B x x x ≤≤,过Q 作一条垂直于x 轴的直线,与两条抛物线分别交于C ,D 两点,试问当x
为何值时,线段CD 有最大值?其最大值为多少?
33、(08山东临沂)
如图,已知抛物线与x 轴交于A (-1,0)、B (3,0)两点,与y 轴交于点C (0,3)。
⑴求抛物线的解析式;
⑵设抛物线的顶点为D ,在其对称轴的右侧的抛物线上是否存在点P ,使得△PDC 是等腰三角形?若存在,求出符合条件的点P
的坐标;若不存在,请说明理由; ⑶若点M 是抛物线上一点,以B 、C 、D 、M 为顶点的四边形是
直角梯形,试求出点M 的坐标。
39、(08山东烟台)
如图,抛物线2
1:23L y x x =--+交x 轴于A 、B 两点,交y 轴于M 点.抛物线1L 向右平移
y P
A
O
B
x
y
A M
P
D O
B C
2个单位后得到抛物线2L ,2L 交x 轴于C 、D 两点. (1)求抛物线2L 对应的函数表达式;
(2)抛物线1L 或2L 在x 轴上方的部分是否存在点N ,使以A ,C ,M ,N 为顶点的四边形是平行四边形.若存在,求出点N 的坐标;若不存在,请说明理由;
(3)若点P 是抛物线1L 上的一个动点(P 不与点A 、B 重合),那么点P 关于原点的对称点Q 是否在抛物线2L 上,请说明理由.
45、(08四川广安)
25.如图,已知抛物线2
y x bx c =++经过点(1,-5)和(-2,4)
(1)求这条抛物线的解析式.
(2)设此抛物线与直线y x =相交于点A ,B (点B 在点A 的右侧),平行于y 轴的直线
()
051x m m =<<+与抛物线交于点M ,与
直线y x =交于点N ,交x 轴于点P ,求线段MN 的长(用含m 的代数式表示).
(3)在条件(2)的情况下,连接OM 、BM ,是否
存在m 的值,使△BOM 的面积S 最大?若存在,请求出m 的值,若不存在,请说明理由. 49、(08四川泸州)
如图,已知二次函数2
y ax bx c =++的图像经过三点A ()1,0-,B ()3,0,C ()0,3,
它的顶点为M ,又正比例函数y kx =的图像于二次函数相交于两点D 、E ,且P 是线段DE
x
O P N
M
B
A
y
y x x =m
的中点。
⑴求该二次函数的解析式,并求函数顶点M 的坐标;
⑵已知点E ()2,3,且二次函数的函数值大于正比例函数时,试根据函数图像求出符合条件的自变量x 的取值范围;
⑶当02k <<时,求四边形PCMB 的面积s 的最小值。
【参考公式:已知两点()11D ,x y ,()22E ,y ,则线段DE 的中点坐标为1212,2
2x x y y ++⎛⎫
⎪⎝⎭】
51、(08四川宜宾)
已知:如图,抛物线y=-x 2+bx+c 与x 轴、轴分别相交于点A (-1,0)、B (0,3)两点,其顶点为D.
(1) 求该抛物线的解析式;
(2) 若该抛物线与x 轴的另一个交点为E. 求四边形ABDE 的面积;
(3) △AOB 与△BDE 是否相似?如果相似,请予以证明;如果不相似,请说明理由.
(注:抛物线y=ax 2+bx+c(a≠0)的顶点坐标为⎪⎪⎭
⎫ ⎝⎛--a b
ac a b 44,22
)
53、(08重庆市卷)已知:如图,抛物线)0(22
≠+-=a c ax ax y 与y 轴交于点C (0,4),与x 轴交于点A 、B ,点A 的坐标为(4,0)。
(1)求该抛物线的解析式;
(2)点Q 是线段AB 上的动点,过点Q 作QE ∥AC ,交BC 于点E ,连接CQ 。
当△CQE 的面积
y x D M E P C B A O
最大时,求点Q 的坐标;
(3)若平行于x 轴的动直线l 与该抛物线交于点P ,与直线AC 交于点F ,点D 的坐标为(2,0)。
问:是否存在这样的直线l ,使得△ODF 是等腰三角形?若存在,请求出点P 的坐标;若不存在,请说明理由。
54、(08浙江湖州)
已知:在矩形AOBC 中,4OB =,3OA =.分别以OB OA ,所在直线为x 轴和y 轴,建立如图所示的平面直角坐标系.F 是边BC 上的一个动点(不与B C ,重合),过F 点的反
比例函数(0)k
y k x
=
>的图象与AC 边交于点E . (1)求证:AOE △与BOF △的面积相等;
(2)记OEF ECF S S S =-△△,求当k 为何值时,S 有最大值,最大值为多少?
(3)请探索:是否存在这样的点F ,使得将CEF △沿EF 对折后,C 点恰好落在OB 上?若存在,求出点F 的坐标;若不存在,请说明理由.
55、(08浙江淮安)
如图所示,在平面直角坐标系中.二次函数y=a(x-2)2
-1图象的顶点为P ,与x 轴交点为 A 、B ,与y 轴交点为C .连结BP 并延长交y 轴于点D. (1)写出点P 的坐标;
(2)连结AP ,如果△APB 为等腰直角三角形,求a 的值及点C 、D 的坐标;
Y X
E C
A D Q
B O
x
y
-4
-6
C E
P
D
B
5
1 2
4 6
F A
G 2
-2
(3)在(2)的条件下,连结BC 、AC 、AD ,点E(0,b)在线段CD(端点C 、D 除外)上,将△BCD 绕点E 逆时针方向旋转90°,得到一个新三角形.设该三角形与△ACD 重叠部分的面积为S ,根据不同情况,分别用含b 的代数式表示S .选择其中一种情况给出解答过程,其它情况直接写出结果;判断当b 为何值时,重叠部分的面积最大?写出最大值.
58、(08浙江丽水)如图,在平面直角坐标系中,已知点A 坐标为(2,4),直线2=x 与x
轴相交于点B ,连结OA ,抛物线2
x y =从点O 沿OA 方向平移,与直线2=x 交于点P ,顶点M 到A 点时停止移动. (1)求线段OA 所在直线的函数解析式; (2)设抛物线顶点M 的横坐标为m ,
①用m 的代数式表示点P 的坐标; ②当m 为何值时,线段PB 最短;
(3)当线段PB 最短时,相应的抛物线上是否存在点Q ,使△QMA 的面积与△PMA 的面积相等,若存在,请求出点Q 的坐标;若
不存在,请说明理由.
66、(08湖南湘潭)
已知抛物线2
y ax bx c =++经过点A (5,0)、B (6,-6)和原点.
(1)求抛物线的函数关系式;
(2)若过点B 的直线y kx b '=+与抛物线相交于点C (2,m ),请求出∆OBC 的面积S 的值.
(3)过点C 作平行于x 轴的直线交y 轴于点D ,在抛物线对称轴右侧位于直线DC 下方的抛物线上,任取一点P ,过点P 作直线
y
B
O
A P M
x 2x =
PF 平行于y 轴交x 轴于点F ,交直线DC 于点E . 直线PF 与直线DC 及两坐标轴围成矩形OFED (如图),是否存在点P ,使得∆OCD 与∆CPE 相似?若存在,求出点P 的坐标;若不存在,请说明理由.
67、(08湖南永州)如图,二次函数y =ax 2+bx +c (a >0)与坐标轴交于点A 、B 、C 且
OA =1,OB =OC =3 .
(1)求此二次函数的解析式. (2)写出顶点坐标和对称轴方程.
(3)点M 、N 在y =ax 2+bx +c 的图像上(点N 在点M 的右边),且MN ∥x 轴,求以
MN 为直径且与x 轴相切的圆的半径.
68、(08山东济南)
已知:抛物线2y ax bx c =++(a ≠0),顶点C (1,3-),与x 轴交于A 、B 两点,(10)A -,.
(1)求这条抛物线的解析式.
(2)如图,以AB 为直径作圆,与抛物线交于点D ,与抛物线对称轴交于点E ,依次连接A 、D 、B 、E ,点P 为线段AB 上一个动点(P 与A 、B 两点不重合),过点P 作PM ⊥AE 于M ,PN ⊥DB 于N ,请判断
PM PN
BE AD
+
是否为定值? 若是,请求出此定值;若不是,请说明理由. (3)在(2)的条件下,若点S 是线段EP 上一点,过点S 作FG ⊥EP ,FG 分别与边.AE 、
BE 相交于点F 、G (F 与A 、E 不重合,G 与E 、B 不重合),请判断PA EF
PB EG
=
是否成立.若成立,请给出证明;若不成立,请说明理由.
C O
x
A D P M E
B N
y
69、(08浙江杭州) 在直角坐标系xOy 中,设点A (0,t ),点Q
(t ,b )。
平移二次函数2
tx y -=的图象,得到的抛物线F 满足两个条件:①顶点为Q ;②与x 轴相交于B ,C 两点(∣OB ∣<∣OC ∣),连结A ,B 。
(1)是否存在这样的抛物线F ,使得OC OB OA ⋅=2
?
请你作出判断,并说明理由; (2)如果AQ ∥BC ,且tan ∠ABO=2
3
,求抛物线F 对应的二次函数的解析式。
72、(08湖北十堰)已知抛物线b ax ax y ++-=22与x 轴的一个交点为A(-1,0),与y 轴的正半轴交于点C .
⑴直接写出抛物线的对称轴,及抛物线与x 轴的另一个交点B 的坐标; ⑵当点C 在以AB 为直径的⊙P 上时,求抛物线的解析式;
⑶坐标平面内是否存在点M ,使得以点M 和⑵中抛物线上的三点A 、B 、C 为顶点的四边形是平行四边形?若存在,请求出点M 的坐标;若不存在,请说明理由.
73、(08湖南株洲)如图(1),在平面直角坐标系中,点A 的坐标为(1,-2),点B 的坐标
为(3,-1),二次函数2
y x =-的图象为1l .
(1)平移抛物线1l ,使平移后的抛物线过点A ,但不过点B ,写出平移后的抛物线的一个解析式(任写一个即可).
(2)平移抛物线1l ,使平移后的抛物线过A 、B 两点,记抛物线为2l ,如图(2),求抛
物线2l 的函数解析式及顶点C 的坐标.
(3)设P 为y 轴上一点,且ABC ABP S S ∆∆=,求点P 的坐标.
(4)请在图(2)上用尺规作图的方式探究抛物线2l 上是否存在点Q ,使QAB ∆为等腰三
角形. 若存在,请判断点Q 共有几个可能的位置(保留作图痕迹);若不存在,请说
明理由.
80、(08江苏镇江)探索研究 如图,在直角坐标系xOy 中,点P 为函数2
14
y x =
在第一象限内的图象上的任一点,点A 的坐标为(01),,直线l 过(01)B -,且与x 轴平行,过P 作y 轴的平行线分别交x 轴,l 于
C Q ,,连结AQ 交x 轴于H ,直线PH 交y 轴于R .
(1)求证:H 点为线段AQ 的中点; (2)求证:①四边形APQR 为平行四边形;
②平行四边形APQR 为菱形;
(3)除P 点外,直线PH 与抛物线2
14
y x =有无其它公共点?并说明理由.
y o x 图(1) y
o
x
图(2)
l 1 l 2 x l
Q
C P
A
O B H
R
y
86、(08广东茂名)
如图,在平面直角坐标系中,抛物线y =-
3
2x 2
+b x +c 经过A (0,-4)、B (x 1,0)、 C (x 2,0)三点,且x 2
-x 1=5.
(1)求b 、c 的值;
(2)在抛物线上求一点D ,使得四边形BDCE 是以BC 为对
角线的菱形;
(3)在抛物线上是否存在一点P ,使得四边形B P O H 是以OB 为对角线的菱形?若存在,求出点P 的坐标,并判断这个菱形是否为正方形?若不存在,请说明理由.
87、(08广东肇庆)
已知点A (a ,1y )、B (2a ,y 2)、C (3a ,y 3)都在抛物线x x y 1252
+=上. (1)求抛物线与x 轴的交点坐标; (2)当a =1时,求△ABC 的面积;
(3)是否存在含有1y 、y 2、y 3,且与a 无关的等式?如果存在,试给出一个,并加以证明;如果不存在,说明理由.
x
x
88、(08辽宁沈阳)如图所示,在平面直角坐标系中,矩形ABOC 的边BO 在x 轴的负半轴上,边OC 在y 轴的正半轴上,且1AB =
,OB =ABOC 绕点O 按顺时针方向旋转60后得到矩形EFOD .点A 的对应点为点E ,点B 的对应点为点F ,点C 的对应点为点D ,抛物线2
y ax bx c =++过点A E D ,,.
(1)判断点E 是否在y 轴上,并说明理由; (2)求抛物线的函数表达式;
(3)在x 轴的上方是否存在点P ,点Q ,使以点O B P Q ,,,为
顶点的平行四边形的面积是矩形ABOC 面积的2倍,且点P 在抛物线上,若存在,请求出点P ,点Q 的坐标;若不存在,请说明理由.
89、(08辽宁12市)
如图,在平面直角坐标系中,直线y =-x 轴交于点A ,与y 轴交于点C
,抛物线2
(0)3
y ax x c a =-
+≠经过A B C ,,三点. (1)求过A B C ,,三点抛物线的解析式并求出顶点F 的坐标;
(2)在抛物线上是否存在点P ,使ABP △接写出P 点坐标;若不存在,请说明理由; (3)试探究在直线AC 上是否存在一点M ,使得MBF △的周长最小,若存在,求出M 点的坐标;若不存在,请说明理由.
x
94、(08四川巴中)已知:如图,抛物线2
334
y x =-
+与x 轴交于点A ,点B ,与直线34y x b =-+相交于点B ,点C ,直线3
4y x b =-+与y 轴交于点E .
(1)写出直线BC 的解析式. (2)求ABC △的面积. (3)若点M 在线段AB 上以每秒1个单位长度的速度从A 向B 运动(不与A B ,重合),同时,点N 在射线BC 上以每秒2个单位长度的速度从B 向C 运动.设运动时间为t 秒,请写出MNB △的面积S 与t 的函数关系式,并求出点M 运动多少时间时,MNB △的面积
最大,最大面积是多少?
97、(08四川资阳)
如图,已知点A 的坐标是(-1,0),点B 的坐标是(9,0),以AB 为直径作⊙O′,交y 轴的负半轴于点C ,连接AC 、BC ,过A 、B 、C 三点作抛物线.
(1)求抛物线的解析式;
(2)点E 是AC 延长线上一点,∠BCE 的平分线CD 交⊙O′于点D ,连结BD ,求直线BD 的解析式;
(3)在(2)的条件下,抛物线上是否存在点P ,使得∠PDB =∠CBD?如果存在,请求出点P 的坐标;如果不存在,请说明理由.。