平方差公式教案(优质课一等奖)汇编

合集下载

平方差公式教案(优质课一等奖)汇编

平方差公式教案(优质课一等奖)汇编

八年级数学《1521平方差公式》教学设计桂平市西山一中覃娟娟教学目标:1. 经历探索平方差公式的过程,会推导平方差公式,并运用公式进行简单的运算•2. 在数学活动中建立平方差公式模型,感受数学公式的意义和作用。

3. 在计算的过程中发现规律,并能用符号表达,从而体会数学语言的简洁美.教学重点、难点:重点:平方差公式的推导及应用•难点:平方差公式的应用•教具准备:多媒体课件教学过程:一、创设情景,复习导入回顾思考:1、多项式乘法法则:(m + a )( n + b ) = m n + m b + a n + a b22、如果m=n且都用x表示,那么上式就成为:(x+a)(x+b)= X +(a+b)x+ab二、新课引入1、计算下列各题,看谁做的又快又准确:(1) (x + y)(x - y)(2) (2a + b)(2a —b)2、教师提问:1) 上述式中都有什么样的规律?2)能不能用字母来表现它呢?学生活动:讨论,并回答出教师提问•2 23、师生共同归纳出平方差公式(a b)(a - b) = a - b4、师生共同探讨用面积说明平方差公式(课件演示图形)5、师生共同分析平方差公式的结构特征.6练习:判断下列式子可用平方差公式计算吗?①(a-b)(b-a):②(a+2b)(2b+a);③-(a - b)(a+b);④(-2x+y)(y - 2x).三、例题讲解例1运用平方差公式计算:(1) (5+6x)(5 - 6x);⑵(b+2a)(2a - b) ;(3) (-x+2y)(-x - 2y).评析:1 )认清结构,找准a、b2)运用平方差公式时,要紧扣公式的特征,找出相同的“项”和符号相反的“项”,然后应用公式;例2:计算:(1) 102 X 98 ; (2) (y+2)(y-2)-(y-1)(y+5).评析:1)巧妙的化为公式形式;2)只有符合公式才能应用公式,否则,只能应用多项式与多项式乘法法则进行运算。

5平方差公式 一等奖创新教案 北师大版七年级数学下册_1 - 副本

5平方差公式 一等奖创新教案 北师大版七年级数学下册_1 - 副本

5平方差公式一等奖创新教案北师大版七年级数学下册1.5《平方差公式》教学设计【教学分析】本节课主要是探究《平方差公式》并运用公式进行整式的乘法运算。

在前面的学习中,学生已经学习了有理数运算、整式的加减及整式乘法等知识,掌握了多项式乘法的法则,也经历过对幂的乘法、多项式乘法的推导过程,有一定的逻辑思维,能够有条理的分析问题。

学生在本节经历从特殊到一般、从具体到抽象的推导过程,得到平方差公式,在提高学生观察、探究、发现、归纳的思维能力同时领会数学思想方法。

平方差公式的学习,为以后的因式分解、分式的化简、解一元二次方程、函数等内容的学习奠定了基础,同时也为学习完全平方公式提供了探究方法。

因此,平方差公式在初中阶段的教学中也具有很重要地位,是初中阶段的第一个公式,也是最基本、用途最广泛的公式之一。

【教学目标】(一)知识目标经历平方差公式的探索及推导过程,掌握平方差公式的结构特征;(二)能力目标能运用公式进行简单的运算,进一步发展学生的符号感和推理能力、归纳能力;(三)情感目标让学生经历“特殊—一般—特殊”(即:特例─归纳─猜想─验证─用数学符号表示—解决问题)这一数学活动过程,积累数学活动的经验,同时体会数学的简洁美和数形结合的思想方法。

培养他们的合情推理和归纳的能力以及在解决问题过程中与他人合作交流的意识。

【教学重难点】1.重点:理解平方差公式的结构特征,并能运用平方差公式进行正确运算。

2.难点:在具体应用中找准平方差公式中“a”和“b”, 理解公式中字母的广泛含义.【教法、学法分析】(一)教法分析1、让学生了解平方差公式产生的背景,理解平方差公式的意义,掌握平方差公式的结构特征,并能灵活运用平方差公式解决问题.在数学活动中,引导学生观察、分析公式的结构特征以及公式中字母的广泛含义,并在练习中,对发生的错误做具体分析,加深学生对公式的理解。

2、通过自主探究与合作交流的学习方式,让学生经历探索新知、巩固新知和拓展新知这一过程,发挥学生的主体作用,增强学生学数学、用数学的兴趣.同时,让学生在公式的运用中积累解题的经验,体会成功的喜悦。

平方差公式【一等奖教学设计】

平方差公式【一等奖教学设计】

4.3公式法第1课时平方差公式1.理解平方差公式,弄清平方差公式的形式和特点;(重点)2.掌握运用平方差公式分解因式的方法,能正确运用平方差公式把多项式分解因式.(难点)一、情境导入1.同学们,你能很快知道992-1是100的倍数吗?你是怎么想出来的?请与大家交流.2.你能将a2-b2分解因式吗?你是如何思考的?二、合作探究探究点一:用平方差公式因式分解【类型一】判定能否利用平方差公式分解因式下列多项式中能用平方差公式分解因式的是()A.a2+(-b)2B.5m2-20mnC.-x2-y2D.-x2+9解析:A中a2+(-b)2符号相同,不能用平方差公式分解因式,错误;B中5m2-20mn两项都不是平方项,不能用平方差公式分解因式,错误;C中-x2-y2符号相同,不能用平方差公式分解因式,错误;D中-x2+9=-x2+32,两项符号相反,能用平方差公式分解因式,正确.故选D.方法总结:能够运用平方差公式分解因式的多项式必须是二项式,两项都能写成平方的形式,且符号相反.【类型二】利用平方差公式分解因式分解因式:(1)a4-116b4;(2)x3y2-xy4.解析:(1)a4-116b4可以写成(a2)2-(14b2)2的形式,这样可以用平方差公式进行分解因式,而其中有一个因式a2-14b2仍可以继续用平方差公式分解因式;(2)x3y2-xy4有公因式xy2,应先提公因式再进一步分解因式.解:(1)原式=(a2+14b2)(a2-14b2)=(a2+14b2)(a-12b)(a+12b);(2)原式=xy2(x2-y2)=xy2(x+y)(x-y).方法总结:分解因式前应先分析多项式的特点,一般先提公因式,再套用公式.分解因式必须进行到每一个多项式都不能再分解因式为止.【类型三】利用因式分解整体代换求值已知x2-y2=-1,x+y=12,求x -y的值.解析:已知第一个等式左边利用平方差公式化简,将x+y的值代入计算即可求出x -y的值.解:∵x2-y2=(x+y)(x-y)=-1,x+y =12,∴x-y=-2.方法总结:有时给出的条件不是字母的具体值,就需要先进行化简,求出字母的值,但有时很难或者根本就求不出字母的值,根据题目特点,将一个代数式的值整体代入可使运算简便.探究点二:用平方差公式因式分解的应用【类型一】 利用因式分解解决整除问题248-1可以被60和70之间某两个自然数整除,求这两个数.解析:先利用平方差公式分解因式,再找出范围内的解即可.解:248-1=(224+1)(224-1)=(224+1)(212+1)(212-1)=(224+1)(212+1)(26+1)(26-1).∵26=64,∴26-1=63,26+1=65,∴这两个数是65和63.方法总结:解决整除的基本思路就是将代数式化为整式乘积的形式,然后分析被哪些数或式子整除.【类型二】 利用平方差公式进行简便运算利用因式分解计算: (1)1012-992;(2)5722×14-4282×14.解析:(1)根据平方差公式进行计算即可;(2)先提取公因式,再根据平方差公式进行计算即可.解:(1)1012-992=(101+99)(101-99)=400;(2)5722×14-4282×14=(5722-4282)×14=(572+428)(572-428)×14=1000×144×14=36000.方法总结:一些比较复杂的计算,如果通过变形转化为平方差公式的形式,则可以使运算简便.【类型三】 因式分解的实际应用如图,100个正方形由小到大套在一起,从外向里相间画上阴影,最里面一个小正方形没有画阴影,最外面一层画阴影,最外面的正方形的边长为100cm ,向里依次为99cm ,98cm ,…,1cm ,那么在这个图形中,所有画阴影部分的面积和是多少?解析:相邻两正方形面积的差表示一块阴影部分的面积,而正方形的面积是边长的平方,所以能用平方差公式进行因式分解.解:每一块阴影的面积可以表示成相邻正方形的面积的差,而正方形的面积是其边长的平方,这样就可以逆用平方差公式计算了.则S 阴影=(1002-992)+(982-972)+…+(32-22)+1=100+99+98+97+…+2+1=5050(cm 2).答:所有阴影部分的面积和是5050cm 2. 方法总结:首先应找出图形中哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.三、板书设计1.平方差公式:a 2-b 2=(a +b )(a -b ); 2.平方差公式的特点:能够运用平方差公式分解因式的多项式必须是二项式,两项都能写成平方的形式,且符号相反.运用平方差公式因式分解,首先应注意每个公式的特征.分析多项式的次数和项数,然后再确定公式.如果多项式是二项式,通常考虑应用平方差公式;如果多项式中有公因式可提,应先提取公因式,而且还要“提”得彻底,最后应注意两点:一是每个因式要化简,二是分解因式时,每个因式都要分解彻底.第2课时平行四边形的判定定理3与两平行线间的距离1.复习并巩固平行四边形的判定定理1、2;2.学习并掌握平行四边形的判定定理3,能够熟练运用平行四边形的判定定理解决问题;(重点)3.根据平行四边形的性质总结出求两条平行线之间的距离的方法,能够综合平行四边形的性质和判定定理解决问题.(重点,难点)一、情境导入小明的父亲的手中有一些木条,他想通过适当的测量、割剪,钉制一个平行四边形框架,你能帮他想出一些办法来吗?你能想出几种办法?二、合作探究探究点一:对角线互相平分的四边形是平行四边形【类型一】利用平行四边形的判定定理(3)判定平行四边形已知,如图,AB、CD相交于点O,AC∥DB,AO=BO,E、F分别是OC、OD 中点.求证:(1)△AOC≌△BOD;(2)四边形AFBE是平行四边形.解析:(1)利用已知条件和全等三角形的判定方法即可证明△AOC≌△BOD;(2)此题已知AO=BO,要证四边形AFBE是平行四边形,根据全等三角形,只需证OE=OF就可以了.证明:(1)∵AC∥BD,∴∠C=∠D.在△AOC和△BOD中,∵⎩⎪⎨⎪⎧AO=OB,∠AOC=∠BOD,∠C=∠D,∴△AOC≌△BOD(AAS);(2)∵△AOC≌△BOD,∴CO=DO.∵E、F分别是OC、OD的中点,∴OF =12OD,OE=12OC,∴EO=FO,又∵AO =BO,∴四边形AFBE是平行四边形.方法总结:在应用判定定理判定平行四边形时,应仔细观察题目所给的条件,仔细选择适合于题目的判定方法进行解答,避免混用判定方法.熟练掌握平行四边形的判定定理是解决问题的关键.【类型二】利用平行四边形的判定定理(3)证明线段或角相等如图,在平行四边形ABCD中,AC交BD于点O,点E,F分别是OA,OC 的中点,请判断线段BE,DF的位置关系和数量关系,并说明你的结论.解析:根据平行四边形的对角线互相平分得出OA=OC,OB=OD,利用中点的意义得出OE=OF,从而利用平行四边形的判定定理“对角线互相平分的四边形是平行四边形”判定BFDE是平行四边形,从而得出BE=DF,BE∥DF.解:BE=DF,BE∥DF.因为四边形ABCD是平行四边形,所以OA=OC,OB =OD.因为E,F分别是OA,OC的中点,所以OE=OF,所以四边形BFDE是平行四边形,所以BE=DF,BE∥DF.方法总结:平行四边形的性质也是证明线段相等或平行的重要方法.探究点二:平行线间的距离如图,已知l1∥l2,点E,F在l1上,点G,H在l2上,试说明△EGO与△FHO 的面积相等.解析:结合平行线间的距离相等和三角形的面积公式即可证明.证明:∵l1∥l2,∴点E,F到l2之间的距离都相等,设为h.∴S△EGH =12GH ·h,S△FGH =12GH·h,∴S△EGH=S△FGH,∴S△EGH-S△GOH=S△FGH-S△GOH,∴S△EGO=S△FHO.方法总结:解题的关键是明确三角形的中线把三角形的面积等分成了相等的两部分,同底等高的两个三角形的面积相等.探究点三:平行四边形判定和性质的综合如图,在直角梯形ABCD中,AD ∥BC,∠B=90°,AG∥CD交BC于点G,点E、F分别为AG、CD的中点,连接DE、FG.(1)求证:四边形DEGF是平行四边形;(2)如果点G是BC的中点,且BC=12,DC=10,求四边形AGCD的面积.解析:(1)求出平行四边形AGCD,推出CD=AG,推出EG=DF,EG∥DF,根据平行四边形的判定推出即可;(2)由点G是BC的中点,BC=12,得到BG=CG=12BC =6,根据四边形AGCD是平行四边形可知AG=DC=10,根据勾股定理得AB=8,求出四边形AGCD的面积为6×8=48.解:(1)∵AG∥DC,AD∥BC,∴四边形AGCD是平行四边形,∴AG=DC.∵E、F分别为AG、DC的中点,∴GE=12AG,DF=12DC,即GE=DF,GE∥DF,∴四边形DEGF是平行四边形;(2)∵点G是BC的中点,BC=12,∴BG=CG=12BC=6.∵四边形AGCD是平行四边形,DC=10,AG=DC=10,在Rt△ABG中,根据勾股定理得AB=8,∴四边形AGCD的面积为6×8=48.方法总结:本题考查了平行四边形的判定和性质,勾股定理,平行四边形的面积,掌握定理是解题的关键.三、板书设计1.平行四边形的判定定理3:对角线互相平分的四边形是平行四边形;2.平行线的距离;如果两条直线互相平行,则其中一条直线上任意一点到另一条直线的距离都相等,这个距离称为平行线之间的距离.3.平行四边形判定和性质的综合.本节课的教学主要通过分组讨论、操作探究以及合作交流等方式来进行,在探究两条平行线间的距离时,要让学生进行合作交流.在解决有关平行四边形的问题时,要根据其判定和性质综合考虑,培养学生的逻辑思维能力.。

2024年平方差公式优秀教案

2024年平方差公式优秀教案

平方差公式优秀教案一、教学目标1.知识与技能目标:使学生理解平方差公式的概念,掌握平方差公式的推导过程,并能熟练运用平方差公式进行计算。

2.过程与方法目标:通过自主探究、合作交流,培养学生运用平方差公式解决问题的能力,提高学生的逻辑思维和推理能力。

3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生主动探索、积极参与的精神,增强学生的团队合作意识。

二、教学内容1.平方差公式的定义:平方差公式是指两个数的平方差可以表示为两个数的和与差的乘积。

2.平方差公式的推导:通过具体的例子,引导学生观察、分析,发现平方差公式,并运用多项式乘法进行验证。

3.平方差公式的应用:解决实际问题,如计算平方差、因式分解等,培养学生运用平方差公式解决问题的能力。

三、教学重点与难点1.教学重点:平方差公式的推导和应用。

2.教学难点:平方差公式的理解和灵活运用。

四、教学过程1.导入新课:通过实际生活中的例子,如计算土地面积、求解速度问题等,引出平方差的概念。

2.自主探究:让学生观察具体的平方差例子,如\(a^2b^2\),引导学生发现平方差公式。

3.合作交流:分组讨论,让学生互相分享自己的发现,共同推导平方差公式。

4.课堂讲解:对学生的发现进行总结,给出平方差公式的定义,并进行推导。

5.案例分析:通过具体的例题,讲解平方差公式的应用,如计算平方差、因式分解等。

6.练习巩固:布置相关练习题,让学生独立完成,巩固平方差公式的运用。

7.课堂小结:总结本节课的主要内容,强调平方差公式的推导和应用。

8.课后作业:布置课后作业,让学生运用平方差公式解决实际问题。

五、教学评价1.过程评价:观察学生在课堂上的参与程度、合作交流的表现,评价学生在自主探究、合作交流中的表现。

2.练习评价:检查学生在练习中的完成情况,评价学生对平方差公式的理解和运用能力。

3.课后作业评价:批改课后作业,评价学生对平方差公式的掌握程度,以及运用平方差公式解决问题的能力。

平方差公式赛课一等奖学习教案

平方差公式赛课一等奖学习教案
第第8八页页,/共共161页6。页
(a+b)(a-b)=a2-b2
平方差公式特征: (1)左边括号(kuòhào)中有两项完全相同,两
项互为相反数. (2)右边是相同项的平方减去相反项的平方. (3)公式中的a,b可以表示 一个单项式也可以
表示一个多项式.
第9第九页页,/共共161页6。页
判断下列(xiàliè)各式能否用平方差公式运算
第第3三页页,/共共161页6。页
(a+b)(a-b) = a2-b2
(a+b)(a-b) = a2-abb++aabb-b2 = a2-b2
第4第页四页,/共共161页。6页
平方差公式(gōngshì)
(a+b)(a-b)=a2-b2
两个(liǎnɡ ɡè)数的和与这两个(liǎnɡ ɡè)数的差的积, 等于这两个(liǎnɡ ɡè)数的平方差。
1.(b-8)(b+8)
2.(-x-1)(x+1)
3.(x+3)(x-2) 4.(mn-4k)(-mn-4k)
第1第0十页页,/共共16页1。6页
例1 运用平方差公式(gōngshì)计算:
⑴ (3x+2)(3x-2) ; (2) (-x+2y)(-x-2y).
第第1十1一页页,/共共161页6。页
(4)( x 1)( x 1) (2 x 1)(2 x 1)
注意(zhù yì):(1)(2)任 选一题
(3)(4)任选一题 第第1十3三页页,/共共161页6。页
一、了解平方差公式的特点(tèdiǎn): (1)左边括号中有两项完全相同,两项互为相反 数. (2)右边是相同项的平方减去相反项的平方.

平方差公式-优秀教案

平方差公式-优秀教案

平方差公式-优秀教案【教学目标】1. 理解平方差公式的含义和应用2. 学会运用平方差公式化简一元二次方程3. 培养学生运用公式解决实际问题的能力【教学重点】理解平方差公式的含义和应用,学会运用公式化简一元二次方程【教学难点】运用平方差公式化简一元二次方程【教学内容】1. 平方差公式的含义和应用2. 运用平方差公式化简一元二次方程3. 实际问题解析【教学过程】一、引入1. 教师通过提示,让学生回忆二次方程的解法以及解法的局限性,引出平方差公式。

2. 展示平方差公式的公式表达式,让学生观察该公式的形式和含义。

3. 将一个简单的二次方程转化为标准形式,使用平方差公式求解,让学生理解和掌握该公式的具体应用。

二、知识讲解1. 平方差公式的含义和应用(1)平方差公式的定义:在代数学中,平方差公式用于将二次多项式写成一个平方项和一个差项的和的形式。

(2)平方差公式的公式表达式:(a+b)² = a²+2ab+b²和(a-b)² = a²-2ab+b²。

(3)平方差公式的应用:主要用于化简一元二次方程和求解两个数的平方之差等问题。

2. 运用平方差公式化简一元二次方程(1)将一元二次方程转化为标准形式:ax²+bx+c=0;(2)将公式中的a、b、c代入平方差公式;(3)化简得二次方程的解。

(4)特别地,当二次方程中有平方项且系数a=1时,可以直接使用平方差公式。

三、练习与实际问题解析1. 练习题:练习一元二次方程的化简和求解2. 实际问题解析:通过实际问题的分析与计算,激发学生的兴趣,帮助学生理解和掌握平方差公式的应用。

【教学总结】通过本节课的学习,学生可以理解平方差公式的含义和应用,掌握平方差公式化简一元二次方程的方法,并能够通过实际问题的解析,运用所学知识解决实际问题。

同时,本节课旨在培养学生的问题解决能力,提高学生的数学素养与实际应用能力。

初中八年级数学教案-平方差公式【全国一等奖】

初中八年级数学教案-平方差公式【全国一等奖】

人教版八年级数学上册第十四章
乘法公式
平方差公式
一、教学目标:
1、经历探索平方差公式的过程。

2、会推导平方差公式,并能运用公式进行简单的运。

二、教学重难点
1、重点:平方差公式的推导和应。

2、难点:理解平方差公式的结构特征,灵活应用平方差公式。

三、教学过程设计
(一)、推导与计算:a +ba -b .
让学生计算,归纳算式的特征,说明结果的形式。

然后,教师系统总结平方差公式。

(二)、平方差公式的表述:a +ba -b =a 2-b 2
语言叙述:两个数的和与这两个数的差的积,等于这两个数的平方差。

(三)、平方差公式的特征:
引导学生归纳这个公式的一些特点:如公式左、右两边的结构。

1、两个二项式的乘积,有一项完全相同,另一项互为相反数;
2、结果为相同的项的平方减去相反项的平方。

(四)
(五)
、应用新知
简单例题应用:运用平方差公式计算:
1、(3y )3-y
2、-m-3n3n-m
填表可以从下面表格分析:
对本例的前个小题可以采用学生独立完成,然后抢答的形式;第二小题可采用小组讨论的形式,运用平方差公式计算。

(六)、小结:
谈一谈:平方差公式的记忆
四、教学反思:
平方差公式是特殊的整式的乘法,运用这一公式可以迅速而简捷地计算出符合公式的特征的多项式乘法的结果,运用公式计算一定要看是否符合公式的特征,这两个数分别是什么,公式中的字母a、b不仅可以代表具体的数字,字母,单项式,也可以代表多项式。

初中八年级数学教案- 平方差公式-市赛一等奖

初中八年级数学教案-  平方差公式-市赛一等奖
教师姓名
陈琳
单位名称
哈密市第六中学
填写时间
2022年8月20日
学科
数学
年级/册
八年级上册
教材版本
人教版
课题名称
平方差公式
难点名称
平方差公式的几何验证,并能灵活应用公式进行计算。
难点分析
从知识角度分析为什么难
构建几何图形来解释平方差公式,需要较强的运用数学的综合能力,学生很难与面积联系在一起,很难找到突破口
教学过程
导入
1.刚用算数推理方法得到的公式什么
2.在应用公式的过程中应注意些什么呢
①公式中字母a、b可以是单项式或多项式。
②适当交换位置,合理添加括号
3.如何用几何方法验证公式呢
知识讲解
(难点突破)
4尝试用自己准备好的大正方形彩纸(变长设为a,中去掉一个小正方形(边长设为b之后,剩余图形的面积是多少与公式有何联系
小结
为渗透数形结合思想,培养学生多角度思考问题的习惯。引导学生从“形”的角度验证猜想。 渗透了数形结合的思想,让学生体会到代数与几何的内在联系充分调动学生动手操作与小组合作,发挥合作的力量,培养创新精神,最终得出平方差公式,验证了公式的正确性,并结合多媒体动态演示加深理解,凸显学生学习的主体地位。
新梯形的面积: ×(2a2b)a-b= ×2(ab)a-b=(ab)a-b
得到:(ab)a-b=
7.除此之外,还有没有其它方法了
学生讨论:
①平行四边形:(ab)a-b=
②矩形:(ab)a-b=
相信同学们还可以想到更多更好的方法来验证!
我们通过代数推理和几何验证两种方法得到了平方差公式,那接下来让我来看看同学们掌握了吗
从学生角度分析为什么难

初中八年级数学教案-平方差公式-优质课比赛一等奖

初中八年级数学教案-平方差公式-优质课比赛一等奖

教师姓名杨丽萍单位名称库尔勒市实验中学填写时间学科数学年级/册八年级上册教材版本人教版课题名称平方差公式难点名称准确找到公式中的a与b,能够灵活应用平方差公式难点分析从知识角度分析为什么难从多项式乘法到乘法公式是从一般到特殊的认识过程,是对多项式乘法中出现的较为特殊的算式的第一种归纳、总结。

从学生角度分析为什么难根据学生的实际情况,学生学习本节课的困惑主要在于对公式的结构特征的理解和对字母能代表任意的数或整式的意义的理解,必须帮助学生解决这两个问题才能够让学生灵活地运用平方差公式。

难点教学方法采用“课前先学,合作探究”课堂教学模式,本着以学生课前先学—小组探究—跟踪训练—总结梳理的原则,采用学案导学的方式,让学生“观察—思考—猜想—验证”的学法,相应的采用“指导观察—引导思考—启发猜想—组织验证”的教法。

教学环节教学过程导入灰太狼开了间租地公司,一天他把一边长为a米的正方形土地租给慢羊羊种植有一年他对慢羊羊说:“我把这块地的一边增加5米,另一边减少5米,再继续租给你, 你也没吃亏,你看如何”慢羊羊一听觉得没有吃亏,就答应了回到羊村,就把这件事对喜羊羊他们讲了,大家一听,都说道:“村长,您吃亏了!”慢羊羊村长很吃惊…同学们,你能告诉慢羊羊这是为什么吗知识讲解(难点突破)探究:平方差公式1 1-12 m2m-23 212-14 aba-b观察以上算式及其运算结果,你能发现什么规律观察思考:①等式左边相乘的两个多项式有什么特点②等式右边的多项式有什么规律③你能用一句话归纳出上述等式的规律吗(分组讨论,引导学生分析等式结构特征)两个数的和与这两个数的差的积,等于这两个数的平方差aba-b=a2-b2你能将上面发现的规律推导出来吗从数的角度考虑利用多项式乘法推导:aba-b=a2-abab-b2= a2-b23活动:自主探究平方差公式的几何意义动手做一做:在一块边长为acm的正方形纸板上,因为工作需要,中间挖去一块边长为b厘米的小正方形,请问剩下的面积有多少还能通过剪纸拼图的方法来计算这个图。

《平方差公式》经典 公开课一等奖 教案1

《平方差公式》经典 公开课一等奖 教案1

1.7 平方差公式(一)●教学目标(一)教学知识点1.经历探索平方差公式的过程.2.会推导平方差公式,并能运用公式进行简单的运算.(二)能力训练要求1.在探索平方差公式的过程中,开展学生的符号感和推理能力.2.培养学生观察、归纳、概括等能力.(三)情感与价值观要求在计算的过程中发现规律,并能用符号表达,从而体会数学语言的简捷美.●教学重点平方差公式的推导和应用.●教学难点用平方差公式的结构特征判断题目能否使用公式.●教学方法探究与讲练相结合.使学生在计算的过程中发现规律,并运用自己的语言进行表达,用符号证明这个规律,并探索出平方差公式的结构特点,在老师的讲解和学生的练习中学会应用.●教具准备投影片四张第一张:做一做,记作(§1.7.1 A)第二张:例1 ,记作(§ B)第三张:例2 ,记作(§ C)第四张:练一练,记作(§ D)●教学过程Ⅰ.创设情景,引入新课[师]你能用简便方法计算以下各题吗?(1)2001×1999;(2)992-1[生]可以.在(1)中2001×1999 =(2000 +1)(2000-1) =20002-2000 +2000-1×1 =20002-12=4000000-1 =3999999,在(2)中992-1 =(100-1)2-1 =(100-1)(100-1)-1 =1002-100-100 +1-1 =10000-200 =9800.[师]很好!我们利用多项式与多项式相乘的法那么,将(1)(2)中的2001 ,1999 ,99化成为整千整百的运算,从而使运算很简便.我们不妨观察第(1)题,2001和1999 ,一个比2000大1 ,于是可写成2000与1的和,一个比2000小1 ,于是可写成2000与1的差,所以2001×1999就是2000与1这两个数的和与差的积,即(2000 +1)(2000-1);再观察利用多项式与多项式相乘的法那么算出来的结果为:20002-12 ,恰为这两个数2000与1的平方差.即(2000 +1)(2000-1) =20002-12.那么其他满足这个特点的运算是否也有类似的结果呢?我们不妨看下面的做一做.Ⅱ.使学生在计算的过程中,通过观察、归纳发现规律,并用自己的语言和符号表示其规律[师]出示投影片(§1.7.1 A)做一做:计算以下各题:(1)(x +2)(x-2);(2)(1 +3a)(1-3a);(3)(x +5y)(x-5y);(4)(y +3z)(y-3z).观察以上算式,你发现什么规律?运算出结果,你又发现什么规律?再举两例验证你的发现?[生]上面四个算式都是多项式与多项式的乘法.[生]上面四个算式每个因式都是两项.[生]除上面两个同学说的以外,更重要的是:它们都是两个数的和与差的积.例如:算式(1)是"x〞与"2〞这两个数的和与差的积;算式(2)是"1〞与"3a〞这两个数的和与差的积;算式(3)是"x〞与"5y〞的和与差的积;算式(4)是"y〞与"3z〞这两个数的和与差的积.[师]我们观察出了算式的结构特点.像这样的多项式与多项式相乘,它们的结果如何呢?只要你肯动笔、动脑,相信你一定会探寻到答案.[生]解:(1)(x +2)(x-2)=x2-2x +2x-4 =x2-4;(2)(1 +3a)(1-3a)=1-3a +3a-9a2 =1-9a2;(3)(x +5y)(x-5y)=x2-5xy +5xy-25y2=x2-25y2;(4)(y +3z)(y-3z)=y2-3yz +3zy-9z2=y2-9z2(如有必要的话可以让学生利用乘法分配律将多项式与多项式相乘转化成单项式与多项式相乘,进一步体会乘法分配律的重要作用以及转化的思想) [生]从刚刚这位同学的运算,我发现:即两个数的和与差的积等于这两个数的平方差.这和我们前面的一个简便运算得出同样的结果.即[师]你还能举两个例子验证你的发现吗?[生]可以.例如:(1)101×99 =(100 +1)(100-1) =1002-100 +100-12=1002-12=10000-1 =9999;(2)(-x +y)(-x-y) =(-x)(-x) +xy-xy-y2 =(-x)2-y2 =x2-y2.即上面两个例子,同样可以验证:两个数的和与差的积,等于它们的平方差.[师]为什么会有这样的特点呢?[生]因为利用多项式与多项式相乘的运算法那么展开后,中间两项是同类项且系数互为相反数,所以相加后为零.只剩下这个数的平方差.[师]很好!你能用一般形式表示上述规律,并对规律进行证明吗?[生]可以.上述规律用符号表示为:(a +b)(a -b) =a 2-b 2①其中a,b 可以表示任意的数 ,也可以表示代表数的单项式、多项式.利用多项式与多项式相乘的运算法那么可以对规律进行证明 ,即(a +b)(a -b) =a 2-ab +ab -b 2 =a 2-b 2 [师]同学们确实不简单用符号表示和证明我们发现的规律简捷明快. 你能给我们发现的规律(a +b)(a -b) =a 2-b 2起一个名字吗 ?能形象直观地反映出此规律的.[生]我们可以把(a +b)(a -b) =a 2-b 2叫做平方差公式.[师]大家同意吗 ?[生]同意.[师]好了 !这节课我们主要就是学习讨论这个公式的.你能用语言描述这个公式吗 ?[生]可以.这个公式表示两数和与差的积 ,等于它们的平方差.[师]平方差公式是多项式乘法运算中一个重要的公式.用它直接运算会很简单 ,但要注意必须符合公式的结构特点才能利用它进行运算.Ⅲ.体会平方差公式的应用 ,感受平方差公式给多项式乘法运算带来的方便 ,进一步熟悉平方差公式.出示投影片(§ B)[例1](1)以下多项式乘法中 ,能用平方差公式计算的是( )A.(x +1)(1 +x)B.(21a +b)(b -21a)C.(-a +b)(a -b)D.(x 2-y)(x +y 2)E.(-a -b)(a -b)F.(c 2-d 2)(d 2 +c 2)(2)利用平方差公式计算:(5 +6x)(5-6x);(x -2y)(x +2y);(-m +n)(-m -n).[生](1)中只有B 、E 、F 能用平方差公式.因为B.(21a +b)(b -21a)利用加法交换律可得(21a +b)(b -21a) =(b +21a)(b -21a),表示b 与21a 这两个数的和与差的积 ,符合平方差公式的特点;E.(-a -b)(a -b),同样可利用加法交换律得(-a -b)(a -b) =(-b -a)(-b +a),表示-b 与a 这两个数和与差的积 ,也符合平方差公式的特点;F.(c 2-d 2)(d 2 +c 2)利用加法和乘法交换律得(c 2-d 2)(d 2 +c 2) =(c 2 +d 2)(c 2-d 2) ,表示c 2与d 2这两个数和与差的积 ,同样符合平方差公式的特点.[师]为什么A 、C 、D 不能用平方差公式呢 ?[生]A 、C 、D 表示的不是两个数的和与差的积的形式.[师]下面我们就来做第(2)题 ,首先分析它们分别是哪两个数和与差的积的形式.[生](5 +6x)(5-6x)是5与6x 这两个数的和与差的形式;(x -2y)(x +2y)是x 与2y 这两个数的和与差的形式;(-m +n)(-m -n)是-m 与n 这两个数的和与差的形式.[师]很好 !下面我们就来用平方差公式计算上面各式.[生](5 +6x)(5-6x) =52-(6x)2 =25-36x 2;(x -2y)(x +2y) =x 2-(2y)2 =x 2-4y 2;(-m +n)(-m -n) =(-m)2-n 2 =m 2-n 2.[师]这位同学的思路非常清楚.下面我们再来看一个例题.出示投影片(记作§ C)[例2]利用平方差公式计算:(1)(-41x -y)(-41x +y); (2)(ab +8)(ab -8);(3)(m +n)(m -n) +3n 2.[师]同学们可先交流、讨论 ,然后各小组派一代表到黑板上演示.然后再派一位同学讲评.[生]解:(1)(-41x -y)(-41x +y) - -(-41x)与y 的和与差的积 =(-41x)2-y 2 - -利用平方差公式得(-41x)与y 的平方差 =161x 2-y 2 - -运算至最后结果(2)(ab +8)(ab -8) - -ab 与8的和与差的积=(ab)2-82 - -利用平方差公式得ab 与8的平方差=a 2b 2-64 - -运算至最后结果(3)(m +n)(m-n) +3n2 - -据运算顺序先计算m与n的和与差的积=(m2-n2) +3n2 - -利用平方差公式=m2-n2 +3n2 - -去括号=m2 +2n2 - -合并同类项至最简结果[生]刚刚这位同学的运算有条有理,有根有据,我觉得利用平方差公式计算必须注意以下几点:(1)公式中的字母a、b可以表示数,也可以是表示数的单项式、多项式即整式.(2)要符合公式的结构特征才能运用平方差公式.(3)有些多项式与多项式的乘法外表上不能应用公式,但通过加法或乘法的交换律、结合律适当变形实质上能应用公式.[生]还需注意最后的结果必须最简.[师]同学们总结的很好!下面我们再来练习一组题.投影片(§ D)1.计算:(1)(a +2)(a-2);(2)(3a +2b)(3a-2b);(3)(-x +1)(-x-1);(4)(-4k +3)(-4k-3).2.把以下图左框里的整式分别乘(a +b),所得的积写在右框相应的位置上.解:1.(1)(a +2)(a-2) =a2-22 =a2-4;(2)(3a +2b)(3a-2b) =(3a)2-(2b)2 =9a2-4b2;(3)(-x +1)(-x-1) =(-x)2-12 =x2-1;(4)(-4k +3)(-4k-3) =(-4k)2-32 =16k2-9.2.(a +b)(a +b) =a(a +b) +b(a +b) =a2 +ab +ab +b2 =a2 +2ab +b2;(a-b)(a +b) =a2-b2;(-a +b)(a +b) =(b +a)(b-a) =b2-a2;(-a-b)(a +b) =-a(a +b)-b(a +b)=-a2-ab-ab-b2=-a2-2ab-b2(教师在让学生做练习,可巡视练习的情况,对确实有困难的学生要给以指导)Ⅳ.课时小结[师]同学们有何体会和收获呢?[生]今天我们学习了多项式乘法运算中的一个重要公式- -平方差公式即(a +b)(a-b) =a2-b2.[生]应用这个公式要明白公式的特征:(1)左边为两个数的和与差的积;(2)右边为两个数的平方差.[生]公式中的a、b可以是数,也可以是代表数的整式.[生]有些式子外表上不能用公式,但通过适当变形实质上能用公式.[师]同学们总结的很好!还记得刚上课的一个问题吗?计算992-1 ,现在想一想,能使它运算更简便吗?[生]可以.992-1可以看成99与1的平方差,从右往左用平方差公式可得:992-1 =992-12 =(99 +1)(99-1) =100×98 =9800.[师]我们发现平方差公式的应用是很灵活的,只要你准确地把握它的结构特征,一定能使你的运算简捷明了.Ⅴ.课后作业课本习题,第1题.Ⅵ.活动与探究有10位乒乓球选手进行单循环赛(每两人间均赛一场) ,用x1,y1顺次表示第1号选手胜与负的场数,用x2,y2顺次表示第2号选手胜与负的场数,……用x10,y10顺次表示第10号选手胜与负的场数.那么10名选手胜的场数的平方和与他们负的场数的平方和相等,即x12 +x22+… +x102 =y12 +y22+… +y102,为什么?经过:由于是单循环赛,每名运发动恰好参加9局比赛,即x i+y i=9(其中i =1、2、3、…10) ,在比赛中一人胜了,另一人自然败了,那么x1 +x2+… +x10 =y1 +y2 +… +y10,这两个隐含条件是解题的关键,从作差比拟入手.[结果]由题意知x i +y i =9(i =1、2、3、…10)且x1 +x2+… +x10 =y1 +y2+… +y10(x12 +x22+… +x102)-(y12 +y22+… +y102)=(x12-y12) +(x22-y22) +… +(x102-y102)=(x1 +y1)(x1-y1) +(x2 +y2)(x2-y2) +… +(x10 +y10)(x10-y10)=9[(x1-y1) +(x2-y2) +(x3-y3) +… +(x10-y10)]=9[(x1 +x2+… +x10)-(y1 +y2+… +y10)]=0所以,x12 +x22+… +x102 =y12 +y22+… +y102.●板书设计§平方差公式(一)解:(1)(x +2)(x-2) =x2-2x +2x-4 =x2-4;(2)(1 +3a)(1-3a) =1-3a +3a-9a2 =1-9a2;(3)(x +5y)(x-5y) =x2-5xy +5xy-25y2 =x2-25y2;(4)(y +3z)(y-3z) =y2-3yz +3zy-9z2 =y2-9z2.(a +b)(a-b) =a2-b2两数和与这两数差的积,等于它们的平方差.(a +b)(a-b) =a2-ab +ab-b2 =a2-b2.例1.(抓住平方差公式的特征,准确地利用平方差公式计算)例2.(对公式中a、b含义的理解,既可以是具体的数也可以是整数)随堂练习(熟悉平方差公式).●备课资料参考例题[例1]用简便方法计算:(1)79×81 (2)99×101×10001解:(1)原式 =(80-1)(80 +1) =802-1 =6399;(2)原式 =(100-1)(100 +1)(10000 +1)=(1002-12)(10000 +1)=(10000-1)(10000 +1)=100002-12=100000000-1 =99999999.[例2]计算:(1)(b -2)(b 2 +4)(b +2)(2)[2a 2-(a +b)(a -b)][(c -a)(a +c) +(-c +b)(c +b)]分析:(1)题可利用乘法交换律和结合律 ,先求(b -2)与(b +2)的积 ,所得结果再与(b 2 +4)相乘 ,可两次运用平方差公式;(2)题根据混合运算的运算顺序 ,先算括号里的其中(a +b)(a -b),(c -a)(a +c),(-c +b)(c +b)都可直接运用平方差公式计算.解:(1)(b -2)(b 2 +4)(b +2)=[(b -2)(b +2)](b 2 +4)=(b 2-4)(b 2 +4)=(b 2)2-42=b 4-16(2)[2a 2-(a +b)(a -b)][(c -a)(a +c) +(-c +b)(c +b)]=[2a 2-(a 2-b 2)][(c +a)(c -a) +(b -c)(b +c)]=[2a 2-a 2 +b 2][c 2-a 2 +b 2-c 2]=(a 2 +b 2)(b 2-a 2)=(b 2)2-(a 2)2=b 4-a 4[例3]计算: (1)(4x +32y)(-4x +32y) (2)(a +b -c)(a -b +c)(3)(x +3y)2(x -3y)2(x 2 +9y 2)2分析:(1)题中 ,可把相同的项放在对应的位置上 ,再把互为相反数的项放在对应的位置上 ,使之满足(a +b)(a -b),然后用平方差公式;(3)题先逆用积的乘方公式 ,然后用平方差公式.解:(1)(4x +32y)(-4x +32y) =(32y +4x )(32y -4x ) =(32y)2-(4x )2 =94y 2-161x 2(2)(a +b -c)(a -b +c)=[a +(b -c)][a -(b -c)]=a 2-(b -c)2=a 2-(b 2-2bc +c 2)=a 2-b 2 +2bc -c 2(3)(x +3y)2(x -3y)2(x 2 +9y 2)2=[(x +3y)(x -3y)(x 2 +9y 2)]2=[(x 2-9y 2)(x 2 +9y 2)]2=[x 4-81y 4]2=x 8-162x 4y 4 +6561y 8.。

《平方差公式》优质课教学一等奖课件

《平方差公式》优质课教学一等奖课件
(1) (x+1)(x-1) = x2 - 1 (2) (m+2)(m-2) = m2 - 4 (3) (2x+1)(2x-1) = 4x2 - 1
猜想:(a+b)(a-b) = a2-b2
八年级-上册-第14章-第2节-第1课时
课题:平方差公式
难点名称:准确找到公式中的a与b,能够
灵活应用平方差公式.
回到羊村,就把这件事对喜羊羊他们讲了,大家一听,都说 道:“村长,您吃亏了!” 慢羊羊村长很吃惊…同学们,你能告 诉慢羊羊这是为什么吗?
原来
现在
5米
(a+5)米
a a米
2
(a-5) (a+5)(a-5)
5米
相等吗?
知识讲解
难点突破:理解平方差公式的结构特征,灵活应用平方差公式
计算下列多项式的积:你发现什么规律了
2
2 (2x)2-(2x2+2)(24xx-22-)
x
4
3n m (3n)(2m- +3n)(39nn-m2-)
m2
m2
-a 4b (-a)2-(-a+4b)(-aa2--41b6)b2 (4b)2
例1 运用平方差公式计算:
⑴ (3x+2)(3x-2) ; ⑵ (b+2a)(2a-b); (3) (-x+2y)(-x-2y).
分析:
⑴ (3x+2)(3x-2) =(3x)2 -22
( a b)(a-b) = a2 - b2
+
用公式关键是识别两数 完全相同项 — a 互为相反数项— b
解:
⑴ (3x+2)(3x-2)
=(3x) - 22

初中八年级数学教案-平方差公式-一等奖

初中八年级数学教案-平方差公式-一等奖

2. 多媒体辅助教学方法
教学环节
教学过程
计算下列各式,你能发现什么规律: 1 - 1 =2- -12=2- 12
m 2 m – 2 =m2- 2m 2m - 22=m2- 22
导入
2 1 2 - 1 =42- 2 2 -12=42- 12 那下面这两个式子呢你们一口报出答案吗
a 3 a- 3 = t m t- m = 那计算这些式子的规律,同学们你们用一个式子来表示吗
教师姓名
雷巧花
单位名称 沙雅县第二中学
填写时间
学科
数学
年级/册
八年级上册
教材版本
人教版
课题名称
平方差公式
难点名称
1 平方差公式的推导和应用 2 理解公式中字母的广泛含义并灵活应用平方差公式解决数学问题
难点分析
从知识角度分析为 什么难
平方差公式是乘法公式的一种,这一内容属于数学再创造活动的结果,也是 学生应用最基本,用途最广泛的公式之一,它在整式乘法,因式分解,分式运算 及其他代数式的变形中起着十分重要的作用,从公式的推导中,让学生学会从“特 殊”到“一般”的思想,为学生在后面的学习能主动的探究完全平方公式奠定了 良好的迁移基础。
小结
两数和与这两数差的积,等于这两数的平方的差。 aba-b=a2-b2
知识讲解 (难点突破)
a-b a
ab
a-b
b
蓝色阴影部分的面的为:a2-b2,也可以如何来计算呢 也可以用(ab)(a-b),所以说 (ab)(a-b)=a2-b2 通过几何图形的剪裁,拼接,再通过多媒体动画,很直观的可以验证我们的平方差公式。
平方差公式对我们有什么帮助 可以使我们在计算这种类型的多项式乘法时,直接用公式更加快速和简便。 通过下面这两道题,让我们感受一下平方差公式的应用吧: 例题用平方差公式计算:

《平方差公式》优质教学设计

《平方差公式》优质教学设计

《平方差公式》优质教学设计目录•课程介绍与目标•教学内容与方法•互动环节与课堂活动•巩固提高与拓展延伸•评价方式与标准•教学反思与改进建议01课程介绍与目标平方差公式概念及重要性平方差公式定义阐述平方差公式的基本形式,即$a^2-b^2=(a+b)(a-b)$,并解释公式中各项的含义。

平方差公式的应用说明平方差公式在代数运算、因式分解、化简求值等方面的重要应用,以及在解决数学问题中的关键作用。

要求学生掌握平方差公式的基本形式和应用方法,能够运用平方差公式进行代数运算和因式分解。

知识与技能过程与方法情感态度与价值观通过引导学生观察、比较、归纳等数学活动,培养学生的数学思维和解决问题的能力。

让学生感受数学公式的简洁美和对称美,激发学生学习数学的兴趣和热情。

030201教学目标与要求教材分析与选用教材分析对所选用的教材进行深入分析,明确教材的特点、优点和不足,为教学设计提供依据。

教材选用根据教学需要和学生的实际情况,选用合适的教材,确保教学内容的科学性和系统性。

同时,可以结合一些辅助材料或网络资源,丰富教学内容和形式。

02教学内容与方法通过实际问题引入平方差的概念,让学生明确学习目的。

引入概念利用多项式乘法法则,引导学生推导平方差公式,并理解公式中各项的含义。

推导公式通过举例验证平方差公式的正确性,加深学生的理解。

验证公式平方差公式推导过程计算(a+b)(a-b) 的结果,并说明平方差公式的应用。

例题一利用平方差公式计算(2x+3)(2x-3) 的结果,并解释计算过程。

例题二求(m+n)^2 -(m-n)^2 的值,并说明如何运用平方差公式进行化简。

例题三典型例题分析与解答提高练习设计一些稍复杂的题目,需要学生灵活运用平方差公式进行化简和计算。

基础练习设计一些简单的计算题目,让学生运用平方差公式进行计算。

拓展练习设计一些具有挑战性的题目,引导学生探索平方差公式的更多应用。

学生自主练习题目设计03互动环节与课堂活动小组合作探究平方差公式应用分组讨论将学生分成若干小组,每组4-5人,让他们共同探究平方差公式的应用。

平方差公式优质课教学设计一等奖及点评

平方差公式优质课教学设计一等奖及点评

《平方差公式》的教学设计一.教材分析本节课选自湘教版七年级下册第2章2.2乘法公式的第一课时《平方差公式》.它是继多项式乘法之后的重要教学内容,它既是对多项式乘法中出现的特殊的算式的归纳总结,又是今后学习因式分解、分式化简、根式的分母有理化、解一元二次方程等代数运算及变形的前提基础;同时,它也是初中数学系统学习的第一个乘法公式,是学生初步认识公式结构,逐步形成符号意识,开始产生模型思想,进一步强化求简意识的经典范例.二.学情分析我们主要从三个方面对学生的情况进行了分析,①年龄特点:七年级学生易从情感角度激发学习热情;②思维品质:我校学生择优录取,具有优良的思维品质;③认知基础:学生已经具备了整式加、减、乘等数式运算基础,以及小学学习过的正方形、矩形等图形基础.三.教学目标1.了解平方差公式的几何背景,理解平方差公式的推导过程;2.掌握平方差公式的结构特征,会运用平方差公式进行简单运算;3.经历平方差公式的探索过程,领悟平方差公式的变式应用,能创作平方差公式的变式题组.四.教学重难点1.教学重点:探究平方差公式,剖析平方差公式的结构,灵活运用平方差公式.2.教学难点:掌握公式在运用中的变化规律,深层次理解公式结构,自主创作变式题组. 五.教学方法运用变式教学模式进行教学设计,运用开放式教学策略组织课堂教学.六.教学构思结合教材和学情,本节课设计了两条主线,即“问题主线”和“情境主线”.问题主线:由问题导入→新知探究→变式应用→思维拓展→问题创作→总结升华→课时检测;情境主线:由断案高手→说理大师→变式赢家→学坛霸主→创作之星→归纳之王→自主演练.两条主线交融互动,贯穿始终,从平方差公式的发生、发现、发展、应用及拓展几个层次设计出了一条条问题串,将整节课不断引导推进,一路生成.七.教学过程第一环节:问题导入问题情境:欢迎来到变式大课堂!今天我们大课堂要从一个小故事开始——这是一个发生在地主狼大和佃农羊二之间的土地租赁事件.一天,狼大对羊二说:羊二啊!我家土地重新规划了,原来租给你的那块正方形土地,我把它向东增加了3米,向北减少了3米,变成了一块长方形,反正面积没变,你就种这块新地吧!估计你也听不懂,我就画一幅图给你看,如图1、如图2所示:羊二听完一阵茫然~,对狼大说道:老爷听您的!设计说明:为初一的孩子创设了“地主狼大和佃农羊二的土地租赁事件”的小故事,激励孩子通过所学知识帮助羊二作出正确判断.设计的初衷是通过具体问题的解决温故知新,也渗透了知识就是力量的情感态度.第二环节:新知探究问题1:请你判断:羊二吃亏了?变式1:若向东增加5米,向北减少5米呢? 变式2:若向东增加b 米,向北减少b 米呢?设计说明:通过激励学生对案情进行合情推理,引导学生从代数和几何两个角度加以推理验证,并将问题由特殊推广到一般,从而让学生发现平方差公式,并启发学生对平方差公式的结构进行深层次的剖析.公式的探究图2a-3a+3S 2 图1向北向东a图2图1向北向东a 图3a-5图4a-ba+bS 31.公式:(a +b)(a -b) = a 2-b 2①代数2.方法:②几何第三环节:变式应用问题2:(a+3)(a -3)系数变↓变式1:(2a+3)(2a -3)符号变↓变式2:(-2a+3)(-2a -3)位置变↓变式3:(3-2a )(-2a -3)指数变↓变式4:(3-4a 2)(-4a 2-3)因式变↓变式5:(3b -4a 2)(-4a 2-3b)项数变↓(相对于公式而言)变式6:(a +b +c )(a -b +c)设计说明:从一道基本题切入,由浅入深,进行问题变式,进而产生一系列的变式题组 通过对变式题组的解答达到两个目的,其一:学会分析式子结构,认清公式中的a 和b ,准确的运用公式进行计算;其二:能了解代数中变式的基本策略,从变化中认清变化的规律,抓住不变的本质.第四环节:思维拓展问题3:运用平方差公式进行巧算. (1)211002199⨯ (2)))()((12121242+++设计说明:问题2是对平方差公式的直接应用,而问题3是从拆项和添项两个角度对平积 和转化数形方差公式进行了构造应用,是对学生更高阶思维的训练,培养学生的创造性思维,是对学习者能力培养的另外一种境界.第五环节:问题创作(课时检测1)问题4:运用平方差公式编题,要求: (1)运用变式策略设计变式题; (2)重在对公式的理解和应用;设计说明:会解题不一定会编题,而会编题一定会解题.编题的目的是让学生站在更高层次来理解所学的知识和渗透的思想方法,并迁移到问题的创作中来.通过编题来检测学生对本节课内容的理解和掌握情况.公式的应用1.直接应用:(1)准确的找出公式中的,a b(2)代入平方差公式进行计算2.构造应用:(1)构造出平方差公式的结构(2)运用或多次运用公式3.拓展应用:(1)掌握代数式变式策略:系数变→符号变→位置变→指数变→因式变→项数变 (2)从正、逆两个角度创作变式题组第六环节:总结升华问题5:课堂回顾(1)对于平方差公式,你有哪些认识? (2)本节课你印象最深的是什么? (3)你还存在哪些疑惑?设计说明:留给学生一个思考的空间,让他们对一节课所学内容进行梳理,有利于学生自主构建知识体系,理清知识之间的联系,同时为他们提供表达的机会,锻炼他们的组织和表达能力,长此以往有利于学生的综合素质的养成.第七环节:课时检测2㈠. 基础应用:运用平方差公式计算:(1)()()5252x y x y -+ (2)()()1414x x -+--(3)2222332255x y y x ⎛⎫⎛⎫+-+⎪⎪⎝⎭⎝⎭㈡. 能力提升:活用平方差公式计算: (1)()()x y z x y z +--+㈢.思维拓展:巧用平方差公式计算: (1)12504933⨯ (2)()()()()24813131313++++ 设计说明:基础应用分别从位置、符号、指数等进行变式,达到熟练应用公式的目的.能力提升和拓展应用运用整体、转化等思想方法解决问题,达到灵活运用公式的目的,培养学生数学思维能力.八.板书设计九.课后延伸1-4,7-8小组创作的问题已在课堂上进行展示,其他小组创作的问题整理如下: 第5小组: (1)2200202198-⨯(2)()()()()24831313131++++第6小组: (1)()()2121x x ---(2)()()22a b c d b c d c -+-++-(3)()()3332828x x ⎡⎤+⋅-⎣⎦第9小组: (1)22)()(b a b a -+ (2))()()()(2222101-141-131-121-1⨯⨯⨯⨯ (逆向使用平方差公式) (3)))((c b a c b a 4242-++- 第10小组: (1)))()((22164-4b a a b b a +++ (2)22)2121(x y y x +-() (3)321684221211211*********++++++))()()()(((4)113131313132128842++++++)())()()((成果反馈:从学生编题可以看出,学生们对平方差公式的结构和代数变式策略的理解都非常到位,而且他们还能将积的乘方等前面所学知识顺利运用到编题中来,显示出很强的融合贯通能力,所编问题涉及到平方差公式代数应用中的各种题型,包括直接应用,构造应用,逆向应用,连环应用等,可见本节课的学习效果突出,同时也能看出学生们良好的数学素养,这是教师长期培养的结果.《平方差公式》的教学点评本节课是教研教改的优秀课例。

平方差公式优质课教学设计一等奖及点评

平方差公式优质课教学设计一等奖及点评

平方差公式优质课教学设计一等奖及点评本节课的教学内容是平方差公式,它是初中数学系统研究的第一个乘法公式,也是今后研究代数运算及变形的前提基础。

本节课的教学目标是让学生了解平方差公式的几何背景,掌握平方差公式的结构特征,能够灵活运用平方差公式进行简单运算,并且能够创作平方差公式的变式题组。

针对学生的年龄特点、思维品质和认知基础,我们采用变式教学模式和开放式教学策略,设计了两条主线:“问题主线”和“情境主线”,并将其贯穿整个教学过程,旨在引导学生从问题中探究、在情境中实践,不断拓展思维,提高求简意识。

在教学过程中,我们首先进行了问题导入,通过一个土地租赁事件引出了平方差公式的问题。

接下来,我们将学生分成小组,进行新知探究和变式应用的环节,让学生自主发现平方差公式的结构和特征,并通过实际问题的应用来加深对公式的理解。

在思维拓展和问题创作的环节,我们引导学生通过变式思维来创作平方差公式的变式题组,并通过总结升华和课时检测来检验学生的研究成果。

通过本节课的教学设计,我们旨在让学生在实践中掌握平方差公式,提高求简意识和变式思维能力,为以后的数学研究打下坚实的基础。

设计说明:本节课板书设计分为三个部分,知识归纳、公式探究和公式应用。

知识归纳部分列出了平方差公式的表达式和方法;公式探究部分从“形”和“数”的角度来解释公式的本质;公式应用部分则分为直接应用和构造应用两个方面,列出了具体的例子和方法。

整个板书设计简洁明了,重点突出,便于学生理解和记忆。

知识归纳:1.公式:(a+b)(a-b) = a2-b22.方法:直接应用、构造应用、拓展应用3.应用:解决各种数学问题公式探究:1.从“形”的角度:公式的形式和结构2.从“数”的角度:公式的意义和运算规律公式应用:一.直接应用:准确找出公式中的a,b,代入公式进行计算二.构造应用:构造出公式的结构,运用或多次运用公式三.拓展应用:掌握代数式变式策略,从正、逆两个角度创作变式题组设计说明:课后延伸部分为学生提供了更多的练和思考题目,既巩固了所学的知识,又拓展了学生的思维能力。

平方差公式优质课教学设计一等奖及点评

平方差公式优质课教学设计一等奖及点评

《平方差公式》的教学设计一.教材分析本节课选自湘教版七年级下册第2章2.2乘法公式的第一课时《平方差公式》.它是继多项式乘法之后的重要教学内容,它既是对多项式乘法中出现的特殊的算式的归纳总结,又是今后学习因式分解、分式化简、根式的分母有理化、解一元二次方程等代数运算及变形的前提基础;同时,它也是初中数学系统学习的第一个乘法公式,是学生初步认识公式结构,逐步形成符号意识,开始产生模型思想,进一步强化求简意识的经典范例.二.学情分析我们主要从三个方面对学生的情况进行了分析,①年龄特点:七年级学生易从情感角度激发学习热情;②思维品质:我校学生择优录取,具有优良的思维品质;③认知基础:学生已经具备了整式加、减、乘等数式运算基础,以及小学学习过的正方形、矩形等图形基础.三.教学目标1.了解平方差公式的几何背景,理解平方差公式的推导过程;2.掌握平方差公式的结构特征,会运用平方差公式进行简单运算;3.经历平方差公式的探索过程,领悟平方差公式的变式应用,能创作平方差公式的变式题组.四.教学重难点1.教学重点:探究平方差公式,剖析平方差公式的结构,灵活运用平方差公式.2.教学难点:掌握公式在运用中的变化规律,深层次理解公式结构,自主创作变式题组. 五.教学方法运用变式教学模式进行教学设计,运用开放式教学策略组织课堂教学.六.教学构思结合教材和学情,本节课设计了两条主线,即“问题主线”和“情境主线”.问题主线:由问题导入→新知探究→变式应用→思维拓展→问题创作→总结升华→课时检测;情境主线:由断案高手→说理大师→变式赢家→学坛霸主→创作之星→归纳之王→自主演练.两条主线交融互动,贯穿始终,从平方差公式的发生、发现、发展、应用及拓展几个层次设计出了一条条问题串,将整节课不断引导推进,一路生成.七.教学过程第一环节:问题导入问题情境:欢迎来到变式大课堂!今天我们大课堂要从一个小故事开始——这是一个 发生在地主狼大和佃农羊二之间的土地租赁事件.一天,狼大对羊二说:羊二啊!我家土地重新规划了,原来租给你的那块正方形土地,我把它向东增加了3米,向北减少了3米,变成了一块长方形,反正面积没变,你就种这块新地吧!估计你也听不懂,我就画一幅图给你看,如图1、如图2所示:羊二听完一阵茫然~,对狼大说道:老爷听您的!设计说明:为初一的孩子创设了“地主狼大和佃农羊二的土地租赁事件”的小故事,激励孩子通过所学知识帮助羊二作出正确判断.设计的初衷是通过具体问题的解决温故知新,也渗透了知识就是力量的情感态度.第二环节:新知探究问题1:请你判断:羊二吃亏了?变式1:若向东增加5米,向北减少5米呢?变式2:若向东增加b 米,向北减少b 米呢?设计说明:通过激励学生对案情进行合情推理,引导学生从代数和几何两个角度加以推理验证,并将问题由特殊推广到一般,从而让学生发现平方差公式,并启发学生对平方差公式的结构进行深层次的剖析.公式的探究图2 a-3a+3S 2 图1 向北向东a 图2图1 向北向东a 图3 a-5图4 a-ba+b S 31.公式:(a +b)(a -b) = a 2-b 2①代数2.方法:②几何第三环节:变式应用问题2:(a+3)(a -3)系数变↓变式1:(2a+3)(2a -3)符号变↓变式2:(-2a+3)(-2a -3)位置变↓变式3:(3-2a )(-2a -3)指数变↓变式4:(3-4a 2)(-4a 2-3)因式变↓变式5:(3b -4a 2)(-4a 2-3b)项数变↓(相对于公式而言)变式6:(a +b +c )(a -b +c)设计说明:从一道基本题切入,由浅入深,进行问题变式,进而产生一系列的变式题组 通过对变式题组的解答达到两个目的,其一:学会分析式子结构,认清公式中的a 和b ,准确的运用公式进行计算;其二:能了解代数中变式的基本策略,从变化中认清变化的规律,抓住不变的本质.第四环节:思维拓展问题3:运用平方差公式进行巧算.(1)211002199⨯ (2)))()((12121242+++设计说明:问题2是对平方差公式的直接应用,而问题3是从拆项和添项两个角度对平积 和转化 数形。

《平方差公式》教学设计一等奖

《平方差公式》教学设计一等奖

《平方差公式》教学设计一等奖《《平方差公式》教学设计一等奖》这是优秀的教学设计一等奖文章,希望可以对您的学习工作中带来帮助!1、《平方差公式》教学设计一等奖教学建议一、知识结构二、重点、难点分析本节教学的重点是掌握公式的结构特征及正确运用公式.难点是公式推导的理解及字母的广泛含义.平方差公式是进一步学习完全平方公式、进行相关代数运算与变形的重要知识基础.1.平方差公式是由多项式乘法直接计算得出的:与一般式多项式的乘法一样,积的项数是多项式项数的积,即四项.合并同类项后仅得两项.2.这一公式的结构特征:左边是两个二项式相乘,这两个二项式中有一项完全相同,另一项互为相反数;右边是乘式中两项的平方差,即相同项的平方与相反项的平方差.公式中的字母可以表示具体的数(正数和负数),也可以表示单项式或多项式等代数式.只要符合公式的结构特征,就可运用这一公式.例如在运用公式的过程中,有时需要变形,例如,变形为,两个数就可以看清楚了.3.关于平方差公式的特征,在学习时应注意:(1)左边是两个二项式相乘,并且这两上二项式中有一项完全相同,另一项互为相反数.(2)右边是乘式中两项的平方差(相同项的平方减去相反项的平方).(3)公式中的和可以是具体数,也可以是单项式或多项式.(4)对于形如两数和与这两数差相乘,就可以运用上述公式来计算.三、教法建议1.可以将“两个二项式相乘,积可能有几项”的问题作为课题引入,目的是激发学生的学习兴趣,使学生能在两个二项式相乘其积可能为四项、三项、两项中找出积为两项的特征,上升到一定的理论认识,加以实践检验,从而培养学生观察、概括的`能力.2.通过学生自己的试算、观察、发现、总结、归纳,得出为什么有的两个二项式相乘,其积为两项,因为其中两项是两个数的平方差,而另两项恰是互为相反数,合并同类项时为零,即(a+b)(a-b)=a2+ab-ab-b2=a2-b2.这样得出平方差公式,并且把这类乘法的实质讲清楚了.3.通过例题、练习与小结,教会学生如何正确应用平方差公式.这里特别要求学生注意公式的结构,教师可以用对应思想来加强对公式结构的理解和训练,如计算(1+2x)(1-2x),(1+2x)(1-2x)=12-(2x)2=1-4x2↓↓↓↓↑↑(a+b)(a-b)=a2-b2.这样,学生就能正确应用公式进行计算,不容易出差错.另外,在计算中不一定用一种模式刻板地应用公式,可以结合以前学过的运算法则,经过变形后灵活应用公式,培养学生解题的灵活性.教学目标1.使学生理解和掌握平方差公式,并会用公式进行计算;2.注意培养学生分析、综合和抽象、概括以及运算能力.教学重点和难点重点:平方差公式的应用.难点:用公式的结构特征判断题目能否使用公式.教学过程设计一、师生共同研究平方差公式我们已经学过了多项式的乘法,两个二项式相乘,在合并同类项前应该有几项?合并同类项以后,积可能会是三项吗?积可能是二项吗?请举出例子.让学生动脑、动笔进行探讨,并发表自己的见解.教师根据学生的回答,引导学生进一步思考:两个二项式相乘,乘式具备什么特征时,积才会是二项式?为什么具备这些特点的两个二项式相乘,积会是两项呢?而它们的积又有什么特征?(当乘式是两个数之和以及这两个数之差相乘时,积是二项式.这是因为具备这样特点的两个二项式相乘,积的四项中,会出现互为相反数的两项,合并这两项的结果为零,于是就剩下两项了.而它们的积等于乘式中这两个数的平方差)继而指出,在多项式的乘法中,对于某些特殊形式的多项式相乘,我们把它写成公式,并加以熟记,以便遇到类似形式的多项式相乘时就可以直接运用公式进行计算.以后经常遇到(a+b)(a-b)这种乘法,所以把(a+b)(a-b)=a2-b2作为公式,叫做乘法的平方差公式.在此基础上,让学生用语言叙述公式.二、运用举例变式练习例1计算(1+2x)(1-2x).解:(1+2x)(1-2x)=12-(2x)2=1-4x2.教师引导学生分析题目条件是否符合平方差公式特征,并让学生说出本题中a,b分别表示什么.例2计算(b2+2a3)(2a3-b2).解:(b2+2a3)(2a3-b2)=(2a3+b2)(2a3-b2)=(2a3)2-(b2)2=4a6-b4.教师引导学生发现,只需将(b2+2a3)中的两项交换位置,就可用平方差公式进行计算.课堂练习运用平方差公式计算:(l)(x+a)(x-a);(2)(m+n)(m-n);(3)(a+3b)(a-3b);(4)(1-5y)(l+5y).例3计算(-4a-1)(-4a+1).让学生在练习本上计算,教师巡视学生解题情况,让采用不同解法的两个学生进行板演.解法1:(-4a-1)(-4a+1)=[-(4a+l)][-(4a-l)]=(4a+1)(4a-l)=(4a)2-l2=16a2-1.解法2:(-4a-l)(-4a+l)=(-4a)2-l=16a2-1.根据学生板演,教师指出两种解法都很正确,解法1先用了提出负号的办法,使两乘式首项都变成正的,而后看出两数的和与这两数的差相乘的形式,应用平方差公式,写出结果.解法2把-4a看成一个数,把1看成另一个数,直接写出(-4a)2-l2后得出结果.采用解法2的同学比较注意平方差公式的特征,能看到问题的本质,运算简捷.因此,我们在计算中,先要分析题目的数字特征,然后正确应用平方差公式,就能比较简捷地得到答案.课堂练习1.口答下列各题:(l)(-a+b)(a+b);(2)(a-b)(b+a);(3)(-a-b)(-a+b);(4)(a-b)(-a-b).2.计算下列各题:(1)(4x-5y)(4x+5y);(2)(-2x2+5)(-2x2-5);教师巡视学生练习情况,请不同解法的学生,或发生错误的学生板演,教师和学生一起分析解法.三、小结1.什么是平方差公式?2.运用公式要注意什么?(1)要符合公式特征才能运用平方差公式;(2)有些式子表面不能应用公式,但实质能应用公式,要注意变形.四、作业1.运用平方差公式计算:(l)(x+2y)(x-2y);(2)(2a-3b)(3b+2a);(3)(-1+3x)(-1-3x);(4)(-2b-5)(2b-5);(5)(2x3+15)(2x3-15);(6)(0.3x-0.l)(0.3x+l);2.计算:(1)(x+y)(x-y)+(2x+y)(2x+y);(2)(2a-b)(2a+b)-(2b-3a)(3a+2b);(3)x(x-3)-(x+7)(x-7);(4)(2x-5)(x-2)+(3x-4)(3x+4).2、《平方差公式》教学设计一等奖教学目的进一步使学生理解掌握平方差公式,并通过小结使学生理解公式数学表达式与文字表达式在应用上的差异.教学重点和难点:公式的应用及推广.教学过程:一、复习提问1.(1)用较简单的代数式表示下图纸片的面积.(2)沿直线裁一刀,将不规则的右图重新拼接成一个矩形,并用代数式表示出你新拼图形的面积.讲评要点:沿HD、GD裁开均可,但一定要让学生在裁开之前知道HD=BC=GD=FE=a-b,这样裁开后才能重新拼成一个矩形.希望推出公式:a2-b2=(a+b)(a-b)2.(1)叙述平方差公式的数学表达式及文字表达式;(2)试比较公式的两种表达式在应用上的差异.说明:平方差公式的`数学表达式在使用上有三个优点.(1)公式具体,易于理解;(2)公式的特征也表现得突出,易于初学的人套用(3)形式简洁.但数学表达式中的a与b有概括性及抽象性,这样也就造成对具体问题存在一个判定a、b的问题,否则容易对公式产生各种主观上的误解.依照公式的文字表达式可写出下面两个正确的式子:经对比,可以让人们体会到公式的文字表达式抽象、准确、概括.因而也就欠明确(如结果不知是谁与谁的平方差).故在使用平方差公式时,要全面理解公式的实质,灵活运用公式的两种表达式,比如用文字公式判断一个题目能否使用平方差公式,用数学公式确定公式中的a 与b,这样才能使自己的计算即准确又灵活.3.判断正误:(1)(4x+3b)(4x-3b)=4x2-3b2;()(2)(4x+3b)(4x-3b)=16x2-9;()(3)(4x+3b)(4x-3b)=4x2+9b2;()(4)(4x+3b)(4x-3b)=4x2-9b2;()二、新课例1 运用平方差公式计算:(1)102 (2)(y+2)(y-2)(y2+4).解:(1)10298 (2)(y+2)(y-2)(y2+4)=(100+2)(100-2) =(y2-4)(y2+4)=1002-22=10000-4 =(y2)2-42=y4-16.=9996;2.运用平方差公式计算:(1)103 (2)(x+3)(x-3)(x2+9);(3)59.8 (4)(x- )(x2+ )(x+ ).3.请每位同学自编两道能运用平方差公式计算的题目.例2 填空:(1)a2-4=(a+2)();(2)25-x2=(5-x)();(3)m2-n2=()();思考题:什么样的二项式才能逆用平方差公式写成两数和与这两数的差的积?(某两数平方差的二项式可逆用平方差公式写成两数和与这两数的差的积)练习1.x2-25=()();2.4m2-49=(2m-7)();3.a4-m4=(a2+m2)()=(a2+m2)()();例3 计算:(1)(a+b-3)(a+b+3); (2)(m2+n-7)(m2-n-7).解:(1)(a+b-3)(a+b+3) (2)(m2+n-7)(m2-n-7)=[(a+b)-3][(a+b)+3] =[(m2-7)+n][(m2-7)-n]=(a+b)2-9=a2+2ab+b2-9. =(m2-7)2-n2=m4-14m2+49-n2.三、小结1.什么是平方差公式?一般两个二项式相乘的积应是几项式?2.平方差公式中字母a、b可以是那些形式?3.怎样判断一个多项式的乘法问题是否可以用平方差公式?四、布置作业1.运用平方差公式计算:(1)(a2+b)(a2-b);(2)(-4m2+5n)(4m2+5n);(3)(x2-y2)(x2+y2);(4)(9a2+7b2)(7b2-9a2).2.运用平方差公式计算:(1)69 (2)53 (3)503 (4)40 39 .3、《平方差公式》教学设计一等奖教学目标理解两个完全平方公式的结构,灵活运用完全平方公式进行运算。

初中八年级数学教案-平方差公式(全国一等奖)

初中八年级数学教案-平方差公式(全国一等奖)

平方差公式教学目标【知识与技能】会推导平方差公式,并能运用公式进行简单的运算【过程与方法】1在探究平方差公式的过程中,培养符号感和推理能力2培养学生观察、归纳、概括的能力【情感态度】在计算过程中发现规律,用数学符号表示,感受数学的简洁美【教学重点】平方差公式的推导和应用【教学难点】理解平方差公式的结构特征,灵活应用平方差公式教学过程一、情境导入,初步认识出示下列习题,由学生分组完成:(1)1-1= ;(2)m2m-2= ;(3)212-1=【教学说明】根据多项式乘以多项式法则可求得题1,题2,题3根据题目特点,要求学生以小组为单位,共同探究上述过程的结构特征与变化特征,并从中总结出一般性规律来二、思考探究,获取新知由学生进行充分的交流探讨后,师生共同归纳上述结构的式子用公式表示为:(ab)(a-b)=a2-b2,即两个数的和与这两个数的差的积,等于这两个数的平方差,称之为平方差公式(1)推导:(ab)(a-b)=a2-abab-b2=a2-b2(2)公式特点:左边是两个二项式相乘,这两项中有一项是相同的,另一项互为相反数,右边是乘式中两项的平方差(相同数的平方减去互为相反数的平方)(3)公式中的a、b可以是数、单项式或多项式(4)符合平方差公式特点的乘法式子可直接套用公式平方差公式的几何意义也就是利用图形来表示公式如图1,在边长为a的正方形中挖掉一个边长为b的小正方形(a>b),把余下的部分剪拼成一个矩形(如图2),通过计算两个图形(阴影部分)的面积,验证了一个等式,则这个等式就是平方差公式,即(ab)(a-b)=a2-b2教学反思平方差公式体现了特殊多项式相乘的结果,教师可引导学生由多项式乘法法则推出,然后引导学生观察公式的结构特征,从本质上认识符合公式特征的多项式相乘,以便于灵活解决实际问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级数学《1521平方差公式》教学设计
桂平市西山一中覃娟娟
教学目标:
1. 经历探索平方差公式的过程,会推导平方差公式,并运用公式进行简单的
运算•
2. 在数学活动中建立平方差公式模型,感受数学公式的意义和作用。

3. 在计算的过程中发现规律,并能用符号表达,从而体会数学语言的简洁美.教学重点、难点:
重点:平方差公式的推导及应用•
难点:平方差公式的应用•
教具准备:
多媒体课件
教学过程:
一、创设情景,复习导入
回顾思考:
1、多项式乘法法则:(m + a )( n + b ) = m n + m b + a n + a b
2
2、如果m=n且都用x表示,那么上式就成为:(x+a)(x+b)= X +(a+b)x+ab
二、新课引入
1、计算下列各题,看谁做的又快又准确:
(1) (x + y)(x - y)
(2) (2a + b)(2a —b)
2、教师提问:1) 上述式中都有什么样的规律?
2)能不能用字母来表现它呢?
学生活动:讨论,并回答出教师提问•
2 2
3、师生共同归纳出平方差公式(a b)(a - b) = a - b
4、师生共同探讨用面积说明平方差公式(课件演示图形)
5、师生共同分析平方差公式的结构特征.
6练习:
判断下列式子可用平方差公式计算吗?
①(a-b)(b-a):②(a+2b)(2b+a);
③-(a - b)(a+b);④(-2x+y)(y - 2x).
三、例题讲解
例1运用平方差公式计算:
(1) (5+6x)(5 - 6x);⑵(b+2a)(2a - b) ;(3) (-x+2y)(-x - 2y).
评析:1 )认清结构,找准a、b
2)运用平方差公式时,要紧扣公式的特征,找出相同的“项”和符号相反
的“项”,然后应用公式;
例2:计算:
(1) 102 X 98 ; (2) (y+2)(y-2)-(y-1)(y+5).
评析:1)巧妙的化为公式形式;
2)只有符合公式才能应用公式,否则,只能应用多项式与多项式乘法
法则进行运算。

四、随堂练习,巩固新知
1指出下列计算中的错误:
(1)(1 2x)(1 - 2x) = 1 - 2x2
⑵(2a2b2)(2a2 - b2) = 2a° - b4
2 2
⑶(3m 2n)(3m - 2n) = 3m - 2n
学生先独立思考,然后抢答,师生共评.
2、运用平方差公式计算:
(1)(a+3b)(a -3b); (2)(3+2a)(-3+2a) ; (3)51 x 49;
,接着再师生学生独立完成,代表到黑板上板演,再让其他学生充当老师评改
共评.
五、课堂总结,发展潜能
2 2
1、平方差公式(a b)(a - b)二a - b
2、应用平方差公式时要注意些什么?
六、布置作业.
课本p.156
习题15.2 第 1 题(1)( 3)( 5)。

相关文档
最新文档