数学物理方法留数定理实积分

合集下载

用留数定理计算实积分

用留数定理计算实积分
14
例 5.16 计算热传导问题中的积分
I e
0

ax 2
cos bx d x, a 0, b R 的值.
【解】 本题不能用前面几种类型的积分来求,因为当 本题不能用前面几种类型的积分来求 因为当 z 时, 时
e
az 2

在半圆上不一致趋于零.考虑作如下变换:
图5.8
(P115)
18
用留数定理计算实积分
利用留数定理计算实积分 般可采用如 d 一般可采用如 f ( x)dx
下步骤: (1)添加辅助曲线,使积分路径构成闭合曲线; (2)选择一个在围线内除了一些孤立奇点外都解析 的 被 积 函 数 F ( z ) , 使 得 满 足 F ( x ) f ( x ), ) 通常选用
数四次,且为偶函数,它在上半平面内有两个单极点


0
1 d x 的值. 4 x 1
z1 e 4 , z 2 e

i
3 i 4
,所以

i 3 i 4
I i[Resf ( e 4 ) Resf ( e
)]
3 9 1 i i 1 4 4 i 3 9 i ( e e ) i 4 4i 4 4e 4e
【解】 若令 z e , 则有:
1 1 dz 2i I z 1 z z 1 dz z 1 z z 1 iz z 1 z 2 4 z 1 dz 2 2 2 2 易知在单位圆内被积函数只有一个一阶极点 z 2 3 ,且
1 Re s 2 , 2 3 lim z 4z 1 z 2
21
2
【证明】 若令 z e , 则

数学物理方法留数定理实积分市公开课获奖课件省名师示范课获奖课件

数学物理方法留数定理实积分市公开课获奖课件省名师示范课获奖课件
z0 为 Q(z) 旳一级极点.
11
所以 1 = 1 (z),
Q(z) z z0
其中 (z)在 z0 解析且 (z0 ) 0,
f (z) = 1 P(z) (z) . z z0 在 z0 解析且 P(z0 ) (z0 ) 0.
所以 z0 为 f (z) 旳一级极点,
Res[
f
(z), z0] =
平面上包括回路旳一种区域中,而实积提成为回路
积分旳一部分:
l2
a 0 l1 b
b
f (z)dz = f ( x)dx + f (z)dz
l a
l2
左边能够利用留数定理,右边对l2 旳积分在解析延拓
允许旳情况下,能够自由选择,一般选择l2 使积分最
易完毕。
29
一、形如

0
R(cos
,
sin
)d
孤立奇点, 那么 f (z) 在全部旳奇点 (涉及点)
旳留数旳总和必等于零.
证 .
. z1 .z2
.zk .
. C (绕原点旳并将 zk包括在 . 内部旳正向简朴闭曲线)
由留数定义有:
n
Res[ f (z),] + Res[ f (z), zk ]
k =1
1
1
=
f
2i C 1
( z )dz
+
2i
C
留数定理旳主要应用之一:计算某些实变函数定 积分
原理:设法把实变函数定积分跟复变函数回路积 分联络起来。
留数定理是复变函数旳定理,若要在实变函数定 积分中应用,必须将实变函数变为复变函数。这就 要利用解析延拓旳概念。
28
b
如图,对于实积分 f ( x)dx,变量 x 定义在闭区间 a

6.2 用留数定理计算实积分

6.2 用留数定理计算实积分

sin x cos x x2 x dx, e dx, 1 x 2 dx,
或者即使可以求出原函数,但往往计算比较复杂,例如
1 (1 x 2 )2 dx.
利用留数方法计算这些实积分,只须算出有关函数的留数, 也就基本解决了.该方法不是普遍适用的方法,也不是解 决所有实积分的计算方法,而是考虑几类特殊类型的实积 分的计算,并且着重讨论实积分化为围线积分的方法.
×
二、形如



P( x) dx 的积分 Q( x )
SR
R
2
引理6.1 设f(z)沿圆弧
SR : z Rei (1 2 , R充分大)
1
x
0
上连续,且 lim zf ( z ) 于SR上
R
一致成立(即与1 2 中的 无关), 则
R
π
1 z 1 dz m 2 4 i | z | 1 z 5 z 2 z 2
2m


1 z 2m 1 dz m 4i |z|1 z 2 z 1 z 2
1 2 πi Res f ( z ) Res f ( z ) 1 z 0 4i z 2 ( m ) 1 1 m 2πi lim z f ( z ) lim z f ( z ) 1 z 0 4i 2 z 2
l 于是(6.10)式不超过 2 1 R
R R0 时,有不等式 | zf ( z) | , z S . R 2 1
(其中 l 为SR的
长度,即
l R(2 1 ) ).
P (z) 为有理分式,其中 定理6.7 设 f ( z ) Q( z )

数学物理方法 留数定理及其应用

数学物理方法 留数定理及其应用
1 dx , cosh x 1 dx 3 cosh x
对于条件(1)






奇点 z=/2i, 3/2i,
数学物理方法2015.02
第二节 应用留数定理计算实函数的积分
计算积分 设 f ( z)



1 dx cosh x
y=
1 cosh z
奇点 z=/2i, 3/2i, ,周期 2i -R

0
O
R
R



eix 1 dx cosh x 1 e
eiz C cosh z dz
0 eiR y eiR y dy i dy cosh( R iy ) cosh( R iy )
2 i iz Res f ( z ) e 1 e z i / 2
第二节 应用留数定理计算实函数的积分
计算积分 设 f ( z)



eix dx cosh x
y=
y=/2 y=0
1 cosh z
奇点 z=/2i, 3/2i, ,周期 2i -R
eiz C cosh z dz R R eix eix dx dx R cosh x R cosh( x i ) i
| z z0 |
f z dz a z z dz
n | z z0 | n n 0

z0
2 ia1
如何计算留数,或系数a-1
数学物理方法2015.02
第一节 留数及留数定理
留数的计算方法
(1) 一般方法:利用留数的定义来求留数 (2) 根据孤立奇点的类型来计算留数

应用留数定理计算实变函数定积分

应用留数定理计算实变函数定积分

应用留数定理计算物理学中实变函数定积分1问题在物理学中,研究阻尼振动时计算积分0sin xdx x∞⎰,研究光的衍射时计算菲涅耳积分20sin()x dx ∞⎰,在热学中遇到积分cos (0,ax e bxdx b a ∞->⎰为任意实数)如果用实函数分析中的方法计算这些积分几乎不可能。

而在复变函数的积分计算中,依据留数定理,我们可以将实变函数定积分跟复变函数回路积分联系起来。

2应用留数定理求解实变函数定积分的类型将实变函数定积分联系于复变函数回路积分的要点如下: 1)利用自变数变换把1l 变换为某个新的复数平面上的回路; 2)另外补上一段曲线2l ,使1l 和2l 合成回路l ,l 包围着区域B ,则1l 上的()f x 延拓为B 上的()f z ,并将它沿l 积分,有12()()()ll l f z dz f x dx f z dz =+⎰⎰⎰Ñ;3)()l f z dz ⎰Ñ可以应用留数定理,1()l f x dx ⎰就是所求的定积分。

如果2()l f z dz ⎰较易求出(往往是证明为零)或可用第一个积分表示出,问题就解决了.类型一20(cos ,sin )R x x dx π⎰.被积函数是三角函数的有理式;积分区间为[0,2π].求解方法:因为被积函数是以正弦和余弦函数为自变量,积分上下限之差为2π,可以当作定积分x 从0变到2π,对应的复变函数积分正好沿比曲线绕行一周,实变积分化为复变回路积分就可以应用留数定理.可以设ixz e =,则dz izdx =∴dz dx iz=而11cos ()22ix ix e e x z z --+==+,11sin ()22ix ix e e x z z i i ---==- 则原积分化为111(,)2()22k z kz z z z dzI R i Resf z i iz π--=+-==∑⎰Ñ 类型二-()f x dx ∞∞⎰.积分区间为(-∞,+∞);复变函数()f z 在实轴上有奇点,在上半平面除有限个奇点外是解析的;当z 在上半平面及实轴上→∞时,()zf z 一致地→0.求解方法:如果f(x)是有理分式()/()x x ϕψ,上述条件意味着()x ψ没有实的零点,()x ψ的次数至少高于()x ϕ两次. 如图2,计算积分lim()RRR I f x dx -→∞=⎰图1()()()RRlRC f z dz f x dx f z dz -=+⎰⎰⎰Ñ根据留数定理,2{()}=()()RRRC i f z l f x dx f z dz π-+⎰⎰在所围半圆内各奇点的留数之和令R →∞,有2{()}=()()RC i f z l f x dx f z dz π∞-∞+⎰⎰在所围半圆内各奇点的留数之和而()()()max ()max ()0RRRC C C dz dzRf z dz zf z zf z zf z zf z zzRππ=≤≤=⋅→⎰⎰⎰所以()=2{()}f x dx i f z l π∞-∞⎰在所围半圆内各奇点的留数之和类型三()cos F x mxdx ∞⎰,0()sin G x mxdx ∞⎰.积分区间是[0,+∞];偶函数()F x 和奇函数()G x 在实轴上没有奇点,在上半平面除有限个奇点外是解析的;当z 在上半平面或实轴上→∞时,()F x 及()G x 一致地→0.约当引理 如m 为正数,R C 是以原点为圆心而位于上半平面的半圆周,又设当z 在上半平面及实轴上→∞时()F x 一致地→0,则lim ()0Rimz C R F z e dz →∞=⎰求解方法:000111()cos ()()()()222imx imx imx imx F x mxdx F x e e dx F x e dx F x e dx ∞∞∞∞--=+=+⎰⎰⎰⎰经自变量代换,上式变为000111()cos ()()()222imx imximx F x mxdx F x e dx F x e dx F x e dx ∞∞∞-∞-∞=+=⎰⎰⎰⎰同理1()sin ()2imxG x mxdx G x e dx i∞∞-∞=⎰⎰ 由类型二可知2{()}=()()Rimx imz C i f z l F x e dx F z e dz π∞-∞+⎰⎰在所围半圆内各奇点的留数之和由约当定理2{()}=()imx imx i F x e l F x e dx π∞-∞⎰在所围半圆内各奇点的留数之和同理2{()}=()imx imx i G x e l G x e dx π∞-∞⎰在所围半圆内各奇点的留数之和所以()cos {()}imz F x mxdx i F z e π∞=⎰在上半平面所有奇点的留数之和()sin {()}imx G x mxdx G x e π∞=⎰在上半平面所有奇点的留数之和实轴上有单极点的情形 考虑积分-()f x dx ∞∞⎰,被积函数()f x 在实轴上有单极点z α=,除此之外,()f x 满足类型二或类型三的条件.求解方法:由于存在这个奇点,我们以z α=为圆心,以充分小的正数ε为半径作半圆弧绕过奇点α构成如图3所示积分回路. 于是()()()()()RRlRC C f z dz f x dx f x dx f z dz f z dz εαεαε--+=+++⎰⎰⎰⎰⎰Ñ取极限R →∞,0ε→,上式左边积分值等于2()iResf z π∑上半平面.右边第一、第二项之和即为所求积分.按类型二或类型三的条件,第三项为零. 对于第四项,计算如下:将()f z 在z α=的领域展为洛朗级数,有()1()a f z P z z αα-=+-- 其中()P z α-为级数的解析部分,它在C ε上连续且有界,因此()()()max max C C P z dz P z dz P z εεααπεα-≤-=⋅-⎰⎰所以()0lim 0C P z dz εεα→-=⎰而()()01111i i C C a a a dz d z e id ia iResf z z e εεϕϕπαεϕππαααε----=-==-=---⎰⎰⎰ 于是()-()2()f x dx iResf z iResf ππα∞∞=+∑⎰上半平面若实轴上有有限个单极点,则()-()2()f x dx i Resf z iResf z ππ∞∞=+∑∑⎰上半平面实轴上3应用留数定理求解物理学中实变函数的定积分(1)计算阻尼振动的狄利克雷型积分0sin xdx x∞⎰ 解:由类型三,将原积分改写sin 12ixx e dx dx x i x∞∞-∞=⎰⎰这个积分的被积函数ixe x除了在实轴上有单极点0x =外,满足类型三的条件.由于被积函数在上半平面无奇点,有图310=1=2222ix ix e e dx z i x x πππ∞-∞⎧⎫==⋅⎨⎬⎩⎭⎰被积函数在单极点的留数 即sin =2x dx x π∞⎰推论:对于正的m ,0sin sin ()2mx mx dx d mx x mx π∞∞==⎰⎰ (m >0)对于负的m ,0sin sin 2m x mx dx dx x x π∞∞=-=-⎰⎰ (m <0)(2)计算在研究光的衍射时菲涅耳积分20sin()x dx ∞⎰和20cos()x dx ∞⎰解:∵2222sin()Im ,cos()Re ix ix x e x e ==∴2210ix I iI e dx ∞+=⎰取图4所示回路l .由于2ix e 没有有限远奇点,所以根据留数定理得20izle dz =⎰Ñ 即22/42()/40()0i RRix iz i ei C Re dx e dz e d e πρπρ++=⎰⎰⎰令R →∞.222()/4/4/40lim lim()i i i i i RRR R e e d e e d e e d ρππρπρρρρ∞--→∞→∞=-=-⎰⎰⎰/4(1)28i e i πππ=-=-+/4222222i RRiz Reiz izC C z Redz e dz e iziz π==+⎰⎰2Riz C e dz ⎰而222/4102222R iR R i e e e iRe iR R R π---≤+→ (于R →∞)2222sin 2cos 2sin 22222222R RRiz R iR R i i C C C eeedz Re id Rd iz iR eRϕϕϕϕϕϕϕ-+-=≤⎰⎰⎰2sin 221max 02424R e R R ϕππ-⎛⎫≤=→⎪ ⎪⎝⎭(于R →∞) 图4所以21(1)08I iI iπ+-+=即18Iπ=,28Iπ=(3)计算求解热传导问题的偏微分方程时遇到的积分2co0)s(,axe bx bdx a∞->⎰为任意实数解:由类型三,将原积分改写221cos2ax ax ibxe bxdx e e dx∞∞---∞=⎰⎰取如图所示回路,由于矩形区域内函数2ax ibxe-+无奇点,所以根据留数定理得20az ibzle dz-+=⎰Ñ即2222234N ax ibx az ibz az ibz az ibzN l l le dx e dz e dz e dz-+-+-+-+-+++=⎰⎰⎰⎰当N→∞时,2222234ax ibx az ibz az ibz az ibzl l le dx e dz e dz e dz∞-+-+-+-+-∞=---⎰⎰⎰⎰只要求出上式等号右边的三个积分就可以计算出2ax ibxe dx∞-+-∞⎰所以,2cosaxe bxdx∞-⎰就可以求出.四、结语留数定理是复变函数论具体应用于积分计算中的一个非常有力的工具,把难以求解的定积分和反常积分转化为留数的计算问题,且能推广留数定理在阻尼振动、菲涅耳衍射及热传导等具体物理问题所遇到的反常积分的求解上,简化了计算过程。

数学物理方法留数定理

数学物理方法留数定理

[( z z 0 ) P( z )]' P( z 0 ) = lim = . z z0 Q( z )' Q( z 0 )
12
三、在无穷远点的留数
1.定义 设函数 f (z )在圆环域 R z +内解析,
C为圆环域内绕原点的任何一条正向简单闭曲线,
1 则称此定值 那末积分 1 f ( z)dz 的值与C无关, 2 i C
1 z z = 6[ + L], z 3! 5!
1 z sin z Res ,0 = c1 = . 6 5! z
3
5
19
说明:在实际计算中应灵活运用计算规则. 如 z0 为 m 级极点,当 m 较大而导数又难以计算时, 可直接展开罗朗级数求 c1 来计算留数 .
23
z dz , C为正向圆周: z = 2 . 例5 计算积分 4 z 1 C z 在 z = 2 的外部, 除 点外没有 解 函数 4 z 1
其他奇点. z z 4 1 dz = 2iRes f ( z ), C
z z 1
4
=z
3
1 1 1 4 z
=z
3
+ a0 ( z z0 )m + a1 ( z z0 )m +1 + L
9
两边求 m 1 阶导数,
d m 1 m 得 m 1 [( z z0 ) f ( z )] dz
= ( m 1)!a1 +(含有 z z0 正幂的项) d lim m 1 [( z z0 )m f ( z )] = ( m 1)!a1 , z z0 dz 所以 Res[ f ( z ), z0 ] = a1

《数学物理方法》第4章留数定理及其应用

《数学物理方法》第4章留数定理及其应用

法则1 如果z0为f (z)的一级极点,那么
Re
s[
f
( z ),
z0
]
lim ( z
z z0
z0
)
f
(z)
证明
f (z)
c1
z
1 z0
c0
c1 ( z
z0 )
(z z0 ) f (z) c1 c0 (z z0 ) c1(z z0 )2
例1 计算积分
C
zez z2
1
dz,
其中C为正向圆周:| z
12
3)
Re s[
tan
z,
2k 1] 2
sin (cos
z z)
z 2k 1
1
.
2
2
tan zdz 2i
Res[tan z, 2k 1] = 10i
|z|3
k 0
2
11
z sin z
例5 计算下列积分 |z|1
z6 dz.
解 z 0为f (z)的三级极点.
f (z)dz=2i Res[ f (z), 0]
n
f (z)dz 2i R es[ f (z), zk ]
C
k 1
证明 由复闭路定理得
n
f (z)dz f (z)dz
C
k 1 Ck
由留数的定义得
n
f (z)dz 2i R es[ f (z), zk ]
C
k 1
y C1
C
z•1 C2 o C3 • z3 •z2 x
5
三、留数的计算
z0
]
lim(
lim
z z0
P(z0 ) Q(z0 )

4-2用留数定理计算实变积分

4-2用留数定理计算实变积分

e
2 3
i
I
1 3
e
2 3
i
2
i
1
e
2 3
i
2
3 9
3. 同时包含有理式和三角函数的积分
约当引理:m 为正数,CR 是一个以原点为圆心而位于上半平面的半圆,且当 z 在上半平面及实轴上 趋于无穷大时, F (z) 一致的趋于零,则有
证明,略
lim F (z)eimzdz 0
R CR
考 虑 形 如 F (x) cos pxdx 或 F (x) sin pxdx 的 积 分 , 一 般 情 况 下 ,
2 22n
(2n)! n!n!
练习:习题 1 中的(1),(5),(7)
2. 无穷积分
引子:
1 1
1 x2
dx
1 x
1 1
2
,对吗?
定义:
f (x)dx lim R2 f (x)dx
R1 R1
R2
有时这种极限不存在,但 lim R f (x)dx 存在,称为积分主值, R R 记为
下是成立的。而积分
数学物理方法
4.2 用留数定理计算实变积分
丁成祥
f (z)dz 2 i Resf (z)
C
上半面
所以,在 c 为 f (x) 单极点的情况下,有
f
( x)dx
2 i(
Re sf
上半平面
(z)
1 2
Re sf
(c))
更一般的情况,实轴上有若干个孤立奇点 Ci ,则有
备注:所谓 zf(z)一致的趋于零,即 max | zf (z) | 0 .
例 1:计算积分 I
dx (1 x2 )3

第二节(应用留数定理计算实变函数定积分)

第二节(应用留数定理计算实变函数定积分)

点的一条正向简单闭曲线, 则
n
包括无限远点和
f (z) d z 2 π i Res f (bj ). 有限远的奇点
l f (z)dz 2l if z在所有j有 1 限远点的留数之和
0 2if z在所有各点的留数之和
lim ( z
zz0

z0 )
f
(z) =
2
2z
4
例1 计算
2
I
dx ••(0 1)
0 1 cosx
解 由公式得
I
dz / iz
|z|1
1
z2
1

2 i
dz
|z|1 z2 2z
2z
dx dz iz
cos x 1 eix eix 2 z2 1 2z
而由上节例题可知
z2
|z|1
dz 2z


2i Re sf
(z0 )

2i
2
1
1 2

i 1 2
故可得结果为
2 i
2
I

i 12 12
5
例2
计算
I

2 0
1
2
dx c os x


2
••(0


1)
解 由公式得
dz / iz
i
I

|z|11 (z z 1) 2
1
1 z2 (z i)( z i)
具有单极点士i,其中+i在
上半平面,并且有
Re sf (i) limz i f z lim 1 1

4.2留用留数定理计算实变函数定积分

4.2留用留数定理计算实变函数定积分

解析延拓246224611...(||1)1()1...(||1)||1()b z z z z zf z z z z z z f z -+-+=<+=-+-+<<↓是幂级数,在单位圆内部收敛,其和是解析函数,但在单位圆外级数发散而没有意义。

在一较小的区域上为解析函数21()1b B F z z i =+±↓在除去z=的全平面上是解析函数。

在含区域的一个较大的区域上是解析函数22|z|<1b 1F(z)f(z)1z +...(|z|<1)1z两者在较小的区域()上等同称=是=-的+解析延拓b ()F(z)Bb ().f z f z ⇒解析延拓:已给某个区域上的解析函数找出另一函数,在含有区域b 的一个较大区域上为解析函数,且在区域上等同于即解析函数定义域的扩大bB4.2 利用留数定理计算实变函数定积分留数定理的一个重要应用是计算某些实变函数的定积分。

实变函数的定义域在实轴上,而运用留数定理时需要寻找一个回路,显然在计算此类积分时需要构造一些回路。

教学重点:介绍三类实变函数定积分的计算().baf x dx a b l →⎰1积分区间[,],可看作复平面上的实轴上的一段xyo l 2121212(1)(2)B ()B (z)()()()ll l l l l l l l l f x f f z dz f x dx f z dz→−−−−→=+⎰⎰⎰ 解析延拓构造回路方法:利用自变数变换将复平面上某个新的回路补一段曲线,使+=回路,包围区域,则上的闭上的↓↓↓利用留数待求积分较易算出的积分定理计算 一般为0或用待求 积分表示bal 1B20(co i ,s ,s n )R x x dx ππ⎰类型一:特点:被积函数为三角函数的有理式积分区间[0,2],:0~2,11()ix ix ixixz e x z e z z dz dz d e ie dx dx izπ===−−−−−→===∴=绕原点一周回到方法:作变数代换:令则从xyo2πl 11111||11111cos (),sin ()2222I=(,)2Re (),221()(,)22ix ix ix ixk z e e e e x z z x z z i iz z z z dzR i sf z i iz z z z z f z R iz iπ------=--+-==+==-→+-=+-=⎰ 则实变函数定积分复变函数回路积分则原积分2012||1||1I=(01)1cos ,/()2212ixz z dx x dz z e dx iz dz iz dzI z z i z z πεεεεε-==<<+==∴==++++⎰⎰⎰ 例1:解:令则1122122221,21121122||122(1)()()244111112()111Res '()2222212222Re ()21z z z z z z z z z z z z z z z z f z z z z dz I i sf z i z z i εεεεεεεεεεεεϕψεεεππεεε===++++=---±--±-==-±-=∴===++-∴===++-⎰ 令=在|z|=1内只有一个奇点,且为单极点()=2212221111|1(1)(1)111111|1z z εεεεεεεεεεεε-+---==---<=---+-==>>且||2022022222002I=(0)cos 2(01)1cos 11122()cos (1cos )1dxa a x dx x dx dx a x a a a x a aππππεεπεεεππεεεε>>+=<<+-∴===+-+-⎰⎰⎰⎰例:解:由可作为公式来用20220222023322222222233220022222I=(1)cos (01)1cos 2cos 1222(cos )2()()221(cos )1cos ()(1)dxa a x dx x dx a a x a dx aa a x a a dxadxa a x x a ππππππεεπεεππεεεππεεεε>+<<+=+--=-=-+--===++--⎰⎰⎰⎰⎰⎰例:例:()解:在基础上两端对求微分再令,()2201122||1||1||12||1||11I=(01)12cos 1,,cos ()22/()()122,()(1)()(1),ix ixixz z z z z dxx dz e e z e dx x z z iz dz iz idz idzI z z z z z z z z idz idzz z z z z πεεεεεεεεεεεεεεεε---=====<<-++====+--∴===+--+----+-==----∴=⎰⎰⎰⎰⎰⎰ 例:计算解:令则211212||11||1Res ()lim()()(1)12I=2Res ()()(1)1z z z z z i if z z z z idz i f z z z εεεεεεεεππεεε→====∴==----==---⎰ 是被积函数的两个单极点,但在内只有一个极点。

留数的应用—用留数定理计算实积分

留数的应用—用留数定理计算实积分
2 0

cos x dx a b sin x
2 2
2
a b sin x a b dx 2 2 0 b b 2 2 2 a b 2 a I 2 b b
2

2
0
1 dx a b sin x
I
2
0
1 dx a b sin x

1
| z| 1
2 dz 2 | z| 1 bz 2iaz b
例5 计算积分I 0

dx . 2 2 (1 x )
1 . 解 作辅助复函数f ( z ) 2 2 (1 z )
它在上半平面仅有一个二阶极点z i, 且
1 Re s( f , i) 2 ( i z )
Cr : {z reit ;0 t }.
包围在单位圆周 内的诸孤立奇点.
思想与方法: 把定积分化为一个复变函数沿 某条封闭路线的积分 .
两个重要工作: 1) 积分区域的转化 2) 被积函数的转化
例1 计算积分 I 0
ix
2
2
dx 3 cos x

2
解 : z 沿正向圆周 z 1 绕行一周, 当 x 从0 到 2 时, 因此,
z z
z
z3
2
1
2
1 lim 0 z z
计算 f z 在上半平面奇点处的留数
z 2 Re s 2 2 f z ,i z i z i z i
2

z i
2z 2z2 2 3 z i z i
2
i
1 i z 1 i cos e e 2 2z

5-3用留数定理计算实积分

5-3用留数定理计算实积分

C
e
R
e
ay
ds 20 e aR sin d
π
哈 尔 滨 工 程 大 学
aR sin d 4 e 4 e aR sin d 4 e
π 2 0
π 2 0
y
2 y π
y sin
π 2 0
aR (
2 ) π
d ,
2 (1 e aR ). aR
2π i Res[ R( z )e aiz , zk ].


哈 尔 滨 工 程 大 学
例5 计算积分

0

x sin mx dx , 2 2 2 (x a )
m 0, a 0.
0

x sin mx 1 x sin mx dx dx 2 2 2 2 2 2 ( x a ) (x a )
lim Q( z )e ipz dz 0
R C R
复 变 函 数 与 积 分 变 换
其中, p 0, C R是以z 0为圆心,半径等于 R的半圆,位于上半平面.
哈 尔 滨 工 程 大 学
2 对于充分大的 z , 且 m n 1时, 有 R( z ) z
C
R
R( z )e dz
2
dz 2 z 1 iz a 2z 2 2 ( z 1) 1 2iz 2 ( z 2 2az 1) dz z
( z 1) 1 4 z 2 z
2 2
1
哈 尔 滨 工 程 大 学

z 1
2iz
2
z (a
哈 尔 滨 工 程 大 学
例2 计算

5.4利用留数计算实积分

5.4利用留数计算实积分
封闭路线的积分 . 两个重要工作: 1) 被积函数的转化
2) 积分路径的转化
2

0 R(cos ,sin )d
令 z ei
dz iei d
sin 1 (ei ei ) z2 1 ,
2i
2iz
d dz ,
iz
cos 1 (ei ei ) z2 1,
2
2z
当 历经变程 [0,2π ] 时,
e ix
( x2 1)( x2 9) dx
2 i{Res[ f (z)eiz ,i] Res[ f (z)eiz ,3i]}
14
2
)( z 2
9)
lim
z3i
(z2
e iz 1)( z
3i)
2 i
e 1 16i
e 3 48i
24e 3
3e2 1 .
z 1 3z2
2 10iz
dz 3
2 3
z 1 ( z
i
1 )( z
3i)
dz
3
5
I
2 3
z 1
(z
i
1 )( z
3i)
dz
3

f (z)
(z
1 i )(z 3i)
,则
3
I
2 3
2πiRes
f
( z ),
i 3
2 2i( 3i )
3
82
6
R(x)dx
其中R(x)是有理函数,其分母至少比分子高两次,
a2 b2
. ab
11
R( x) eaixdx (a 0)
积分存在要求: R(x) 是 x 的有理函数,且分母的

9《数学物理方法》第九讲应用留数定理计算实变函数的积分

9《数学物理方法》第九讲应用留数定理计算实变函数的积分

-----《数学物理方法》第八讲-----
dx 计算: 计算: ∫ 题 −∞ 1 + x 2 ∞ dx ∫−∞ 1 + x 2 = ∫l f ( z )dz =


1 ∫l 1 + z 2 dz =
dz ∫l ( z + i)( z − i)
的两个单极点, z = ±i 为 f ( z ) 的两个单极点,其中 z = +i 在上半平面 1 1 1 Re sf (i ) = lim = lim = 2 z →i (1 + z ) ' z →i 2 z 2i

类型Ⅲ 类型Ⅲ:


0
F ( x) sin mxdx


0
F ( x) sin mxdx
F 特点: 为奇函数。 特点:积分区间为 [0, ∞) , ( x) 为偶函数 G ( x) 为奇函数。
要求: 在上半平面除有限个起点外解析, 要求: ( z ) 和 G ( z )在上半平面除有限个起点外解析,当 z → ∞ F
b

l
f ( z )dz = ∫ f ( z )dz + ∫ f ( z )dz
l1 l2
应用留数定理 那么

如果该积分容易计算

l
f ( x)dx 就容易计算了。 就容易计算了。
下面介绍几个可以利用留数定理计算实变函数积分的例子 类型Ⅰ 类型Ⅰ: ∫ R (sin x, cos x) dx
0
要求:被积函数是三角函数的有理式; 要求:被积函数是三角函数的有理式;积分区间为 [0, 2π ]
1 得: sf (i) = Re (−n)(−n − 1)(−n − 2) L (−n − n + 2)(2i ) −2 n +1 (n − 1)! (2n − 2)! 1 = (−1) 2 n −1 i 2 [(n − 1)!] 2

6.2用留数定理计算实积分

6.2用留数定理计算实积分

因令此r rl im , 就r (1得d到zz2)2(10,dxx2)2
.
2
从而
I12 (1dx2x)2
.
4
注解:
注解1、我们计算所得的值这个广义积分的柯西
主值,但由于此积分收敛,所以积分值等于主
值。
注解2、应用同样得方法,我们可以计算一般形
注解2、f(z)及g(z)选择的原则是,f(z)在内的零点 个数好计算。
例1:
例1、 求方程 z85z52z 10 ,
在|z|<1内根的个数。
解:令 f(z ) 5 z 5 1 ,g (z ) z 8 2 z ,
由于当|z|=1时,我们有
|f(z)| | 5z5| 14 ,
2 z2 2iaz1
在|z|<1内极点处的留数,就可求出I。 上面的被积函数有两个极点:
z1iai a21 z2iai a21 显然 |z1|1,|z2|1
例1、
因此被积函数在|z|<1内只有一个极点z1,而它在
这点的留数是:
R(e f,zs1)2z1 22ia i
1. a21

|g(z)| |z8||2z|3 ,
已给方程在|z|<1内根的个数与-z5+1在|z|<1内根 的个数相同,即5个。
例2: 例2、 如果a>e,求证方程 ez azn
单位圆内有n个根。
证明:令 g(z) ez,f(z)an,z 由于当 |z||ei|1时,
|g ( z ) | | e z | e co e , s |f( z ) | |a n | a z e ,
第六章 留数理论及应用
第6.2节 用留数定计算实积分

第二节(应用留数定理计算实变函数定积分)

第二节(应用留数定理计算实变函数定积分)


同理有

0
1 ∞ F ( x) cos mxdx = ∫ F ( x ) e imx dx 2 −∞


0
1 ∞ G ( x) sin mxdx = ∫ G ( x)e imx dx 2i −∞
由此我们把类型三化为类型二来处理! 由此我们把类型三化为类型二来处理! 类型三化为类型二 在类型二中,要求z 在类型二中,要求z在上半平面或实轴上→ ∞ 时,zF(z)eimz 和 imz一致地 → 0 , 但我们希望条件可以放宽一些,由此 但我们希望条件可以放宽一些, zG(z)e 我们引入约当引理 约当引理, 我们引入约当引理,此时我们可以把条件放宽为 F(z)和G(z)一致地 F(z)和G(z)一致地 → 0
∫ f ( z ) dz = 2π i{ f (z )在所有有限远点的留数
l j= 1
l
∫ f (z)dz = 2πi∑Res f (b ).
j
n
包括无限远点和 有限远的奇点
之和 }
0 = 2πi{ f ( z )在所有各点的留数之和}
z → z0
z→z0
lim ( z − z 0 ) f ( z ) = 非零有限值
b a
dz ix 作变换 z = e , Q dz = e idx, ∴ dx = iz 1 ix −ix z − z −1 z 2 − 1 sin x = e −e = = 2i 2i 2iz 1 ix − ix z2 + 1 z + z −1 cos x = ( e + e ) = = 2 2z 2
10
然后应用公式可求得结果
∫ (
−∞

例5
解 这里积分区间为 [0,+∞ ) 不符合条件,不能直接应用公式! 不符合条件,不能直接应用公式!

大学物理-利用留数定理计算实积分

大学物理-利用留数定理计算实积分
上没有奇点; 2. 当 z 在上半平面及实轴上趋于 时,f (z) 一致地趋于零。
闭合回路 L 的构成:原积分路线上增加半圆 CR (R→ )

其中 bk 为 F (z) 在上半平面的孤立奇点。
在以上推导中,还需

(实际上是求在引入曲线 CR 上的积分) 约当引理:
若 z 在上半平面及实轴上趋于 时,f (z) 一致地趋于 零,则
其中 m > 0,CR 是以 z = 0 为圆心、R 为半径的位于上半 平面的半圆。
证明:1. 令
,因为在
所以
设 则

这说明 – tan 单调递减,且由于 G(0) = 0,故
从而
所以 g ( ) 在 (0, / 2] 是递减函数,则
因此 即
函数
与函数
的曲线图
2. 令 z = Re i ,则 dz = Re i i (半圆上),于是 而 |d|=d , :实数,且 d > 0 (逆时针) ,对于积分
式中已经变换了求和指标,并利用了
ln 2 (1)k 1 1 1 1 1
k 1
k
234
三、
型积分 (常见于傅里叶变换中)
因为
故求上式中等号右边的两个积分归结于求左边的积分。
注:
理解为它的积分主值。
对 f (z) 有以下假设: 1. f (z) 在上半平面中除了有限个孤立奇点外解析,在实轴
1 , 2 0 c1
x c 1,2 0 c1
它一般不为零。但由于右边的被积函数是奇函数,如果
1 = 2,则在 1= 2 = 趋于零之前,积分就已经是零。
因此,当 c 为 f (x) 的一阶极点时,有
c
lim f (x)dx 0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分析 P ( 0 ) = P ( 0 ) = P ( 0 ) = 0 , P(0)0. z=0是 zsizn的三级零点
所以 z=0是f(z)的三级极 由规点则, 2得 Rfe (z)s 0 ] ,= [(3 1 1 )lz !i0d d m z 2 2 z3z z s 6iz n . 计算较麻烦.
(3
i + i)10
.
27
4.2 应用留数定理计算实变函数定积分
留数定理的主要应用之一:计算某些实变函数定 积分
原理:设法把实变函数定积分跟复变函数回路积 分联系起来。
留数定理是复变函数的定理,若要在实变函数定 积分中应用,必须将实变函数变为复变函数。这就 要利用解析延拓的概念。
28
b
如图,对于实积分 f ( x ) d x,变量 x 定义在闭区间 a
所以z0为 Q(z) 的一级零点, 1
z 0 为 Q ( z ) 的一级极点.
11
因此 1 = 1 (z),
Q(z) zz0
其中(z)在 z 0 解析且(z0)0,
f(z)= 1 P(z)(z).
zz0 在 z 0 解析且 P (z0)(z0)0.
所以z0 为 f (z) 的一级极点, R [f(z e )z 0 ,s ]= l z z 0 i(z m z 0 )f(z )=zl imz0(zz0)QP((zz))
= (m 1)!a1 +(含有 z z0正幂的项)
dm1
lim
z z0
dz
m
1
[(
z
z0 )m
f
(z)] =
(m
1)!a1,
所以 Res[ f (z), z0 ] = a1 =(m 1 1)lz! iz0m d d zm m 11[z(z0)mf(z)]. [证毕]
10
•规则3

f
(z)
18
解 如果利用罗朗展开式求c 1 较方便:
zzs6izn =z16zzz33 !+z55 !L = 1 [z3 z5 +L], z6 3! 5!
R z e zs s6iz,n 0 =c 1=5 1 !.
19
说明:在实际计算中应灵活运用计算规则. 如 z 0 为 m 级极点,当 m 较大而导数又难以计算时, 可直接展开罗朗级数求 c 1 来计算留数 .
Rfe (z)sz,0] [= z l iz0(m z z0)f(z).
8
•规则2 如果 z 0 为 f (z)的 m级极点, 那么 Rfe (z)s z0 ,]= [(m 1 1 )lz !z i0d d m z m m 1 1 [z( z0 )m f(z)]. 证 f (z) = am (z z0 )m + L + a2(z z0 )2 +
n
=Refs([z),zk] 即可. 得
k=1
[证毕]
7
2.留数的计算方法
(1) 如果 z 0 为 f (z) 的可去奇点, 则 Rfe (z)s z 0 ,]= [0 . (2) 如果 z 0 为 f (z) 的本性奇点, 则需将 f (z)展开
成罗朗级数求 a1
(3) 如果 z 0 为 f (z)的极点, 则有如下计算规则 •规则1 如果 z 为0 f (的z)一级极点, 那么
+ a1(z z0 ) + L + ak (z z0 )k + L
3
积分 f(z)dz
C
= L + ak (z z0 )k dz + L + a1 (z z0 )1dz + L
C
C
(重要结论)
2i
0
+ a0dz + a1(z z0 )dz + L + ak (z z0 )k dz + L
允许的情况下,可以自由选择,通常选择l2 使积分最
易完成。
29
一、形如 02πR(co,ssin)d的积分
思想方法 : 把定积分化为一个复变函数沿某条 封闭路线的积分 .
两个重要工作: 1) 积分区域的转化 2) 被积函数的转化
30
形如 02πR(co,ssin)d
令z=ei dz=ieid
sin=1(eiei)= z 2 1 ,
C
以 2i 后所得的数称为 f(z)在z0的留. 数
记作 Ref(sz)[z,0].(即f(z)在z0为中心的圆环
域内的罗朗级数中负 幂项a1(z z0 )1的系数 .)
5
二、利用留数求积分
1.留数定理 函数 f (z) 在区域 D内除有限个孤 立奇点 z1,z2,L ,zn外处处解析, C 是 D内包围诸奇
+ a1(z z0 )1 + a0 + a1(z z0 ) + L
(z z0)m f (z) = am + am+1(z z0) +L+ a1(z z0)m1
+ a0(z z0 )m + a1(z z0 )m+1 + L
9
两边求 m1阶导数,
得 ddzmm11[(zz0)mf(z)]
C 1
C 2
C n
C
.z n
两边同时除以 2i且
z1 . .z 2
L
D
2 1 iC 1f(z) d z+ 2 1 iC 2f(z)d z+ L + 2 1 iC nf(z) d z
= R f ( z ) z 1 ] + R e ,f ( z ) z s 2 ] + L e , + [ R f s ( z ) z n ] [ e , s
z
C
z
4
1
dz
= 2 i R f ( z ) 1 e ] + , R sf ( z [ ) e 1 ] ,s[
+ R f ( z ) e i ] + ,R sf [ ( z ) e i ] , s[
由规则3
P(z) z 1 Q(z)=4z3 =4z2 ,
25
C
z z4 1dz
=2i 1 4+1 41 41 4 =0.
20
例3

f
(z)
=
ez z5
1

z=0的留数.
解 z=0是 f (z)的四级极点.
在 0z+内将 f (z) 展成罗朗级数:
e z z 51 = z 1 5 1 + z+ z 2 2 !+ z 3 3 !+ z 4 4 !+ z 5 5 !+ z 6 6 !+ L 1
=z 1 4+2 !1 z3+3 !1 z2+4 1 !z+5 1 !+6 z!+ L ,
22
=
d lim z1 dz
ez z
=
lzim1 ez(zz21)
=
0,
所以Cz(zez1)2dz
= 2 i R f ( z ) e 0 ] + ,R sf ( [ z ) e 1 ] ,s[
=2i(1+0) =2i.
23
例5
计算积分
C
z
4
z
1
dz
,
C为正向圆周:
z = 2.

函数
z z4
.z k .
. C (绕原点的并将 z k包含在 . 内部的正向简单闭曲线)
由留数定义有:
n
Re f(zs) [,]+ Re f(zs)z[,k]
k=1
=21 iC 1f(z)dz+21 iC f(z)dz=0.
[证毕]
14
说明: 由定理得
n
Re f(zs)z [,k]= Re f(zs) [,],
点的一条正向简单闭曲线, 那么
n
f(z)dz=2i Ref(sz)[z,k].
C
k=1
说明: 1. f (z)在C上及 C内部处处解析;
2. 留数定理将沿封闭曲线C积分转化为求 被积函数在C内各孤立奇点处的留数.
6
证 如图
f (z)dz =f(z)d z+f(z)d z+ L +f(z)d z
C
1
学习要求与内容提要
目的与要求:掌握留数的概念及计算方法。 重点: 留数的计算与留数定理 难点: 留数的计算与留数定理
2
4.1 留数定理
一、留数引入
设 z 0 为 f (z)的一个孤立奇点;
.z 0
l l0
z 0 的某去心邻域 0zz0R 邻域内包含 z 0 的任一条正向简单闭曲线
f (z) 在 0zz0R内的罗朗级数: f (z) = L + ak (z z0 )k + L + a1(z z0 )1 + L + a0
记作
Ref(sz)[ ,]=21 iC f(z)dz=21i
C
f
(z)dz
注意积分路线取顺时针方向
说明 Res[f (z),]= a1
= a1
13
2.定理二 如果函数 f (z) 在扩充复平面内只有有限个
孤立奇点, 那么 f (z) 在所有的奇点 (包括点)
的留数的总和必等于零.
证 .
.z1 .z 2
= lim[(zz0)P(z)]'= P(z0) .
zz0 Q(z)'
Q(z0)
12
三、在无穷远点的留数
1.定义 设函数 f (z)在圆环域 Rz+ 内解析,
C为圆环域内绕原点的任何一条正向简单闭曲线,
相关文档
最新文档